
SCORE REGION ALGEBRA

A FLEXIBLE FRAMEWORK FOR

STRUCTURED INFORMATION RETRIEVAL

Vojkan Mihajlović

PhD dissertation committee

Promotor

Prof. dr. Peter M. G. Apers

Assistant-promotor

Dr. ir. Djoerd Hiemstra

Members

Prof. dr. Ricardo Baeza-Yates, Universitat Pompeu Fabra, Spain
Universidad de Chile, Chile
Yahoo! Research, Spain & Chile

Prof. dr. Theo Huibers, Universiteit Twente, The Netherlands
Prof. dr. Franciska de Jong, Universiteit Twente, The Netherlands
Prof. dr. Maarten de Rijke, Universiteit van Amsterdam, The Netherlands
Dr. ir. Arjen P. de Vries, CWI, The Netherlands

CTIT Ph.D. thesis Series No. 06-94

Centre for Telematics and Information Technology (CTIT)

P.O. Box 217 - 7500 AE Enschede - The Netherlands

SIKS Dissertation Series No. 2006-26

The research reported in this thesis has been carried out under the auspices of SIKS, the

Dutch Graduate School for Information and Knowledge Systems.

ISBN: 90-365-2428-8
ISSN: 1381-36-17 (CTIT Ph.D. thesis Series No. 06-94)
Cover design: Vesna & Marija Smiljanić
Printed by: Wöhrmann Print Service, Zutphen, The Netherlands
Copyright c© 2006, Vojkan Mihajlović, Enschede, The Netherlands

SCORE REGION ALGEBRA

A FLEXIBLE FRAMEWORK FOR

STRUCTURED INFORMATION RETRIEVAL

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W. H. M. Zijm,

on account of the decision of the graduation committee
to be publicly defended

on Thursday, December 07, 2006 at 13:15

by

Vojkan Mihajlović

born on January 27, 1978
in Nǐs, Serbia

This dissertation is approved by:

Prof. dr. Peter M. G. Apers (promotor)
Dr. ir. Djoerd Hiemstra (assistant-promotor)

Acknowledgments

The thesis that lies before you is the first book that I wrote in my life. As I am
not sure when the next one will come, I would not gamble with the opportunity to
acknowledge most of you whose thoughts, actions, and reactions are engraved in
me and also the ones that are still willing to enlighten me in the future. Although
I cannot mention all of you here, a special place for you will always exist in my
heart and in my thoughts.

I start with persons who are responsible for my early education and for encour-
aging me in my development as a researcher. These are my teachers from primary
school “Ratko Vukićević” (Nǐs): Marina, Živka, Soća, and others, who also gave
me many valuable lessons about life. I am also thankful to all my friends from
the fourth class with whom I have shared the childhood experiences and good
and bad moments for eight years. Many thanks to all of my teachers from the
“Bora Stanković” Gymnasium (Nǐs) and all my classmates from the third class
that taught me a lot about human relations and self confidence.

I am in debt to my professors from the Faculty of Electrical Engineering Nǐs
and a small group of students from the back of the ‘amphitheater’ – Dado, Šaki,
Gorča, Milica, Ana, Tijana, Bojana, Vesna, Stojke – who are responsible for help-
ing me to cultivate my professional skills, allowing me to do what I like and to
like what I do. Special thanks goes to Slobodanka Djordjević-Kajan for support
and encouragement in the later stages and for being my mentor when graduat-
ing, as well as to members of CG&GISLAB for their understanding, great work
environment, and assistance through my development as a researcher.

I am particularly thankful to Milan Petković for inviting me to a half year
“Formula 1 research race” at the University of Twente and for steering my research
at that time, and to Willem Jonker for supporting me in the research and for
believing in my work as a student, later as a PhD student, and beyond. Also
many thanks to Database group members at that time (in 2001) for providing me
such a worm and hospitable environment.

Considering my PhD research I am most in debt to my assistant-promotor
Djoerd Hiemstra for being my mentor, critic, actuator, and friend, and to my
promotor Peter Apers for all punctual and sharp comments and his positivism
about my work. They supported me and guided me through my PhD path. Many
thanks to Henk Ernst for formal and less formal discussions we had in the last
years and for his comments on my thesis. All former and current members of the
Database Group at the University of Twente – Maarten, Maurice, Henk, Ling,
Rick, Roelof, Mila, Nirvana, Wijnand, Joeri, Henning, Arthur, Ander, Pavel, Har-
ald, Sander, Robin, Robert, Riham – thank you for so many nice moments, chats,

ii Acknowledgments

and serious discussions, and for understanding my obstacles with Dutch language.
Sandra, Suse, and Ida, thank you for all the help in the tedious paperwork and
for awaiting me always with a smile. Many thanks to the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO) for sponsoring my research (within the
CIRQUID project), to the INitiative for the Evaluation of XML Retrieval (INEX)
community and all those productive discussions that we had in Dagstuhl, and es-
pecially the CIRQUID team from Centrum voor Wiskunde en Informatica – Nina,
Arjen, and Thijs – for many useful advices and great cooperation we had in the
past four years.

A great contribution to my development and also in completing this thesis
comes from my close friends and family. The support comes from little Andrija
and his parents Joe and Ljilja who never lack positive energy and comic stories.
Special thanks to ‘my architects’ Marci and Irenče whose creativity and dynamic
spirit always inspires me. Dado and Marina thank you for always being there
for me and keeping the joyfulness in all our encounters. I am grateful to Jelena
and Boris and ‘just married’ Tanja and Zoki for all the skating tours, basketball
games, and crazy and long discussions that we had on various topics. Many thanks
to ‘YU community’ – Dule, Ljuba, the family Živković, Nataša, Raša, Alek and
Jasminka, Boki, Ana, Jelena, Dragon, Tanja T, Novica, Katarina and Bart, and
Maksa and Sanja, with whom I shared my work experience, played various sports,
and discussed many issues about residing in The Netherlands.

I am thankful to Arthur and Henning, my paranymphs, for the harmonic en-
vironment that we had in our office, all brainstormings, jokes, sad and happy mo-
ments that we shared in it, and also for our unforgettable camping in Sardegna.
Henning thank you for being so open and knowable in our discussions and for
being always so full of life.

I also say thanks to my two ‘families’ in The Netherlands: the family Smiljanić
and the family Petković. Thank you ‘čika Marko’, for all candies and apples, all
kind words, life stories, walks, and talks that we shared, and thank you Marina,
Marija, and Vesna, for all the games re-awaking the child in me and all unforget-
table evening companionships. ‘Bata Šimo’, thank you for all ‘driving lessons’ and
advices, for all support throughout my work in the computer science area, and for
sharing your valuable experience with me. Mihailo, Marko, and ’teta Maco’, my
gratitude to you for letting me discover myself through some childish and some
more serious games, and for enabling the persistence of my research spirit.

My deepest gratitude to my ‘Macedonian family’ Trajčevski. Thank you San-
dričak, ‘teta Julo’, and ‘čika Zorane’, for all the warmth and love that you have
for me, for letting me feel at home from the first moment, for understanding my
ambitions, and for the great support that I had from you during my PhD research.
I wish to thank also Nena and Jozo, then Matej, Ivana, and Viksa, and the fami-
lies Velickoviḱ and Arsovski for open communication and for uplifting my ‘Balkan
spirit’.

My gratitude to the family Filipović, to my ‘Uki’ Miodrag for encouraging his
‘sestrići’ at any moment, and together with my aunt Rada for always believing

Acknowledgments iii

and strengthening me, to Filip and Tamara for all the plum and grape picking
actions we had, for the unforgettable time at the see-side and in our yard in Donji
Matejevac, and all the low and high moments we shared in our lives.

Among the people that I want to thank a special place is reserved for my
granparents: ‘baba’ Zorka and Meca, and ‘nana’ Vuka and ‘deda’ Mita. Although
‘baba’ Zorka and ‘deda’ Mita are now gathering hay and picking fruits together
in heaven, they always have a special place in my hart. Thank you all for your
eternal positivism and your incredible working energy, and thank you for making
me more laborious, more versatile, more spirited, and more comical.

I owe so much gratefulness to my parents Andjica and Tomislav for everything
they taught me, for always carrying about me, fighting for my progress, and fol-
lowing me and upholding me in my path. Thank you for enabling me to became
the person I am now and for sharpening my sense of reality at every moment in
time. A big awe to Vladan, my brother, a person that has the biggest heart in
the world. Thank you for being my brother, my norm, my friend, my playmate,
my shelterer, my companion. Throughout all the words and silent moments you
teach me patience, sympathy, knowledge, comprehension, and many more. You
continue to teach me even now and you will always be my big brother.

Most of all, I am grate-grateful to my Zvončica for always helping me to find
my happy thought and for teaching me to fly. Thank you for letting me be a part
of your life, for showing me the value of true love, what are the really important
matters, and what is that one thing that leads me in my journey. Thank you for
being with me in every step in my professional life and for feeding me with positive
energy that is also enlaced in this thesis.

Finally, I want to thank to Mother Nature for being always so generous and
so understanding for me, for tolerating my mistakes and my absurdities and for
rewarding me for my kindness, endeavors, and sometimes foolishness. I thank also
all her creatures (beside humans) for expanding my views and for leading me to
peace and harmony. Thank you also for letting me engrave these letters in your
flow of life.

Vojkan Mihajlović
September 2006

iv Acknowledgments

Contents

Acknowledgments i

1 Introduction 1
1.1 Research domain: structured documents 1
1.2 Research problem . 4

1.2.1 Information retrieval . 4
1.2.2 DB systems and structured retrieval 9
1.2.3 Vision of the future retrieval systems 11

1.3 Research questions and research methods 13
1.4 Outline . 15

2 Document Component Retrieval 17
2.1 Information retrieval models . 17

2.1.1 From Boolean to language models 17
2.1.2 Retrieval models for structured data 26
2.1.3 Retrieval models for multimedia documents 32

2.2 Closing the gap between databases and IR 33
2.2.1 The database approach . 33
2.2.2 Databases & IR . 34
2.2.3 Approaches for DB & IR integration 36

2.3 Structured documents and query languages 39
2.3.1 XML data model . 39
2.3.2 XML data models for querying structured data 40

2.4 Structured IR and databases . 43
2.4.1 A relational view on XML 44
2.4.2 XML IR algebras and query languages 49

2.5 Region Algebras . 51
2.5.1 Region algebras that do not permit nesting 52
2.5.2 Region algebras that permit nesting 54
2.5.3 Region algebras developed for ranked retrieval 57
2.5.4 Comparison of region algebra approaches 58

2.6 Summary . 60

3 Structured IR: Requirements & Framework 61
3.1 Structured IR Requirements . 61

3.1.1 Entity selection . 63
3.1.2 Relevance score computation 65

vi CONTENTS

3.1.3 Relevance score combination 67
3.1.4 Relevance score propagation 68

3.2 Score region algebra . 70
3.2.1 Why do we need an algebra? 70
3.2.2 Region algebra basics . 72
3.2.3 Score region algebra data model 74
3.2.4 Score region algebra operators 76
3.2.5 Variants of score region algebra 82

3.3 SRA: opportunities and limitations 86
3.3.1 Region model extensions . 86
3.3.2 Introduction of new retrieval models 88
3.3.3 Inclusion of other media . 89

3.4 Summary . 89

4 Transparent Retrieval in Structured Documents 91
4.1 TIJAH retrieval system architecture 91

4.1.1 End-user level . 92
4.1.2 SRA at (info)logical level 96
4.1.3 TIJAH internals – MonetDB and MIL 98

4.2 Transparent instantiation of retrieval models 101
4.2.1 Element and term selection 102
4.2.2 Element relevance score computation 102
4.2.3 Relevance score combination 105
4.2.4 Relevance score propagation 105

4.3 SRA operator properties . 107
4.3.1 Special properties of selection operators 108
4.3.2 Properties of score manipulation operators 109

4.4 Summary . 114

5 Component Retrieval 115
5.1 Motivation . 115

5.1.1 How to compute scores? . 116
5.1.2 How to combine scores? . 116
5.1.3 How to propagate scores? 117

5.2 Structured IR evaluation: INEX 118
5.2.1 Data collection . 118
5.2.2 Topic sets . 120
5.2.3 Relevance assessments . 121
5.2.4 Evaluation metrics . 122

5.3 Experimental setup . 125
5.3.1 Additional SRA operators 125
5.3.2 Retrieval models . 126
5.3.3 Experimental series . 127

5.4 Relevance score computation . 127

CONTENTS vii

5.4.1 Stemming and element size computation 128
5.4.2 Estimating parameters . 129

5.5 AND and OR score combination 132
5.5.1 AND and OR instantiated using the same scoring function 132
5.5.2 Analysis of OR score combination function 137

5.6 Upwards and downwards score propagation 139
5.6.1 Upwards score propagation 139
5.6.2 Downwards score propagation 141

5.7 Discussion . 142

6 Document Retrieval and Structured Queries 145
6.1 Motivation . 145

6.1.1 How to compute scores? . 146
6.1.2 How to combine scores? . 147
6.1.3 How to propagate scores? 147

6.2 Test collections and experimental setup 148
6.2.1 Test collections . 148
6.2.2 Query formulation . 150
6.2.3 Retrieval models and experimental series 154

6.3 Relevance score computation . 155
6.3.1 How to compute size and whether to use stemming? 155
6.3.2 Parameter estimation . 156

6.4 Score combination on unstructured queries 158
6.5 Score combination on structured queries 160
6.6 Score propagation on structured queries 162
6.7 Discussion . 164

7 Flexibility and Extensibility 167
7.1 Using level information . 167

7.1.1 Element nesting level in SRA 167
7.1.2 Experiments with retrieval models that use level info 169

7.2 Video search . 170
7.2.1 Test collection and retrieval models for video search 170
7.2.2 Experimental evaluation of video search 174

7.3 Image search . 176
7.3.1 Test collection and retrieval models for image search 176
7.3.2 Experimental evaluation of image search 180

7.4 Summary . 181

8 Conclusions and Future Work 185
8.1 Retrieval model independence . 186
8.2 Effectiveness of structured retrieval models 188
8.3 Flexibility and extensibility . 191

viii CONTENTS

A INEX NEXI queries 195
A.1 2003 content-and-structure queries 195
A.2 2004 content-and-structure queries 196

B NEXI version of TREC queries 199
B.1 Title queries . 199
B.2 Expanded queries . 200
B.3 Faceted queries . 201
B.4 Field-based + title queries . 204
B.5 Field-based + faceted queries . 206

C NEXI version of TRECVID queries 211
C.1 TRECVID 2003 queries . 211
C.2 TRECVID 2004 queries . 212

D INEX Multimedia track NEXI queries 213

Bibliography 215

SIKS Dissertation Series 237

Sažetak 245

Samenvatting 249

Summary 253

Chapter 1

Introduction

In the origin of every intelligent life form on earth there is curiosity. For humans
curiosity is a desire to discover something new, to gather more data, more in-
formation, more knowledge. This desire can be clearly seen when looking at the
youngest in our population. Small children are always full of questions and look at
the world from the perspective of a real researcher: by asking questions, listening,
and thinking. They are trying to build something new or to discover the world
that surrounds them. They constantly search for information that would answer
questions burning in their mind. Having an information need and knowing where
to find the information, such as from books, from TV programs, from their parents
or teachers, the only thing that a child has to find out is how to reach the right
information. Therefore, he/she could ask parents or teachers a question, or ask a
librarian for a book that might provide the answer. This is the information search
process in early childhood.

Most people retain such an inquisitive mind when they grow up. However, they
cannot rely entirely on the knowledge of their parents and teachers or librarians.
Furthermore, in the last two decades quite a large portion of the information
sources moved from paper (books) to digital media (computers), e.g., intranets or
the Internet. Nowadays people mainly look for information on the Web. When
issuing a question, people still know what they need and where they can find
the answer but no longer how. The ‘how’ part is now mostly left to computer
intelligence, usually called information retrieval systems or search engines, instead
of librarians, parents, or teachers. These intelligent information retrieval systems
need to search large Web data sources (databases) to retrieve relevant answers.

Among the innumerable sources of information on the Web, usually termed
documents, a growing number of documents exists that come with some form of
structured annotation, denoting, for example, title, year, author, type, section, or
image in a document. These annotated documents are usually termed structured
documents. At this point we come to the main topic of this thesis: information
retrieval in structured documents, that is, structured information retrieval.

1.1 Research domain: structured documents

Much research has been done into retrieving relevant documents given simple list-
of-term queries, for example, search requests for documents that have structure

2 1. Introduction

Figure 1.1: An XML example: Marked up short story “Selfish Giant” written by
Oscar Wilde.

<story id= 78 >
<title>The Selfish Giant</title>
<author>Oscar Wilde</author>
<image src= /images/Garden.jpg >

<title>Rock garden</title>
</image>
<p>Every afternoon, as they were coming from school, the children used to go and play

in the Giant's garden.</p>
<p>It was a large lovely garden, with soft green grass. Here and there over the grass

stood beautiful flowers like stars, and there were twelve peach-trees that in the spring-
time broke out into delicate blossoms of pink and pearl, and in the autumn bore rich
fruit. The birds sat on the trees and sang so sweetly that the children used to stop their
games in order to listen to them. "How happy we are here!" they cried to each other.

</p>
<p>One day the Giant came back. He had been to visit his friend the Cornish ogre, and

had stayed with him for seven years. After the seven years were over he had said all
that he had to say, for his conversation was limited, and he determined to return to his
own castle. When he arrived he saw the children playing in the garden.</p>

(...)

<p>"Who art thou?" Said the Giant, and a strange awe fell on him, and he knelt before
the little child.</p>

<p>And the child smiled on the Giant, and said to him, "You let me play once in your
garden, to-day you shall come with me to my garden, which is Paradise."</p>

<p>And when the children ran in that afternoon, they found the Giant lying dead under
the tree, all covered with white blossoms.</p>

</story>

" "

" "

can be expressed as a list of two terms “structured documents”. With the rapid
growth of data stored in structured format, information retrieval (IR) on struc-
tured collections is becoming an important issue. This thesis begins with the
characterization of structured documents and with emphasizing the differences
between unstructured and structured documents.

The definition of (semi-)structured (markup) languages1, such as eXtensible
Markup Language (XML) [22], Standard Generalized Markup Language (SGML)
[54], and HyperText Markup Language (HTML) [174], implies the presence of
meta-information about the document content as well as information on the log-
ical organization of a document, besides content. An example structured (XML)
document is given in Figure 1.1, where a part of a marked up short story by Os-

1These documents (languages) were first denoted as semi-structured as in the beginning they
were loosely marked up and had implicit structure [125], and to differentiate from the class of
explicitly structured documents and languages used in, e.g., relational database theory [1].

1.1. Research domain: structured documents 3

Figure 1.2: Presentation version of the “Selfish Giant” XML example.

The Selfish Giant
Oscar Wilde

Every afternoon, as they were coming from school,

the children used to go and play in the Giant's garden.

It was a large lovely garden, with soft green grass.

Here and there over the grass stood beautiful flowers

like stars, and there were twelve peach-trees that in

the spring-time broke out into delicate blossoms of

pink and pearl, and in the autumn bore rich fruit. The

birds sat on the trees and sang so sweetly that the

children used to stop their games in order to listen to

them. "How happy we are here!" they cried to each

other.

One day the Giant came back. He had been to

visit his friend the Cornish ogre, and had stayed with

him for seven years. After the seven years were over

he had said all that he had to say, for his conversation

was limited, and he determined to return to his own castle. When he arrived he saw the children

playing in the garden.

(...)

“Who art thou?" said the Giant, and a strange awe fell on him, and he knelt before the little child.

And the child smiled on the Giant, and said to him, "You let me play once in your garden, to-day

you shall come with me to my garden, which is Paradise."

And when the children ran in that afternoon, they found the Giant lying dead under the tree, all

covered with white blossoms.

Rock garden

car Wilde [219] is presented. As can be seen from the figure, data in structured
documents can be classified into two broad categories:

• data that represents information about document structure, content, and
layout, i.e., document markup, enclosed in angle brackets ‘<’ and ‘>’: story,
title, author, image, etc.

• data that represents content information in structured documents: ‘The Self-
ish Giant’, ‘Oscar Wilde’, ‘Rock Garden’, etc.

Strictly speaking, any document can be considered to have structure, based on
one or more structure-types. For example, flat text (unstructured) documents have
a linear order of words, sentences, and paragraphs, and are logically (hierarchi-
cally) organized in chapters, sections, subsections, etc. (see Figure 1.2). Similarly,
multimedia documents (images and videos) convey spatial and temporal relation-
ships. However, these types of document structure are usually implicit and require
a mechanism for their detection.

On the other hand, structured documents have explicit structure expressed
through document representation standards, i.e., markup languages. Furthermore,

4 1. Introduction

these “structured elements” are used to tag not only the structured organization
of documents, but the semantics of a document and its components, as well as
document formatting and layout. Thus, the structure (markup) can be used to
describe [70]:

1. external document attributes that describe data outside the document con-
tent, such as creator name, access rights, and publication information;

2. document layout (e.g., SMIL [25]) used for presenting the document to a
user through the output media, such as two-column format, page size A4,
and color;

3. document logical structure (e.g., XML, SGML) used to annotate document
structure and different types of information it contains, such as title, para-
graph, and section;

4. document content (e.g., OWL web ontology language [132]) that describes
the high-level meaning of a document – document semantics, such as subject,
category, premise, proof, and class.

Thus, structured documents bring more opportunities for modeling informa-
tion, and also for defining more complex information retrieval (IR) tasks. Prob-
lems encountered in structured information retrieval are discussed in the following
section.

1.2 Research problem

The focus of our research is on structured retrieval where we expect (expert)
users to be responsible for expressing their structured information need in detail.
The aim of the designated retrieval system is to support diverse structured user
queries and to model different aspects of user requests, without heavily exploiting
the semantic relation between the document markups and content of these marked
up document segments.

To discuss the main topic addressed in this thesis we approach the structured
retrieval problem from two different perspectives (although other views on the
problem are possible): the flat text information retrieval perspective and the
database management system perspective. After identifying the problems, a short
discussion on IR systems of the future is presented to be used as a guideline for
the research explained in this thesis.

1.2.1 Information retrieval

With the rapid growth of data stored in structured format, especially XML, ranked
information retrieval from structured collections is becoming a requirement for
modern information retrieval systems. Furthermore, users start to be aware that

1.2. Research problem 5

the structured format of documents can be useful for improving the quality of
the answers given by retrieval engines. The importance of field search [30, 49,
207] and structured (XML) search [7, 72, 134, 155] is also recognized by many
commercial search engines. For instance, Google2 has “advanced search” that
supports a number of field search extensions, such as domain search (site:), file
type search (filetype:), and URL search (inurl:). Similarly, the U.S. National
Center for Biotechnology Information3 uses a search engine that searches various
medical data sources based on their structure, e.g., users can search the PubMed
medical collection based on subsets (e.g., AIDS, cancer), ages (e.g., infant, child,
adult), etc. Furthermore, there are open source search engines such as Indri [207]
and Terrier [158], or enterprise search engines such as Panoptic [91], that enable
formulation of complex structured queries and their evaluation.

Flat text IR

To explain the problems encountered in structured IR we make a distinction be-
tween the information retrieval process in structured IR and flat text IR. The basic
task of traditional (flat text) information retrieval systems is to perform a search
based on a user query, consisting in most cases of a list of query terms. Using a
retrieval model (retrieval approach or search method) and data from documents
stored using some indexing structure, IR systems should provide the user with a
ranked list of answers satisfying his information need. The commonly accepted
information retrieval process [48] (recited in [95, 217]) is visualized in Figure 1.3.

To clarify the information retrieval process we explain the terminology that
is also used throughout the thesis. Following the conventional IR theory [12,
213] documents can be defined as writings that convey information in textual,
graphical, and video format. In computer science, documents are often referred to
as computer files that are not executable files but contain data that can be used by
applications or humans. We use the term query to denote both unstructured (list of
term) queries as well as structured queries that include structured constraints and
search terms. Query language denotes the language used for expressing queries.

The user, being able to formulate his requests in a specific query language,
expresses his information need by a query. The query is then represented as a set
of query primitives that can be used for the matching (comparison) process. The
real world is described in terms of documents, where each document is represented
(indexed) using an internal document representation structure, that can be used
for matching. The matching or comparison is then performed on document and
query representations (using a retrieval model) and the results, a ranked list of
documents/elements, are retrieved. The retrieved answers can be used to further
refine the query, automatically or by users. This is represented by the relevance
feedback loop.

2http://www.google.com/.
3http://www.ncbi.nlm.nih.gov/.

6 1. Introduction

Figure 1.3: Information retrieval process.

Information need Real world

Query

Representation

Query representation

Relevance feedback

Document representation

Relevant elements

Matching (comparison)

Representation

Documents

In the information retrieval process, queries are executed using a retrieval en-
gine or retrieval system. A retrieval system is based on one or more retrieval
models that define how a relevance score is assigned to a document or an element
(document component) in the document structure with respect to how well they
match a query. A retrieval model is a mathematical framework that defines the
comparison (matching) between document and query representations. After de-
termining the relevance score of documents or elements, they are usually ranked in
descending order of their relevance scores, of which only the highest ranked ones
are presented to the user.

Structured IR

The information retrieval process given in Figure 1.3 also holds for structured IR.
However, while in traditional (flat text) IR systems queries are represented as a
“list of terms” [103], documents as a “bag of words” [95], and where an “inverted
index” stores (term,document) pairs [213], the components of the structured IR
process are far more complex. In structured IR, the user has the opportunity to
specify where inside the document he would like to search for information or which
part of the document he would like to see as an answer. In other words, richer
query languages, retrieval models that utilize document structure and that are
more complex than flat text ones, as well as different storage (indexing) structures

1.2. Research problem 7

have to be formalized, compared to standard (flat text) IR systems. Therefore,
a more precise specification of the search intentions of a user, in terms of a more
precise definition of the search space (using the structure of documents), needs to
be supported.

In this thesis the focus is on structured documents where markup is used to
model logical structure and to partially annotate document content. These docu-
ments, most frequently specified in XML or SGML format, are widely used on the
Web. They also provide useful structured information for the information retrieval
task. Furthermore, we use semantically tagged document content that is useful
for IR, although the lack of large collections of this type of structured documents
limits the extent of our research. Before we start explaining problems of informa-
tion retrieval in such structured documents, a few remarks about the terminology
for describing structured documents and structured retrieval are given.

A structured collection can be defined as a set of structured documents (files).
At the lowest level of granularity in structured documents, we can specify the
content of a structured document which represents all the words in a document
that are not markup. On a higher level we can define structure elements or
components that correspond to one of the tags or markups and all the encompassed
information in it (including other contained tags and their content information).
In contrast to document retrieval in flat text IR, for structured IR the emphasis
is on element retrieval, i.e., document component retrieval. This difference is an
important issue that is addressed in this thesis.

Identifying structured IR problems and opportunities

Structured queries are usually expressed using the extensions of structured query
languages, such as XQuery [18] and XPath [14, 37] (XPath is an integral part of
XQuery) for XML data. The aim of the extensions is to express IR-like search
specifications over structured documents. Such extensions are the about clause in
the Narrowed Extended XPath I (NEXI) query language [209], equality expression
(=) in XIRQL [71, 72], or ft:score in the XQuery full-text extension [7].

For example, the simple information need where the user searches the XML
collection for an image or a video depicting a ‘garden’ with ‘flowers’ in a story

that contains paragraphs talking about ‘beautiful flowers’ and ‘children’ (see Fig-
ures 1.1 and 1.2), can be expressed in the NEXI query language as:

//story[about(.//paragraph, ‘‘beautiful flowers’’ children)]

//(image|video)[about(., flowers garden)]

Although this is a relatively simple example, several additional query capabil-
ities that are not recognized in flat text retrieval can be illustrated with it:

1. The search for information can be performed in arbitrary parts of the struc-
tured document (or collection of structured documents) denoted with tags.

8 1. Introduction

These tags are called search elements (or support elements). In our example,
the search elements are paragraphs, images, and videos.

2. The answer element (or target element) that the user wants to see as an
answer to his query can also be an arbitrary part of the document. Unlike
in flat text retrieval where the search element (document) is the answer
element, this is often not the case in structured retrieval. In our example
query, image and video elements are the answer (as well as search) elements
at the same time (denoted with ‘.’ in the second about clause in our example
query).

3. The user can perform searches in different XML elements and later com-
bine their relevance scores for the answer element. In our example query
the search is performed in paragraphs in a story element using the terms
‘beautiful flowers’ and ‘children’ and then combined with the search for the
terms ‘flowers’ and ‘garden’ in image or video elements (denoted with the ‘|’
symbol in the example NEXI query).

Additionally, looking at the document representation, simple inverted indexes
(lists of term-document pairs) [90] are not sufficient to store all the information
present in structured documents. That is why for structured information retrieval
a number of new indexing methods has been proposed, ranging from modified
inverted index structures [79, 128, 155] to full database implementations [66, 77,
164], each having its advantages and pitfalls. The complexity of the physical
representation of documents in structured IR is an important reason why the areas
of information retrieval and databases (DB) are brought closer to each other (see
also Section 1.2.2).

The central part of any retrieval system, and therefore a structured IR system
as well, is the retrieval model that performs the matching (comparison). However,
for structured IR, the retrieval model has to incorporate additional query capabil-
ities that are present in the query representation, as well as the new complex in-
dexing structures used for structured document representation. This is why struc-
tured information retrieval models introduce reasoning over structure, i.e., over
search and answer elements, in addition to reasoning over terms. To cope with
such complex retrieval problems, many structured retrieval approaches upgrade
the best performing flat text retrieval models, such as tf.idf [193], BM25 [181], or
language models [95], with structured reasoning [89, 108, 155], or new retrieval
models specifically aimed for structured retrieval are developed, e.g., [45, 198].
The ultimate goal of both classes of approaches is to make a model that would
enable effective (and efficient) structured information retrieval.

Out of many properties of traditional flat text IR systems, we emphasize the
following four that are highly relevant to structured IR:

1. Traditional IR systems are developed for a simple query language, consisting
in most cases of a list of terms, and are not suitable for complex queries such
as our example query.

1.2. Research problem 9

2. Traditional IR systems are retrieval model specific, i.e., the retrieval model
(or a small class of similar retrieval models) is hard-coded in the system, and
its adaptation to structured IR is not straightforward.

3. Traditional IR systems are developed for a specific storage structure, in most
cases inverted indexes, and cannot be easily adjusted to support storage
structures needed for structured IR.

4. Traditional IR systems lack the notion of data independence [69]: any change
in the document storage structures or any change in the retrieval model used,
will lead to system developers needing to change major parts of the system.

Following these properties, the implementation of specialized IR systems is
faster and simpler than any implementation of a database management system
(DBMS) on ranked retrieval tasks. However, these properties become drawbacks
when extending flat text retrieval systems to support structured IR. How databases
can handle such structured IR problems is explained below.

1.2.2 DB systems and structured retrieval

Before we explain structured information retrieval from a database point of view,
we introduce the terminology that is used throughout the thesis. A data model is a
model that describes in an abstract way how data from a conceptual model of some
real-world scenario is represented in, e.g., a database. Different data models can be
used to define the same real-world area. For example, in the database area different
models are used: relational model, object-oriented model, hierarchical model, and
network model. They exist because different real-world areas are better described
by different data models.

The data model is used as a base for defining an algebra. Algebra is a branch
of mathematics that is composed of a domain of values and a set of operators
that operate on those values. For example, the domain of Boolean algebra are
truth values: TRUE or FALSE, and the operators are: AND, OR, and NOT.
The most important property of an algebra is that it is closed in the domain,
i.e., the result of the application of algebra operators is always in the domain of
values. The operators frequently follow some properties, such as associativity or
commutativity.

DBMS architecture

Most database systems use well established database operators and thirty years
of experience in relational database management systems (RDBMS). The main
characteristic of the database approach is its layered architecture with a strong
separation between external, conceptual, and internal schema, as described in the
ANSI/X3/SPARC model [210] depicted in Figure 1.4.

10 1. Introduction

Figure 1.4: The three-schema DBMS architecture.

Mapping

External schema

Internal schema

Mapping

Conceptual schema

Database
Management

System

Each schema might be built upon its own data model and different algebraic
operators or applications might be used at different levels. External schemas
are application specific and application programs are defined to support different
data views. The conceptual schema specifies a high-level view on ‘modeling the
world’ (e.g., relational model in a RDBMS). The implementation of queries over
such a schema is usually based on an algebra, such as using relational algebra for
RDBMSs. The internal schema conveys all the details of the data storage and
handling at the physical medium.

By using different data models for each schema, data independence is provided.
The data independence consists of:

• logical data independence: the possibility to change the conceptual schema
without having to change the external schemas, i.e., user application pro-
grams;

• physical data independence: the possibility to change the internal schema,
i.e., storage and access structures, without having to change the conceptual
schema.

The central part that provides the data independence is the conceptual schema.
When using different data models for external and internal schemas, the only part
of the system that needs to be changed is the interface that performs the mapping
between the schemas. For example, if different storage structures are used, only the
mapping module that communicates between the internal and conceptual schemas
needs to be changed. This results in a great flexibility that is the major property
of the DBMS architecture.

1.2. Research problem 11

A database approach to structured IR

Comparing Figures 1.3 and 1.4, we can conclude that while for IR systems the
matching is an inseparable concept or action performed on relatively simple query
and document representations, ‘DB matching’ has to be done in several steps, using
different representations at each database level. Although the database approach
seems more complex than simple flat text matching, it gives opportunities for the
more powerful matching specification in structured IR.

For (structured) IR systems, following this separation in levels, would give
another, additional advantage over flat text IR systems: by choosing the appro-
priate level of abstraction for each database schema, the development of scoring
techniques, handling structured information, would be kept transparent for the
rest of the system design. Furthermore, it would make it flexible with respect to
the query language, retrieval model, and physical implementation. In other words
content independence [55, 59], the independence of the development of the end-
user programs that access the content using the external schema from the actual
document representation using the internal schema, is supported.

Similarly to logical and physical data independence, in this thesis we address
two new forms of content independence, that emphasize the importance of the
database approach to structured IR:

• retrieval model independence: the possibility to use different retrieval models
when implementing the conceptual schema in a database, without having to
change external applications and query languages used;

• content description independence: the possibility to use different internal
data (document) representations without having to change the conceptual
schema and the specification of algebra operators that define retrieval models
in conceptual schema.

To abstract away from the structured IR implementations within external and
internal schemas, we introduce a mathematical framework (algebra) that imple-
ments the conceptual schema. The conceptual schema and (logical) algebra can
be identified as the central component of an integrated DBMS and IR system
for providing content independence, similar to the role of relational algebra in en-
abling data independence in RDBMSs. Additionally, such an algebra could use the
reasoning over algebra operators for query rewriting and optimization, as in [16].

1.2.3 Vision of the future retrieval systems

Judging by today’s distribution of different types of documents (differently struc-
tured documents) on the web, the future information sources will be centered
around structured textual documents (HTML, XML, SGML, PDF, MPEG-7,
MPEG-21, etc.), images (jpeg, png, gif, etc.), audio material (mp3, wav, etc.),

12 1. Introduction

and video material (avi, MPEG-4, divx, etc.). Therefore, modern information re-
trieval systems need to provide effective retrieval for the mixture of various types
of documents, consisting of textual documents, images, and audio-video material.

To identify the elementary features that need to be supported in modern infor-
mation retrieval systems, the simple example query from Section 1.1 is modified
in the following way:

//story[about(.//paragraph, "beautiful flowers" children) or

about(.//video, garden src:garden.avi)]

//image[about(., flowers garden) and

about(., src:flower garden.jpg)]

Now the user searches for a story containing either paragraphs about ‘beautiful
flowers’ and ‘children’, or video clips about ‘garden’ and ones that are similar to
a video clip that he/she liked, stored as ‘garden.avi’. He/she would like to get as
answers images in such stories that are about ‘flowers’ and ‘garden’ and that look
like an image that he/she found nice, named ‘flower garden.jpg’ (e.g., similar to
an image in Figure 1.2).

This query illustrates four features that need to be supported in modern IR
systems: entity selection, score computation, score combination, and score propa-
gation.

First, as can be seen from the example query, a retrieval system needs to model
different types of document content. These are entities, such as elements in a docu-
ment structure: stories, paragraphs, videos, images, terms: ‘beautiful flowers’ and
‘children’, and multimedia content: ‘garden.avi’ and ‘flower garden.jpg’. Looking
from the retrieval perspective, these entities need to be selected. While modeling
(or selecting) terms and markup is easy, modeling (or selecting) multimedia data
is, by far, more complex. Furthermore, the modeling does not have to be unique
and can change over time. This is why the database approach, having content
description independence is beneficial.

Second, relevance scores of certain document components need to be deter-
mined with respect to the entities or multimedia content they contain: terms, el-
ements, images, videos. In our example, relevance of a paragraph element should
be determined based on the terms it contains. It is relevant if it contains the term
‘beautiful flowers’ and/or ‘children’. Similarly, a video element is relevant if it is
similar to a source video ‘garden.avi’ and an image element is relevant if it contains
a picture similar to ‘flower garden.jpg’. Due to different entity representations the
element relevance score computation can be quite diverse. This is why retrieval
model independence is an important issue in modern IR systems.

Third, the relevance scores obtained for different document entities need to be
combined. For example, scores for paragraphs about ‘beautiful flowers’ or ‘children’
should be combined with scores of a video similar to ‘garden.avi’. This implies that
the system should be flexible with respect to a combination of different document
component relevance score computations.

1.3. Research questions and research methods 13

Fourth, retrieval systems should also enable the propagation of scores between
different entities, such as from video to story elements or from image to story
elements, as shown in the example query.

To be effective on retrieval from heterogeneous collections and to support dif-
ferent user requests, an IR system needs to be flexible with respect to the specifica-
tion of different retrieval models and various document and query representations.
It should also support elementary requirements for structured retrieval that are
discussed above, i.e., selection of different entities (entity selection) as well as
computation, combination, and propagation of relevance scores.

1.3 Research questions and research methods

The research presented in this thesis is focused on developing a flexible structured
IR framework, with a logical algebra (implementing the middle layer of Figure 1.4)
as its central part. The algebra (framework) should support transparent instanti-
ation of retrieval models by supporting retrieval model independence and content
description independence. The framework is used as an experimental platform for
developing effective structured retrieval models applicable to different domains,
such as text documents, images, and videos.

The main goal of the research presented in this thesis is to give answers to the
following three questions.

Q1 To what extent can a logical algebra for structured IR support retrieval
model independence?

Due to the advantages of the database approach discussed in Section 1.2.2, we
follow a layered architecture in designing our structured IR system. As opposed
to the flat text IR implementations that do not recognize the need for layered
architecture, in the database approach the conceptual schema can be considered
as the central part that should provide the flexibility in the structured information
retrieval framework. The conceptual schema is described in terms of a formal
algebra, and the algebra we develop is called score region algebra. The overall
goal of the algebra is to enable transparent specification of retrieval models, i.e.,
to abstract away from the specific retrieval model used. The algebra assumes that
the scoring mechanism (ranking) is part of the algebra and not a side effect of
performing some algebraic operations or employing a separate IR module.

The algebra is developed following the guidelines for the development of mod-
ern information retrieval systems described in Section 1.2.3. It supports different
query formulations and search and answer element specification, and follows the
four elementary structured retrieval requirements: entity selection, score compu-
tation, score combination and score propagation. Additionally, it does not make
any restriction on the definition of retrieval models, physical implementations,

14 1. Introduction

and query languages used. It supports content and data independence, but most
importantly retrieval model independence.

Q2 What is the influence of different retrieval model instantiations within
the algebra on the effectiveness of: a) document component retrieval and b)
document retrieval?

a) Structured queries greatly vary in their complexity: ranging from simple list
of term IR queries or field search queries to queries that heavily exploit document
structure. The main goal of a structured IR system is to be effective on retrieval
tasks using such diverse queries. To test the usefulness of our logical algebra,
different retrieval models are instantiated in the algebra and tested on effectiveness.
For the elementary structured IR analysis, complex structured queries are used
that specify a combination of searches in different parts of structured documents
as well as specification of searches in nested structures. The ultimate goal is not
to come up with the best retrieval model for structured IR but with the guidelines
that can help researchers developing their own retrieval systems or when they use
our logical algebra to instantiate new, better retrieval models following the four
elementary retrieval requirements.

b) To test the effectiveness of our framework for document retrieval a subclass
of structured queries is evaluated and compared to unstructured queries. These
structured queries are represented as a Boolean combination of terms (Boolean
queries), and as simple structured queries that use specific tags inside documents,
i.e., fields, to express more focused search (field search queries). The flexibility
of the logical algebra for modeling document retrieval using unstructured and
structured queries, as well as different retrieval models, is demonstrated on shal-
lowly structured (poorly and not deeply nested) documents. The goal is to detect
retrieval models that are effective in such retrieval tasks in shallowly structured
documents, and to find what is the best way of incorporating additional structured
information in traditional document retrieval.

Q3 Can the algebra be extended to: a) support ranked retrieval using
richer data models and b) provide effective retrieval in domains other than
text?

a) The algebra needs to be defined in such a way that it can easily be extended
to support richer data models. It should be possible to extend the data model with
additional information items extracted from structured documents that would not
override the specification of algebraic operators and their properties. The added
information items should be used for the specification of new retrieval models
following the structured retrieval requirements, or for extending the operator set.
For illustration we present the extensions of the algebra data model and operator

1.4. Outline 15

set for incorporating the nesting level of elements. The effectiveness of retrieval
models that use these extensions is also discussed.

b) The algebra should be developed in such a way that it can incorporate
different types of information (features) extracted from non-textual documents.
In other words, it should be possible to integrate information from heterogeneous
data sources while keeping the same algebraic framework. As an example, the inte-
gration of video and image content in the algebraic framework is explained. Video
and image search is integrated with text search in the algebra following the data
independence and content independence criteria. Additionally, the effectiveness of
such multimedia retrieval within the algebraic framework is evaluated.

1.4 Outline

This thesis is organized as follows.

Chapter 2 discusses related work and approaches that are used as an inspiration
for our research. It gives a brief introduction to various information retrieval
models and presents the adaptations of these models to structured information
retrieval. It then tries to close the gap between information retrieval and database
research fields, having structured document (XML) retrieval as its scope. After
that, a number of region algebra approaches are presented and their features and
characteristics are discussed, as they form the base for the logical algebra defined
in this thesis.

Chapter 3 explains in detail the four elementary requirements for developing
a structured information retrieval system. It starts with illustrating the need for
the identification of these requirements and discusses what they model in struc-
tured IR. Each requirement, namely entity selection, score computation, score
combination, and score propagation is discussed in isolation. The chapter then
introduces score region algebra, a logical algebra that is the central part of our
retrieval system. Score region algebra operators are defined following the four el-
ementary retrieval requirements and their functionality is explained. After that,
the chapter gives justification for the specific type of algebraic operators that are
used in score region algebra, and presents alternative approaches. The chapter
is concluded with a discussion on opportunities and limitations of score region
algebra framework on structured retrieval tasks.

Transparent instantiation of retrieval models is the main topic of Chapter 4.
It first presents our three-level database system called TIJAH, and explains its
layered architecture. The chapter continues with the formal description of the
retrieval models that are instantiated within the algebraic operators, following the
four elementary retrieval requirements. The properties of algebraic operators hav-
ing different retrieval model implementations are explained here. They illustrate
the opportunities for logical query optimization using score region algebra operator
properties.

16 1. Introduction

Chapter 5 covers a large set of experiments on highly structured documents
(XML). It starts with presenting the aim of the experiments discussed in the
chapter and with describing the test collection and experimental setup. First, the
results of experiments on the elements’ size, length prior, and parameters of dif-
ferent retrieval models are discussed. Then, each retrieval aspect is analyzed on a
specific set of topics, ranging from simple ones where score combination and score
computation are examined to complex ones where downwards and upwards score
propagation is investigated. The chapter ends with a discussion on experimen-
tal results and recommendations on what future retrieval systems should support
when modeling structured retrieval, following the four elementary retrieval require-
ments.

Chapter 6 presents a set of experiments on shallowly structured documents.
The aim is to determine whether structure in queries and in documents helps, and
if it does in what way. A short description of the test collection and experimental
setup is given after presenting the aim of the experiments discussed in the chap-
ter. The influence of computation of elements’ size, length prior, and parameters
of different retrieval models are then presented. The chapter continues with the
comparison between the effectiveness of unstructured and structured queries. It
then shows that the usage of structured queries, even on shallowly structured docu-
ments, improves effectiveness. At the end, results are discussed and the usefulness
of structured queries and structured documents are pointed out.

Chapter 7 shows how score region algebra can be extended to support richer
data models and different data domains. It starts with the usage of the element
nesting level information for specifying retrieval models. Video search modeled
as a search on structured speech transcripts is presented afterward. The chapter
then discusses the extensions of the algebra introduced to support image search
and presents the effectiveness of a combined image and text search scenario. The
chapter is concluded with a short overview of the presented extensions and with
summarizing the effectiveness of introduced retrieval models.

Finally, Chapter 8 concludes this thesis. It follows the three research questions
introduced in the previous section. The chapter emphasizes what are the benefits of
using the flexible algebraic framework, i.e., being able to easily instantiate different
retrieval models and to easily extend the algebra to other domains. It also discusses
the outcome of the numerous experiments performed using our transparent logical
algebra. The directions for further research are also presented in this chapter, with
respect to each research question.

Chapter 2

Document Component
Retrieval

Until the last decade of the 20th century the information on document structure
and semantic annotation of documents was not fully exploited in the retrieval
process. The early work by Callan, Turtle, and Croft [29, 50] on incorporating
hypertext links and field-based queries into retrieval systems, and Salminen and
Tompa [188] and Burkowski and Clarke [27, 38] on structured text search, showed
its usefulness and set the path for future research. Furthermore, it brought to-
gether researchers from information retrieval as well as database field in resolving
the issues of effective and efficient information retrieval in structured documents,
especially XML (see [125] for an overview). On the other hand, several initiatives
are started for studying information retrieval in structured documents, such as
INEX [74] and TREC Enterprise Track [220].

This chapter discusses the evolution of retrieval models from flat text retrieval
models used for document retrieval to structured retrieval models used for docu-
ment component retrieval. It then explains the database view on structured infor-
mation retrieval, with a focus on XML, and presents the overview of approaches
for structured retrieval, termed region algebras. The chapter is concluded with a
short summary.

2.1 Information retrieval models

This section covers flat text retrieval models, i.e., retrieval models that disregard
explicit or implicit document structure. It then presents some of the most impor-
tant adaptations of the flat text models to structured retrieval. Additionally, a
short overview of multimedia retrieval is given.

2.1.1 From Boolean to language models

The term information retrieval often implies ranked retrieval, as the main goal of an
information retrieval system is to find documents relevant to the user information
need and to rank them in order of predicted relevance to the user. The essential
component of the retrieval system is a model that specifies the matching process,
initiated by a query over a set of documents, and terminated by presenting the

18 2. Document Component Retrieval

ranked list of relevant documents to the user. This model is often referred to as
retrieval model. Following the IR process (depicted in Figure 1.3), the retrieval
model must define a relevance ranking function based on a query representation
and document representation.

A relevance ranking function in flat text retrieval systems is based on term
statistics, used to estimate how relevant documents are to a user query. For ex-
ample, the number of occurrences of a query term in the document can be used to
estimate the relevance of a document. The greater the number of occurrences of
a query term, i.e., the higher the term frequency, the more relevant a document.
Additionally, term distributions, such as Zipf’s distribution of terms in the col-
lection [213], are used to improve the results of relevance ranking functions. The
knowledge of distribution of terms can be implemented in the form of: (1) stop
words, i.e., disregarding the most common words in the language such as ‘the’,
‘a’, ‘as’, or ‘for’ in English, (2) document frequency, i.e., number of documents in
the collection that contain a query term, or (3) collection frequency, i.e., number
of terms in the whole collection. Except for the Boolean model, these elementary
term distribution statistics form the base of information retrieval models.

In the following we give a description of the several classes of retrieval models,
namely Boolean, fuzzy set, vector space, probabilistic, inference network, and
language models. Note that this is not the ultimate classification as other models
exist, e.g., latent semantic indexing, neural networks, genetic algorithms (see [83]).
As they are not exploited in this thesis, we do not focus on them.

Boolean models

The Boolean model was a predominant model in commercial information retrieval
systems until the 1990’s. It is based on set theory and Boolean algebra. Documents
are represented as a set of terms and queries as a Boolean expression on terms.
The term can be either present or not in a document, and its presence/absence
determines whether that document is retrieved or not. Queries are expressed using
query terms and operators: AND, OR, and NOT. For example, for the Boolean
query:

((beautiful AND flowers) OR bouquet) AND NOT(vase)

only documents that contain terms ‘beautiful’ and ‘flowers’, or the term ‘bouquet’,
and do not contain the term ‘vase’, are presented to the user.

Although the model is simple and based on a widely used and easy to un-
derstand (and implement) set theory, the Boolean model has many drawbacks.
The Boolean formalism only supports the exact matching and therefore can result
in an empty result set or overloaded output [43]. In Boolean retrieval retrieved
documents are not ranked. Furthermore, all terms in the query as well as in the
document are considered equally important.

To overcome some deficiencies of the Boolean model several extensions have
been proposed. Salton, Fox, and Wu [192] used the idea that documents for the

2.1. Information retrieval models 19

query AND expression should be scored according to their distance (dst) from
the ideal (document or query) point that has the value 1, while documents for
the query OR expression should be scored according to their distance from the
ideal point with value 0. Generalizing the idea, the authors developed the p-norm
model depicted in Equation 2.1, where S(doc, q) is a relevance score of a document
doc; tmi, i = 1, ..., n, denotes query terms in a query q, and p is a parameter that
needs to be empirically estimated.

S(doc, tm1 AND tm2 AND ... AND tmn) =

1 −

(∑n
i=1(dsttmi

)p · (1 − dstdoci
)p

∑n
i=1(dsttmi

)p

)1/p

S(doc, tm1 OR tm2 OR ... OR tmn) =

(∑n
i=1(dsttmi

)p · (dstdoci
)p

∑n
i=1(dsttmi

)p

)1/p

(2.1)

Although overcoming deficiencies of the Boolean model, the p-norm approach
does not provide a framework for determining term and document distances, i.e.,
dsttmi

and dstdoci
.

Fuzzy set models

Unlike in the Boolean model where documents can be either in a relevant set or not,
fuzzy set models [119] allow the definition of the degree of membership, denoted
with T , for representing the relevance of a document to a query term. The rules
for the membership degree of an expression, consisting of Boolean combination of
query terms, are based on ‘fuzzy’ conjunction, disjunction, and negation operators,
given below.

T (tm1 AND tm2 AND ... AND tmn) = min(T (tm1), T (tm2), ..., T (tmn))

T (tm1 OR tm2 OR ... OR tmn) = max(T (tm1), T (tm2), ..., T (tmn))

T (NOT tm) = 1 − T (tm) (2.2)

Although simplistic, the fuzzy set model does not justify why such definitions
of membership functions are used. Furthermore, it is not sensitive to the real
distribution of query terms, especially for long queries. For example, in the query
expression: tm1 OR tm2 OR ... OR tmn, where T (tm1) > T (tmj), j = 2, ..., n,
document relevance score would be the same irrespective of what are the degrees
of membership for terms other than tm1. The values of T (tmj) might be just as
high as T (tm1) or they can all be zero. To overcome this deficiency, Paice [160]
modified fuzzy OR and AND, and used the formula given in Equation 2.3. In
the formula the summation is performed in the decreasing order of the degree of

20 2. Document Component Retrieval

membership for OR and in the increasing order for AND queries. The parameter
k is the degree of ‘softness’ of the operator and has to be estimated empirically.

S(doc, q) =

∑n
i=1 ki−1T (tmi)
∑n

i=1 ki−1
(2.3)

The advantage of fuzzy set models over the Boolean model is that they allow the
computation of relevance scores for a document, and therefore support relevance
ranking. However, they rely on a term weighting algorithm for estimating the
degree of membership but do not give any hints or justification how the degree of
membership should be derived.

Vector space models

In the vector space model [193] queries and terms use a ‘bag-of-words’ represen-
tation, where documents (d) and queries (q) are represented as vectors of term
weights (w): d = {wd,1, wd,2, ..., wd,m} and q = {wq,1, wq,2, ..., wq,n}. The rele-
vance estimation is based on a similarity between a document vector and a query
vector, measured by a cosine of the angle between them, as shown in Equation 2.4.
Documents are then ranked in decreasing value of the similarity measure.

sim(d, q) = cos ∢(d, q) =

−→
d · −→q

|d| · |q|
=

∑

j wd,j · wq,j
√

∑

j w2
d,j ·

√

∑

j w2
q,j

(2.4)

Equation 2.4 shows that the higher the weight of the term the greater the
impact on the relevance score. The open question is how to assign the weight to
each term. Weights are specified following the two design goals: (1) reward terms
that best describe the document, and (2) punish terms that do not distinguish
among documents in the collection. In flat text IR this corresponds to term fre-
quency and inverse document frequency respectively. The term frequency (tf) is
estimated as a number of occurrences of a term in a document, while the inverse
document frequency (idf) is usually defined as a natural logarithm of the inverse
of the number of documents that contain the term.

tf.idf Assuming that the weights of query and document terms are estimated
by the term frequency and the inverse document frequency, we can define the
similarity between the query q, consisting of query terms tmi, i = 1, 2, ..., n, and
the document doc as shown in Equation 2.5. Here tc(tmi, doc) denotes the number
of occurrences of a term tmi in the document doc (i.e., term count), while dc(tmi)
denotes the number of documents containing the term tmi (i.e., document count).

2.1. Information retrieval models 21

The number of documents in the collection is denoted with N . This is the base
for most vector space models used in information retrieval.

S(doc, q) =

n
∑

i=1

tc(tmi, doc) · ln
N

dc(tmi)
(2.5)

However, many variations of the basic formula are derived later [24, 185, 190].
For example, the tf part can be computed as:

tc(tmi, doc)

maxj(tc(tmj , doc))
, 0.5 +

0.5 · tc(tmi, doc)

maxj(tc(tmj , doc))
, or 1 + ln(tc(tmi, doc)),

while idf can be computed as:

ln
N + 1

dc(tmi)
, ln

(

1 +
N

dc(tmi)

)

, or ln

(

N − dc(tmi)

dc(tmi)

)

.

The basic vector space model and its variants enable ranked retrieval, allow for
the term weighting, and support partial matching. However, the weighting in the
model is intuitive and it is not based on a clear mathematical formalism.

Probabilistic models

In the probabilistic model, pioneered by Maron and Kuhns [126], IR is defined as
an uncertain process of inferring the probability of relevance based on documents
and queries [67, 70]. It ranks documents in decreasing order of probability of
relevance R to the information need, denoted as P (R|q, doc). The probability of
relevance is estimated using the retrieval status value function rsv(doc, q) that de-
picts the ratio of probability of relevance of a document P (R|doc) to a probability
of non-relevance of a document P (R|doc). Using Bayes’ rule [161] and the binary
independence assumption (i.e., terms occur independently of each other given that
we know their relevance R and non-relevance R), and removing the constant values
P (R) and P (R), the probabilistic model can be described by Equation 2.6.

rsv(doc, q) =

n
∑

i=1

ln
P (tmi|R) · P (tmi|R)

P (tmi|R) · P (tmi|R)
(2.6)

In Equation 2.6, P (tmi|R) is the number of relevant documents that con-
tain a query term tmi, divided by a number of relevant documents: |doctmi

∩
docrel|/|docrel|; P (tmi|R) is the number of non-relevant documents that also do
not contain the term, divided by the number of non-relevant documents: (N −
|doctmi

∪ docrel|)/(N − |docrel|); P (tmi|R) is the number of documents that do

22 2. Document Component Retrieval

contain the query term but are not relevant, over the number of non-relevant
documents: |doctmi

\docrel|/(N − |docrel|); P (tmi|R) is the number of relevant
documents that do not contain the term, divided by the number of relevant doc-
uments: |docrel\doctmi

|/|docrel|. Equation 2.6 can be simplified to an idf -like
formula given in Equation 2.7 (see page 21 of [95]). In the formula, the following
notation is used: rri = |doctmi

∩ docrel|, dc(tmi) = |doctmi
|, and rel = |docrel|.

rsv(doc, q) =

n
∑

i=1

ln
(rri + 0.5) · (N − rel − dc(tmi, doc) + rri + 0.5)

(dc(tmi, doc) − rri + 0.5) · (rel − rri + 0.5)
(2.7)

The main drawback of this formula is that it does not incorporate the tf part
which results in poor retrieval performance [181].

BM25 The best match (BM) models are based on the probabilistic formula
given in Equation 2.7. Robertson and Walker [181] tried to overcome the absence
of the tf part in the formula by using a mixture of two Poisson distributions for
relevant and irrelevant documents. They tried many variations of the formula
among which the BM25 showed the best performance. Later, this model is used
in the Okapi [181], as well as in the Inquery [30] retrieval models. The basic
formula is given in Equation 2.8, where avdl is the average document length, and
k1 (between 1.0 and 2.0), k3 (between 0 and 1000), and b (between 0.6 and 0.75)
are constants.

S(doc, q) =

n
∑

i=1

(ln
N − dc(tmi) + 0.5

dc(tmi) + 0.5
· (2.8)

·
(k1 + 1) · tc(tmi, doc)

k1((1 − b) + b len(doc)
avdl) + tc(tmi, doc)

·
(k3 + 1) · tc(tmi, q)

k3 + tc(tmi, q)
)

The features of the BM25 model are that it: (1) unifies probabilistic and
tf.idf weighting in a mathematical framework, (2) uses separate document and
query length normalization, and (3) most importantly, introduces several tuning
constants which can be trained on different collections. Note also that in the
Inquery system, several functions are implemented to combine the scores of a single
term relevance score computations, such as sum, multiplication, or probabilistic
sum (see below).

Inference network models

Inference network models [29, 30, 50, 211] are based on Bayesian networks. A
Bayesian network [161] is an acyclic directed graph that encodes probabilistic de-
pendency relationships among random variables. A simple Bayesian network for

2.1. Information retrieval models 23

Figure 2.1: Inference networks for information retrieval: (a) A simple Bayesian
network for document retrieval; (b) Inquery inference network.

doc

tm 1 tm 2 tm 3

in

(a)

doc

docrep1 2 j

in

1

docrep docrep

qrep1

doc2 dock

qrep2 qrepm

Document
network

Query
network

(b)

IR is represented in Figure 2.2(a). It represents the conditional dependence be-
tween a document doc, query terms {tm1, tm2, tm3}, and information need node
in. In the figure, terms are independent given their parent node, i.e., document.

All nodes in the network represent binary random variables with values {0, 1},
while all edges represent probabilities depicting conditional dependencies among
nodes, usually specified in a table called conditional probability table. The com-
putation of the joint probability for all nodes in the graph can be simplified using
the conditional independence assumption, as presented in Equation 2.9.

P (doc, tm1,tm2, tm3, in) = (2.9)

P (doc)P (tm1|doc)P (tm2|doc)P (tm3|doc)P (in|tm1, tm2, tm3)

Documents should be ranked according to the probability of information need
fulfillment, assuming that the document is relevant: P (in = 1, doc = 1). In
general, one needs to specify the conditional probability tables for P (tmi|doc), i =
1, ..., n, and P (in|tm1, tm2, ..., tmn). The major problem in the model is that
the conditional dependence tables have exponential growth with the number of
query terms (n), and that the model assumes an ad hoc estimation of conditional
probabilities.

Inquery and Indri To cope with the problem of intractable inference Callan
and Croft proposed a retrieval model based on a version of Bayesian network
that consists of two layers, document network and query network, as depicted in
Figure 2.2(b). This retrieval model is used in the Inquery retrieval system [23,
29, 30]. The document network specifies document representation nodes (docrep)
and their conditional dependence on document nodes (doc). The query network

24 2. Document Component Retrieval

consists of query representation nodes (qrep), and information need node (in) that
represents the event the information need is met. The query network, i.e., query
representation nodes, is connected with the document representation nodes by
numerous edges.

In the original model it is assumed that document and information need node
are considered to have a value 1 or true. Furthermore, authors simplified the con-
ditional dependence network between document and query representation nodes,
allowing only canonical forms of P (qrep|docrep1, docrep2, ..., docrepn) for AND,
OR, NOT, SUM, MAX, and WSUM (weighted sum), depicted in Equation 2.10.
The parameters wgi, i = 1, ..., n, represent query term weighting factors. The
conditional probabilities P (docrepi|doci), i = 1, ..., n, are estimated based on the
Okapi model [182].

PAND(in = 1|doc = 1) = p1 · p2 · ... · pn

POR(in = 1|doc = 1) = 1 − (1 − p1) · (1 − p2) · ... · (1 − pn)

PNOT (in = 1|doc = 1) = 1 − p

PMAX(in = 1|doc = 1) = max(p1, p2, ..., pn) (2.10)

PSUM (in = 1|doc = 1) =
p1 + p2 + ... + pn

n

PWSUM (in = 1|doc = 1) =
wg1 · p1 + wg2 · p2 + ... + wgn · pn

wg1 + wg2 + ... + wgn

To add more formal justification for the estimation of conditional probabilities,
inference network model is fused with the language model [134] which resulted in
the new retrieval system called Indri [207]. This model uses language modeling
for estimating the docrep probabilities, and it extends the basic canonical set of
belief operators with operators such as MIN and WAND (weighted AND).

Statistical language models

Statistical language models for information retrieval are an adaptation of a hidden
Markov model [107, 146]. A statistical language model (LM) is used to estimate the
probability distribution P (str) over strings. It attempts to reflect how frequently
a string str occurs. This approach is widely used for speech recognition [107].

For information retrieval two classes of language models can be distinguished:
generative language models and divergence language models [154]. The divergence
language model is based on Kullback-Leibler divergence [153] and it measures
how much a query language model diverges from the document language model.
The generative language model is based on estimating the probability that each
document generated the query string [95, 171]. As the latter one is more frequently
used in IR approaches we describe it here.

The most frequently used generative LM is the n-gram language model. It
expresses the probability of generating a string str consisting of terms tmi ∈

2.1. Information retrieval models 25

str, i = 1, .., m, as shown in the Equation 2.11, assuming that the probability of
generating a word depends on a n−1 preceding words: P (tmk|tmk−n+1, ..., tmk−1),
where n is usually greater than 2.

P (str) = P (tm1)P (tm2|tm1)...P (tmm|, tmm−n+1, tmm−n+2, ..., tmm−1) (2.11)

For the efficient evaluation, the n-gram model is simplified to a bigram and
unigram models. While the bigram model assumes only the dependence of a term
on a word preceding it, the unigram model assumes independence between terms
in a document. The unigram language model is among the most used models in
todays information retrieval systems [115, 117, 135, 205, 206] and it is also used
for passage retrieval [124], web page retrieval [109], etc. Its specification is given
in Equation 2.12.

P (str|doc) = P (tm1|doc)P (tm2|doc)...P (tmn|doc) (2.12)

The language model proposed by Hiemstra [95] starts with the question how
relevant is a document doc given a query q. Using the unigram language model
paradigm, Bayes’ rule, and the fact that the probability of generating the query
P (q) is uniformly distributed for all queries, he derives the language model depicted
in Equation 2.13.

P (doc|q) =
P (q|doc) · P (doc)

P (q)
≈

n
∏

i=1

(P (tmi|doc)) · P (doc) (2.13)

The probability of generating the query term from a document P (tmi|doc) is
computed using the maximum likelihood estimate, i.e., the term frequency divided
by document length. Additionally, to incorporate the term distribution factor
in ranked retrieval and to avoid the sparse data problem [95], the probability
also includes the re-estimation, i.e., smoothing, based on one of the smoothing
methods [223]. Using, e.g., the linear interpolation (Jellinek-Mercer) smoothing,
background statistics are added to the model. The background statistics are based
on a number of terms in the whole collection (col), i.e., collection frequency, or
a number of documents containing the term, i.e., document frequency. In the
former case the relevance score of the document (doc) given the query terms (tmi,
i = 1, 2, ..., n, tmi ∈ q) can be computed as:

P (doc|q) ≈
n

∏

i=1

(

λ
tc(tmi, doc)

len(doc)
+ (1 − λ)

tc(tmi, col)

len(col)

)

·
len(doc)

len(col)
(2.14)

where len(doc) and len(col) are the length of a document and a collection (i.e.,
the number of terms they contain) respectively, and λ is a smoothing parame-
ter (ranging from 0 to 1) that specifies the relative influence of the foreground

26 2. Document Component Retrieval

(term frequency) and background statistics in the final document relevance score
computation.

The drawback of statistical (unigram) language models is that they use little
knowledge of what the language really is [187], resulting in difficulty to improve
the effectiveness of the model without the significant re-modelling. For improving
the models, Rosenfeld et al. proposed the usage of dependency models [35, 118]
or sentence models [186], and their usefulness is still studied.

2.1.2 Retrieval models for structured data

Information retrieval (IR) theory is developed to overcome the task of searching
for information in unstructured (flat text) documents. The theory and the tools
used in conventional IR systems usually completely disregard the structure of a
document. However, with the rapid expansion of structured documents, especially
XML, a new research topic has emerged. This topic is concerned with the formu-
lation of more complex, structured queries, as well as with the search and retrieval
of information conveyed in document components.

With the term structured queries we denote not only the queries that express
relation among query terms such as Boolean and proximity queries, but also the
the queries that include restrictions on where these terms should be located in
the document, i.e., structured constraints. Document components, also called el-
ements, correspond to segments of a document that can be used for information
search or as units of retrieval. Document components can correspond to sentences,
paragraphs, sections, or various elements in marked up documents.

The origin of document component retrieval can be found in the research area
of passage retrieval (see [189] for an overview of the earliest papers and [105] for
the more recent ones). The goal of passage retrieval is to identify and extract text
fragments from full-text documents that are relevant to a user query. These text
fragments are composed of coherent relevant sentences or paragraphs. Passage re-
trieval techniques are widely used for text summarization (e.g., [159]) and question
answering (e.g., [208]). However, in this thesis we focus on information retrieval
in documents whit explicit structure where extracting passages is not necessary
for retrieving relevant text fragments to the user.

Remarkably, many documents on the web are more or less structured using one
of the following formats: HTML, SGML, XML, etc. Additionally, many documents
come with an already prepared classification or a short description of document
content (e.g., keywords) in some of the tags. For example, some of the TREC
[216] and CLEF [165] document collections are in SGML format with tags such
as: “subject”, “section”, “type”. Furthermore, the INitiative for the Evaluation
of XML Retrieval (INEX) provides the XML data (scientific IEEE collection) for
the evaluation of XML retrieval approaches.

Having such setting, a number of structured IR systems, based on different
retrieval models, have been developed in recent years. The most influential ap-
proaches, coming from the IR community, that tackle some or all of the identified

2.1. Information retrieval models 27

structured retrieval aspects are discussed here. They are all adaptations of the flat
text models presented in Section 2.1.1, and therefore keep most of their features
and drawbacks. The database approaches that specify algebras for structured
IR are explained in Section 2.4, while the approaches developed particularly for
structured document search and retrieval are described in Section 2.5.

Adaptation of a vector space model for XML retrieval

Several extensions are proposed for adapting the vector space model to structured
information retrieval [31, 51, 79, 81, 129]. The elementary assumption is that the
document vector is now transformed into document component (element) vector.
The relevance ranking is computed based on an term-element frequency, i.e., the
number of occurrences of a term in a structured element, and inverse element
frequency, i.e., the number of specific elements that contain the term. Due to
different length and different distribution of elements in the structured collection,
the results of the direct application of the vector space model to structured IR
was not a success (e.g., see [5, 129]). An additional problem is nesting of elements
present in, e.g., XML documents.

Component ranking with document pivot Mass and Mandelbrod [128] use
different normalization function to handle distinct element length and distribution.
The formula they use for ranked retrieval of elements is shown in Equation 2.15,
where el is a search element, avgtcq is the average number of occurrences of all
query terms in a query q, avgtcel is the average number of occurrences of all query
terms in an element el, Nel is the number of elements el in the collection, ec(tmi, el)
is the number of elements that contain term tmi (element count), and ‖q‖ and
‖el‖ are query and element sizes used for normalization.

S(el, q) =

∑n
i=1

ln(tc(tmi,q))
avgtcq

· ln(tc(tmi,el))
avgtcel

· ln
(

Nel

ec(tmi,el)

)

‖q‖ · ‖el‖
(2.15)

Furthermore, to include the evidence from the ‘surrounding’ elements in case
of small sized elements, authors introduced a document pivot [129], similar to
context smoothing in [202]. The relevance score (S′(el, q)) of an element, utilizing
the relevance score of surrounding document doc, is now computed as depicted in
Equation 2.16. The parameter dp needs to be estimated empirically.

S′(el, q) = dp · S(el, q) + (1 − dp) · S(doc, q) (2.16)

XIRQL & augmentation weights Fuhr et al. [71] developed an XML retrieval
system (called HyRex [79]) based on a tf.idf formula for term weighting and a
path based algebra (see Section 2.4.2 for more details) that uses events and event

28 2. Document Component Retrieval

probabilities to compute relevance scores for structured elements. The authors
identified “atomic” units for which term weighting is computed. These atomic
units (document components) are also the ones that can be retrieved as a result
of the query evaluation.

As the goal of the system is to retrieve the most specific answer to the query, the
authors introduced the concept of augmentation weighting : atomic unit relevance
scores are downweighted, i.e., multiplied by an augmentation factor, when they
are propagated upwards to the ancestor atomic unit. This concept is later followed
in many structured retrieval systems as depicted below.

Vector Spaces The vector space approach to XML retrieval by Grabs and Schek
[81, 82] followed the ideas on defining atomic units (called indexing nodes) intro-
duced by Fuhr et al. [71]. In the retrieval process the authors differentiate between
the single-category retrieval, multi-category retrieval, and nested retrieval. The
term category denotes the set of structured elements that can be considered equiv-
alent (e.g., section, subsection, abstract, and summary).

Single category retrieval describes the retrieval from indexing nodes in isolation.
Equation 2.17 depicts the retrieval formula, where Ncat denotes the number of
elements in the single category cat and ef cat(tmi) denotes the element frequency
of a term tmi within the elements of cat.

S(el|q) =

n
∑

i=1

tc(tmi, el)

len(doc)
·

(

log
Ncat

ef cat(tmi)

)2

·
tc(tmi, q)

len(q)
(2.17)

Multi-category retrieval describes the retrieval where structured elements be-
longing to different categories should be combined in the retrieval process. Multi-
category retrieval is defined in Equation 2.18. The M denotes the set of indexing
nodes in the multi-category.

S(el|q) =

n
∑

i=1

tc(tmi, el)

len(doc)
·

(

log

∑

cat∈M Ncat
∑

cat∈M ef cat(tmi)

)2

·
tc(tmi, q)

len(q)
(2.18)

Finally, Equation 2.19 defines nested retrieval, i.e., retrieval where relevance
from nested elements need to be combined. For this, the authors also followed the
approach in [71] and used the augmentation weighting concept. The augmentation
weight is denoted with awℓ ∈ [0, 1] for each parent-child relation on the path
pc(el, elj). ej is an element that is inside the set of all elements contained in a
sub-tree rooted at el (also including el) and denoted as S(el).

S(el|q) =
∑

elj∈S(el)

∏

ℓ∈pc(el,elj)

awℓ ·
n

∑

i=1

tc(tmi, el)

len(doc)
·

(

log
Ncat

ef cat(tmi)

)2

·
tc(tmi, q)

len(q)

(2.19)

2.1. Information retrieval models 29

Garden Point XML (GPX) The Garden Point XML (GPX) model presented
by Geva [77] can be considered as a variation of a tf.idf approach. The basic
formula in the GPX approach defines the relevance score of the XML element (el)
with respect to query terms (S(el|q)) as:

S(el|q) = Aa−1
n

∑

i=1

tc(tmi, el)

tc(tmi, col)
(2.20)

where A is the parameter with a value between 3 and 10, and a is a number
of distinct query terms contained in an element el. The original formula defines
the relevance score computation only for the leaf (XML) elements and not for the
arbitrary elements in the collection [77]. The relevance score is then propagated to
the elements higher in the hierarchy using Equation 2.21, where m is the number
of children elements of a parent pel and D(m) is a factor equal to 0.49 if m = 1
or to 0.99 if m > 1.

S(pel|q) = D(m) ·
m

∑

i=1

P (el|q) (2.21)

Bayesian model for structured retrieval

Inference (Bayesian) network models seem like an ideal framework for modeling
structured document retrieval. Each element in the hierarchical organization of
structured documents could be modeled as a node in the inference network. The
inference process would then define how relevance scores are propagated through
the network with respect to the parent or child nodes. However due to the complex-
ity of the problem and exponential explosion of the size of conditional probability
tables severe restrictions, i.e., canonical forms, must be used.

Multi-layered Bayesian network model Crestani et al. [47] developed a
Bayesian network for structured retrieval based on a simple two-layered network.
It consists of a term layer and document layer, where edges depict the dependence
between the two. To keep the inference tractable they used a canonical model
where each document node depends only on terms that are considered relevant for
that document: Re(pa(doc)), as depicted in Equation 2.22. Here, pa(doc) denotes
the parent terms of a document node, wij is a term weight (i.e., a tf.idf like
weight) defined such that

∑

tmi∈Re(pa(doc)) wij ≤ 1, and p(tmi, q) = 1 if tmi ∈ q

or p(tmi, q) = 1/M if tmi 6∈ q (M denotes the number of terms in the collection).

P (doc|q) =
∑

tmi∈Re(pa(doc))

wij · p(tmi, q) (2.22)

30 2. Document Component Retrieval

For structured retrieval the authors introduced a number of intermediate layers,
each representing elements on a certain level in a structured document hierarchy.
They kept the canonical model, now modeling the relations between elements in a
document structure. Assuming the prior probability of term’s presence: p(tmi) =
1/M , and term’s absence: p(tmi) = (M − 1)/M , and taking into account that
all conditional probabilities are already specified using the Equation 2.22, a top-
down inference can produce the relevance score for elements on arbitrary level in
a document structure.

Multi-model Bayesian network Piwowarski et al. [170, 215] developed an
approach similar to the one presented in [47] for modeling structured document
retrieval. The main difference is that the network is built starting from the doc-
ument root element and that the terms are excluded from the network. The
relevance ranking of each element is computed based on parent (pel) relevance:
p(pel), and a number of baseline models mi: p(mi|q). This is depicted in Equa-
tion 2.23. Baseline models define different aspects of retrieval models and are
based on traditional IR models, such as tf.idf or Okapi. In [170], the authors used
two models, one playing the role of a tf factor and the other of an idf factor.

P (el|q) =
∑

m1,m2∈{rel,¬rel}

θc(el),el,pel,m1,m2
· p(el|pel) · p(m1|q) · p(m2|q) (2.23)

To keep the model tractable, relevance score computation follows some simple
rules, e.g., a non relevant element cannot have a relevant descendant element.
The network is trained to estimate the value of the parameter θc(el),el,pel,m1,m2

that depends on the element category c(el) (see the list in [170]), element name
el, element name parent pel, and models m1 and m2 depending on their estimated
relevance rel or non-relevance ¬rel. Based on this parameter and the simple rules,
the relevance score of an element (P (el|q)) can be determined.

Language models for structured retrieval

The unigram generative language model theory is developed with the assumption
that the terms in a document are independent and that the probability of gener-
ating a query from a document is independent of document structure. However,
this is not the case for the structured IR. Two approaches exist for specifying
language models for structured retrieval: (1) directly apply language models to
element retrieval assuming element independence [96, 121, 202], (2) push the lan-
guage model approach to the leaf element level and then develop a framework for
combining/propagating the relevance score to the desired element [154, 155]. The
second approach seems more appropriate for structured IR and is discussed below.

Hierarchical language models Ogilvie and Callan [154, 155, 156] developed
a hierarchical language model to specify retrieval in structured documents. To

2.1. Information retrieval models 31

compute the relevance of an element, the authors use its language model and
combine it with parent and children language models. The model is based on
formulas given in Equation 2.24. The first formula estimates the probability of
generating the term (tm) given the element model (θel) for the element el, without
taking into account its children or parent elements. It uses the flat text language
model formula (see Equation 2.13). The background model can vary depending on
the element name (type): θtype(el) [156]. P (tm|θ′el) combines the language model
of an element with language models of its children (ch(el)). Since the evaluation
is done from the root of the tree down, the final equation computes the child
language model based on a parent (pa(el)) language model. The parameters λ (λu

– “universal”, λc – child, and λp – parent parameters) are empirically estimated
or computed based on a size of descendant elements [155].

P (tm|θel) = λu
elP (tm|el) + (1 − λu

el)P
(

tm|θtype(el)

)

P (tm|θ′el) = λc
elP (tm|el) +

∑

elj∈ch(el)

λc
elj P

(

tm|θ′elj

)

(2.24)

P (tm|θ′′el) = λp
elP

(

tm|θ′′pa(el)

)

+ (1 − λp
el)P (tm|θ′el)

Finally, the relevance score of an arbitrary element in the collection is computed
as shown in Equation 2.25.

P (q|θ′′el) =

n
∏

i=1

P (tmi|θ
′′
el)

tc(tmi,q)

len(q) (2.25)

Discussion

All structured retrieval models described previously have roots in flat text retrieval
models. However, they are usually more complex and contain more parameters
that need to be empirically estimated. They all try to model the dependence
present in structured documents, without explicitly stating what are the elemen-
tary aspects that need to be addressed when modeling structured retrieval. We
argue that detailed analysis of the structured retrieval problem is necessary. The
analysis of structured retrieval would help us to better understand the problem
and to identify the elementary structured retrieval requirements. Then, each re-
trieval requirement could be modeled independently, and the best combination of
these models could be found. This is the approach that we take and it is described
in Chapter 3.

32 2. Document Component Retrieval

2.1.3 Retrieval models for multimedia documents

Multimedia documents contain multiple types of data, namely text, video, images,
and music (audio). Multimedia retrieval systems retrieve information from various
information sources and try to fuse them in a ranked list of relevant multimedia
data, i.e., video shots, images, songs. While retrieval models in the textual domain,
both structured and unstructured, show gratifying effectiveness, retrieval models
developed particularly for video, image, or audio search are by far less effective,
and in most cases need to be combined with text search [218]. The exceptions are
domain specific retrieval, where domain knowledge is used to improve the search
(e.g., [166]), or speech recognition [157].

Unlike in text retrieval, where elementary units for specifying retrieval models
are terms, in image and video retrieval such units cannot be identified. For exam-
ple, one pixel of an image or a video, or a pitch of a sound in a specific instance of
time, cannot be considered as an elementary unit for retrieval. Much research has
been done (e.g., [13, 166]) in specifying low-level features, such as dominant color,
edges, texture, and shape in an image, pitch in a sound, motion flow in a video,
that are able to describe the basic units of multimedia data. However, such data
extracted from images and videos cannot be directly used to describe the content
of a document. In other words, crossing the semantic gap between this low-level
features and semantic concepts that describe the image/video content is still an
open issue in the multimedia IR area.

To be able to search non-text documents, the content of multimedia documents
needs to be identified, i.e., content description is needed. The approaches dealing
with automatic content extraction are termed content-based multimedia retrieval
approaches. For example, Petković [166] presents an approach that uses hidden
Markov models to detect the strokes in a tennis match, based on a low level visual
features that describe the player (mass center and position of the arms), and a
simple algebra to describe the events in a tennis match. Furthermore, he uses
dynamic Bayesian network to detect highlights in Formula 1 races based on a low-
level audio (pitch, short term energy, etc.) and video (color histogram and shape)
features, and combine this information with the superimposed text extracted from
the screen, to describe interesting events, such as fly-outs or overtaking, during
the race.

In content-based retrieval approaches, a significant portion uses the query by
example paradigm [13]. Query by example retrieval models either use low-level
features such as color, motion, pitch of a sound [13, 166, 179, 217], or use high-
level features that can be extracted from multimedia documents, such as car,
explosion, building, face [33, 36, 152]. However, the effectiveness of these retrieval
models on their own is not sufficient, and the fusion with text search based on
automatically/manually annotated multimedia data is needed.

Content-based video retrieval is also addressed in this thesis, but only a specific
part where text retrieval approaches are applied to multimedia retrieval and where
relevance results of different multimedia retrieval techniques need to be fused in

2.2. Closing the gap between databases and IR 33

Figure 2.2: The layered DBMS architecture consisting of end-user, logical, and
physical levels.

Mapping

External
schema 1

Conceptual schema

Mapping Mapping

Mapping

Physical
storage 1

Physical
storage 2

Physical

storage k

End-user
level

Logical
level

Physical
level

External
schema 2

External

schema n

Internal schema

(Info-)

(Data-)

one framework. We focus only on how content extracted from the source data, in
the form of annotated documents (using, e.g., XML XMT MPEG 7/4/1 format
[127]), can be used, and how query by example similarity search results can be
fused with the text search for the effective multimedia information retrieval (see
e.g., [94, 104, 217] for an overview).

2.2 Closing the gap between databases and IR

This section starts with discussing the database approach and revealing the prob-
lems in the integration of databases and information retrieval systems. It then
emphasizes the conceptual differences between databases and IR systems focusing
on the logical algebra. The section ends with presenting several most influential
approaches that integrate database and IR systems.

2.2.1 The database approach

The main characteristic of the database approach is its layered architecture with a
strong separation between external, conceptual, and internal schema, as described
in the introduction of this thesis. From a DBMS designers point of view [2, 92]
these schemas are defined at the end-user, logical, and physical levels of a database,
as depicted in Figure 2.2. In the figure, the logical level consists of two sub-levels

34 2. Document Component Retrieval

[200]. The top one, called infological level, defines a framework for implementing
the conceptual schema, while the bottom one, called datalogical level, is more
related to the data manipulation using the internal schema and the physical storage
structures.

The layered architecture provides data independence, consisting of logical and
physical data independence. Logical data independence is the possibility to change
the conceptual schema without having to change the external schemes, and phys-
ical data independence is the possibility to change the internal schema without
having to change the conceptual schema. The introduction of the conceptual
schema at the logical level that isolates end-user representations and operations
from physical representations and operations, characterizes the database approach.

2.2.2 Databases & IR

Despite the numerous existing systems dealing with structured querying, the prob-
lem of expressing as well as executing IR-like queries using (relational) databases
is still an open issue [34]. An IR-like query does not specify hard conditions on
documents (or document components), but queries the collection for documents
‘about’ a certain topic. For instance, an XML element that is relevant to a query
for elements about “beautiful flowers” might not contain the phrase “beautiful
flowers”, or even both words “beautiful” and “flowers”. IR-like queries should re-
sult in a ranked list of answer elements, in decreasing order of some score value that
the system assigns to each element. The score value has to reflect the probability
(or degree) of relevance of the element to the IR-like query.

DBMSs have trouble supporting such IR tasks. They are based on a layered
architecture depicted in Figure 2.2, supporting data independence (as well as con-
tent independence) by having an external, conceptual, and internal schema. For
(structured) IR systems, following this separation in levels, would give another,
additional advantage over flat file IR systems. This is reflected in enabling content
independence [55]: the independence between the development of the application
programs that access the content using the external schema and the actual docu-
ment representation using the internal schema.

Following this reasoning, the central component of a DBMS that needs to
provide the logical and physical data independence when implementing a database
is the conceptual schema. It is usually described in terms of a mathematical
framework (logical algebra) for manipulating the domain of values in the data
model. In relational DBMSs this role is played by the relational data model and
relational algebra [40]. Therefore, the most important component that needs to be
developed, altered, or extended, when fully integrating IR systems with a DBMS
is the algebra (see, e.g., [75, 196]). As relational algebra is still predominant
in modern DBMSs we shed some thoughts on it before discussing systems that
integrate IR and DB.

2.2. Closing the gap between databases and IR 35

Algebra

An algebra is a formal framework for data manipulation based on operators and
a domain of values. The operators map values taken from the domain into other
values in the domain. If we take as an example the domain of all integers, and as
operators we define sum ‘+’ and product ‘·’, then examples of algebraic expressions
are: 1+2, 3 ·4, or 1+2 ·3. The results of these expressions are again in the domain
of integers, i.e., we say that the operators ‘+’ and ‘·’ are closed in the domain of
integers.

A well-known algebra for data manipulation in database management systems
is the relational algebra [40]. The domain of the relational algebra consists of
relations usually represented as relational tables. A relation is a sets of tuples,
where each tuple is a finite sequence of objects, i.e., attributes.

The set of primitive (basic) operators in relational algebra consists of the follow-
ing six operators: selection σaθx(R), projection πa1,a2,...,an

(R), Cartesian (cross)
product R1 × R2, set union R1 ∪ R2, set difference R1 \ R2, and rename ρa/b.
Here, ai, i = 1, ..., n, and b are attribute names, θ is a binary operator in the set
{<, >,=,≤,≥}, x is either an attribute name or a constant value, and R1 and R2

are relations.

Based on primitive operators many operators are derived, such as set inter-
section (R1 ∩ R2) and natural join (R1 ⋊⋉ R2). All these operators are based on
operators in set theory, but are actually a subset of the first-order logic. Operators
in the relational algebra are Boolean in nature. In other words, each tuple in the
relation either satisfies the condition in the operator or not. Therefore, knowing
the original relational data set, using relational expressions, the output is always
deterministic. There is no notion of probability or relevance.

SQL

Relational algebra is a low-level, operator-oriented language. Creating a query in
relational algebra involves combining relational operators using algebraic notation.
On the other hand, the relational model defines another ‘language’ for access-
ing relational databases – relational calculus. Relational calculus is a high-level,
declarative language. Creating a query in relational calculus involves describing
what results are desired from a database.

A version of a relational calculus is Structured Query Language (SQL) [32,
40]. It is a declarative computer language used to create, modify, retrieve and
manipulate data from relational database management systems. It is an ANSI
(American National Standards Institute) and ISO (International Organization for
Standardization) standard. SQL is currently the most common query language
used as an interface to databases.

There are additional features in SQL apart from those that merely implement
features of relational algebra or calculus, such as arithmetic operators, aggregate
functions, as well as support for data insertion, modification and deletion. As its

36 2. Document Component Retrieval

syntax is rather complex and as it is not of importance for the thesis we do not
discuss it. For more details on SQL we refer to any database book (e.g., [112]).

Algebraic properties

Algebra operators usually have certain properties. For instance, the arithmetic
multiplication operator (‘·’) distributes over arithmetic addition operator (‘+’),
i.e., (1 + 2) · 3 = (1 · 3) + (2 · 3). Similarly, based on the definition of relational
operators [40], many properties of relational operators hold. For example, set
intersection distributes over set union:

(σa1θx1(R1) ∩ σa2θx2(R2)) ∪ σa3θx3(R3) = (2.26)

(σa1θx1(R1) ∪ σa3θx3(R3)) ∩ (σa2θx2(R2) ∪ σa3θx3(R3))

This and many other properties of relational algebra illustrate that there are
many expressions that give exactly the same results. However, some expressions
might require more processing power and more memory for intermediate results
when executed in a DB system (at the physical level). Avoiding expressions that
require long processing time, using algebraic operator properties, is called logical
query optimization in (relational) database systems [16, 100, 120].

Looking from the IR perspective, properties like Property 2.26 might be im-
portant for another reason. When extending algebras to enable ranked retrieval,
it might happen that expressions that give exactly the same matching results, are
producing different document rankings. If we base a query optimizer on the prop-
erties of the original algebra, then the system would produce different rankings
depending on the query plan chosen. The extended Boolean models [193] and
fuzzy set models [160] (presented in Section 2.1.1) might for instance show this
kind of unpredictable behavior. This issue is important when developing an alge-
bra for IR, and is revisited in Chapter 4 but from the perspective of score region
algebra.

2.2.3 Approaches for DB & IR integration

Looking from the perspective of logical algebra we can conclude that the integra-
tion of information retrieval and database management systems can be achieved in
two ways, one without altering the algebra and the other with altering it. There-
fore, we have two types of integrated systems [214]:

1. loosely-coupled systems, and

2. tightly-coupled systems.

The integration in loosely-coupled systems is done at the higher (end-user)
level, without altering the core of a DBMS, i.e., logical and physical level. On the

2.2. Closing the gap between databases and IR 37

other hand, tightly-coupled systems integrate the IR aspects along end-user and
logical levels in a three-level DBMS, or reimplement the database system at all
three levels.

Loosely-coupled systems

In loosely-coupled integration, an IR system can be implemented as a hybrid sys-
tem, viewed as an application of a DBMS, or specified as a query language exten-
sion.

Hybrid approach In the hybrid approach, IR and DB systems are kept apart
and the results are combined at the application level. For example, in [214] the In-
query retrieval system [30] is used to output the information about ranked textual
data which is sent to Sybase DBMS as an SQL query that searches the corre-
sponding data in a database. Another hybrid approach in the structured retrieval
domain that uses full-text search engine Zettair1 and a native XML database eX-
ist2 [133] for XML retrieval is presented in [163]. Although systems like these are
easy to realize, they are inflexible for combining IR and Boolean parts of the query.
Furthermore, all the ‘hard work’ is done at the application level.

IR as an application of a DBMS In this approach the complete IR sys-
tem is implemented using database features. In relational databases that would
mean that the retrieval function is implemented using SQL query statements. This
results in a high complexity of query expressions that are difficult to handle. Addi-
tionally, it is quite cumbersome for the user to specify the query unless a high-level
application is used. However, such systems are easy to implement and quite good
for prototyping. Examples of such systems are PowerDB-IR [80] where ranking
algorithms are realized on top of a database cluster, and the system developed by
Grossman et al. [83, 84, 85] where authors implemented relevance ranking using
plain SQL.

Query language extension IR models can be implemented as an extension
of existing database query languages, e.g., SQL. In [214] authors developed an
extended SQL (ESQL) syntax that is based on Inquery query language. Actually,
the Inquery query is specified as a special text component of the SQL syntax, i.e.,
the TEXT QUERY clause in the WHERE part of SQL. The text component
of the ESQL queries is transformed into SQL and executed using an of-the-shelf
DBMS. This approach is quite similar to the previous one except that the IR
search is formally expressed using a query language instead of using a high-level
ranking algorithm.

1http://www.seg.rmit.edu.au/zettair/
2http://exist.sourceforge.net/

38 2. Document Component Retrieval

Tightly-coupled systems

We can distinguish two approaches for developing tightly coupled systems. The
first one is based on altering the logical algebra and eventually end-user query
language (SQL) of a database – algebraic extensions. The second one demands a
reimplementation of a database system at all levels to handle ranked retrieval –
full integration.

Algebraic extension IR systems can be integrated more tightly with relational
databases in the sense that the logical algebra is altered to support information
retrieval operators. This is the approach taken by Fuhr and Rölleke [68, 69, 75].
The authors propose a generalization of a relational model and introduce operators
for handling uncertainty. The algebra is called probabilistic relational algebra.
Probabilistic IR models are used as a base for modeling uncertainty operators in
the algebra.

Instead of relations and relational operators, the authors define events and
event probabilities. Each event corresponds to a relation, extended with the at-
tribute representing the event probability. The six basic relational algebra opera-
tors are redefined such that besides attribute manipulation they form a Boolean
combination of event expressions. The evaluation of the Boolean combination of
event expressions results in the relevance score of an event (relation).

Full integration The first paper to describe the full integration of databases
and information retrieval systems is published by Schek and Pistor [196]. Authors
explained the complete development of an integrated system along three database
levels. The model is based on an extension of the relational model that permits
nesting of relations, called non-first normal form (NF2) relations. The authors
introduced nest and unnest operators to handle nested relations and lists to cope
with ordered sets of items. They extended the SQL syntax for handling new
non-atomic attributes (that contain nested relations) and specified operators for
field oriented ranked retrieval. At the physical level they extended the traditional
database indexing techniques with new ones for storing and retrieving terms. This
resulted in the Darmstadt Database Kernel System [53].

The SPIDER system [195] was another approach for the integration of DBMS
and IR systems. It is based on a model that defines a hierarchy of heterogeneous
algebras, whereas the retrieval model is based on a probabilistic model. The
authors developed a completely new query language called FQL for expressing the
queries.

The probabilistic relational algebra, explained above as an algebraic extension
approach, was a starting point for developing probabilistic datalog [184] – a logic
that enables uncertain inference for describing the retrieval process. Probabilistic
datalog was later employed for developing a database system used for hypermedia
retrieval applications consisting of interlinked multimedia data [116].

2.3. Structured documents and query languages 39

With the proliferation of multimedia and structured documents, hypermedia
information retrieval systems became a precious ground for the integration of IR
and DBMS systems. The Mirror system [56, 59, 60] is one that demonstrates the
full integration of a multimedia retrieval system and a DBMS. It uses the Moa ob-
ject algebra [212] at the logical level and parallel main-memory database system
MonetDB [19] at the physical level. Moa is extended to support document repre-
sentations and ranking, and extended with operators for computing term statistics.
Moa logical expressions are transformed into sequences of operators in Monet In-
terpreter Language (MIL), which uses an algebra for the binary relational data
model, supported by the MonetDB kernel. The MonetDB relational data model
operates on flattened representations of the content in the form of binary tables
(BATs). The Moa algebra expression that specifies an IR request is implemented
using the standard MonetDB operator set extended with new operators for com-
puting relevance scores using information stored in BATs [56].

2.3 Structured documents and query languages

For illustrating structured documents we choose XML. XML [22] is the de-facto
standard for the storage and exchange of documents in the structured format
nowadays. Furthermore, XML is derived from SGML [54], from which the HTML
[174] is also derived, and therefore bears a great similarity to web documents.
Structured querying is explained using XML query language data models.

2.3.1 XML data model

One can think of an XML document as a linearization of a tree structure [21]
(see Figure 2.3 introduced later in this chapter), where nodes represent either
character string depicting the true document content or meta information, and
edges represent parent-child relation. However, connections between arbitrary
nodes in a tree structure of XML can be made, using e.g., IDREF attributes,
which makes it a graph. The semantics of these edges is different from the ones
that define the XML tree structure, and we call them hyperlinks. They are either
XPointers [61] that support addressing internal structure of XML documents or
XLinks [62] which allow links to external XML documents.

The XML data model assumes six node types: (1) document, (2) element, (3)
attribute, (4) processing instruction, (5) comment, and (6) text. In the definition
of the simple XML data model we disregard the namespaces and document type
declaration (a link to a Document Type Definition – DTD), since they do not
influence the generic XML data model.

Document node Only one document node exist in each XML document. It
specifies some properties of a document and defines the root document node. The
document node consists of a prolog which contains an XML declaration (something

40 2. Document Component Retrieval

like 〈?xml version = “1.0” encoding = “UTF-8”?〉), document type declaration (like
〈!DOCTYPE greeting SYSTEM “hello.dtd”〉), root element node, and zero or more
comment and processing instructions nodes in between. The document node must
have a declaration and an element node; if not, the XML document is considered
not well formed.

Element node Element node can be defined as en := (nn,A,CE). Here nn is
an element node name, i.e. a compound string (name string)3 used to denote the
node. The presence of a name is required for each element node. A represents
an attribute set consisting of pairs (an, av), where an stands for attribute name,
and av for corresponding attribute value. Both, attribute names and values, are
(compound and reference) strings [22]. Attributes can be of a predefined attribute
type, such as ‘ID ’ which is used as a unique identifier of an element node. The
unique identifier can be used for making a hyperlink from an arbitrary node in an
XML tree, e.g., by using the predefined attribute type ‘IDREF ’.

CE is an ordered sequence of child nodes (ce) which can be of any node type
except document node type or an attribute. The sequence CE can also be an
empty sequence in case an element node has no child nodes. Since an XML
document must start with an element node, called root node, the whole XML tree
can be defined recursively using tuples (nni, Ai, CEi) starting from (nnr, Ar, CEr),
where nnr is a root node name, Ar is a set of root node attributes and CEr is a
ordered set of root child nodes.

Processing instruction node Processing instructions are composed of the tar-
get or the name of the processing instruction (pn) and the data or information for
processing an XML document or element (data): 〈?pn data?〉. Processing instruc-
tions, as well as comment and text nodes, cannot contain any children nodes.

Comment node Comments are defined in XML syntax as 〈! -- com -- 〉, where
com is a character string.

Text node Text node is always a leaf node. This is the only node for which it
is not required to use delimiters for the specification4. The text node can contain
only character strings.

2.3.2 XML data models for querying structured data

Although the basic XML data model is sufficient for describing XML structure it is
not appropriate for XML tree traversal. Therefore, this model had to be modified
to support XML query languages, such as XPath [14, 37] and XQuery [18].

3Compound string is formed using the restrictions on lexical structure according to [22]. The
most important restriction is that the string must be formed without the usage of white spaces.

4However, these delimiters can be specified using the CDATA sections in the next manner
〈![CDATA[string]]〉.

2.3. Structured documents and query languages 41

XPath 1.0 data model

The XPath 1.0 [37] data model defines a tree model against which all XPath
expressions are evaluated. Most expressions are used to navigate the XML tree
model. These expressions are named location paths and the result of an application
of a location path on an XML tree is a node-set. The XML tree traversal is
performed in document order which is defined as a pre-order traversal of XML tree
data model. However, the XPath 1.0 data model does not specify how the XML
tree (logical structure) is constructed, i.e., it is implementation dependent [203].

The tree traversal in XPath is specified as a location path consisting of con-
secutive steps: loc path := /step1/step2/.../stepn, where each step has the form
of step := axis::nodetest[predicate]. XPath uses thirteen axis steps: self, par-
ent, child, ancestor, ancestor-or-self, descendant, descendant-or-self, following,
following-sibling, preceding, preceding-sibling, attribute, and namespace, as well
as node tests on name and type. Predicates are Boolean expressions that test the
values of location paths specified in a predicate (see [37] for detailed description).

Except node-sets, the XPath 1.0 data model supports three additional data
types, namely Boolean, number, and string, which are actually the results of the
XPath expression evaluation (within a predicate). To be able to compare node-
sets with entities of other types, node-sets are mapped to a string value. Each
node type identified in XPath data model has a specific definition of a string
value. It includes two awkward definitions of element and root node string values
as a concatenation of all descendant text nodes. Although these definitions are
reasonable and make easier conversion and comparison of node-sets with entities
of other types, it becomes problematic when evaluation of expressions including
string manipulation is considered.

The problems imposed by this definition of string values are illustrated using
three examples. First, if we want to evaluate some expression that include string
comparison on a root node (or nodes which are high in hierarchical structure of
XML) we have to perform comparison with respect to the contents of all descen-
dant text nodes, which in case of large XML documents can be very difficult.

The second problem is concerned with the string value construction. If we
consider the following XML name element:

〈name〉〈fname〉John〈/fname〉〈sname〉Smith〈/sname〉〈name〉
the string value of name element will be ‘JohnSmith’. This is also undesirable
property for string comparison.

The third problem concerns the definition of functions for node string value
comparison with a constant value. For example, the result of applying expression
child::item[value>=100] in XPath 1.0 will yield different results based on the
specification of the value element node. If the value node is defined in the form
of 〈value〉$200〈/value〉, the node will not be in the result node-set since the coer-
cion of the string value $200 is NaN (not a number). Similarly, node defined as
〈value〉200$〈/value〉 will not be returned as the numeric value is not followed with
a white space, as defined in [37].

42 2. Document Component Retrieval

Table 2.1: Node types and their properties in XPath 2.0 and XQuery 1.0 data
model.
Node type Node type properties

Document node {base-uri, children, unparsed-entities, document-uri}
Element node {base-uri, node-name, parent, type,

children, attributes, namespaces, nilled}
Attribute node {node-name, string-value, parent, type}
Namespace node {prefix, uri, parent}
Proc. instruction node {target, content, base-uri, parent}
Comment node {content, parent}
Text node {content, parent}

XPath 2.0 & XQuery 1.0 data models

In order to overcome some of the drawbacks of XPath 1.0 data model built upon
node sets, the World Wide Web Consortium (W3C) proposed a new XML data
model. This data model defines the XML information content using the XML
information set [46]. The XML information set consists of 11 information items
(node types) where each information item has many new properties.

The main difference between the node-set data model and the information
item data model is the absence of the text node, i.e. the text information item.
Instead, a character information item is defined. The character information item
is introduced to enable reasoning about the white spaces and content words in an
XML document. It can be a character code – a code of the character as defined in
ISO 106465, element content whitespace – a Boolean value indicating whether the
character is white space, and parent referring to the information item containing
the character information item in its children property .

The data model is defined over a sequence (ordered collection) of zero or more
items, while the items are either nodes or atomic values. An atomic value is a value
in the value space of an atomic type. An atomic type is one of the simple atomic
types, such as integer, string, date, Boolean, or a type derived by restriction from
another simple atomic type, as described in [15]. The XPath 2.0 and XQuery 1.0
data model preserves the basic node-set framework from the XPath 1.0 data model,
now called the item sequence framework. It extends the node-set framework with
a number of properties. It also adds an extra entity in the model, named atomic
type, which can form a sequence as well. Node types used in the data model
are presented in Table 2.1, along with their properties (uri stands for universal
resource identifier). Node properties written in bold are required for the definition
of a specific type of node.

The XPath 2.0 [14] and XQuery 1.0 [18] data models contain a typed-value
accessor in order to overcome the problem of string-value definition [65]. The

5http://std.dkuug.dk/jtc1/sc2/wg2/

2.4. Structured IR and databases 43

typed-value accessor returns the content of nodes (the string values of all the leaf
element nodes) if they are not of a complex type with a complex content, i.e.,
a mixture of atomic types. As XML documents are graph-structured, the data
model is defined using conventional terminology for graphs. The data model is a
node-labeled, directed graph, in which each node has a unique identity6. Unlike
in XPath 1.0 a document order is defined among all the nodes in an XML graph.

Discussion

As can be seen, the original XML as well as XPath and XQuery data models are
not very supportive for evaluating full-text search. First, data models represent
element content as string values and therefore impose the string manipulation as
only way to perform full-text search. Second, it is difficult to explore element
content in terms of single words and their statistics in XML elements if they are
represented as part of a string.

2.4 Structured IR and databases

In structured IR, the user can specify not only his information need, but also
where to search for information. Many structured (XML) IR query languages use
the W3C7 query languages (XQuery [18] or XPath [14, 37]) as a starting point
and extend them with IR-like search expressions. Typical examples are full-text
search extension of XQuery [7], Narrowed Extended XPath I (NEXI) [209], and
XIRQL [71]. They enable the distinction between search elements and answer
elements in structured IR, where both element types are not predefined as in flat
text IR (documents). Search elements are elements where the user searches for
specific information, while answer elements are elements that the user would like
to obtain as an answer to a query.

The retrieval models implemented in traditional IR systems typically represent
either one class of retrieval models (e.g., like language models in Lemur [155]) or
a single retrieval model (e.g., inference network in Inquery [30]). These models
are, however, not expressive enough to model complex document component re-
trieval consisting of more retrieval subtasks, modeling different retrieval aspects.
Their application to structured retrieval also results in the explosion of parame-
ters that need to be estimated (as can be seen in Section 2.1.2). Furthermore,
these models are often used to model retrieval subtasks, introducing the problem
of combining these sub-models in one model, where this combination requires a
systematic approach. Therefore, the simple one-model search engine concept has
to be replaced with the support for more advanced complex structured retrieval

6This id is not the same concept as ID used for representing references in ID/IDREF corre-
lation.

7http://www.w3.org/.

44 2. Document Component Retrieval

models that either extend flat text retrieval models [47, 77, 128, 155, 170] or sup-
port the combination of different flat text retrieval models [5].

With respect to the physical implementation, there is a consensus of using
a variant of the inverted index structures [90, 226] for IR systems. However,
using inverted index structures for structured retrieval would lead to having a
large redundant storage of “inverted elements” for each term-element pair in a
document. This implies that new indexing techniques have to be developed to
cope with this new IR task, either as a variant of the inverted index structures
[79, 128, 155] or by using database indexing facilities [66, 77, 164].

2.4.1 A relational view on XML

Most database approaches for structured document manipulation choose to ex-
plicitly define an index when modeling structured documents. Index is used as
an identifier for components in an XML document and in most cases also con-
veys the information about the structured organization of XML documents. The
rationale for using such indexes are benefits that can be achieved when querying
such indexed relational representation of structured documents. An indexed XML
document, however, is not modeled as one relational table since this table would
be huge and in most cases (on most platforms) hard to process. In many relational
approaches to XML different fragmentations of this basic table are used. We can
identify three broad approaches in transforming the XML data model to relational
data model:

1. horizontal fragmentation based only on type of XML nodes [88, 122]

2. vertical fragmentation based on a name and/or type of XML elements [26, 66]

3. path based fragmentation based on paths to XML nodes in an XML tree
structure [77, 177].

The distinction is based on the definition of relational tables in the relational
model. We give a short description of all three approaches.

Horizontal fragmentation

For horizontal fragmentation, the data set creation, i.e., the formation of the
initial data set from (plain text) XML documents, can be explained through the
usage of a two step indexing process. The indexing process is explained using an
example XML document given in Figure 2.3. In the first step each token in the
XML document – D, is indexed regarding its relative position with respect to the
beginning of a document and its type (I1 : D → X). As a result a set of entities
is obtained – x ∈ X, uniquely identified by their position in the XML document.
Each entity has the form of {position, token, token type}, e.g., the ‘story’ tag is
represented as {0, story, node}, attribute name ‘src’ as {13, src, attr name}, and
term ‘Rock’ as {16, Rock, word}.

2.4. Structured IR and databases 45

Figure 2.3: Example XML document.

<story id=``78’’>
<title>The Selfish Giant</title>
<author>Oscar Wilde</author>
<image src=``Garden.jpg”>

<title>Rock garden</title>
</image>
<p>Every afternoon, as they were coming from school, the children used to go ... </p>
<p>It was a large lovely garden, with soft green grass. Here and there over ... </p>
<p>One day the Giant came back. He had been to visit his friend the Cornish ... </p>
...

<p>And when the children ran in that afternoon, they found the Giant lying dead under
the tree, all covered with white blossoms.</p>

</story>

Table 2.2: Relational representation of XML document presented in Figure 2.3
obtained after the composition of initial indexing (I1) and final indexing (I2).

start end name type

0 1067 story node
1 2 id attr name
2 2 78 attr value
3 7 title node
4 6 - text
4 4 The word
5 5 Selfish word
6 6 Giant word
...
12 19 image node
13 14 src attr name
14 14 Garden.jpg attr value
15 18 title node
16 17 - text
16 16 Rock word
17 17 garden word
...

46 2. Document Component Retrieval

Table 2.3: Relational representation for storing example XML document presented
in Figure 2.3 after horizontal fragmentation of Table 2.2.

Node table N
start end name type

0 1067 story node
3 7 title node
4 6 - text
...
12 19 image node
15 18 title node
16 17 - text
...
46 188 p node
47 187 - text
...

1043 1066 p node
1044 1065 - text

Word table W
start name

4 The

5 Selfish

6 Giant

... ...
51 lovely

52 garden

... ...

Attribute table A
start owner name type

1 0 id name
2 0 78 value
13 12 src name
14 12 Garden.jpg value

The second step produces regions that we can consider as the basic elements in
the (relational) data model. These regions are produced by pairing corresponding
tokens that represent opening and closing tags, attribute names and values, etc.,
and by removing markup delimiters from the tokens (I2 : X → R). This results in a
data set like the one presented in Table 2.2. Thus, the initial data set construction
can be defined as a composition of two indexing procedures: I = I1 ◦ I2(D).
Although the indexing is a two step process it can be implemented as a single
walk through an XML document using the SAX parser and stack structures (see
[88]).

By applying horizontal fragmentation on such indexed XML data, different
relational tables can be defined for the XML element nodes and attribute nodes.
Additionally, the word table can be specified as a separate one that models the
words in the XML text nodes. This is depicted in Table 2.3. Such tables can be
used for efficient querying of XML documents [87].

Vertical fragmentation

Table 2.2 can also be partitioned for each pair of name and type in the name-type
relational tables [66]8. These tables, assuming that the parent element start at-
tribute is used in addition to attributes depicted in Table 2.2, would have the form
name type(start, end, parent start). For illustration, the paragraph-element ta-

8In [66] different partitioning are described in the scope of specific query execution speedup.

2.4. Structured IR and databases 47

ble would look like p element = {(46, 188, 0), ... , (1043, 1066, 0)}, and the garden-
term table would look like garden term = {(17, 17, 15), (52, 52, 46), ...}.

The reason for partitioning the table in such a way is to avoid numerous joins in
the execution of queries on terms occurring in a single element or path-like query
expressions. However, the performance of the database system that uses this kind
of partitioning shows difficulties for handling XML data in relational databases
[66]: (1) storage inefficiency – the size of the relational database for XML file
was an order of magnitude larger than the size of the original XML file, (2) long
loading time – 27 minutes for 7.7MB file, and (3) long query execution times – 1s
to 10s on 7.7MB file.

Path based fragmentation

Path based fragmentation can be also considered as a special version of the hori-
zontal fragmentation. The difference is that in the indexing process the absolute
path to every XML node is kept in a relational table. This path is used to make
numerous relational tables. Each table consists of a set of relations that describe
all the XML nodes that can be accessed by the same path in a document (collec-
tion) [199]. For example, the paragraph nodes (p) in the example XML document
depicted in Figure 2.3 will all be in the same relational table that might look like
{..., (46, 188, node), (1043, 1066, node), ...}. To keep the pointers to different node
tables, additional path summary table needs to be defined.

This fragmentation method might be efficient if XML queries are formulated us-
ing absolute paths that utilize the complete path specification (using parent/child
relations). However, as shown by Ramı́rez and de Vries [177], it is inefficient if
queries are formulated using descendant/ancestor relationships. Furthermore, the
authors show that combining two relational schemas, i.e., maintaining two redun-
dant data storage structures at the physical level, and using smart physical query
optimization, faster query execution times can be achieved.

Discussion

A promising approach to executing structured (XPath and XQuery) queries is the
use of relational database technology [86, 224], which can be extended to IR-like
querying of structured documents [66, 77, 82, 198]. However, the semantics of
XPath and XQuery give rules for navigation through XML structure, but not the
rules that specify how score values for XML elements should propagate and relate
to each other (as discussed in Section 4.2). Similarly, the semantics of relational
algebra introduce rules for manipulating relational tables that describe XML data,
but the rules for score computation and propagation cannot be derived from the
relations present in the relational database. Therefore, relational algebra needs to
be adjusted to support ranked retrieval in structured documents.

To illustrate this we use the following example NEXI query, assuming that the
about clause should be followed strictly (similar to the XPath contains statement):

48 2. Document Component Retrieval

//story[about(.//p, beautiful flowers)

and about(.//p, children)]

//image[about(., garden) or about(., flowers)]

For the chosen storage model, e.g., when using horizontal fragmentation com-
posed of the tables N , W, and A (see Table 2.3), we can directly transform any
NEXI (XPath) expression into relational algebra expression. For the NEXI exam-
ple query a possible relational algebra expressions could be specified as given in
Equation 2.27.

R1 = σname=‘story′(N), R2 = σname=‘p′(N), R3 = σname=‘image′(N)

R4 = σname=‘beautiful′(W), R5 = σname=‘flowers′(W)

R6 = σname=‘children′(W), R7 = σname=‘garden′(W) (2.27)

R8 = (R1 ⋊⋉⊐ ((R2 ⋊⋉⊐ R4) ∩ (R2 ⋊⋉⊐ R5))) ∩ (R1 ⋊⋉⊐ (R2 ⋊⋉⊐ R4))

R9 = ((R3 ⋊⋉⊐ R7) ∪ (R3 ⋊⋉⊐ R5)) ⋊⋉⊏ R8

In the expressions we replaced a group of expressions consisting of join and
projection operations, that simulates the XPath descendant/ancestor step, with
special joins – ⋊⋉⊐ and ⋊⋉⊏, defined in Equations 2.28 and 2.29.

Ri ⋊⋉⊐ Rj = πstarti,endi,namei
(Ri ⋊⋉starti>startj ,endi<endj

Rj) (2.28)

Ri ⋊⋉⊏ Rj = πstarti,endi,namei
(Ri ⋊⋉starti<startj ,endi>endj

Rj) (2.29)

As can be seen, Equations 2.28 and 2.29 define the most frequently used ex-
pressions in the example query. This group of expressions actually represents the
bottleneck for the XPath (NEXI) query processing, since its naive execution is
extremely slow. A number of techniques have been proposed to speed up the ex-
ecution of XPath descendant and ancestor steps, such as multi-predicate merge
join [224] and staircase join [88]. Using such specialized join operators, the query
execution becomes more efficient. However, these techniques also illustrate the
problem of expressing structured document search using relational algebra.

Furthermore, the problem enlarges when IR tasks come into play. IR search
asks not only for determining the containment relations among elements and terms,
but it asks also for computing various term statistics. This cannot be easily ex-
pressed in relational algebra, which might imply that a new algebra is needed
at the logical level of a database for specifying structured IR. The main reasons
for introducing a new algebra for modeling structured information retrieval are
discussed in Section 3.2.1 in the next chapter.

2.4. Structured IR and databases 49

2.4.2 XML IR algebras and query languages

In Section 2.5 we elaborate more on algebras specifically developed for structured
retrieval and how they can be adapted to IR, but first we present the NEXI query
language and two algebras used for ranked information retrieval in structured
documents (XML).

NEXI – Narrowed Extended XPath I

To overcome the drawbacks of XPath and XQuery data models with respect to
IR, several data models and query languages are proposed for IR-like search over
XML documents [7, 72, 209]. As the NEXI query language is used for illustrative
purposes throughout the thesis and also as an end-user query language in our
prototype system (TIJAH), it is briefly described here.

As the name suggests, NEXI is derived from XPath. It is simplified such that
it only supports two types of nodes: element nodes and attribute nodes. It does
not define character strings but terms in a document. The query language accepts
only two axis steps: the self step (denoted with ‘.’) and the descendant step
(denoted with //). Also node tests for element nodes and attributes, and only value
comparison ({>,≥, <,≤,=}) in the predicate are allowed. The extension is done
in the predicate part where the specification of the about expression is allowed. The
about has the form of about(path, query terms). The path is a sequence of XPath
descendant steps, starting from the self node (denoted with ‘.’). The query terms
part contains a set of terms (words or phrases), with optional modifiers (‘+’ or
‘−’), that define the terms on which the search should be performed for elements
on the path. It is also allowed to have more than one about statement in one
predicate combined in AND and OR expressions.

For example, the search for an image or a video depicting a ‘garden’ with
‘flowers’ in a story that contains paragraphs talking about ‘beautiful flowers’
and ’children’ can be expressed as (example repeated from the Introduction):

//story[about(.//paragraph, ‘‘beautiful flowers’’ children)]

//(image|video)[about(., flowers garden)]

Path algebra

Path algebra [71, 72] is developed as a part of the HyREX retrieval system [3] by
Fuhr et al. HyREX follows a three-level database architecture. It uses the XIRQL
XML query language for query formulation. Furthermore, the HyGate [73] user
interface is developed, and it enables the formulation of user queries in XIRQL
and presents the results to the user based on path algebra expression evaluation.
At the physical level data is stored in a modified inverse list structure that utilizes
B∗-trees for speeding-up the implementation of path algebra operations.

At the logical level the XIRQL query is transformed into a path algebra ex-
pression. As the name suggests, the algebra specifies path manipulation, where

50 2. Document Component Retrieval

a path is defined as a sequence of elements that have parent-child relationship in
an XML structure. Since the XIRQL syntax is based on XQL syntax [183], one
of the predecessors of XPath [37] and XQuery [18], the path algebra very much
resembles the XPath/XQuery algebra. However, it operates on a set of paths in-
stead of node-sets. The main feature of the algebra (and the system) is that it
supports search term and document term weighting, as well as specificity-oriented
search, i.e., retrieving the most specific parts of a document that are relevant to a
query (see Section 2.1.2). Handling of IR queries is based on datatypes with vague
predicates [75] and the algebra uses structured vagueness to find close matchings
for structured conditions.

The authors define a set of atomic units for each XML document which can
be search and retrieval units. These units are elements for which the term statis-
tics are computed. Atomic units can be useful when structured conditions are
not specified in the query (content-only queries) but restricts the searcher from
searching in arbitrary elements in a document structure. Furthermore, atomic
units have to be selected by a system administrator before the construction of a
database.

Another issue addressed in the path algebra approach is handling of nesting of
atomic units. The nesting might imply that the terms are counted more than once
if evidence from nested units is combined. To resolve this problem authors adapt
the probabilistic relational algebra approach [69, 75], where disjunctive normal
form of event expression is used to model uncertain inference. Authors introduce
augmentation event that defines the event when the atomic units are accessed
from their ancestors. However, the augmentation weights have to be predefined
for each pair of nested atomic units.

The structured vagueness is expressed in the form of (1) dropping the distinc-
tion between attributes and elements and representing them as vague data types,
(2) similarity of element names, and (3) generalization of child/parent to descen-
dant/ancestor relationship. The authors also point out that other types of vague
data types can be used to model different type of vagueness in structured search
[72].

Full match algebra

Unlike the previously presented document-centric algebra for specificity-oriented
ranked retrieval, recently a data-centric algebra for full-text search extension to
XQuery was presented [6, 7] (the document- and data-centric classification is given
by Fuhr in [72]). The algebra is based on XML full-text search requirements [28]
and use-cases [8] (later refined in [9]). The development of the algebra resulted in
the reference implementation of the XQuery 1.0 and XPath 2.0 full-text extension
(XQueryFT) – GalaTex [52].

The XQueryFT algebra, also called full match algebra, is based on a data model
defined over linguistic units. A linguistic unit, or a position, consists of a token, its
identifier (assigned using pre-order XML document traversal), parent XML node,

2.5. Region Algebras 51

relative position in a sentence, relative position in a paragraph, and context (tag
name, attribute, etc.). The full match algebra is based upon a first-order logic
disjunctive normal form predicates, specified over XML linguistic units.

The queries are expressed in TexQuery, a query language that is an exten-
sion of XQuery 1.0 and XPath 2.0 query languages. It provides a set of full-text
search primitives called FTSelections. An XQuery/XPath query is evaluated on
a sequence of items, while the TexQuery part is transformed into FTSelections
that are evaluated over the full match data model. The connection between two
languages and data models is established using two types of expressions: FTCon-
tainsExpr and FTScoreExpr. While the former returns only true or false with
respect to the matching performed in the full match data model, the latter returns
a score in the range [0, 1] that represents ‘how good’ is the matching.

The specification of the retrieval model that delivers the score is not part of the
full match model and is left to the implementer. The interpretation of the results
of full text search using FTContainsExpr and FTScoreExpr expressions is left to
the end user when formulating a query. Furthermore, once the TexQuery FTScore-
Expr query expression is evaluated and results translated into XQuery/XPath data
model the system cannot reason any more about the semantics of these scores.

By separating the DB-like XQuery/XPath data model and IR-like full match
data model, authors fulfill their design goals such as full composability of FTSelec-
tions, powerful TexQuery language syntax, and extensibility with new primitives
(see [7]). However, this was a step back for the integration of IR and DBs as the
algebra completely disregards the IR process when specifying algebra operators,
and therefore disables the reasoning about the retrieval models inside the algebra.

2.5 Region Algebras

This section starts with the specification of region algebra terminology and char-
acteristics of region algebra approaches. It continues with discussing features and
drawbacks of various region algebra approaches. The comparison of these region
algebra approaches and recommendations for the extension of region algebra ap-
proaches for ranked retrieval are given afterward.

The data model in most of the region algebra approaches is defined as a set
of regions that are originally called text extents in [27]. Regions are specified by
starting and end position pairs for each region, denoted as s and e, where e ≥ s.
Region sets are organized in different concepts, such as concordance list [27] or
generalized concordance list [38], which bring some constraints on how these sets
can be formed or on what can be the result of the application of region algebra
operators to operands (see below).

The application of the idea of text regions to structured documents is straight-
forward. If we regard each document instance as a linearized string or a set of
tokens (including the document text itself), each component can then be consid-
ered as a text region.

52 2. Document Component Retrieval

The basic set of operators in region algebra approaches consists of containment
operators – containing and contained by, containment negation – not containing
and not contained by, and set operators – union and intersection. In different
approaches the basic operator set is extended with special purpose operators.

Depending on the data model in some of the approaches nesting and/or over-
lapping of regions is permitted in the result region set and in some not. We use
this classification to first present algebras that do not support nesting and then
algebras that support it.

Afterward, we give two approaches for extending region algebras for ranked
retrieval. Although they support ranked retrieval, ranking (scoring) is not part of
the data model and is not supported in region algebra operators. The need for
ranked retrieval in region algebras is illustrated in [12]:

“... a structured text retrieval system searches for all the documents which
satisfy the query. Thus, there is no notion of relevance attached to the retrieval
task. ... a structured text retrieval algorithm can be seen as an information re-
trieval algorithm for which the issue of appropriate ranking is not well established.
In fact, this is an actual, interesting, and open research problem.”

2.5.1 Region algebras that do not permit nesting

This section describes region algebras where operands, i.e., region sets, cannot
contain nested regions and where the application of a region algebra operator to
operands is always a region set that does not contain nested regions.

PAT algebra

The earliest work on region algebras, called PAT algebra, is presented by Gonnet
and Tompa [78] and Salminen and Tompa [188]. The main characteristic of PAT
is that the data model is defined on character strings, where each character is an
elementary unit (match point), and indexed strings, where each token bounded
with delimiters is considered to be an elementary unit (region). The result of the
evaluation of any PAT expression can be either a match point set (a character
position or a pattern starting position in a string) or a region set defined by a
starting and end match points. Due to the distinction between match points and
regions in the data model, expressions can be formed in PAT that produce unex-
pected results, especially if the first operand is a region set and the second one is a
match point set. For example, the union of two region sets containing overlapping
regions is a match point set [188]. Thus, in the later region algebra approaches
the distinction between match points and regions has never been incorporated into
the data model.

Among a number of operators PAT includes operators for expressing contain-
ment relations between regions: including (i.e., containing), not including, within
(i.e., contained by), as well as set operators for forming set union, set difference,
and set intersection.

2.5. Region Algebras 53

Concordance lists algebra

Burkowski [27] defined a region algebra based on a text collection represented as
a finite sequence of words. He identified three basic entities: words, text elements,
and contiguous extents. A text element is defined as a sequence of contiguous words
that have a semantic meaning (e.g., identified with markup). Each sub sequence
of consecutive words represents a contiguous extent defined by the position of the
starting word in the sequence and the position of the end word in the sequence. A
data model is defined on a set of contiguous extents, used to denote the positions
of words and text elements, specified using markup or another kind of document
annotation.

In the algebra, two contiguous extents can be either nested or disjoint, i.e.,
overlapping regions are not allowed. Burkowski’s model also introduces a concor-
dance list as being a named list9 of starting and end position pairs that specify
disjoint contiguous extents.

Algebraic expressions are specified using the so-called retrieval command string
(RCS). RCS is defined as a sequence of filter operations that specify which con-
tiguous extents should be selected or rejected based upon containment tests: select
narrow (contained by) – SN, select wide (containing) – SW, reject narrow – RN,
and reject wide – RW. RCS operations are performed on concordance lists, where
the left operand represents a concordance list which is filtered by a set of concor-
dance lists that represent the right operand. For example, a search on “sections”
that contain terms “beautiful” or “flowers” can be expressed as: section SW

{‘beautiful’,‘flowers’}. Therefore, in Burkowski’s model the interpretation
of ‘,’ in the query is a Boolean OR (concordance list union) operator in the alge-
bra. The author does not introduce a Boolean AND (concordance list intersection)
operator as the search on “sections” that contain terms “beautiful” and “flowers”
can be expressed like: section SW {‘beautiful’} SW {‘flowers’}.

Furthermore, RCS syntax contains some additional operators for supporting
ranked retrieval, such as cardinality, sublist, and length operators. Relevance
ranking is done on-the-fly and is based on a type of tf.idf model (for details see
[27]). Additionally, a ranking vector was introduced to store the ranking values
for contiguous extents in a concordance list. However, the binding between those
vectors and contiguous extents is not clearly defined in the paper. The introduced
ranking operators, as well as the ranking vector definition, violates the contiguous
extent data model as the result of the mentioned operators (stored in a ranking
vector) is a real or natural number and not a contiguous extent.

9Although the author uses the “names” for the concordance lists, those names are not iden-
tified as a part of the data model. They are used only for fetching the proper concordance list
(set of contiguous extents).

54 2. Document Component Retrieval

GC-lists algebra

To enable expressions on overlapped contiguous extents, as well as Boolean op-
erators and operators for proximity search, Clarke et al. [38, 39] loosen some
constraints of Burkowski’s model. In the data model a distinction is made be-
tween content text (alphabet) and markup (alphabet). The content text bounds
are in the domain of positive natural numbers, and each number represents relative
position of the word in a flat document representation where markup is excluded
(preserving their relative order from the original document). The markup regions
are in the domain of positive rational numbers. The number is assigned in such
a way that the markup symbols, denoting the beginning and the end of a struc-
tured element that begins and ends on the same word from the text alphabet,
can be clearly identified. For example, 〈speaker〉witch〈/speaker〉 is indexed as:
<speaker>n, witchn, </speaker>n+1/2. For more details see [38].

The algebra is defined on a set of regions called generalized concordance list
(GC-list). A GC-list allows only non-nested regions, while the overlapping of
regions in a GC-list is supported. The algebra preserves the four basic operators
from the original model of Burkowski, which are in the paper termed contained
in (i.e., contained by), containing, not contained in, and not containing. Authors
explicitly introduce two combination operators, “both of”and “one of”, similar to
Boolean AND and OR operators, and an ordering operator “followed by”. The
result GC-list of the application of “one of” operator is a set of non-nested extents
that contain either extents from the first or extents from the second operand. The
result GC-list of the application of “both of” operator is a set of non-nested extents
that contain at least one extent from both operands, i.e., GC-lists. The “followed
by” operator is defined as a concatenation of the closest extents in two operands.

Although the model is similar to the model presented in [27], there is an el-
ementary difference between them. The difference is in modeling of structured
data. In Burkowski’s approach the initial data set consists of (1) regions in which
the starting position is different from the end position (text elements) and (2) re-
gions where those two positions are the same (words). In [38, 39] only the latter is
supported. This decision made the introduction of ordering operator a necessity,
as this was the only way to define the regions where starting and end positions are
different. Furthermore, this made the creation of arbitrary regions possible in the
algebra. Due to a well established data model and operator set, and clear speci-
fication of operator properties [38], the GC-list algebra is used as a foundation of
Multitext retrieval system explained in Section 2.5.3.

2.5.2 Region algebras that permit nesting

In the region algebra approaches discussed below nesting of regions in the result
region sets, as well as in the operands is permitted.

2.5. Region Algebras 55

Proximal nodes algebra

A proximal node region algebra was introduced by Navarro and Baeza-Yates [150].
The algebra is defined on a set of nodes that represents either symbols (i.e. words
or characters) or structured elements organized in a set of independent hierarchies.
The data model is formed of a view (tree structure of a document), specified using
a set of constructors (node types in the tree structure) and associated segments for
each constructor (a pair of numbers representing contiguous portion of underlying
text). Additionally, the data model has a specific text view composed of text
constructors that have a flat structure.

The algebra supports three types of operators: (1) text pattern-matching oper-
ators, (2) operators for the selection of structured components, and (3) operators
that combine other results. In the third type of operators an extensive set of inclu-
sion (containment) operators, distance operators, and set manipulation operators
is defined. The inclusion operators contain also: direct inclusion (parent-child
inclusion) and positional inclusion (inclusion of proximal regions). The authors
show that proximal nodes algebra is among the most expressive ones that can still
be efficiently implemented [150]. Although the model is very expressive, it cannot
support overlap in the result set, as well as the combination of nodes from different
views.

The proximal nodes data model is later extended to support search in XML
documents, based on XQL [11] and XPath [151] query languages. The exten-
sions are mainly for handling different node types, e.g., attributes and hyperlinks,
in XML, and for the preservation of numbering as defined in the original data
model. In the extended framework XQL/XPath expressions are translated into
the proximal nodes algebra before the evaluation.

Consens/Milo region algebra

Consens and Milo [41] studied characteristics of region algebra approaches in the
scope of capturing the important structured properties of structured text docu-
ments (i.e. nesting and ordering) and investigated the complexity in the query
optimization process. They used modified PAT algebra [188] in their approach,
and simplified it by keeping only the core functionality of the algebra, to be able
to compare it with the approaches previously described in this section.

Consens and Milo created the relationship between the region algebra and the
first order monadic theory of finite binary trees which they used for proving some
of the properties of the algebra. The authors especially outlined two properties:

• region algebra approaches are incapable of expressing direct inclusion for
nested regions, and

• region algebra approaches are incapable of expressing both included expres-
sion, i.e., the containment relation between a region, and two regions which
have to be in a specified order.

56 2. Document Component Retrieval

As these two properties are useful for many applications, the authors show that by
embedding the algebra in a programming language with a ‘while’ construct and
assignments, they can be supported.

Nested region algebra

The application of region algebra for search in nested text regions was presented
by Jaakkola and Kilpelainen [101, 102]. The data model is defined on a set of
regions where each region represents a contiguous non-empty interval of positions.
Authors introduce an indexing function I(p) that uses regular expressions to return
a region set consisting of all the regions that bound the text pattern p occurring
in a queried text. The numbering is formed on a character basis, instead of a word
basis.

Operators are defined based on conditions of relative containment and ordering
(start and end position orders) of regions. In the operator set all containment
operators from the model presented in [38] are preserved. Furthermore, additional
operators are introduced for expressing set difference (Boolean NOT operator) and
for coping with nested properties of the data model: (1) binary operator quote for
producing disjoint “followed by” regions, (2) unary operator hull for producing
minimal set of regions that covers (contains) the regions in the original region set,
and (3) binary operator extracting for removing nested regions.

Jaakkola and Kilpelainen showed that the nested region algebra queries can be
evaluated in practice in linear time in the length of the indexed text. They have
proved that their nested region algebra is capable of expressing “both included”
relation (although the expression is somewhat complex [102]). The “direct inclu-
sion” relation, however, cannot be expressed in their algebra.

Text constraints

Another region algebra approach for arbitrary text regions is described in [148,
149]. Miller et al. based their algebra on the language for specifying text structure,
called text constraints (TC). Similar to a region definition in [102], authors defined
the data model on a character basis. The searching is performed using three
different primitive expressions: (1) literals for matching all occurrences of a string
in a data model, (2) regular expressions for matching regions, and (3) identifiers
that refer to predefined named regions (e.g., tag in HTML).

The operator specification is based on a subset of Allen’s 13 interval relations
[4], namely before, after, in, contains, overlaps-start, overlaps-end10. The operator
set consists of the same operators as defined in [102], except the hull and extract-
ing operators. The algebra also introduces new operators, such as concatenation
operator which is used for defining adjacent regions. Furthermore, Miller [148]

10Miller has shown that the set of relations is complete and that the other seven possible
relations can be defined as a union or intersection of the basic six relations.

2.5. Region Algebras 57

showed that many more operators can be defined using the iterator operator in
combination with the basic region operators.

2.5.3 Region algebras developed for ranked retrieval

The following two region algebra approaches discuss the potential application of
region algebra approaches to ranked retrieval.

Region algebra with ranking

An attempt for adapting region algebra to ranked retrieval was presented in [130,
131]. The algebra is based on the region algebra presented in [38] (i.e., nesting
is prohibited for result regions). However, the approach cannot be considered as
a fully algebraic approach since the relevance ranking is not defined in the scope
of algebraic operators. It is a side effect of the application of algebraic operators,
i.e., it results in a change in values of relevance scores that are not part of the
algebra data model (similarly to approach presented in [27]). In this approach,
query is decomposed into a series of subqueries, each representing a subtree of a
query tree. Each subquery depicts the region algebra operation evaluated on two
region sets that are obtained after the execution of child subqueries in a query
tree. The algebra operators are defined as in [38].

To enable ranked retrieval Masuda et al. [130, 131] extended the definition of
operators in a way that each operator produces scores for the result regions as a
side effect. For score computation they considered each token to be a keyword,
and treated it like keywords in traditional IR systems. Using a traditional IR
tf.idf approach authors applied term frequency and inverse document frequency
computations for tokens (i.e. keywords) obtained as a result of the application of a
subquery. The computed scores are used to define a document vector and a query
vector. The document vector represents the vector of term frequencies computed
for the results of each subquery, while the query vector represents inverse document
frequency kind of measure for each subquery (for details see [131]). The final score
is computed as a cosine measure between the document vector and the query
vector.

In order to incorporate structured information in the retrieval model authors
proposed several mappings (i.e., coefficients) that can be used to define the query
vector. Besides the simple idf measure, two other coefficients are proposed. The
structure coefficient takes into account the rareness of the structures. The inter-
polated coefficient is the idf score of the query itself, combined with the weighted
average idf scores of its subqueries.

Multitext algebra

The Multitext [44, 45] data model is based on a model presented in [38]. However,
the authors dropped the distinction between the indexing of markup and content

58 2. Document Component Retrieval

text. As a query language authors use the GCL (GC-list) query language [39].
The retrieval units are shortest fragments (shortest substrings) in a document
that satisfy a query. The shortest fragment denotes the substring that does not
contain other substring that satisfies a query.

The relevance ranking method is termed cover density ranking (CDR) [45]. It
is based on two principles: (1) an element that contains more search terms is more
likely to be relevant than that containing fewer, and (2) elements that contain the
same number of terms in a shorter fragment are consider more relevant (shortest
substring ranking principle). The CDR method first generates tier queries, where
the first tier contain all the query terms, the second tier contains all but one query
term, etc., and then combine them for the final result. The retrieval model is an
ad hoc model developed based on the the two mentioned principles (see [45] for
more details), and takes into account the sizes of relevant fragments in the desired
element.

Although the authors extend the GC-list algebra for ranked retrieval, this
extension is, as in the previous approach, not algebraic. A region score is not part
of the Multitext algebra data model, and region (element) scoring is done outside
the algebra operators.

2.5.4 Comparison of region algebra approaches

Here we emphasize several differences in region algebra approaches. Although re-
gion algebra approaches share the same nucleus, as we already saw, region algebra
can be formalized differently considering the data model and algebra operators.
Table 2.4 presents a comparison of different region algebra approaches considering
the features of region algebras discussed below. A more detailed comparison of
region algebra approaches, with the emphasis on their expressiveness and com-
plexity, can be found in [10].

The first distinction is based on the content modeling in the region algebra
data model (model base column in Table 2.4). One way is to view document
text as a character string and index each character in a string using its relative
position with respect to the beginning of a document. Although this approach is
beneficial for regular expression and substring search, it might yield many problems
with respect to large document collections, if we consider that each data unit
and its id (position) are a part of a database data model. In that case each
character, possibly with its index (id), should be stored in a database, resulting
in an enormous table (or tables) on which the manipulation should be performed.
The other solution would be to index characters dynamically in a database, using
the existing database operators, which would result in a very inefficient query
execution.

In many approaches the text is viewed as an indexed string (the name is taken
from [188]), where string consists of indexed elements (i.e. tokens or words) and
delimiters (e.g., white space, line feed). Although this approach introduces some
problems in distinguishing between elements and delimiters (e.g., if “.” is con-

2.5. Region Algebras 59

Table 2.4: Comparison of characteristics of different region algebra approaches.
Approach model base nesting overlap set ops. ranking

PAT both no no all no

concordance list string no no union yes

GC-list string no yes no no

proximal nodes both yes no all no

Consens/Milo string yes yes all no

nested regions character yes yes all no

text constraints character yes yes all no

ranked algebra string no yes no yes

Multitext string no yes no yes

sidered as a delimiter then the string “27.01” would be divided in two elements,
“27” and “01” and search for the term “27.01” would fail), the indexed string
manipulation and storage is prevalent in database systems.

The region algebra approaches also differ in the way how tagging information
(e.g., markup) is treated in the indexing process. In case of character based in-
dexing, markup regions are dynamically created (at query time) by recognizing
the character sequences used to denote the beginning and the end delimiters of a
tagged data sequence, e.g., “〈” and “〉” for the start tag in XML. To avoid the
repetition of complex expressions for defining opening and closing tags Jaakkola
and Kilpelainen [102] used macros that can be considered as complex operators
for finding regions formed by opening and closing tags. In the indexed string ap-
proach, meta data has to be somehow distinguished from the document content.
Therefore, Clarke et al. [38, 39] used real numbers to index markup and Burkowski
[27] used “naming” for concordance lists that is predefined, i.e., defined during the
database load.

Table 2.4 also points out the restrictions of different region algebra approaches
with respect to the region data model on which operators can be defined. Column
nesting specifies whether a particular region algebra approach supports operators
that can produce nested regions in the result region set, while overlap column
depicts whether region algebra approaches allow overlapping between regions. Be-
cause of some of these restrictions most of the region algebra approaches can be
evaluated in linear time [102, 222].

The last two columns, set ops. and ranking, distinguish between approaches
that support or do not support set operators and mechanisms for ranked retrieval
respectively. Set operators defined in most algebras are union, intersection, and
difference operators. Exceptions are concordance list approach that includes only
set union operators (set intersection is defined implicitly through the containment
operators; see Section 2.5.1) and GC-list based algebras (GC-list, ranked algebra,
and Multitext algebra) that do not support any of the set operators. Among the
region algebra approaches only concordance lists, ranked algebra, and Multitext

60 2. Document Component Retrieval

algebra, support ranked retrieval. However, these region algebra approaches do
not have region scores or ranked regions as part of their data models and produce
relevance scores as a side effect. Following the argumentation from [12], cited at
the beginning of this section, we argue that incorporating relevance ranking in
region algebras is an important issue. It is one of the main topics in this thesis.

2.6 Summary

This chapter is an extensive overview of the related approaches coming from the
information retrieval and database areas. It also illustrates the need to analyze
structured information retrieval for defining a logical algebra for structured IR
systems. It starts with the overview of traditional flat text retrieval models and
explains how they can be applied to structured IR (and multimedia IR). The
conclusion is that for developing structured IR models, a more systematic analysis
of the structured IR task needs to be performed. Database approaches that try
to integrate information retrieval with database systems are then described. The
focus is on the integration using conceptual schema, i.e., logical algebra. A number
of existing approaches are presented, illustrating the possibility for the integration.

Sections 2.3.2 and 2.4 explain in more detail the organization of structured
documents, and present the existing query languages and algebras that are used for
expressing search over structured documents. Similarities and differences between
the structured document (XML) data model and relational data model are then
discussed, emphasizing the need for a new algebra that would integrate DB and
IR approaches on structured retrieval scenario.

The chapter ends with an overview of region algebra approaches, as they pro-
vide the basic functionality needed for the development of a new transparent alge-
bra for structured information retrieval. The approaches are compared at the end,
and the aim of the extensions of region algebras for relevance ranking (explained
in detail in Chapter 3 and 4) are presented.

Chapter 3

Structured IR:
Requirements & Framework

This chapter analyzes the research problem addressed in the thesis, i.e., the prob-
lem of structured information retrieval. It identifies four elementary requirements
for structured information retrieval. To fulfill these requirements a mathematical
framework is proposed, called score region algebra (SRA). The SRA data model
and operators are discussed in detail. The chapter concludes with a discussion on
variants of score region algebra and SRA features and limitations.

This chapter is partially based on papers published (1) in the Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (abstract) [137] and (2) in the Proceedings of the
14th ACM International Conference on Information Knowledge and Management
(CIKM) [138].

3.1 Structured IR Requirements

The discussion on specifying structured information retrieval using various re-
trieval models, presented in Section 2.1.2, pointed out the need for systematic
analysis of the structured retrieval problem to identify structured retrieval require-
ments. The basic analysis of a user request formalized as a structured query, given
in Section 1.2.3, introduces the elementary structured retrieval requirements that
we also follow in the development of our structured retrieval framework. These
requirements are the main topic of this section. The following four elementary
structured retrieval requirements are the ones that characterize structured infor-
mation retrieval:

1. entity selection

2. relevance score computation

3. relevance score combination

4. relevance score propagation.

62 3. Structured IR: Requirements & Framework

To perform detailed discussion on structured IR requirements we start with the
analysis of a relatively complex user request expressed as a structured IR query.
The user request is as follows:

Suppose a user recently saw a nice image of a garden with beautiful flowers
in a story, that he/she would like to add to his/her collection. He/she is not sure
whether the story was about children and beautiful flowers or the one that contained
a nice video about gardens. To clarify the search the user also uses a sample image
and a sample video clip: ‘flower garden.jpg’ and ‘garden.avi’.

Consider the following NEXI [209] query expressing this request:

//story[about(.//paragraph, children "beautiful flowers") or

about(.//video, garden src:garden.avi)]

//image[about(., flowers garden) and

about(., src:flower garden.jpg)]

The query states that the user searches for paragraphs in a story that are about
‘children’ and ‘beautiful flowers’ or that contain a video clip similar to a clip
‘garden.avi’. He/she wants to see an image about ‘flowers’ and ‘garden’ that looks
like an image ‘flower garden.jpg’, inside the story.

For the analysis we first identify the basic entities that are part of a user query,
illustrating them on our example query. These are: terms, search and answer
elements, and multimedia content references. Our example query contains four
different query terms: ‘beautiful flowers’, ‘children’, ‘garden’, and ‘flowers’. The
first one is a phrase consisting of two words, ‘beautiful’ and ‘flowers’, and the other
three are single words.

We can distinguish four different structured constraints, expressed in the form
of element or tag name specifications: ‘story’, ‘paragraph’, ‘video’, and ‘image’.
According to the NEXI specification, the answer element is the element for which
an about predicate is specified, i.e., in our example the ‘image’ element. All other
elements which are not answer elements are called search elements. Within the
search elements, we distinguish two different kinds: the lowest element inside an
about, i.e., the last element in the about path expression, and other elements.

There exists one special case where the lowest search element inside an about
is ‘.’, that refers to the search element that directly precedes the about clause.
Thus, it can happen that the search element is the answer element at the same
time (e.g., the ’image’ element in our example query). In our example query, the
search elements are: ‘story’, ‘paragraph’, ‘video’, and ‘image’. The lowest search
elements inside abouts are ‘paragraph’, ‘video’, and ‘.’, i.e., ‘image’.

Queries can also contain entities that are not terms or elements and that need to
be addressed in the search process. For example, the following entities ‘garden.avi’
and ‘flower garden.jpg’ are the locations (references) of the two sample multimedia
items, namely a video clip and an image. The reference multimedia item can also

3.1. Structured IR Requirements 63

have other forms than images and video, such as text files, mathematical formula,
graphs, songs, etc.

3.1.1 Entity selection

The first structured IR requirement discusses the selection of different entities in
the structured collection, based on the entities specified in the query. As in the
query we isolated three entities (terms, search and answer elements, and multi-
media content references), entity selection in structured IR systems must support
term, element, and multimedia content selection. Furthermore, as query consists
also of descendant steps (//), entities can be selected based on their containment
relation (explained in Section 3.2.4).

Terms

The search request in flat text documents is usually expressed as a list of query
terms. Therefore, the terms can be considered as the elementary units used for
modeling search over textual documents (see Section 2.1). A term is a sequence
of characters from an alphabet that has some commonly accepted semantic con-
notation. It is also an elementary unit of any language. Therefore, the motivation
for the usage of terms as an elementary units for the development of IR models is
straightforward.

The term selection requirement is about finding the location of a search term
in the collection of documents to be searched. However, from the IR perspective
not only elements/documents that contain that particular term are relevant. For
example, in our example query paragraphs that contain the term ‘child’ instead
of the required term ‘children’, or even the term ‘kid’, might also be considered
relevant. Therefore, the term selection does not have to select only the terms that
exactly match the search term, but also terms that are in some way similar to the
search term. This kind of vague search can be explicitly stated in a user query or
left to the system’s intelligence.

In IR systems, the two most common approaches to incorporate this vague
term selection are to employ stemming and query expansion by using e.g., term
synonyms. Stemming is a method of reducing terms to their stem or root form.
In such a way the term selection can be performed on all the terms that represent
different derivation of the root word. Term synonym selection selects all the terms
that have the same or nearly the same meaning as the search term. Similarly, a
word whose meaning is a specific instance of a more general word – hyponym, or the
other way around, a word whose meaning is a generalization of a meaning of other
word – hypernym, can be used. Thus, using stemming or synonym, hyponym,
hypernym, and other query expansion techniques, we can implement the vague
term selection.

64 3. Structured IR: Requirements & Framework

Search and answer elements

Similarly as selection of terms can be vague or strict, search and answer element
selection can also be vague or strict. In case the user is familiar with the collection
he is querying, i.e., he knows the structure of documents in the collection, he can
pose a query where elements should be strictly matched. In this case only the
elements that exactly match the search and answer elements specified in the query
should be selected.

This is useful for the expert users that know the details of the document struc-
ture and would like to find some specific information in a part of a document.
The strict search can also be helpful for the non-expert users. The prerequisite for
such strict element search is that a mechanism exists for helping non-expert users
to specify precise structured queries. For example, by graphically illustrating the
structure of documents.

Strict element search can also convey a higher level of abstraction, where sev-
eral document components identified by different element names are considered
as equivalent in the retrieval process. These elements should denote the same
semantic concept. For example, a list of equivalent element names is used in the
INEX collection (see [209] for the complete list of equivalent names). In such a
way the query specification process (for non-expert users) could be simplified and
the underlying selection process would have to cope with this abstraction of strict
element selection.

However, due to structured document heterogeneity (i.e., usage of different
document schemas), different documents may have different element names for the
same concept – ‘element name synonyms’. Also, single document can have more
than one structured description (see e.g., [155]). Furthermore, the user might not
be certain where he would like to search for information or he might not know the
element names in the collection. In all cases, the user should be able to give some
hints to the system, such as where he would like to perform the search and what
he would like to see as an answer.

The problem of the vague element name matching is studied in the research
area of schema matching and numerous techniques exist that try to resolve this
problem (see [63, 176] for a survey). However, the schema matching approaches are
concerned with matching the relations among elements (including the containment
relation) besides element name matching. In this thesis we only focus on a strict
search and answer element selection. The vague search is beyond this thesis, but
in [145] we explain how simple element name matching can be supported in our
framework.

Multimedia content

The selection of multimedia entities by matching them with the sample multimedia
item (referenced in the query) is a problem studied in the multimedia retrieval area.
The goal is to select multimedia data that corresponds to the sample multimedia

3.1. Structured IR Requirements 65

data. For example, an image similar to another (sample) image, or a song similar to
another (sample) song. Although the search can be strict, i.e., find an image, video,
audio, or even a text document, that are exactly the same as the reference one,
the vague multimedia content search (selection) is much more probable scenario.

While for the terms and elements vague selection could be modeled simply by
choosing term synonyms or ‘element name synonyms’, the concept of multimedia
content synonyms does not exist. Furthermore, in case of non-textual documents,
multimedia bears greater complexity than simple words. To be able to select
multimedia content based on a similarity criterion, multimedia data is described
in terms of low-level or high-level multimedia features, as described in Section 2.1.3.
Therefore, for such multimedia content selection we talk about multimedia feature
matching instead of term or element name matching.

Multimedia feature matching can be classified based on the type of multimedia
content described by features, e.g., image features, video features, audio features.
To be matched, features usually form an input to an ‘intelligent’ matching frame-
work, such as Bayesian net [143] or Gaussian mixture model [217]. The output
of the matching is a value that depicts the degree of similarity between a sample
multimedia content and the multimedia content that is contained in a searched
document. To restrict the search, a threshold can be applied to filter non-relevant
multimedia content. Thus, only the multimedia content that is similar to the
sample multimedia content is selected. This is the approach that is also followed
in this thesis (in Chapter 7) for the multimedia content selection. As multimedia
retrieval models are not the topic of this thesis, we do not go into details how the
matching among multimedia data is performed.

3.1.2 Relevance score computation

After the selection, the relations between these selected entities should be estab-
lished. In the example NEXI query, the first relations are the ones in the about
statements, i.e., paragraphs should be about ‘beautiful flowers’ and about ‘chil-
dren’, videos should be about ‘garden’ and look like ‘garden.avi’, and images should
be about ‘flowers’ and ‘garden’ and look like ‘flower garden.jpg’. This step corre-
sponds to determining how relevant are elements ‘paragraph’, ‘image’, and ‘video’
to the user request, with respect to terms or multimedia content they contain.
Thus, we termed this requirement element relevance score computation.

The relevance score computation requirement, based on the type of search mod-
eled with it, consists of several aspects. For example, the relevance of an element
can be computed with respect to its textual, video, or image content. In the exam-
ple query, relevance scores have to be determined for the ‘paragraph’ elements with
respect to two terms: ‘beautiful flowers’ and ‘children’. For the ‘video’ element
we have to compute scores with respect to term ‘garden’ and the containing video
clip similar to the ‘garden.avi’. In the other predicate, the scores for the ‘image’
element need to be determined with respect to terms ‘flowers’ and ‘garden’ and
reference image “flower garden.jpg’. Therefore, different classes of structured ele-

66 3. Structured IR: Requirements & Framework

ment relevance score computation can be distinguished. We distinguish between
two major classes: element-term score computation, and query-by-example score
computation.

Element-term relevance score computation

Element-term score computation can be considered as a variant of the document
relevance score computation in the flat text retrieval. The difference is that in
document component retrieval, the relevance score is computed for a term in an
arbitrary structured element, instead of a predefined document. The distribution
of terms in structured elements is quite different than in documents. Furthermore,
elements greatly vary in size; some elements contain only a singly word, while
others contain more than hundred words. The question is how such different
element granularity and different distribution of terms inside elements can be
incorporated into the element-term relevance score computation.

In flat text IR systems, the relevance score of a document is usually based on
a number of occurrences of a term in a document (term frequency). Possibly the
additional statistical information, like collection frequency or inverse document
frequency of a term is used, as explained in Section 2.1. Thus, the element rel-
evance score computation should be also based on a number of occurrences of a
term in an element. Additionally, the scoring mechanism can include information
that depicts element-term statistics, such as inverse element frequency, but also
the statistical information of other contained or containing elements in a struc-
tured hierarchy. Several approaches for element-term relevance score computation
are explained in the next chapter.

Some query languages (IR systems) enable the distinction between terms that
are more important to the user than others (denoted with, e.g., ‘+’) and the
specification of terms that are not wanted in the answer element (denoted with,
e.g., ‘−’). However, how ‘+’ and ‘−’ are modeled in the retrieval process is left to
the retrieval system implementer. ‘+’ might mean that the search term must be
present, while ‘−’ that the search term must not be present. Equally likely, ‘+’
might also mean that the term is more important than other terms in the search
process or e.g., that it should not be stemmed in the search process. This should
be reflected in the element-term relevance score computation.

Some retrieval models also include phrase search and proximity search. For
phrase search, the relevance score computation should somehow reward elements
that contain the search phrase in contrast to elements that contain single words but
do not contain the phrase [106, 187, 225]. Similarly, elements that contain terms
close to each other should be rewarded in proximity search [45, 150]. However,
term modifiers, phrase, and proximity search are not discussed in this thesis (see
[144] for more details).

3.1. Structured IR Requirements 67

Query-by-example score computation

For the textual content search, element relevance score computation describes the
transformation from element, document, and collection term statistics to element
score. However, the query-by-example score computation requirement is merely
about the aggregation of scores depicting the similarity between the sample mul-
timedia item and the multimedia items from the collection. This is due to the
fact that in, e.g., the image selection process, the relevance score is assigned to
images with respect to their similarity to the sample image. Therefore, the query-
by-example score computation part only needs to describe how matching scores of
images in the collection should be aggregated to produce the relevance score of a
structured element that contains these images. While this aggregation can have
similar form as element-term relevance score computation, it can also be a simple
summation of scores of contained images, or their average, maximum, minimum,
etc.

The query-by-example score computation scenario is the same for content types
other than images, such as videos, songs, text documents, etc. The matching
scores obtained after multimedia content selection are aggregated and assigned to
the containing element in which the user searches for a multimedia item. How-
ever, the prerequisite for the computations of query-by-example region scores is
that the scores are normalized such that they can be later combined with scores
obtained when using other score computations, i.e., element-term relevance score
computation.

3.1.3 Relevance score combination

Structured element search is usually performed with respect to more than one
term (or multimedia content) in an element, as can also be seen in our example
query. As for the score computation requirement, scores are computed on a per
term (or single multimedia content) basis, those scores have to be combined. This
requirement is called score combination. Besides the implicit score combination
among elements containing different terms (e.g., paragraphs containing the term
‘children’ and paragraphs containing the term ‘beautiful flower’ in our example
query), structured search allows explicit specification of AND and OR combination
among elements that contain terms or multimedia content (e.g., the combination
of about clauses in NEXI, as can be seen in our example query). To distinguish
between the two, we call the former low-level score combination and the latter
high-level score combination.

The score combination aspect can take two forms: either Boolean OR-like score
combination or Boolean AND-like score combination, as can also be seen in the
example query. Furthermore, the combination can be specified among different
elements in the document hierarchy, such as among ‘paragraph’ and ‘video’ ele-
ments in the first predicate of our example query. Furthermore, it can be among
elements that contain different content, e.g., among ‘image’ elements that contain

68 3. Structured IR: Requirements & Framework

terms ‘flowers’ and ‘garden’ and ‘image’ elements that contain images similar to
‘flower garden.jpg’.

Low-level score combination

The combination of relevance scores among elements that are directly scanned for
their content information is called low-level score combination. For example, this
is the case for the lowest search element in the about clause in the NEXI query
specification. Although NEXI does not allow explicit specification of combination
type (OR or AND) among terms, it is assumed in many structured retrieval sys-
tems that it is an AND-like combination [74]. Such combination resembles the
score combination in document retrieval, however, here it is done at the element
level. In other words, elements that are combined are usually smaller, and their
relevance scores might be different than document relevance scores.

Such low level score combination might include score combination among ele-
ments obtained when searching different content information inside them. In our
query example, search in ‘video’ elements for term ‘garden’ is combined with the
search for the same elements with respect to the video they contain that need to
be similar to ‘garden.avi’. To be able to combine these scores they have to be
normalized as stated before.

High-level score combination

High-level score combination is performed among elements that are not directly
tested on their content. This is the combination of element scores where at least
one element contains or is contained by other elements (that contain other elements
or some content). This can be seen in the first predicates of our query expression.
Although it might seem that the combination should be performed among ‘para-
graph’ and ‘video’ elements, the combination should actually be performed among
‘story’ elements containing such ‘paragraph’ and ‘video’ elements. Even though in
case the search element in the second about clause would be the ‘paragraph’ ele-
ment, still the combination should be performed on ‘story’ elements. In this case
the user would be searching for ‘story’ elements that contain either a paragraph
about ‘children’ and ‘beautiful flowers’ or a paragraph about garden or video clip
‘garden.avi’, where these two paragraphs need not be the same.

These examples also illustrate the need for propagating scores from containing
(‘paragraph’) to contained (‘story’) elements. The score propagation requirement
is explained below.

3.1.4 Relevance score propagation

To be able to perform high-level score combination, the scores of containing or
contained elements need to be propagated to the common ancestor or descendant
element respectively. This requirement is called score propagation. It follows

3.1. Structured IR Requirements 69

the semantics of the NEXI path expression that expresses an ancestor-descendant
relationship. In case of consecutive descendant search elements, the ancestor search
element can have multiple matching descendant search elements to which scores
have to be propagated. Also descendant elements might have multiple ancestor
elements to which scores have to be propagated.

Score propagation aspect is recognized by Fuhr et al. [71] and Grabs and Schek
[82]. In their paper it expresses propagation among parent and child elements in a
hierarchical structure. We can define such element score propagation as the trans-
lation of scores to the parent/child or ancestor/descendant elements where these
scores can be combined based on the type of combination explicitly specified in the
query language (e.g., NEXI). We can distinguish two types of score propagation:
upwards and downwards score propagation1.

Upwards score propagation

The necessity of the propagation to the common ancestor element can be seen in
case of the first predicate in our example NEXI query. To be able to combine scores
of paragraphs about ‘beautiful flowers’ and ‘children’, and videos about ‘garden’
and containing ‘video’ elements similar to ‘garden.avi’, we need to propagate scores
to the common ancestor ‘story’ element. This propagation is not trivial as usually
one element can have more than one descendant elements with the same element
name which can also be nested. Therefore, the scores of many descendant elements
must be taken into account when determining the score of an ancestor element.

Although specifying child/parent upwards (and also downwards) score propa-
gation would give more control over the propagation process it would also make
the propagation more complex (see [155, 170]). This is why we focus on the
ancestor-descendant relationships.

Downwards score propagation

In our example query the scores of the ‘story’ element need to be propagated to
the contained ‘image’ element for determining the relevance of an answer element
(‘image’). The relevance of the ‘image’ element with respect to its content, i.e.,
terms ‘flowers’ and ‘garden’ and image ‘flower garden.jpg’ is not the relevance of
the complete query but only the relevance with respect to the second predicate.
To determine the right relevance score, the relevance score of the ancestor ‘story’
element must be propagated to probably more than one ‘image’ element. How this
propagation is performed is specified in the downwards score propagation aspect.

Although it is not frequently the case, one descendant element (‘image’) can
have more than one ancestor element from which the scores need to be propa-
gated. For example, this would happen if we would have nested ‘story’ elements.

1Note that other types of score propagation can be defined, such as following, preceding,
anchor, or link score propagation. However, we focus on ancestor-descendant score propagation
as it is the most frequently exploited feature in structured retrieval.

70 3. Structured IR: Requirements & Framework

Therefore, downwards score propagation also has to take care of multiple (nested)
ancestor elements, similarly as upwards score propagation has to take care of mul-
tiple descendant elements.

3.2 Score region algebra

We start this section by illustrating the need for the new algebra specifying struc-
tured information retrieval, following the elementary structured IR requirements.
Then we explain how we extend the basic region algebra approach to model com-
ponents of structured documents and to express structured retrieval. We end the
section by explaining why we use this particular score region algebra data model
and operator set.

3.2.1 Why do we need an algebra?

The question is do we really need a new data model and operator set for specifying
structured document retrieval, or we can utilize data models and operators mod-
eling similar problems. The relational model would seem like a reasonable choice
as shown in Section 2.4.

The hierarchically structured (XML) data model can be easily transformed
into a relational one. The relational algebra operators can express containment
operators (see Equations 2.28 and 2.29 in Section 2.4). However, relevance ranking
cannot be easily expressed using relational algebra operators, as explained in Sec-
tion 2.4. To be able to use the information depicting the relevance of an element,
an additional attribute for each relational (region) table has to be introduced, as
shown in [72]. The attribute should keep the ranking score values for particular
structured element during the query execution. Furthermore, to avoid the repe-
tition of relational algebra expressions in defining IR expressions, new operators
should be (re)defined. Their combination should express the scoring (relevance
ranking) mechanism.

Many issues exist that are not in favor of using relation algebra for ranked
retrieval. Among a number of reasons to define a new algebra for structured IR,
we argue that the most important ones are:

1. relational algebra cannot provide information retrieval model independence
and content description independence

2. relational expressions for structured IR are highly dependent on a relational
schema used for modeling structured data

3. relational algebra is not suitable for expressing IR like operations, as well as
supporting their execution at the physical level.

The most important reason for defining an algebra is to enable the specification
of operators that can model structured information retrieval queries (e.g., about

3.2. Score region algebra 71

in NEXI), i.e., scoring and ranking of XML elements, but abstracting away from
the retrieval model implementation at the same time. Such algebra would provide
information retrieval independence and content description independence. It would
enable the (transparent) implementation of various retrieval models, independently
of the application at the end-user level, and without affecting the algebra data
model and operator definitions. Also, the algebra would not be influenced by the
document content representation at the physical level, and how this document
content is used for specifying retrieval models. Furthermore, the reasoning that
can be done at the logical level, i.e., on the algebra expressions, can be useful for
query rewriting and optimization. Using knowledge about the size of the operands
and the cost for the execution of different operators at the physical level, we are
able to generate different logical query plans achieving faster execution times and
lower usage of main memory when executing at the physical level.

Another important issue concerning immediate translation of structured IR
expressions into relational algebra is that the algebraic expressions are highly de-
pendent on the relational schema chosen for the representation of structured data.
If we change the relational schema, the relational algebra expressions for each
query has to be rewritten according to the relational schema. This is especially
the case for XML, since usually huge relational tables, which have more than a
million entries, are typically broken into a number of smaller ones using one of
the fragmentation methods explained in Section 2.4.1. Although this can be cir-
cumvented using views over relational tables, it would still require managing these
views and using complex relational expressions for implementing ranked retrieval
underneath.

The last point emphasize that to express structured IR (e.g., NEXI) queries in
relational databases we need new operators for defining structured IR subexpres-
sions, such as descendant and ancestor steps, containment conditions, etc. These
new operators, however, would not follow the main ideas of the relational model
and relational operators. Additionally, the exact technique how we can implement
the subexpression is defined at the physical level, and it does not have to be unique,
i.e., we can have multiple variants of a physical expression for the same structured
IR relational subexpression. The execution times for distinct implementations can
differ regarding the relational storage of the structured data, parameters of storage
structures, and index structures used for the acceleration of relational expression
execution in relational databases. Therefore, special techniques need to be de-
veloped for handling such expressions at the physical level that are beyond the
physical operators in relational database systems.

These reasons force us to use a different algebra for specifying structured IR
and not use the relational one. Our choice is region algebra [27, 38, 101, 150, 188].
While relational algebra is tailored to work on flat non-nested relations, region al-
gebras are tailored to express search in structured documents, often having nested
structures. The region algebra framework is a special-purpose framework that
provides only the basic data model and operator set for structured search. It can
easily be extended to support more richer data models and a richer operator set.

72 3. Structured IR: Requirements & Framework

Figure 3.1: Enumerated example XML document.

<story id = 78 >
<title> The Selfish Giant </title>
<author> Oscar Wilde </author>
<image src = Garden.jpg >

<title> Rock garden </title>
</image>
<p> Every afternoon , as they were coming from school , the children ... </p>

...
<p> And when the children ran in that afternoon , they found

the Giant lying dead under the tree , all covered with white
blossoms .</p>

</story>

0 1 2

3 4 5 6 7

8 9 10 11

12 13 14

15 16 17 18

19

20 21 22 23 24 25 26 27 28 29 30 45

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

1065 1066

1067

<p> It was a large lovely garden , with soft green grass . Here and ... </p>46 47 48 49 50 51 52 53 54 55 56 57 58 188

" "

" "

Additionally, it provides a simple framework for manipulation on nested regions
that can be extended to handle scoring mechanisms following the identified four
elementary structured retrieval requirements. Thus, the introduction of scoring
operators in region algebra is easier and more elegant than in the relational alge-
bra, as can be seen in next sections.

3.2.2 Region algebra basics

Region algebras [27, 38, 101, 150, 188] are based on viewing documents as a set
of regions instead of characters or content words and tags. Each region is usually
defined by its starting and end position. Usually, some restrictions are forced on
regions, such as that they cannot nest or overlap (see Section 2.5). For structured
retrieval, structured documents are transformed into region sets on which a num-
ber of operators are defined. These operators test regions on their containment
relations and generate new region sets by forming a union or intersection on these
region sets.

The most common region algebra approach is the one where each content word
in a document represents one region that has the same starting and end position.
On the other hand, markup (structured) elements define a region with different
starting and end positions, embracing all the words that are inside the marked up
part, i.e., an element of a document.

An example XML document is given in Figure 3.1, where ordinal numbers are
assigned to each token denoting its absolute position in a document. Following
this view on structured documents, and allowing nesting among regions, we can
define region sets for each token as given below. Here, we used words in uppercase
to denote region sets for different tokens2.

2For simplicity we do not distinguish between document markup and content words for now.

3.2. Score region algebra 73

Table 3.1: Basic region algebra operators.
Operator Operator definition

R1 ⊐ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r1.s < r2.s ∧ r1.e > r2.e}
R1 ⊏ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r1.s > r2.s ∧ r1.e < r2.e}
R1 ⊓ R2 {r|r ∈ R1 ∧ r ∈ R2}
R1 ⊔ R2 {r|r ∈ R1 ∨ r ∈ R2}

story = {(0, 1067), ...}

id = {(1, 2), ...}

78 = {(2, 2), ...}

title = {(3, 7), (15, 18), ...}

the = {(4, 4), ..., (1046, 1046), ...}

garden = {(17, 17), (52, 52), ...}

p = {(46, 188), ..., (1043, 1066), ...}

...

Table 3.1 defines the following four basic region algebra operators that can
be evaluated on such region sets: containing (⊐), contained by (⊏), region set
intersection (⊓), and region set union (⊔). We use Ri (i = 1, 2, ...) to denote the
region sets, ri to denote regions in these region sets, and ri.s and ri.e to denote
region start and region end positions.

As an example, in Equation 3.1 we present an SRA expression that corre-
sponds to the following simplified query from Section 3.1 (assuming that the about
statements require strict search):

//story[about(.//paragraph, children beautiful flowers) or

about(.//video, garden)]//image[about(., flowers garden)]

(Rp :=) (image ⊏ ((story ⊐ (((p ⊐ children)

⊓ (p ⊐ beautiful)) ⊓ (p ⊐ flowers)))

⊔ (story ⊐ (video ⊐ garden))) ⊐ flowers)

⊓ (3.1)

(image ⊏ ((story ⊐ (((p ⊐ children)

⊓ (p ⊐ beautiful)) ⊓ (p ⊐ flowers)))

⊔ (story ⊐ (video ⊐ garden))) ⊐ garden)

74 3. Structured IR: Requirements & Framework

In this expression operator ⊐ does not make a difference if regions in the right
operand are term or element regions. Although this does not play an important
role for strict search, in structured IR search this distinction is a necessity. It
results in distinguishing score computation and score propagation requirements,
as discussed in Section 3.1.

3.2.3 Score region algebra data model

The simple region model is not sufficient for expressing all the information in
structured documents (see Section 2.3.2). The region algebra data model has
to be extended to differentiate between elements, attributes, terms, and other
components of structured documents, and more importantly to express region
relevance scores. Also, the operators need to be defined that enable element scoring
and ranked retrieval. That is why we develop a new algebra, called score region
algebra – SRA.

In the specification of the score region algebra data model we distinguish be-
tween different entity types and names in structured documents. Furthermore, we
enrich the original model with a region score attribute and introduce a number
of operators for score manipulation. The aim of the SRA is to support ranked
retrieval as a part of the algebra, and not as a side effect, which distinguishes it
from other region algebra proposals that include ranked retrieval (see Section 2.5).

The logical data model of SRA is based on region sets. It is specified using the
following five definitions.

Definition 1. Region tuple r, r = (r.s, r.e, r.n, r.t, r.p), is defined by these five at-
tributes: region start attribute – s, region end attribute – e , region name attribute
– n, region type attribute – t, and region score attribute – p.

Definition 2. Region start and region end attributes must satisfy ordering con-
straints: ri.e ≥ ri.s.

Definition 3. If ≺ is defined as in the following equivalence ri ≺ rj ⇔ rj .s <
ri.s ≤ ri.e < rj .e and ≡ as in the equivalence ri ≡ rj ⇔ ri.s = rj .s ∧ ri.e = rj .e,
for two arbitrary region tuples it is either ri ≺ rj, ri ≡ rj, rj ≺ ri, or they are not
nested or equal.

Definition 4. Region set R represents a set of all possible region tuples (r ∈ R).

Definition 5. The SRA data model is defined on the domain of region power set
P(R) = {R′|R′ ⊆ R} which is the set of all possible subsets of the region set R.

3.2. Score region algebra 75

The semantics of region start and region end attributes are the same as in other
region algebra approaches: they denote the bounds of a region. The domain of
region start and region end attributes is the domain of positive integers including
0. Region bounds are determined based on assigning ordinal numbers to tokens
in a structured document (the pre-order document tree traversal) as depicted in
Figure 3.1.

The region name attribute is used to denote the names of different entities in
structured documents. The set of entities includes content words, element nodes,
element attributes, element attribute values, etc. The domain of entity name
region attribute is the domain of alphanumeric strings. For example, the name of
the content word ‘garden’ is garden, while the name of the paragraph structured
element enclosed in opening and closing markup tags, 〈p〉 and 〈/p〉, is p.

To distinguish between different name ‘roles’ in structured documents we use
the region type attribute. For example, node is used for the element node,
text for the text node, word for the word present in a text node, attr name
and attr value for attributes, etc. The domain of region types is a set of types
that are present in structured documents (and supported in SRA) and that are
necessary for specifying ranked search in structured documents, i.e. type =
{node, text, word, text, attr name, attr value}. The domain of region types can be
easily extended in case more entity types are needed.

Finally, the region score attribute is used to specify the relevance score of a
region with respect to a given query. The domain of the region score attribute is
the domain of positive real numbers in the [0, 1] range3. While all other attributes
can be specified based on the structured data in the collection, a default score value
for each region in the collection does not have a unique unambiguous value. It can
be the same for all regions, e.g., 0 or 1, or vary based on different criteria, such
as the level of the region in a hierarchical structure, its size, its estimated prior
relevance to the user, etc. The choice of the default region score also depends on
the retrieval model instantiation as for some choices default score of 0 or 1 would
produce bad results (e.g., 0 for the models presented in the following chapter).
For the sake of simplicity we assume that the default score value for regions is 1,
unless stated otherwise.

Based on the SRA data model, the region sets for our example XML document
(given in Figure 3.1) in score region algebra can be defined as follows. We classify
regions based on the region name attribute (denoted with “region name” −− on
the left side) for comparison with the basic region algebra model, although all
regions are part of a large region set defining the whole data collection.

3The full domain of real numbers can also be used in case score values are not normalized or
the logarithmic scale is used.

76 3. Structured IR: Requirements & Framework

story −− {(0, 1067, story, node, 1.0), ...

id −− (1, 2, id, attr name, 1.0), ...

78 −− (2, 2, 78, attr val, 1.0), ...

title −− (3, 7, title,node, 1.0), (15, 18, title, node, 1.0), ...

the −− (4, 4, the, word, 1.0), ..., (1046, 1046, the, word, 1.0), ...

garden −− (17, 17, garden,word, 1.0), (52, 52, garden,word, 1.0), ...

p −− (46, 188, p, node, 1.0), ..., (1043, 1066, p, node, 1.0),

... −− ... }

3.2.4 Score region algebra operators

As XML is the prevalent standard for structuring documents, here we present the
operator set that is tailored toward hierarchically structured documents such as
XML. The score region algebra operators are explained using the example XML
document given in Figure 3.1. We give the definition of only basic score region
algebra operators for text search as the main focus of our research is textual search
in structured documents. The extensions for more advanced text search as well
as for multimedia retrieval are explained in Chapters 5 to 7. The functionality of
operators is explained on the following simplified query from Section 3.1:

//story[about(.//paragraph, children beautiful flowers) or

about(.//video, garden)]//image[about(., flowers garden)]

The basic SRA operators are defined in Table 3.2. In the specification of region
algebra operators we use Ri (i = 1, 2, ...) to denote the region sets, corresponding
non-capitals to denote regions in these region sets (ri), and ri.s, ri.e, ri.n, ri.t,
and ri.p to denote region attributes. With C we denote the set of all regions in
the working collection and with Root we denote the (artificial) root element for
the whole collection.

The operators in SRA take one or two region sets as operands and produce a
region set as result. The first three operators enable Boolean selection of regions
based on their attributes or containment relations. The other six operators specify
score manipulation among regions. To enable transparent instantiation of different
retrieval models following the four elementary structured retrieval requirements,
SRA operators are defined using (1) abstract scoring functions (f) that take as
parameters a region from the left operand region set (r1) and the right operand
region set (R2) and (2) abstract operators (⊗ and ⊕), as explained below.

Entity selection operators

The selection operators (σ,⊐,⊏) have two variants. The first one (σ) selects regions
by matching their description attribute values, i.e., element name and type. The

3.2. Score region algebra 77

Table 3.2: Score region algebra operators.
Operator Operator definition

σn=name,t=type(R) {r|r ∈ R ∧ r.n = name ∧ r.t = type}
R1 ⊐ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r2 ≺ r1}
R1 ⊏ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r1 ≺ r2}
R1 ⊐p R2 {(r1.s, r1.e, r1.n, r1.t, f⊐(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 6⊐p R2 {(r1.s, r1.e, r1.n, r1.t, f6⊐(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 ⊓p R2 {(r1.s, r1.e, r1.n, r1.t, r1.p ⊗ r2.p)|r1 ∈ R1 ∧ r2 ∈ R2

∧ (r1.s, r1.e, r1.n, r1.t) = (r2.s, r2.e, r2.n, r2.t)}
R1 ⊔p R2 {(r.s, r.e, r.n, r.t, r1.p ⊕ r2.p)|r ∈ R1 ∧ r ∈ R2

∧ ((r.s, r.e, r.n, r.t) = (r1.s, r1.e, r1.n, r1.t)
∨ (r.s, r.e, r.n, r.t) = (r2.s, r2.e, r2.n, r2.t))}

R1 ◮ R2 {(r1.s, r1.e, r1.n, r1.t, f◮(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 ◭ R2 {(r1.s, r1.e, r1.n, r1.t, f◭(r1, R2))|r1 ∈ R1 ∧ r1.t = node}

second variant (⊐ and ⊏) exploits the containment relation among regions to
perform region selection.

The first operator given in Table 3.2 (σn=name,t=type(R)) specifies the selection
based on the name and type region attributes. For example, the selection of
paragraph element node regions (denoted with p) from the whole collection (C)
can be expressed as σn=p,t=node(C). This selects the document components bound
with 〈p〉 and 〈/p〉, as depicted with a dashed bounding box in Figure 3.2. The
result is the following region set:

σn=p,t=node(C) = (3.2)

{(20, 45, p, node, 1.0), (46, 188, p, node, 1.0), ..., (1043, 1066,p,node, 1.0)}.

Similarly, σn=garden,t=word(C) selects all regions that actually represent the word
‘garden’. Thus, the result should be the following region set (depicted with dotted
bounding boxes in Figure 3.2):

σn=garden,t=word(C) = {(17, 17, garden, word, 1.0), (52, 52, garden, word, 1.0), ...}.

(3.3)

Leaving the selection criterion for one of the attributes unspecified corresponds
to a wild-card, i.e., σt=node(R) selects all regions that have an XML element node
type, regardless of their name attribute.

The other two selection operators select regions based on their containment
relations, i.e., regions that contain other regions (⊐), or regions that are contained

78 3. Structured IR: Requirements & Framework

Figure 3.2: Selected regions on example XML document.

<story id = 78 >
<title> The Selfish Giant </title>
<author> Oscar Wilde </author>
<image src = Garden.jpg >

<title> Rock garden </title>
</image>
<p> Every afternoon , as they were coming from school , the children ... </p>

...
<p> And when the children ran in that afternoon , they found

the Giant lying dead under the tree , all covered with white
blossoms .</p>

</story>

0 1 2

3 4 5 6 7

8 9 10 11

12 13 14

15 16 17 18

19

20 21 22 23 24 25 26 27 28 29 30 45

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

1065 1066

1067

<p> It was a large lovely garden , with soft green grass . Here and ... </p>46 47 48 49 50 51 52 53 54 55 56 57 58 188

" "

" "

in other regions (⊏). For example, the result of evaluating the following expression

(Ra :=) σn=story,t=node(C) ⊐ σn=p,t=node(C) = {(0, 1067, story, node, 1.0)} (3.4)

is a region that represents all the story elements that contain paragraph elements.
In our case this is the example story by Oscar Wilde. Similarly, the following
expression gives the set of all ‘image’ regions in the story:

σn=image,t=node(C) ⊏ Ra = {(12, 19, image, node, 1.0), ...}. (3.5)

Although in the specification of selection operators we use strict interpreta-
tion, i.e., strict selection, other variants are possible. For example, we can use
word and element name stemming (e.g., σstem

n=name,t=type(R)). These operators are
extensions of the basic SRA operator set, and are discussed in Chapter 4 as well
as in Chapter 7, along with extensions for multimedia content selection.

Element relevance score computation operators

The operators ⊐p and 6⊐p model element relevance score computation. The rele-
vance score computation operators assign scores to the search elements, i.e., regions
from the left operand, based on attributes of regions from the right operand. Two
variants of operators exist. One models the aspect where regions from the left
operand should contain relevant regions from the right operand, denoted with ⊐p.
The other models the opposite, i.e., regions from the left operand should not con-
tain regions from the right operand. The result of the application of such operators
on two region sets is the region set that contains regions having the same start,
end, name, and type attributes as regions in the left operand. Only the score

3.2. Score region algebra 79

attributes are changed, taking into account the attribute values from the regions
in the left and in the right operand.

As an example, the search on paragraph elements that should contain the term
‘children’ (about(.//p, children ...)) can be expressed as follows:

σn=p,t=node(C) ⊐p σn=children,t=word(C) (3.6)

In case the user would not like to see ‘children’ in a paragraph (i.e., in case the
first NEXI about predicate in our example query looks like about(.//paragraph,
-children ‘‘beautiful flowers’)) the score computation for the ‘p’ element
‘not containing’ the term ‘children’ (negative score computation) looks like:

σn=p,t=node(C) 6⊐p σn=children,t=word(C) (3.7)

To achieve the transparency in instantiating retrieval models the score com-
putation is encapsulated in the abstract score computation functions: f⊐(r1, R2)
and f6⊐(r1, R2), as depicted in the definition of these operators in Table 3.2. Ab-
stract functions f⊐(r1, R2) and f6⊐(r1, R2), applied to a region r1 from the left
operand and the right operand region set R2, should result in the numeric value
that specifies the relevance of the region (element) r1 given the (term) regions in
R2 that r1 contains. The exact specification of the retrieval model is left to the
final instantiation and it could be based on the well-known flat text IR models, as
we illustrate in the next chapter.

Score combination operators

For simplicity we do not make a distinction between the low-level and high-level
score combination operators in the basic SRA operator set. We only make a
distinction between the AND and OR score combination. The former distinction
would result in the introduction of variants of the ⊓p and ⊔p operators. These
variants would have exactly the same definition as ⊓p and ⊔p given in Table 3.2,
except that they would allow for different instantiation of abstract operators ⊗
and ⊕ (e.g., ⊗′ and ⊕′).

The two abstract operators (⊗ and ⊕), used in the definition of score com-
bination operators, specify how scores are combined in the corresponding regions
from the left and right operand. The abstract operator ⊗ specifies how scores are
combined when AND query combination is modeled. The operator that specifies
the region AND score combination (⊓p) models the combination of scores that
have the same region bounds and name and type attributes in the left and right
operand. Other regions are not included in the result region set.

The operator ⊕ defines score combination in an OR expression, denoted in
SRA with ⊔p. The result region set consists of regions present exclusively in one
of the operands (left or right) and regions that are common to both operands,

80 3. Structured IR: Requirements & Framework

i.e., regions that have the same start, end, name, and type attributes. The score
for the latter is determined by the instantiation of score combination operator ⊕,
while for the former the score is the same as in the existing regions.

Having defined selection, relevance score computation, and score combination
operators, we can express the combination of terms in the first about expression
from our example NEXI query in SRA as follows:

(Rb :=) ((σn=p,t=node(C) ⊐p σn=children,t=word(C))

⊓p (σn=p,t=node(C) ⊐p σn=beautiful,t=word(C))) (3.8)

⊓p (σn=p,t=node(C) ⊐p σn=flowers,t=word(C))

or if we assume the OR combination among terms in the query as:

(Rc :=) ((σn=p,t=node(C) ⊐p σn=children,t=word(C))

⊔p (σn=p,t=node(C) ⊐p σn=beautiful,t=word(C))) (3.9)

⊔p (σn=p,t=node(C) ⊐p σn=flowers,t=word(C))

Similarly, the high-level AND and OR score combination among two different
abouts can be expressed using ⊓p and ⊔p operators. In our example query we need
to combine the scores of ‘paragraph’ and ‘video’ elements in the first predicate.
However, the combination is only possible after propagating the scores of these
elements to the common ancestor ‘story’ element.

Score propagation operators

The operators ◮ and ◭ specify propagation of scores to the containing or contained
elements, respectively. Thus, the abstract function f◮(r1, R2) specifies how scores
are propagated upwards while abstract function f◭(r1, R2) specify the downwards
score propagation. Similarly to operators ⊐p and ⊏p, the result region set consists
again of regions that have the same starting, end, name, and type attributes as
regions in the left operand. The region score is determined by the instantiation of
the two abstract functions.

When propagating scores, the functions f◮(r1, R2) and f◭(r1, R2) use the val-
ues of attributes of regions from the left operand, and the attribute values of con-
tained or containing regions from the right operand. Such propagation of scores
from the contained or containing regions should include some form of normaliza-
tion as the scores of the resulting regions might again be combined with other
region scores using score combination operators.

As an illustration of score propagation, in our example query we should propa-
gate the scores from the paragraph regions containing terms ‘children’, ‘beautiful’,

3.2. Score region algebra 81

and ‘flowers’ (denoted with Rb/c) to the containing ‘story’ element, and then down
to the contained ‘image’ element. This can be express as follows:

σn=image,t=node(C) ◭ (σn=story,t=node(C) ◮ Rb/c) (3.10)

SRA query expression

Having introduced all the operators following the four elementary structure re-
trieval requirements, we can now transform the complete example user query (re-
peated below) into an SRA expression.

//story[about(.//paragraph, children beautiful flowers) or

about(.//video, garden)]//image[about(., flowers garden)]

This expression illustrates the elegance of expressing structured search in SRA. To
shorten the SRA expression we use Rn

name for the selection on element nodes with
the region name attribute name, i.e., Rn

name := σn=name,t=node(C), and Rw
name

for the selection on word name, i.e., Rw
name := σn=name,t=word(C). The SRA

expression is shown below.

(Rq :=) ((Rn
image ◭ ((Rn

story ◮ (((Rn
p ⊐p Rw

children)

⊓p(R
n
p ⊐p Rw

beautiful)) ⊓p (Rn
p ⊐p Rw

flowers)))

⊔p (Rn
story ◮ (Rn

video ⊐p Rw
garden)))) ⊐p Rw

flowers)

⊓p (3.11)

((Rn
image ◭ ((Rn

story ◮ (((Rn
p ⊐p Rw

children)

⊓p(R
n
p ⊐p Rw

beautiful)) ⊓p (Rn
p ⊐p Rw

flowers)))

⊔p (Rn
story ◮ (Rn

video ⊐p Rw
garden)))) ⊐p Rw

garden)

By comparing this query expression to the relational algebra expressions de-
picted in Equation 2.27 (given in Section 2.4.1) we can see a great resemblance.
However, there are some essential differences. In the relational expression we use
a combination of relational operators to express containment relation, and most
importantly this combination only specifies the strict containment. In SRA this
expression encapsulates also the relevance ranking mechanism. This shows that
the SRA is more suitable for expressing structured IR search. Furthermore, the
SRA operators are defined in such a way that they are not bound to a specific
retrieval model instantiation, allowing transparent instantiation of retrieval mod-
els following the four elementary retrieval requirements, and providing the desired
retrieval model independence.

82 3. Structured IR: Requirements & Framework

3.2.5 Variants of score region algebra

In our approach to structured retrieval we extended region algebra approaches
to be able to express relevance scoring mechanisms. We introduce new region
attributes to model structured data and new operators that are extensions of
containment operators from other region algebra approaches. These operators
model how scores are assigned to different regions based on their containment
relations and region attribute values. The question is why we did choose this set
of operators when others are possible. There are several reasons that are explained
in the sequel, but before we discuss them we present two alternative approaches
for specifying score region algebra.

Model-specific SRA

One approach is to define SRA operators in such a way that the abstract functions
and abstract operators are fixed. To enable instantiations of different retrieval
models (for different domains) different SRA query plans should be generated. In
[97] this is explained for the statistical language modeling approach, and demon-
strated on three different retrieval approaches: for flat text search, for video shot
retrieval using speech transcripts, and for web retrieval using page priors.

In this case the abstract function used for score computation is implemented
as given in Equation 3.12.

f⊐(r1, R2) =
|{r2|r2 ≺ r1}|

r1.e − r1.s − 1
(3.12)

Abstract operators ⊗ and ⊕ are implemented as product and sum. Also,
additional operator ⊏p is defined similar to ⊐p, except that it returns regions from
the left operand contained in regions from the right operand or regions from the
left operand that have the same region bounds as regions in the right operand. The
score attribute is defined through the f⊏(r1, R2) function defined in Equation 3.13.

f⊏(r1, R2) = p1 ·
∑

r2∈R2,r1≺r2

r2.p (3.13)

To enable the usage of retrieval model parameters the scaling mechanism is
introduced, implemented as ⊛ operator defined as follows:

R ⊛ num = {(r.s, r.e, r.n, r.t, r.p · num)|r ∈ R} (3.14)

For illustration, the first about clause from the simplified example query, i.e.,
about(.//paragraph, children beautiful flowers), can be expressed in this

3.2. Score region algebra 83

variant of SRA as follows (we used the shorthand notation for the element and
term selection):

σn
p (C) ⊏p

((((σn
p (C) ⊐p σw

children(C)) ⊛ λ) ⊔p ((σn
Root(C) ⊐p σw

children(C)) ⊛ (1 − λ)))

⊓p (3.15)

(((σn
p (C) ⊐p σw

beautiful(C)) ⊛ λ) ⊔p ((σn
Root(C) ⊐p σw

beautiful(C)) ⊛ (1 − λ))))

⊓p

(((σn
p (C) ⊐p σw

flowers(C)) ⊛ λ) ⊔p ((σn
Root(C) ⊐p σw

flowers(C)) ⊛ (1 − λ)))

As can be seen, even for such a simple query, the SRA expression is quite com-
plex. Additionally, the instantiation of different retrieval models that involve more
statistical information and more parameters, would result in even more complex
queries. This is in contrast to our desire to keep the framework simple and also to
enable transparent specification of retrieval models when defining region algebra
operators (as pointed out later in discussion).

Coarse SRA

Looking from the implementation point of view, it is more appropriate to treat
the search on terms within one search or answer element as one operation than
to treat the search in isolation per query term. In such a scenario, the expensive
containment operation would have to be performed only once on a set of element
regions and on the union of sets of all the search term regions. This would simplify
the implementation and give more opportunities for faster query execution.

Furthermore, in this way we would avoid the introduction of selection operator
on terms. This would only allow the specification of operators that produce the
retrievable units, i.e., structured elements. Looking at the nine operators given in
Table 3.2, the operator set would be reduced. The score propagation and score
combination operator definitions would remain the same, except that the score
combination operators would only define the high-level score combination. The
low-level score combination operator would be hidden in the new scoring operator
explained below.

Instead of relevance score computation operators we would have a complex
high-level element selection operators that fuse the function of term and element
selection operator (σn=name,t=type(R)) and score computation operators (⊐p and
6⊐p). These operators would involve many more parameters and include more
complex manipulation on region attribute values. If we denote these operators
with α we can define positive and negative element score computation as depicted
in Equations 3.16 and 3.17.

α
⊐{tm1,tm2,...,tmn}
n=name,t=type (R) = {(r.s, r.e, r.n, r.t, fα,⊐(r, tm1, tm2, ..., tmn))

| r ∈ R ∧ r.n = name ∧ r.t = type} (3.16)

84 3. Structured IR: Requirements & Framework

α
6⊐{tm1,tm2,...,tmn}
n=name,t=type (R) = {(r.s, r.e, r.n, r.t, fα,6⊐(r, tm1, tm2, ..., tmn))

| r ∈ R ∧ r.n = name ∧ r.t = type} (3.17)

Such specification of relevance score computation seems to be in accordance
with the NEXI query specification. For example, the first about clause in the
simplified example query can be expressed in such a variant of SRA as:

α
⊐{children, beautiful, flowers}
n=p,t=node (C)

However, important reasons exist that are not in favor of choosing such operator
granularity, but the one represented in Table 3.2. They are explained below.

Discussion

The operators in our SRA, given in Table 3.2, are specified in such a way that
they:

• follow the identified elementary structured retrieval requirements

• support retrieval model independence

• support content description independence

• provide good balance between operator complexity and the number of oper-
ators needed to model structured retrieval

• provide an opportunity for using operator properties for query rewriting and
optimization.

First of all, in the original SRA, the operators are defined in such way that they
are in accordance with the identified four elementary retrieval requirements. We
define operators that model the selection of different entities, element relevance
score computation, score combination, and score propagation. However, in the
model-specific SRA the score computation aspect is expressed as a retrieval model
specific combination of several entity selection and score computation operators,
while in the coarse SRA we loose the explicit modeling of entity selection structured
retrieval requirements.

Dropping the entity selection requirement in the coarse SRA might seem as a
small problem when discussing only text retrieval where operator α is defined on
structured elements and a set of terms. However, such operator definition becomes
problematic if we consider that it should also model the search on phrases, term

3.2. Score region algebra 85

modifiers, synonyms, etc., in addition to search on single words. Furthermore, the
complexity of the operator α grows if it also defines, e.g., image and video search
besides textual search. Having such a coarse specification of retrieval process would
make the full analysis of the structured retrieval subtasks more difficult.

On the other hand, for model-specific SRA different model implementations
would require detailed analysis of the retrieval model specification as well as trans-
lation of query expressions to different SRA query plans for each retrieval model.
The model-specific SRA does not support the retrieval model independence and
content description independence. Although the operator set is fixed in model-
specific SRA for text search, we would be forced to generate different query plans
for each model we want to implement. Furthermore, when incorporating differ-
ent document representation (features), such as video and audio representations,
new operators need to be introduced and balanced with the existing ones. Again,
different query plans would have to be generated.

In the coarse SRA, the retrieval model, except high level score combination and
score propagation, is modeled as one black box. Everything related to the score
manipulation is hidden in the fα,⊐ and fα,6⊐ functions: treatment of elements
and terms, statistics used for the specification of the functions, etc. This is not
in accordance with our desire to have the retrieval process easily monitored and
analyzed (see the analysis in Chapters 5 and 6). Although content description in-
dependence can be supported in coarse SRA it would result in drastically increased
complexity of the black box functions representing different retrieval models.

By isolating the entity selection aspect, as we do in the original SRA oper-
ator set, different entities, such as words, structured elements, video, and audio
content can be selected and treated in the same SRA framework (see Chapter 7).
The selection is performed disregarding the way how different types of document
content are modeled, enabling in such a way content description independence.

Therefore, while in model-specific SRA we would end-up with the complex
model-specific query plans, in coarse SRA we would end-up with too complex
scoring functions fα,⊐ and fα, 6⊐. For example, as the operators in coarse SRA
encapsulate more terms and optionally other parameters, such as term modifiers
and synonyms, a huge number of functions need to be defined to cope with all
these variants. Even though for the same retrieval model that specifies the rel-
evance of an element with respect to a term, where different score combination
implementation is used, different functions fα,⊐ and fα,6⊐ need to be specified.
Such an explosion of functions would be against our desire to keep the framework
simple and extensible, pertaining the retrieval model independence.

Therefore, having such classification of operators in the original SRA, depicted
in Table 3.2, a good balance between the number of operators that model struc-
tured retrieval and operator complexity is achieved. The operator set consists of
only nine operators that are used to model most of the user requests over struc-
tured documents. Each operator expresses one concept within structured retrieval
requirements.

86 3. Structured IR: Requirements & Framework

Finally, such specification of operators in the original SRA (given in Table 3.2)
provides the opportunity for using operator properties for query rewriting and op-
timization. As operator properties depend on the instantiation of retrieval models
we discuss them in the next chapter.

At the end of this section we present the relation among the granularity of
the operators in variants of SRA. In the coarse SRA, high-level element selection
operator can be considered as a generalization of the original SRA selection and
score computation operators. This is similar to the relational algebra, where the
frequent combination of selection operator and Cartesian product is replaced with
the join operator. This might be interesting for having efficient implementations
of retrieval models.

Similarly, model-specific SRA operators are a specialization of the original
SRA operators, where retrieval models are instantiated without using the abstract
operators and abstract functions in the algebra. The decision on retrieval model
used, i.e., the proper SRA query plan, is done at higher level. This might be useful
for providing insight in the specific retrieval model functionality on a particular
retrieval task, but not for analyzing structured retrieval.

The coarse and model-specific SRA are two possible directions that we can
take in our future research. However, this should be done when we understand
better the process of structured retrieval.

3.3 SRA: opportunities and limitations

In this section we present good and bad features of score region algebra. The
features are described along three scenarios: (1) extensions of region data model
to support more information describing structured documents, (2) specification of
new retrieval models in SRA, and (3) support for data extracted from non-textual
descriptions of document components.

3.3.1 Region model extensions

Looking at the definition of basic region algebra operators given in Table 3.2 we
can see that they are composed of two parts. The first part either tests the name
and type attributes of regions (σn=name,t=type(R)), test their starting and end
attributes on containment (R1 ⊐ R2 and R1 ⊏ R2) or equality (R1 ⊓p R2 and
R1 ⊔p R2), or copy the region beginning, end, name, and type attributes to the
result region set (R1 ⊐p R2, R1 6⊐p R2, R1 ◮ R2, and R1 ◭ R2). The second
part is related to score manipulation and can involve all attributes of the regions
in the left and in the right operand. As the scoring mechanism employing these
attributes is hidden in the abstract functions and operators, the region attribute
set can easily be extended by introducing new attributes, without affecting the
operator definition.

3.3. SRA: opportunities and limitations 87

For example, if we would like to model parent-child relationship in the SRA
data model, we might introduce a parent attribute, denoted with o, that would
store the starting position of the parent node in the SRA data model. Therefore,
the region data model needs to be extended with a sixth attribute and would look
like: r = (r.s, r.e, r.o, r.n, r.t, r.p). In such case the SRA region set for the example
XML document given in Figure 3.1 would look like (− denotes that a region has
no parent region):

story −− {(0, 1067,−, story, node, 1.0), ...

id −− (1, 2,−, id, attr name, 1.0), ...

78 −− (2, 2,−, 78, attr val, 1.0), ...

title −− (3, 7, 0, title, node, 1.0), (15, 18, 12, title, node, 1.0), ...

the −− (4, 4, 3, the,word, 1.0), ..., (1046, 1046, 1043, the, word, 1.0), ...

garden −− (17, 17, 12, garden, word, 1.0), (52, 52, 20, garden,word, 1.0), ...

p −− (46, 188, 0,p,node, 1.0), ..., (1043, 1066, 0, p, node, 1.0),

... −− ... }

Although this new information item would not override the specification of
the operators, it would make possible the introduction of new operators, as well
as the alternation of the specification of abstract functions and abstract operators
that define the retrieval model. For example, operators can be defined for selecting
child or parent regions from arbitrary region sets. The definition of these operators
is given in Equations 3.18 and 3.19.

ωchild(R1) = {r | r ∈ C ∧ r1 ∈ R ∧ r.o = r1.s} (3.18)

ωparent(R1) = {r | r ∈ C ∧ r1 ∈ R ∧ r1.o = r.s} (3.19)

Similarly, other information items can be added to the SRA attribute set, such
as nesting level of XML elements, relative position of terms and elements in a con-
taining element, path leading to an element/term. Element and term paths can be
useful for computing additional element and term statistics, and therefore specify-
ing new retrieval models. On the other hand, element and term positions can be
used for introducing proximal operators, and element and term level can be used
for introducing new parameters in the retrieval model specifications (presented in
Section 7.1).

Although SRA data model can easily be extended to express arbitrary informa-
tion item extracted from structured documents, these extensions introduce addi-
tional complexity in specifying retrieval models. However, having cleanly defined

88 3. Structured IR: Requirements & Framework

basic SRA data model and operators, as well as abstract functions and abstract
operators, this extensions can be considered as a special purpose SRA modification
(similarly as SQL implements more than basic relational operators).

3.3.2 Introduction of new retrieval models

SRA framework is designed for supporting the specification of various retrieval
models without affecting the SRA data model and operator definitions. The only
assumption is that the retrieval model should be specified following the four ele-
mentary structured retrieval requirements. This is not a hard request as, e.g., in
most flat retrieval models score computation and score combination aspects can
be isolated. Score computation looks at term-element or term-document pairs in
isolation and computes the relevance score of an element or a document. Score
combination on the other hand specifies how these isolated term-element pair
scores can be combined.

The retrieval model instantiation that follows the four elementary retrieval
requirements is the main topic of the next chapter and we do not discuss it further
here. We just illustrate what are three major drawbacks of SRA when specifying
various retrieval models. These are:

• it is difficult to express retrieval models that utilize term proximity for ele-
ment relevance score computation

• it is difficult to express operations that include path manipulation

• the choice of the default region score can have negative influence on retrieval
model effectiveness.

Since score computation aspect in SRA is modeled per term basis, after com-
puting the relevance score of an element the information about the position of the
contained term is lost. It cannot be used for modifying scores of an element that,
e.g., contains two terms close to each other. Therefore, new complex operators
have to be defined that can handle term proximity expressions, such as the one

specified in Equation 3.16 for the coarse SRA (α
⊐{tm1,tm2,...,tmn}
n=name,t=type (R1)), or the ones

that define phrase search (see [144]).

In SRA, it is in many cases not possible to say whether two elements are on the
same absolute path from the root node or not. For example, the NEXI expression
//story//title would give ‘title’ elements from which some of the elements are on
one path (e.g., /story/title) and some are on different paths (e.g., /story/title
and /story/image/title). Even with the introduction of a region attribute that
specifies the path leading to an element or a term, incorporating paths into retrieval
models would involve string manipulation on strings representing absolute paths
to structured elements. In other words, the scoring function would have to match
substrings to determine whether two paths are the same or how similar they are.

3.4. Summary 89

The choice for the default region score is left open in SRA. The administra-
tor/user can specify different default scores for the same or different retrieval
models. While this leaves great flexibility for the retrieval model implementation,
many retrieval models will make sense only with a particular choice for the de-
fault region score. For example, if a retrieval model is based on multiplying region
scores, having the default region score 0 would not be appropriate. Similarly if re-
trieval model sums the default scores, the default score of 1 might be a bad choice.
Therefore, the choice of default region score can have significant (negative) effect
on the effectiveness of retrieval models instantiated in score region algebra.

3.3.3 Inclusion of other media

The basic score region algebra data model and operator set are defined for search
in textual documents. However, documents can contain other non-textual content,
such as video, audio, or images, as discussed in Section 2.1.3. Although not given
in the basic operator set score region algebra can easily be extended to support
selection of different types of document components and their incorporation in the
model.

Multimedia document components can be selected based on the content de-
scriptions in two ways. The first is by simply matching the query terms with the
textual description of multimedia content, in case it is available. The second one is
matching multimedia features (using some multimedia IR model) with the features
of multimedia component given as a sample (see NEXI example and discussion in
Section 1.2.3). The modeling of video clips and images and their incorporation in
SRA framework is explained in Chapter 7.

The potential problem for such inclusion of different domain descriptions might
be that each type of description would result in a new operator (or a modification of
the existing one) for supporting it. Furthermore, this operator needs to encapsulate
the multimedia retrieval approach and produce the result which could be further
exploited in score region algebra. Although this is not trivial, in Section 7.3 we
show that it is possible for the image retrieval models.

3.4 Summary

This chapter identifies four elementary requirements for the development of our
structured retrieval system: entity selection, relevance score computation, score
combination, and score propagation. These requirements are illustrated on an
example NEXI query. After identifying the requirements, we specify the framework
used for structured IR that follows these requirements. The specification is done
by extending region algebra approaches to handle relevance scoring mechanism.
The resulting new algebra is called score region algebra (SRA). SRA is based on a
simple data model, defined on a set of regions, where each region has its starting
position, end position, name, type, and score attributes. The elementary set of

90 3. Structured IR: Requirements & Framework

operators consists of nine operators that model the basic operations needed for
structured retrieval following the four elementary retrieval requirements.

SRA operators are defined abstracting away from the exact retrieval model
implementation and enabling the instantiation of different retrieval models without
affecting the score region algebra framework. The choice for such specification
of the algebra’s data model and operators is justified by comparing it to other
possible variants of SRA. Furthermore, the potential of using the SRA framework
for modeling structured retrieval is illustrated and some of its deficiencies are
discussed at the end of the chapter.

Chapter 4

Transparent Retrieval in
Structured Documents

This chapter discusses the features of our three-level database system, called TI-
JAH, and explains its main components. Then, the instantiation of different re-
trieval models in score region algebra, following the four elementary retrieval re-
quirements, is explained. The chapter ends with a short overview of SRA operator
properties using different retrieval model instantiations.

This chapter is partially based on papers published (1) in the Proceedings of
the Joint Workshop on XML, IR and DB in conjunction with the 27th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval [140], (2) in the Information Retrieval Journal [123], and (3) in the
Proceedings of the 14th ACM International Conference on Information Knowledge
and Management (CIKM) [138].

4.1 TIJAH retrieval system architecture

In the development of the structured retrieval system we followed the database ap-
proach. Thus, the TIJAH [17] structured IR system follows a traditional three-level
database architecture, consisting of end-user, logical, and physical level, where
respectively external, conceptual, and internal schema are instantiated (see Fig-
ure 2.2 in Chapter 2). The architecture of the TIJAH system is depicted in Fig-
ure 4.1, following the designers view on databases by Senko [200].

The central part of the system is the transparent logical level based on score
region algebra (SRA), specified in the previous chapter. The transparency is re-
flected by the ability to instantiate different retrieval models without affecting the
specification of the logical operators, while keeping the same query language (or
query languages) at the end-user level and with the physical implementation using
an arbitrary dedicated IR engine or a DBMS. This transparency is supported by a
retrieval dictionary (depicted with a rectangle area on the left part of Figure 4.1)
that guides the mapping processes for the end-user to SRA transformation and
SRA to physical plan transformation. The main component of the retrieval dictio-
nary is a retrieval model dictionary that stores details of different retrieval models
that are implemented at the physical level.

92 4. Transparent Retrieval in Structured Documents

Figure 4.1: TIJAH: Architecture of a three-level database system for structured
information retrieval.

Mapping

NEXI

Score region algebra (SRA)

Mapping Mapping

Mapping

End-user
level

Logical
level

Physical
level

XQueryFT
query

XIRQL
query

Monet interpreter language (MIL)

(Info-)

(Data-)

MonetDB kernel

Params

Retrieval model repository

Bool
GPX
Lms

max
min
prob

sum
wsuma
wsumd

0,4
7

0,125

Term & element
name expansion

repository

Rewrite rules
repository

Stop word
repository

Stemming
repository

Retrieval dictionary

For the end-user level, i.e., external schema, TIJAH uses Narrowed Extended
XPath I (NEXI) [209] view on structured data and the NEXI query language.
The choice was driven by the simplicity of the NEXI syntax, its power in express-
ing the most important structured IR tasks, and as NEXI query language is the
query language used in INEX [74]. As TIJAH follows the database approach, i.e.,
supports logical data independence, other query languages, such as XIRQL [72]
or XQuery full-text [7], could equally likely be implemented on top of the score
region algebra (as shown with dashed boxes in Figure 4.1).

For the physical implementation we use the MonetDB [19] database kernel,
as it is an efficient database system that can also be used for fast prototyping.
The communication between SRA and the MonetDB kernel is established through
the Monet interpreter language (MIL) at the datalogical level. The details of the
system’s components, along end-user, logical, and physical levels, are explained
below.

4.1.1 End-user level

At the end-user level a user query is transformed (mapped) into the logical algebra
query plan. In TIJAH, a NEXI query is first processed and then transformed into
a logical query plan (see Figure 4.2). A fully automatic approach is developed for

4.1. TIJAH retrieval system architecture 93

processing NEXI queries and for the generation of logical query plan forwarded to
the logical level.

As explained in Section 2.4.2, NEXI allows only descendant steps from XPath
1.0 [37] and introduces an about clause that specifies which part of the document
should be searched and what are the query terms. Furthermore, NEXI distin-
guishes two types of queries:

• Content-only (CO) queries that correspond to flat text list-of-term queries.
However, while list-of-term queries express the need like “find documents
that are about the query terms”, CO query expresses the need like “find the
appropriate document components that are about the query terms”.

• Content-and-structure (CAS) queries denote queries in which a user specifies
where in a document he would like to search for information and what would
he like to get as an answer.

In this thesis we focus on structured retrieval where the user explicitly states
the structured constraints in the query. Therefore, the emphasis is on CAS queries.
Also, in the TIJAH system CO queries are transformed into CAS queries using
rewriting rules within the query rewriting processing unit (see below).

End-user level processing

The structure of the end-user query translator is depicted in Figure 4.2. The end-
user level of the TIJAH system consists of a number of processing units among
which the most important ones are: phrase modeling unit, modifier modeling unit,
stop word removal unit, stemming unit, query rewriting unit, and NEXI to SRA
mapping unit. For the processing of NEXI queries, the data from the retrieval
dictionary is consulted. The most important components of retrieval dictionary
are the retrieval model dictionary, the stop word and stemming dictionary, the term
expansion dictionary, the element name expansion dictionary, and the rewrite rules
dictionary. Each of these dictionaries stores the necessary data or rules for the
functioning of query processing units, as well as for the generation of MIL query
plans out of SRA query plans, as discussed in the next section. Other processing
units can easily be plugged in at the TIJAH end-user level. The same is true for
other dictionaries in the retrieval dictionary.

End-user level processing units are responsible for supporting the traditional
IR system query processing (see e.g., Introduction in [12]) and for extending the
query according to the user/administrator specification and based on the content
of the rewrite rules dictionary. Before explaining each of the processing units we
first give a short overview of the components of the retrieval dictionary, with the
emphasis on the central component – the retrieval model dictionary.

94 4. Transparent Retrieval in Structured Documents

Figure 4.2: Processing at the end-user level of the TIJAH system.
NEXI query

End-user level mapping
(processing)

Phrase
modeling

Modifier
modeling

Stop word
removal

Params

Query
rewriting

Retrieval model dictionary

Bool
GPX
Lms

max
min
prob

sum
wsuma
wsumd

0,4
7

0,125

Stemming

Term & element
name expansion

dictionary

Rewrite rules
dictionary

Stop word
dictionary

Stemming
dictionary

Retrieval
dictionary

User/administrator

SRA query plan

SRA to MIL mapping

NEXI to SRA

Retrieval dictionary

The data from the retrieval model dictionary form the input to the end-user pro-
cessing and for the infological (SRA) to datalogical (MIL) mapping. The retrieval
model dictionary in the TIJAH system stores the options for the instantiation
of different retrieval models following the four elementary structured IR require-
ments. Thus, it stores what kind of entity selection is going to be performed, what
are the options for score computation, combination, and propagation functions.
It also stores various parameters necessary for the implementation of retrieval
models.

An example retrieval model configuration file can be seen in Figure 4.3. Here
the first row indicates the selected options for the retrieval model setting. The
names in the row below it explain what each number/text in the first row rep-
resents, e.g., score computation (MODEL), score combination (AND and OR), model
parameters (P1, P2, and P3). The rows below the dashed line depict the possible
values for each option in the retrieval model dictionary. For example, OR score
combination can be implemented as sum (parameter value 1), maximum (param-
eter value 2), probabilistic sum (parameter value 3), etc.

In the example configuration file from the retrieval model dictionary, given in
Figure 4.3, language model (LMS) is used for the score computation function, OR

4.1. TIJAH retrieval system architecture 95

Figure 4.3: An example of a text file describing the possible parameters of a
retrieval model in the retrieval model dictionary.
1 3 1 1 1 1 FALSE 04fm001 1 1 0.5 0.75 5 1 shot 0.8

NUM MODEL OR AND UP DOWN E_CLASS EXP_CLASS STEM SIZE P1 P2 P3 LTYPE CONTEXT EXTRA

=1 BOOL 1 SUM 1 PROD 1 SUM 1 SUM 1 FALSE string NO 1 ENT 1 float float int NO 1 string float

LM 2 MAX 2 MIN 2 AVG 2 AVG 2 TRUE YES 2 TRM 2 LP 2
LMS 3 PROB 3 SUM 3 WSD 3 WSD 3 LN 3
TFIDF 4 EXP 4 EXP 4 WSA 4 WSA 4
OKAPI 5 PROD 5 MAX 5
GPX 6 MIN 6 PROB 6
LMA 7
LMSE 8
LMVFLT 9
LMVLIN 10

and AND score combination functions are implemented as sum and product (SUM
and PROD), the value of the parameter λ is 0.5 (P1 which is of float type), etc.

The stop word dictionary contains a stop word list, i.e., a list of words that most
frequently occur in one language. Since we experimented with English and Dutch
collections, the stop word dictionary contains English (429 words) and Dutch (131
words) stop word lists.

The stemming dictionary contains rules needed for finding the stem of a word.
We use the standard Porter stemmer [172] for English and a Dutch variant devel-
oped by Kraaij and Pohlmann [113].

The term and element name expansion dictionary supports query term expan-
sion as well as retrieval from heterogeneous collections and vague search where
element names need not to be matched strictly. The element name expansion dic-
tionary contains a number of element name synonyms that can be used for vague
element name search. For example, the search on ‘sections’ can be transformed
into the search on ‘sec’, ‘s’, ‘ss1’, etc. In our experiments we use INEX equivalent
element names [209] and these are stored in the term and element name expansion
dictionary. We do not use any term expansion dictionary for our experimentation.
However, it can easily be incorporated using, e.g., WordNet [147].

The rewrite rules dictionary stores the rewriting rules that are used to rewrite
the NEXI queries at the end-user level. It stores the rules on how terms can be
placed in different search contexts (search elements), or how structured constraints
can be loosen (see [145] for more details).

End-user processing units

The phrase modeling unit handles phrases in the NEXI query. The user (or ad-
ministrator) can specify whether phrases should be considered as phrases or as a
set of terms in the query, based on the content of the retrieval model dictionary.
Therefore, the phrase modeling unit either removes the ‘"’ signs (no phrases) or
leaves them in.

96 4. Transparent Retrieval in Structured Documents

Whether term and phrase modifiers (’+’, and ’−’) should be considered during
query execution and how they should be modeled is regulated in the modifier
modeling unit. Based on the content of the retrieval model dictionary they can
be modeled as strict or vague modifiers. Although phrases and modifiers are
supported in TIJAH, we report only the results without using phrases and term
modifiers in the thesis. More details on modeling phrases and modifiers in TIJAH
can be found in [144].

The standard IR query processing, consisting of query stop word removal and
stemming, is done by the stop word removal unit and stemming unit. Our stop
word and stemming dictionary supports English and Dutch stop word removal
and stemmers, but other stemmers, or stemmers for other languages can easily be
added to the system through the stemming dictionaries. This is also true for other
stop word lists.

The end-user query rewriting unit distinguishes between NEXI content-only
and content-and-structure query expansions. Since the score region algebra is
designed to work on structured queries, NEXI CO queries are transformed into
CAS queries according to the user specification. For instance, an example CO
query that expresses the search for the appropriate element about children play-
ing in a garden with beautiful flowers: children beautiful flowers garden is
rewritten into the following NEXI CAS query:

//*[about(., children beautiful flowers garden)]

Here ‘*’ denotes the selection of arbitrary XML nodes.
On the other hand, based on the content of rewrite rules dictionary, CAS query

rewriting specifies the relaxing of structured constraints in the about clause and
interchanging the terms among different about clauses. Some simple rules are
defined to enable elementary CAS query rewriting but they are beyond the score
of this thesis. More details can be found in [139].

Finally, the NEXI to SRA unit is a parser-like processing unit that transforms
the processed NEXI query into the score region algebra query plan. In this trans-
formation each entity in the query is translated into one selection operator, and
these operators then form an ‘input’ to the score computation operators for each
term in the about clause. Then they are used as an ‘input’ to implicit and explicit
score combination operators, and also to score propagation operators that specify
the modeling of NEXI descendant steps (i.e., //) in the score region algebra.

4.1.2 SRA at (info)logical level

At the logical level, structured information retrieval is implemented using the
score region algebra discussed in the previous chapter. The main characteristic of
the SRA operator set is the transparent instantiation of scoring functions. The
possible instantiations of abstract functions and operators are presented in the next
section. However, due to transparency, without knowing the exact implementation
of abstract functions and abstract operators we can generate the SRA query plan.

4.1. TIJAH retrieval system architecture 97

Figure 4.4: SRA query plan for example NEXI query.

Fn=story, t=node

Fn=children, t=word Fn=beautiful, t=word

Fn=p, t=node Fn=flowers, t=word

p

p

Fn=p, t=node

p

Fn=p, t=node

FF

pp

p

Fn=garden, t=wordFn=video, t=node

Fn=story, t=node p

Fn=image, t=node

p

Fn=flower, t=word

p

Fn=garden, t=word

p

Fn=story, t=node

Fn=children, t=word Fn=beautiful, t=word

Fn=p, t=node Fn=flowers, t=word

p

p

Fn=p, t=node

p

Fn=p, t=node

FF

pp

p

Fn=garden, t=wordFn=video, t=node

Fn=story, t=node p

Fn=image, t=node

98 4. Transparent Retrieval in Structured Documents

For example, the structured NEXI query introduced in the previous chapter:

//story[about(.//paragraph, children beautiful flowers) or

about(.//video, garden)]//image[about(., flowers garden)]

results in the query expression given in Equation 4.1 (p stands for the ‘paragraph’
nodes). In the expression we use the shorthand notation introduced in the previous
chapter, i.e., Rn denotes the selection of element node regions while Rw denotes
the selection of word regions. The graphical representation (query plan) of the
expression is given in Figure 4.4.

(Rq :=) ((Rn
image ◭ ((Rn

story ◮ (((Rn
p ⊐p Rw

children)

⊓p(R
n
p ⊐p Rw

beautiful)) ⊓p (Rn
p ⊐p Rw

flowers)))

⊔p (Rn
story ◮ (Rn

video ⊐p Rw
garden)))) ⊐p Rw

flowers)

⊓p (4.1)

((Rn
image ◭ ((Rn

story ◮ (((Rn
p ⊐p Rw

children)

⊓p(R
n
p ⊐p Rw

beautiful)) ⊓p (Rn
p ⊐p Rw

flowers)))

⊔p (Rn
story ◮ (Rn

video ⊐p Rw
garden)))) ⊐p Rw

garden)

A query plan from Figure 4.4 would be very inefficient as it contains a number
of duplicate subtrees in a query tree. For example, the whole subtree on the left
part of the ⊐p operator in the bottom part of Figure 4.4 (denoted with dotted
rectangle) is a copy of the upper left part of the figure. Thus, an elementary
optimization step is performed at the logical level, transforming the SRA query
tree into a graph (presented with dashed lines in Figure 4.4). The other optimiza-
tion types, such as using SRA operator properties discussed later in this section,
can also be implemented at the logical level. As this requires more research and
more experimentation on structured retrieval tasks using our score region algebra
framework, we left it for future research.

4.1.3 TIJAH internals – MonetDB and MIL

Having the specification of retrieval models, and having the user selecting the
retrieval model options from the retrieval model dictionary (see Figure 4.3), the
query plan is transformed into calls to Monet interpreter language (MIL) proce-
dures at the datalogical level. For each SRA operator, and for each implementation
of abstract functions and abstract operators, different MIL procedures are called.
The physical implementation in the TIJAH system is done using MonetDB kernel
[19]. Here we explain the basics of the MonetDB system and its interpreter lan-
guage, illustrating the easiness of transforming SRA query plans into calls to MIL
(MonetDB) functions.

4.1. TIJAH retrieval system architecture 99

Table 4.1: Relational database structures used for storing example XML document
(given in Figure 2.3).
void start end name type

0@0 0 1067 story node
1@0 3 7 title node
2@0 4 6 nil text
...

8@0 12 19 image node
9@0 15 18 title node
10@0 16 17 nil text

...

void pos word

0@0 4 The

1@0 5 Selfish

2@0 6 Giant

...
23@0 51 lovely

24@0 52 garden

...

MonetDB

MonetDB is an open source low-level database system developed at the Institute
for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands [19].
It was designed to provide high performance on complex queries against large
databases. The primary data structure of MonetDB is a binary association table –
BAT. A BAT is a main-memory structure that represents the binary relationship
between two atomic types. Apart from the usual atomic types, such as bit, char,
integer, float, double, string, MonetDB supports oid and void atomic types. The
oid atomic type is a unique long integer used as an object identifier. Virtual-oids
(voids) represent densely ascending column of oids that does not take any storage
space. Such virtual-oids are quite handy for fast look-ups.

BATs are the basic storage units on which MonetDB operators are defined.
A BAT may hold an unlimited number of binary associations, where the two at-
tributes of a BAT are called head (left) and tail (right). A number of operators are
defined and kept in MonetDB modules. These operators define (1) real, integer,
and string operators, (2) relational-like operators on BATs, such as join, projec-
tion, selection, as well as (3) special purpose operators, such as a tree-merge join
for implementing containment relations [122].

Having such two-column (BAT) storage structures, the SRA data model can be
translated and the structured collection data can be stored into MonetDB BATs.
Using MonetDB operators SRA operators can be implemented. The MonetDB
storage structures are illustrated in Table 4.1. In our implementation we use the
horizontal fragmentation, explained in Section 2.4.1 and depicted in Table 2.3, for
storing structured (XML) data. Therefore, we have three different fragments of a
data collection region set (table): the first represents element nodes, the second
content words, and the third element attributes.

For illustration, in Table 4.1 we only give BATs formed from element node
and term fragments. Although represented as one relational table, the region

100 4. Transparent Retrieval in Structured Documents

(relational) table that contains more than two columns is also fragmented into a
number of tables (BATs), each containing one void head column and one data tail
column1. The void column is used as a region identifier. The BAT that stores
(default) region scores does not exist, as in that way we provide the possibility to
dynamically set the default score value.

Using the MonetDB set of operators, we can define arbitrary manipulation
over BATs. Therefore, the MIL expressions need to specify the manipulation over
partitioning of region tables in MonetDB presented in Table 4.1, using relational,
real, integer, string, and special purpose MonetDB operators.

MonetDB interpreter language – MIL

The MonetDB interpreter language is a dynamically typed language that can
be used for fast prototyping on top of the MonetDB kernel. MIL enables easy
specification of procedures that operate on BATs as well as other MonetDB atomic
types. An example of a declaration of a MIL procedure is given below.

PROC proc name(type par 1, type par 2, ..., type par n) : res type

It contains the name of the procedure (proc name), a set of input parameters
({par 1,...,par n}) of a different type (i.e., BAT, integer, real, string), and a
type of the result of the execution (res type).

Now we can illustrate how each different implementation of scoring functions
is instantiated as a call to one MIL procedure. For example, for score computa-
tion, operator ⊐p can be transformed into different calls to MIL procedures that
implement different score computation models. Assuming that we implemented
language model, Okapi, and tf.idf score computation model (see the following sec-
tion), these calls can look like:

p containing t LMs(bat R 1,bat R 2,flt lambda,int size type);

p containing t Okapi(bat R 1,bat R 2,flt k 1,flt b,int size type);

p containing t tfidf(bat R 1,bat R 2,int size type);

Here, R 1 and R 2 are BATs of the form BAT[oid,double], lambda is a lan-
guage model parameter λ, and size type parameter determines whether the size
is computed as a term count or using region bounds (see Equations 4.2 and 4.3
in the following section). In a BAT oid is the region identifier, and double value
represents the score of a region. R 1 and R 2 BATs represent regions in the left
and in the right operand respectively.

1Although specified in the table, element name, type, and word BATs do not contain string
values but integers that encode different strings. Therefore, additional tables exist that store
the mapping between these integers and strings they represent for all three BATs (also for the
attribute name and value BATs).

4.2. Transparent instantiation of retrieval models 101

Other values of region attributes within the MIL functions can be accessed
by forming a join between the R1 and R2 BATs and name, type, starting, or end
BATs (depicted in Table 4.1) that are persistently stored in a database. The result
of the application of such procedures is again BAT[oid,double] table, where each
region (identified with a unique oid identifier) now contains a new score value.

Therefore, each operator at the logical level is instantiated as a call to one MIL
procedure. Based on the SRA query plan and the retrieval model specification,
the call to the proper MIL functions with specified parameters is achieved. The
output of the query execution is a list of elements with their respective scores
(BAT[oid,double]) reflecting the relevance of an element to a query, obtained
after the query execution in the MonetDB kernel. This element list can than
be sorted and transformed into the proper output for the evaluation, or used for
presenting the results to the end user in textual format.

4.2 Transparent instantiation of retrieval models

In TIJAH (SRA) retrieval models are instantiated following the four elementary
retrieval requirements. They are defined using score region algebra abstract func-
tions and abstract operators, but their real implementation is in MIL procedures,
as we illustrated in the previous section. For the transparent specification of scor-
ing functions we use auxiliary functions. In these functions ri ≺ rj is used to denote
that the region ri is contained in the region rj (ri ≺ rj ⇔ rj .s < ri.s ≤ ri.e < rj .e).
C is used to denote the set of all regions in the collection, i.e., the set of regions
formed when the data is translated into the score region algebra data model (see
Section 3.2), and Root is the collection root node.

The auxiliary functions are used for a number of purposes. The first one
counts the number of regions in the region set R, denoted with |R|. The second
one computes the size of the region r, either based on starting and end index of the
region (Equation 4.2) or the number of contained terms (Equation 4.3). Finally,
the third one computes the average size of the regions with the region name n in
the collection, denoted with avg size(n) as depicted in Equation 4.4, also based
either on the element index or term count.

sizeelement(r) = r.e − r.s − 1 (4.2)

sizeterm(r) = |{r1 ∈ C|r1.t = term ∧ r1 ≺ r}| (4.3)

avg size(n) =

∑

r1∈C|r1.n=n size(r1)

|{r1 ∈ C|r1.n = n}|
(4.4)

102 4. Transparent Retrieval in Structured Documents

The difference between Equation 4.2 and Equation 4.3 is that the former, beside
terms, also counts the opening and closing tags and attribute names and values of
regions contained in the region r.

4.2.1 Element and term selection

Element and term selection operator σn=name,t=type(R) always selects elements
with the computed region score in case R 6= C or with the default score of regions
in case R = C. This can be seen in Table 3.2. As already mentioned, for the
default score for all regions in the collection (C) we choose 1.0.

We use two variants of the σn=name,t=type(R) operator. One has the same
notation and the same definition as given in Table 3.2, while the other is denoted
as σstem

n=name,t=type(R). The latter behaves the same as the former in case t 6= term,
while in case t = term it specifies the selection of all the term nodes from the
region set R that have the same stem as the word name (already stemmed in
the query processing at the end-user level). This variant of selection operator is
defined as given in Equation 4.5, assuming that stem(r.n) is a function that finds
the stem of the word r.n.

σstem
n=name,t=type(R) = {r | r ∈ R ∧ ((r.t = term ∧ stem(r.n) = name)

∨ (r.t 6= term ∧ r.n = name)) ∧ r.t = type} (4.5)

We use only one variant for the specification of element selection: elements
are selected by strictly matching their names. For the other variants of element
selection on element names, we refer to [139, 145].

4.2.2 Element relevance score computation

Operator ⊐p models element relevance score computation, i.e., the concept that
the search elements (regions in the first operand) should contain the term (regions
in the second operand). Therefore, the function f⊐(r1, R2), applied to a region r1

and a region set R2, should result in the numeric value that specifies the relevance
of the region (element) r1 given the (term) regions in R2 that it contains.

Similarly, operator 6⊐p models the concept that the search elements (regions in
the first operand) should not contain the term (regions in the second operand).
Therefore, the function f6⊐(r1, R2), should reflect that the region (element) r1 has
a lower score if it contains the (term) regions from the right operand (R2).

Many retrieval models exist that specify how relevant is a document (element)
given the terms it contain (see Section 2.1). We choose to adapt five of these
models to implement score computation aspect. Two most important reasons for
this choice are that these models are state-of-the-art retrieval models and that we
use them later in our experiments in Chapters 5 to 7. The five retrieval models

4.2. Transparent instantiation of retrieval models 103

we use to specify score computation are: Boolean, tf.idf [193], Language Models
(LMs) [95], the Okapi (INQUERY) model [30, 181], and the Garden Point XML
(GPX) model [77]2.

The simple Boolean formula for score computation (f⊐) is given by:

fBool
⊐ (r1, R2) = r1.p · sgn(|{r2 ∈ R2|r2 ≺ r1}|) (4.6)

The tf.idf score computation formula is based on the Equation 2.5 given in Sec-
tion 2.1.1. Its adaptation in SRA is as follows:

f tf.idf
⊐ (r1, R2) = r1.p·

∑

r2∈R2|r2≺r1

r2.p · ln
|{r ∈ C|r.n = r1.n}|

|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}|

(4.7)

The language model score computation can be instantiated based on auxiliary
functions, and the basic model given in Equation 2.14 (Section 2.1.1) as:

fLMs
⊐ (r1, R2) = r1.p ·

(

λ

∑

r2∈R2|r2≺r1
r2.p

size(r1)
+ (1 − λ)

|R2|

size(Root)

)

(4.8)

The Okapi formula is derived from the original model (described by Equa-
tion 2.8 in Section 2.1.1) by removing the third factor from the product. The
reason is that the third factor is based on a size of the query and is not supported
in other models. The complex function fOkapi

⊐ is specified as:

fOkapi
⊐ (r1, R2) = r1.p

·ln
|{r ∈ C|r.n = r1.n}| − |{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}| + 0.5

|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}| + 0.5

·
(k1 + 1) ·

∑

r2∈R2|r2≺r1
r2.p

k1((1 − b) + b size(r1)
avg size(r1.n)) +

∑

r2∈R2|r2≺r1
r2.p

(4.9)

For the element relevance score computation in the GPX model we use the
specification given in [77] and repeated in Equation 2.20 in Section 2.1.2 of this
thesis:

fGPX
⊐ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1
r2.p

|R2|
(4.10)

2Although this is not a well known retrieval model we have chosen it as it is among the most
effective ones for XML retrieval presented at INEX 2004 workshop [74].

104 4. Transparent Retrieval in Structured Documents

Although this is a slightly different formula than the original GPX model (due to
the specification of region algebra operators) it showed equally good performance
in our previous experiments [137].

Similarly to modeling positive score computation aspect we model negative
score computation aspect. While for Boolean and language models the f6⊐ formula
can be easily derived, this is not the case for the other three score computation
models. The reason is that the result of Boolean and language model score com-
putation functions is normalized, i.e., the resulting score is in the range [0, 1]. The
f6⊐ formulas for this two cases are given in Equations 4.11 and 4.12.

fBool
6⊐ (r1, R2) = r1.p · (1 − sgn(|{r2 ∈ R2|r2 ≺ r1}|)) (4.11)

fLMs
6⊐ (r1, R2) = r1.p ·

(

1 −

(

λ

∑

r2∈R2|r2≺r1
r2.p

size(r1)
+ (1 − λ)

|R2|

size(Root)

))

(4.12)

For the tf.idf and Okapi we normalized the scores. If we denote the products
on the right side of the Equations 4.7 and 4.9 after the r1.p with g⊐, and its
normalization in the range [0, 1] with g⊐ we can define tf.idf and Okapi score
computations as depicted in Equations 4.13 to 4.16. For example, the values are
transformed (normalized) from the range [1 · ln1, |{r ∈ C|r.t = term}| · |{r ∈

C|r.t = node}|] to [0, 1] in case of gtf.idf
⊐ function.

f tf.idf
⊐ (r1, R2) = r1.p · gtf.idf

⊐ (4.13)

f tf.idf
6⊐ (r1, R2) = r1.p ·

(

1 − gtf.idf
⊐

)

(4.14)

fOkapi
⊐ (r1, R2) = r1.p · gOkapi

⊐ (4.15)

fOkapi
6⊐ (r1, R2) = r1.p ·

(

1 − gOkapi
⊐

)

(4.16)

However, for the GPX formula we had to apply different kind of normalization.
The aim of the formulas fGPX

⊐ and fGPX
6⊐ is to produce zero scores for element

regions that do not contain term regions for ⊐p, and element regions that contain
term regions for 6⊐p. Therefore, the definition of fGPX

6⊐ function is the same as the

definition of Boolean fBool
6⊐ function given in Equation 4.11.

4.2. Transparent instantiation of retrieval models 105

4.2.3 Relevance score combination

The abstract operator ⊗ specifies how scores are combined in an AND expression,
denoted in SRA by ⊓p, while the operator ⊕ defines score combination in an OR
expression, denoted in SRA with ⊔p. We make different choices for the imple-
mentation of abstract score combination operators. These choices are based on
the most frequently used operations for combining scores in traditional flat text
retrieval systems described in Section 2.1.

We choose some simple implementations for AND and OR score combination
such as sum, product, minimum, and maximum, i.e., {⊕,⊗} := {+, ∗,min, max}.
Additionally, following [30] and [77], we also define the two abstract operators
as probabilistic sum shown in Equations 4.17 and as exponential sum shown in
Equation 4.18:

r1.p{⊕
prob,⊗prob}r2.p = 1 − (1 − r1.p) · (1 − r2.p) (4.17)

r1.p{⊕
exp,⊗exp}r2.p =

r1.p + r2.p if r1.p = 0 ∨ r2.p = 0

A · (r1.p + r2.p) otherwise
(4.18)

Both score combination operators can be implemented using the same defini-
tion of abstract scoring function. This is due to the fact that in most cases users
mix AND and OR score combination when they specify their requests and as this
aspect is not thoroughly examined in the structured retrieval process. Recall that
in structured retrieval the score combination aspect models also the combination
of scores of elements that do not directly contain the terms. All these variants of
score combination implementations are tested in Chapters 5 and 6.

4.2.4 Relevance score propagation

The operator ◮ specifies propagation of scores to the containing elements, e.g.,
from ‘image’ to ‘story’ elements. Thus, the function f◮(r1, R2) specifies upwards
element score propagation. Among many possibilities we choose the following four
options:

• an average of region scores from the right operand contained in the region
from the left operand, multiplied by the left operand region score (Equa-
tion 4.19)

• a simple sum of region scores from the right operand contained in the region
from the left operand, multiplied by the left operand region score (Equa-
tion 4.20)

106 4. Transparent Retrieval in Structured Documents

• a weighted sum of region scores from the right operand contained in the
region from the left operand, multiplied by the left operand region score and
normalized by the left operand region size (Equation 4.21)

• a weighted sum of region scores in the right operand contained in the re-
gion from the left operand, multiplied by the left operand region score and
normalized by the sum of all sizes of the contained right operand regions
(Equation 4.22).

favg
◮ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1
r2.p

|r2 ∈ R2|r2 ≺ r1|
(4.19)

f sum
◮ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1

r2.p (4.20)

fwsuma
◮ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1
r2.p · size(r2)

size(r1)
(4.21)

fwsumd
◮ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1
r2.p · size(r2)

∑

r2∈R2|r2≺r1
size(r2)

(4.22)

We also perform smoothing for the score propagation to avoid zero scores for
regions from the left operand that do not contain regions from the right operand,
e.g., ‘story’ elements that do not contain ‘figure’ elements. The score propagation
smoothing uses the frequency of regions (elements) from the right operand con-
tained in regions (elements) having the name r1.n (name of the region in the left
operand). The influence of this “element frequency” is regulated by a smoothing
parameter ω. If we denote the right factor in the product in Equations 4.19 to 4.22
with g◮(r1, R2), we can express the score propagation with structured smoothing
as depicted in Equation 4.23.

f smooth
◮ (r1, R2) = r1.p · (ω · g◮(r1, R2) + (4.23)

+ (1 − ω) ·
|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}|

|{r ∈ C|r.n = r1.n}|
)

On the other hand, to model downwards score propagation, e.g., the propa-
gation of scores from ‘story’ to ‘image’ elements, operator ◭ is defined with the
abstract function f◭(r1, R2). Similarly to f◮(r1, R2), f◭(r1, R2) can be imple-
mented in different ways. However, we have chosen the same four propagation

4.3. SRA operator properties 107

functions as for the upwards score propagation and adapted it to downwards score
propagation. The functions are presented in Equations 4.24 to 4.27.

favg
◭ (r1, R2) = r1.p ·

∑

r2∈R2|r1≺r2
r2.p

|r2 ∈ R2|r1 ≺ r2|
(4.24)

f sum
◭ (r1, R2) = r1.p ·

∑

r2∈R2|r1≺r2

r2.p (4.25)

fwsuma
◭ (r1, R2) = r1.p ·

∑

r2∈R2|r1≺r2
r2.p · size(r2)

size(r1)
(4.26)

fwsumd
◭ (r1, R2) = r1.p ·

∑

r2∈R2|r1≺r2
r2.p · size(r2)

∑

r2∈R2|r1≺r2
size(r2)

(4.27)

Similar to upwards score propagation, we introduce the smoothed version of
downwards score propagation functions. If we denote the right factor in the Equa-
tions 4.24 to 4.27 with g◭(r1, R2) we can express the downwards score propagation
with structured smoothing as depicted in Equation 4.28.

f smooth
◭ (r1, R2) = r1.p · (ω · g◭(r1, R2) + (4.28)

+ (1 − ω) ·
|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r1 ≺ r2}|

|{r ∈ C|r.n = r1.n}|
)

In the specification of score propagation function we follow the pioneering work
on augmentation weights for propagating scores from child elements to their par-
ents by Fuhr and Großjohann [71] and Grabs and Schek [81]. They used manually
selected predefined downweighting factors for this propagation (see Section 2.1.2).
Later, many approaches used the same concept except that they used more infor-
mation in implementing upwards score propagation, such as the size of elements
[154] or nesting level [194]. We use element sizes to dynamically determine the aug-
mentation weights when propagating scores upwards and downwards. However,
other implementations are possible in SRA (see also Section 7.1 in this thesis).

4.3 SRA operator properties

The goal of studying operator properties is to enable logical query optimization,
such as relational algebra query optimization, as can be seen in, e.g., [16], and
obtaining a gain in efficiency. However, as the efficiency is not the main issue in

108 4. Transparent Retrieval in Structured Documents

this thesis we only illustrate the potential usage of SRA operator properties for
query optimization and also leave the discussion on numeric stability problems for
future research.

Our study on score region algebra shows that there are only few operators that
have the basic operator properties such as: identity, inverse, commutativity, asso-
ciativity, and distributivity. However, there is a number of region algebra specific
properties which can be considered as a special case of distributivity and associa-
tivity properties. We mostly focus on such properties. For the more elaborate
analysis of other properties, see the overview given in [140].

4.3.1 Special properties of selection operators

One interesting and potentially useful property for query optimization is presented
in Properties 4.29 to 4.32. It states that the sequence of performing containment
selection operations can be changed.

(R1 ⊐ R2) ⊐ R3 = (R1 ⊐ R3) ⊐ R2 (4.29)

(R1 ⊏ R2) ⊏ R3 = (R1 ⊏ R3) ⊏ R2 (4.30)

(R1 ⊐ R2) ⊏ R3 = (R1 ⊏ R3) ⊐ R2 (4.31)

(R1 ⊏ R2) ⊐ R3 = (R1 ⊐ R3) ⊏ R2 (4.32)

These properties can be useful if we know that some of the operations are more
selective than the others. For example, assume that we have a collection of stories
where only few of them are enclosed in ‘short story’ tags, and that all stories
contain a prolog where most prologs include some images. Then, the following
query expression can be issued //short story//prolog[.//image]. It searches
for ‘prolog’ elements in a ‘short story’ element containing ‘image’ elements. This
query can be expressed in SRA as:

(Rn
prolog ⊐ Rn

image) ⊏ Rn
short story

Here, all the prologs (in all the ‘story’ elements) in the collection that contain
images would be selected, and than only the ones that are inside the ‘short story’
elements would be filtered. It would be more efficient to first select prologs that
are in a few ‘short story’ elements, and than to select those that contain images.
Therefore, Property 4.31 can be used to express this query in the following way:

4.3. SRA operator properties 109

(Rn
prolog ⊏ Rn

short story) ⊐ Rn
image

Another interesting property is that the name and type selection operator can
be pushed through the containment expression, as depicted in Property 4.33 and
4.34.

σn=name,t=type(R1 ⊐ R2) = σn=name,t=type(R1) ⊐ R2 (4.33)

σn=name,t=type(R1 ⊏ R2) = σn=name,t=type(R1) ⊏ R2 (4.34)

The usage of such properties can be illustrated on the following example. The
NEXI expression image//* selects all element nodes in the collection (denoted
with ‘*’) that are contained in an ‘image’ element. In SRA this can be expressed
as follows.

σt=node(C) ⊏ σn=image,t=node(C)

Knowing that not many ‘image’ elements exist in the collection it might be more
efficient to express this need in SRA as:

σt=node(C ⊏ σn=image,t=node(C))

The latter expression first selects the regions that are contained in the ‘image’
region (assuming there are only few) and test their type with the σt=node opera-
tor. This should be less memory consuming and faster then first selecting all the
element nodes in the collection and then testing them on containment.

4.3.2 Properties of score manipulation operators

Considering the properties of scoring operators (operators that include score com-
putation, combination, and propagation) we can exert that some of the properties
follow the ones defined for the region algebra that do not include score manipula-
tion (see [38] and [140] for discussions on region algebra operator properties). Some
of them hold only if some conditions are satisfied (conditional properties which de-
pend on the underlying retrieval model), while some of them are no longer valid.

110 4. Transparent Retrieval in Structured Documents

Score combination operators

Operator ⊓p defines the Boolean-like AND combination of scores obtained for two
regions with the same region bounds (i.e., values of s and e attributes). It has the
identity and inverse element properties, but only in case the default score value
for all regions in the initial region set is the value which is the identity element for
the abstract operator ⊗. The inverse element is than the set of all regions in the
collection C, as depicted in Property 4.35. For example, this is true for the default
region score of 1 and for the ⊗ operator implemented as minimum3 or product:
min(r.p, 1) = min(1, r.p) = r.p, ∀r ∈ R and r.p · 1 = 1 · r.p = r.p, ∀r ∈ R.

R ⊓p C = C ⊓p R = R (4.35)

Similarly, if the default score for regions in the collection is 0, then Prop-
erty 4.35 would hold for ⊗ implemented as maximum, probabilistic sum (Equa-
tion 4.17), sum, and exponential sum (Equation 4.18). For example in case of
⊗prob it would be 1 − (1 − r.p) · (1 − 0) = 1 − (1 − 0) · (1 − r.p) = r.p, ∀r ∈ R.

Furthermore, the operator ⊓p is commutative or associative if the operator ⊗
is commutative (Property 4.36) or associative (Property 4.37) respectively. The
commutativity holds for all six implementations of ⊗ abstract operator given in
Section 4.2, while the associativity is true only for ⊗ implemented as maximum,
minimum, product, and sum.

R1 ⊓p R2 = R2 ⊓p R1 (4.36)

(R1 ⊓p R2) ⊓p R3 = R1 ⊓p (R2 ⊓p R3) (4.37)

An extension of the set union operator is given by the ⊔p operator. It defines
the Boolean-like OR combination of scores for two regions. Similarly to ⊓p oper-
ator, operator ⊔p has the identity and inverse element properties (Property 4.38),
but for all implementations of ⊕ operator as the inverse region set for the ⊔p

operator is an empty set (∅).

R ⊔p ∅ = ∅ ⊔p R = R (4.38)

As in the ⊓p operator case, commutativity and associativity properties depend
on the definition of ⊕ operator. In other words, operator ⊔p is commutative or
associative if the operator ⊕ is commutative or associative respectively. As we used
the same implementation for the ⊕ operator as for the ⊗ operator, Property 4.39 is

3Assuming that the scoring functions are normalized in the algebra, i.e., that the resulting
score of the abstract functions and operators is in the range [0, 1].

4.3. SRA operator properties 111

true for all six implementations of abstract OR score combination operator, while
Property 4.40 is true only for ⊕ implemented as maximum, minimum, product, or
sum.

R1 ⊔p R2 = R2 ⊔p R1 (4.39)

(R1 ⊔p R2) ⊔p R3 = R1 ⊔p (R2 ⊔p R3) (4.40)

Furthermore, in some cases the AND score combination operator distributes
over the OR score combination operator (Property 4.41) and vice versa (Prop-
erty 4.42). ⊓p distributes over ⊔p in the following two cases: (1) ⊗ and ⊕ im-
plemented as maximum and minimum and (2) ⊗ implemented as product and ⊕
implemented as sum. Similarly, ⊔p distributes over ⊓p in the following two cases:
(1) ⊗ and ⊕ implemented as maximum and minimum and (2) ⊕ implemented as
product and ⊗ implemented as sum. This is due to distributivity of minimum and
maximum operators on real numbers, and distributivity of product with respect
to sum on real numbers.

R1 ⊓p (R2 ⊔p R3) = (R1 ⊓p R2) ⊔p (R1 ⊓p R3) (4.41)

R1 ⊔p (R2 ⊓p R3) = (R1 ⊔p R2) ⊓p (R1 ⊔p R3) (4.42)

Score computation and score propagation operators

Similarly to Properties 4.29 to 4.32, a combination of one scoring and one con-
tainment selection operator holds. If we denote containment selection operators,
i.e., {⊐, ⊏}, with op and scoring operators, i.e., {⊐p, 6⊐p,◮, ◭}, with opp, these
properties can be expressed as shown in Properties 4.43 and 4.44.

(R1 op R2) opp R3 = (R1 opp R3) op R2 (4.43)

(R1 opp R2) op R3 = (R1 op R3) opp R2 (4.44)

Consider the following NEXI query //prolog//p[about(., garden)] for ex-
ample. Using Property 4.44, the query can be expressed in SRA in two ways as
shown below.

(Rn
p ⊐p Rw

garden) ⊏ Rn
prolog = (Rn

p ⊏ Rn
prolog) ⊐p Rw

garden

112 4. Transparent Retrieval in Structured Documents

The expression on the left side of the equation is likely to be less efficient. It states
that the relevance score should be computed for all paragraphs in the collection
with respect to contained ‘garden’ term regions, and then the paragraphs from
prologs should be selected. The expression on the right side first selects only the
paragraphs inside ‘prolog’ elements and than computes the relevance score of those
paragraphs with respect to ‘garden’ term regions.

The selection operator on region name and type (σ) can be pushed through
the expressions that involve score manipulation among two regions, similarly as
it is the case for containment operators (see Properties 4.33 and 4.34). This is
depicted in Property 4.45.

σn=name,t=type(R1 opp R2) = σn=name,t=type(R1) opp R2 (4.45)

On the other hand, properties 4.29 to 4.32, in case both operators include score
manipulation, do not hold in general. However, for some special retrieval model
instantiations they hold. Looking at the specification of our score computation
(f⊐(r1, R2), and f6⊐(r1, R2)) and score propagation (f◮(r1, R2) and f◭(r1, R2))
functions we can see that they can be expressed in the following way f(r1, R2) =
r1.p · g(r1.s, r1.e, r1.n, r1.t, R2). We use f and g, to replace f⊐, f6⊐, f◮, f◭, and
g⊐, g6⊐, g◮, and g◭, respectively. Based on the parameter list we can see that
the function g(r1.s, r1.e, r1.n, r1.t, R2) does not depend on the score of the region
r1. In such case the Property 4.46 holds, where op1p ∈ {⊐p, 6⊐p,◮, ◭} and op2p ∈
{⊐p, 6⊐p, ◮, ◭}.

(R1 op1p R2) op2p R3 = (R1 op2p R3) op1p R2 (4.46)

In this case, the score for each region in the result region set, denoted with r.p, is
computed as:

r.p = (r1.p · g(r1.s, r1.e, r1.n, r1.t, R2)) · g(r1.s, r1.e, r1.n, r1.t, R3)

= (r1.p · g(r1.s, r1.e, r1.n, r1.t, R3)) · g(r1.s, r1.e, r1.n, r1.t, R2)

Furthermore, if the score value for all regions in the first operand R1 is equal
to 1 (default value for all regions), and abstract AND or OR score computation
operators are implemented as product, the following properties hold:

(R1 op1p R2) op2p R3 = (R1 op1p R2) ⊓p (R1 op2p R3) (4.47)

(R1 op1p R2) op2p R3 = (R1 op1p R2) ⊔p (R1 op2p R3) (4.48)

4.3. SRA operator properties 113

i.e., for every region in the result set we obtain region score r.p:

r.p = (1 · g(r1.s, r1.e, r1.n, r1.t, R2)) · g(r1.s, r1.e, r1.n, r1.t, R3)

= (1 · g(r1.s, r1.e, r1.n, r1.t, R2)) · (1 · g(r1.s, r1.e, r1.n, r1.t, R3))

The Property 4.47 (Property 4.48) can be used for NEXI expressions that look
like //image[about(., beautiful flower)] (//image[about(., beautiful)

or about(., flower)]). The SRA counterpart of such NEXI query can be sim-
plified using Property 4.47 as shown below:

(Rn
image ⊐p Rw

beautiful)⊓p (Rn
image ⊐p Rw

flower) = (Rn
image ⊐p Rw

beautiful) ⊐p Rw
flower

Under the same condition as for Properties 4.47 and 4.48, except that the
abstract AND and OR score computation operators are implemented as sum,
other two special properties hold: Property 4.49 and Property 4.50.

(R1 ⊓p R2) opp R3 = (R1 opp R3) ⊓p (R2 opp R3) (4.49)

(R1 ⊔p R2) opp R3 = (R1 opp R3) ⊔p (R2 opp R3) (4.50)

i.e.,

r.p = (r1.p + r2.p) · g(r1,2.s, r1,2.e, r1,2.n, r1,2.t, R3)

= (r1.p · g(r1.s, r1.e, r1.n, r1.t, R3)) + (r2.p · g(r2.s, r2.e, r2.n, r2.t, R3))

where r1,2 denotes the regions that are either in one of the region sets R1 and R2

in case of Property 4.50, or in both of them in case of Property 4.49.
The following NEXI query //(image|video)[about(., garden)] can be used

for illustrating Property 4.50. A possible SRA expression for such a NEXI query
is shown below. This property can be useful if we have parallel processing at
the physical level for query parts. In that case one process can compute the
scores of the first subexpression (Rn

image ⊐p Rw
garden) and the other of the second

subexpression (Rn
video ⊐p Rw

garden) and then they can be combined.

(Rn
image ⊔p Rn

video) ⊐p Rw
garden = (Rn

image ⊐p Rw
garden) ⊔p (Rn

video ⊐p Rw
garden)

There are many properties that can be identified in score region algebra when
combining different instantiations of scoring functions. In this section we pointed
out that the SRA framework can be used for query rewriting and optimization
by explaining some interesting properties. However, as the analysis of the SRA
properties is not the main topic of this thesis, further discussion is left for future
work.

114 4. Transparent Retrieval in Structured Documents

4.4 Summary

The architecture and the components of our three-level database system for struc-
tured information retrieval called TIJAH are the main topic of the first part of
this chapter. The components of the end-user, logical, and physical levels are
presented and their functionality is explained. The emphasis is on transparent
specification of retrieval models along all three levels. A special attention is given
to the retrieval dictionary where the data for controlling the end-user to logical
and logical to physical mappings are stored.

The central part of the chapter is dedicated to the instantiation of various
retrieval models in score region algebra. Different implementations of scoring
functions in SRA that follow the elementary structured retrieval requirements are
presented. These implementations are specified using abstract functions and ab-
stract operators withing the SRA selection, score computation, score combination,
and score propagation operators. For each operator we explained several possible
instantiations and justify our choice. We based this choices on state-of-the-art
retrieval models and approaches for structure retrieval developed in the last few
years.

Finally, some properties of algebra operators are discussed at the end. The
properties are discussed only to emphasize the potential of using them for score
region algebra logical query optimization. The full analysis of the SRA operator
properties is a research topic on its own and is left for future research.

Chapter 5

Component Retrieval

To test our three-level database system for structured IR and to learn more about
structured retrieval, several series of experiments are evaluated in this chapter.
The experiments are performed on the INitiative for the Evaluation of XML Re-
trieval (INEX) [74] test collection. The chapter starts with the aim of the pre-
sented experiments, described through several hypotheses. It then presents the
INEX test collection and the experimental setup. The chapter continues with an-
alyzing different implementations of score computation, score combination, and
score propagation functions. It ends with a short overview of the experimental
results, and guidelines for further studies.

This chapter is partially based on papers published (1) in the Proceedings of the
14th ACM International Conference on Information Knowledge and Management
(CIKM) [138] and (2) as a Centre for Telematics and Information Technology
Technical Report [141].

5.1 Motivation

The experimentation presented in this chapter is motivated by the following three
goals:

1. to provide guidelines for implementing score computation, combination, and
propagation functions, by strictly following structured constraints

2. to point out the main differences in modeling structured IR with respect to
modeling flat text IR

3. to emphasize the benefits of transparent instantiation of retrieval models in
the score region algebra.

The queries that we use for the experimentation are content-and-structure
(CAS) queries as defined in INEX [74]. Having a transparent structured retrieval
framework, and having such a structured collection, we design distinct experi-
mental series. We design these series to test different aspects of structured infor-
mation retrieval. They are explained below, by introducing six hypotheses. The
hypotheses are based on flat text (TREC [216]) experimental results and struc-
tured retrieval experiments presented in INEX [74]. They are tested on structured
retrieval tasks in later sections in this chapter.

116 5. Component Retrieval

5.1.1 How to compute scores?

The experimentation starts with checking what is the best way to compute the
element score in structured retrieval. For these experiments we use different score
computation models (see Section 4.2.2). Following the experimental results when
using state-of-the-art retrieval models we can pose the first hypothesis.

Hypothesis 1. The effectiveness of more advanced retrieval models, i.e., GPX,
language models, and Okapi, should be higher than the effectiveness of simple re-
trieval models, such as Boolean and tf.idf, on structured retrieval (see Section 2.1).

Additionally, in these series of experiments we test two other aspects of score
computation. The first one tries to determine which of the element size compu-
tation formulas, i.e., using region boundaries (Equation 4.2) or using term count
(Equation 4.3), gives higher effectiveness. The second tries to determine whether
stemming helps in structured retrieval. Therefore, the next hypotheses are as
follows.

Hypothesis 2. Following the flat text IR approaches, we expect that in struc-
tured retrieval it is more effective to compute the sizes of elements (documents)
by counting the number of terms contained in them than using region bounds.

Hypothesis 3. Following flat text IR approaches, the usage of stemming should
result in higher effectiveness also in structured retrieval.

Another component of the element relevance score computation is tested in the
experiments. The goal is to find out whether the values of parameters for different
retrieval models are the same as parameter values for state-of-the-art retrieval
models. Also, we investigate for which score computation models length prior (see
Section 5.3) helps.

5.1.2 How to combine scores?

In this chapter we analyze different implementations of AND and OR score com-
bination functions, in composition with different score computation models. The
goal is to test how distinct score computations behave when different implemen-
tations of score combination are employed. Hypotheses are as follows.

Hypothesis 4. Following the specification of different retrieval models given in
Section 2.1, the AND score combination implemented as: (1) exponential sum for
GPX, (2) product for language model, (3) sum for Okapi, and (4) sum for tf.idf
score computation model should give higher effectiveness than other implementa-
tions.

5.1. Motivation 117

Hypothesis 5. Following the specification of different retrieval models given in
Section 2.1, the OR score combination implemented as: (1) exponential sum for
GPX, (2) sum for language model, (3) sum for Okapi, and (4) sum for tf.idf score
computation model should give higher effectiveness than other implementations.

The results of testing these hypothesis would answer the question whether the
specification of state-of-the-art retrieval models holds for structured retrieval. The
best composition of score computation and score combination implementations are
then used for further experiments with the score propagation.

Furthermore, besides comparing the effectiveness of different compositions of
score computation and score combination implementations, these compositions are
analyzed per query. The goal is to detect relations between retrieval models and
queries that have different complexity.

5.1.3 How to propagate scores?

The effectiveness of retrieval models when using different implementations of score
propagation functions are also analyzed. As this requirement is specific to struc-
tured retrieval, not many experiments are presented in the literature that point
out what would be more effective implementation. The implementations usually
model child-parent upwards score propagation where scores are computed as a
weighted sum of child element scores [71, 81, 154], or descendant-ancestor up-
wards propagation using the distance between element levels in the hierarchical
document structure [194]. However, what is the best way for downweighting scores
when propagating them upwards and downwards is not clear. The only hint is that
some form of weighted sum should be used. Therefore, we make one hypothesis
with respect to score propagation, considering the four implementations of score
propagation functions in Section 4.2.4 (Equations 4.19 to 4.22).

Hypothesis 6. Based on the state-of-the-art structured retrieval models we
expect that the weighted sum approaches are more appropriate for modeling score
propagation than simple sum or average.

Besides analyzing the effectiveness of different score propagation functions we
also discuss the influence of structured smoothing on retrieval results.

Having discussed the experimental results of composing score computation,
score combination, and score propagation, we can point out what are the important
features that need to be considered when specifying retrieval models for structured
IR. This is addressed in Section 5.7.

118 5. Component Retrieval

5.2 Structured IR evaluation: INEX

Retrieval evaluation initiatives provide test collections consisting of a document
collection, a set of user requests (topics), a basic evaluation criterion used for rel-
evance assessments, and evaluation metrics [180]. In order to setup an evaluation
initiative the objective of the evaluation must be specified. The most common
objective in IR evaluation initiatives is retrieval system effectiveness. Based on
the objective, measure (metric) development can follow. Metric compares the sys-
tem output, obtained by executing user requests over document collection, to the
relevance assessments.

The evaluation process can be defined as a process that compares the system
output, i.e., ranked result list of relevant components with relevance values as-
signed to them, with the assessments output using the evaluation metric. The
result of this comparison should show the performance of a system (system’s ef-
fectiveness), usually depicted as a recall-precision graph [12]. A recall-precision
graph is a graph where precision is reported for different recall points, e.g., 0.1,
0.2, ..., 1.0 (see Section 5.2.4 for the definition of recall and precision).

The INitiative for the Evaluation of XML Retrieval (INEX) [74] started in
2002 as a yearly evaluation effort aimed at providing an infrastructure and a
framework for evaluating the performance of structured retrieval systems. INEX
was inspired largely by work on laboratory-style evaluation of information retrieval
systems developed in TREC [216]. INEX measures the effectiveness of the access
to content that is structured using extensible markup language (XML). As such,
INEX provides a large XML data collection and appropriate methods for the
evaluation of content-oriented XML retrieval systems [74]. Among many tasks at
INEX, we focus on the INEX Ad-hoc task.

The objective of the INEX Ad-hoc evaluation is structured IR effectiveness. It
is defined as the system’s ability to retrieve the most specific relevant elements,
which are exhaustive to the topic of request. Here, exhaustivity describes the
extent to which a retrieved component discusses the topic of request, while speci-
ficity describes the extent to which the retrieved component focuses on the topic
of request.

5.2.1 Data collection

For our experiments we use the INEX 2003 and 2004 data collection consisting
of 494MB of data. The data collection consists of 12,107 articles of the IEEE
Computer Society’s publications from 12 magazines and 6 transactions. It covers
the period of 1995–2002. The data collection has a complex XML structure and
contains scientific articles of varying length. On average an article contains 1,532
XML nodes and the average depth of a node is 6.9.

An excerpt from the Document Type Definition (DTD) for the IEEE collection
of articles is given in Figure 5.1. It shows that the collection consists of books
containing journals which contain articles. Usually, articles are formed out of a

5.2. Structured IR evaluation: INEX 119

Figure 5.1: Document Type Definition (DTD) for the INEX IEEE XML collection.

<-- base elements -->

<!ELEMENT books (journal*)>

<!ELEMENT journal (title, issue, publisher, graphicc?, (sec1|article|sbt)*)>

<!ELEMENT sec1 (title)>

<!ELEMENT title (%parmat;)*>

<!ELEMENT issue (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT graphicc (#PCDATA)>

<!ATTLIST graphicc filename CDATA #REQUIRED>

<!ELEMENT article (fno, doi?, fm, bdy, bm?)>

<!ELEMENT fno (#PCDATA)> <!-- article ID (no entity references) -->

<!ATTLIST fno fid NMTOKEN #IMPLIED>

<!ELEMENT doi (#PCDATA)>

...

<-- body matter -->

<!ELEMENT bdy (%secmat;|sec)*>

<!-- section -->

<!ELEMENT sec (no?, (sbt|st|%secmat;)*, ss1*, ss2*, ss3*)>

<!ATTLIST sec type CDATA #IMPLIED>

<!ELEMENT ss1 (no?, (st|sbt|%secmat;)*, ss2*)>

<!ELEMENT ss2 (no?, (st, sbt*)?, (%secmat;)*, ss3*)>

<!ELEMENT ss3 (no?, (st, sbt*)?, (%secmat;)*)>

<!ELEMENT brief (p*)>

<!ELEMENT dialog (question|answer)*>

<!ELEMENT question (p*)>

<!ELEMENT answer (p|list)*>

...

<!-- paragraphs -->

<!ELEMENT ilrj (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT ip1 (%parmat;|%secparmat;|h3|h4)*>

<!ATTLIST ip1 id ID #IMPLIED>

<!ELEMENT ip2 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT ip3 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT ip4 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT ip5 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT item-none (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT p (%parmat;|%secparmat;|h3|h4)*>

<!ATTLIST p id ID #IMPLIED

ind (hang|after|none) "none"

align (left|right|center) "left">

<!ELEMENT p1 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT p2 (%parmat;|%secparmat;|h3|h4)*>

<!ELEMENT p3 (%parmat;|%secparmat;|h3|h4)*>

...

120 5. Component Retrieval

Figure 5.2: An example topic specification: INEX 2004 CAS topic 127.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="127" query_type="CAS" ct_no="13">

<title>//sec//(p|fgc)[about(., Godel Lukasiewicz and other fuzzy
implication definitions)]</title>

<description>Find paragraphs or figure-captions containing the definition
of Godel, Lukasiewicz or other fuzzy-logic implications</description>

<narrative>Any relevant element of a section must contain the definition
of a fuzzy-logic implication operator or a pointer to the element of the
same article where the definition can be found. Elements containing
criteria for identifying or comparing fuzzy implications are also of
interest. Elements which discuss or introduce non-implication fuzzy
operators are not relevant. </narrative>

<keywords>Godel implication, Lukasiewicz implication, fuzzy implications,
fuzzy-logic implication </keywords>

</inex_topic>

front matter (fm), body (bdy), and back matter (bm). Body contains a number of
sections (sec, ss1, ss2, etc.) and sections contain paragraphs (p, ip1, ip2, etc.),
lists, etc. On documents, having such structure, diverse set of structured queries
can be expressed as explained below.

5.2.2 Topic sets

The topics are created by the participating groups and they are centered around
two types of search tasks that are evaluated in INEX: content-only (CO) and
content-and-structure (CAS) tasks (see Section 4.1.1). The CAS task had two
interpretations in the past: (1) strict CAS (SCAS) where structured constraints
are strictly followed, and (2) vague CAS (VCAS) where structured constraints
could be relaxed. Each participating group sends a few topics (e.g., 3 CAS and
3 CO topics in 2004), out of which the most appropriate 30 to 40 CO and CAS
topics are selected. The 2003 topic set consists of 30 CAS (topic numbers 61 to
90) and 36 CO (topic numbers 91 to 126) topics and the 2004 topic set consists of
34 CAS (topic numbers 127 to 160) and 40 CO (topic numbers 161 to 200) topics.

The topics are specified in XML, and the topic format is a modification of
the one used in TREC (see Figure 6.1 in the following chapter). As shown in
the example INEX CAS topic 127, given in Figure 5.2, each topic consists of
(besides the topic header that contains topic identifier, type, and number) topic
title, description, narrative, and a set of keywords. For CO queries the only
difference is that the query type of the topic is CO, and that the topic title

element contains only terms and term modifiers.

5.2. Structured IR evaluation: INEX 121

While topic description, narrative, and a set of keywords are used as guidelines
for specifying the query and for explaining the search request, topic title is actually
a NEXI (CO or CAS) formulation of the query. The topic title is the formulation
of the search request that most retrieval engines use as an input for performing
the search task (see [74]).

5.2.3 Relevance assessments

INEX relevance assessments are based on the definition of relevance in TREC: “If
you were writing a report on the subject of the topic and would use the infor-
mation contained in the document in the report, then the document is relevant.”
Only binary judgments (“relevant” or “not relevant”) are allowed in TREC. Fur-
thermore, a document is judged relevant if any piece of it is relevant, regardless
of how small the piece is in relation to the rest of the document. However, such
definition of relevance is not directly applicable to structured retrieval.

Following the INEX objective, to assess whether XML elements are relevant
or not to a given query, two relevance dimensions are introduced. These are:
exhaustivity and specificity. Each XML element in the collection can be marginally
(1), fairly (2), or highly (3) exhaustive or specific, or not relevant (denoted with
pair (0, 0)), with respect to a given query. For example, in case the user searches
for a ‘section’ element about ‘information retrieval’, highly exhaustive and highly
specific ‘section’ element is the one that discusses many aspects of information
retrieval and nothing beside them. A highly exhaustive and marginally specific
‘section’ element would be the one discussing many aspects of information retrieval
but also many aspects of other topics, e.g., databases. Similarly, a highly specific
and marginally exhaustive ‘section’ element would be the one discussing only some
aspects of information retrieval but nothing besides them.

The distinction between the two dimensions in the assessment process is due to
the hierarchical organization of XML documents. Unlike in flat text retrieval with
binary relevance assessments, if an XML element is considered to be relevant, one
cannot say that its parent or child elements are also relevant? Are they more, less,
or equally relevant to the original element? That is where two dimensions come
into play. A parent, containing usually more (relevant or non-relevant) information
than a child, can be more exhaustive but not more specific than a child element.
Similarly, a child element can be more specific but not more exhaustive than its
parent element. These rules, along with graded assessments, enable relatively
simple and intuitive assessment process.

For most metrics, to produce the final evaluation result, e.g., recall-precision
graph, the two dimensional relevance assessments are mapped to one dimensional
relevance scale by employing a quantization function, fquant(e, s) : ES → [0, 1].
ES = {(0, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} denotes the
set of possible assessment pairs (e, s). How this function is incorporated into the
evaluation metric is shown below.

122 5. Component Retrieval

5.2.4 Evaluation metrics

Following the TREC [216] paradigm, the effectiveness of information retrieval sys-
tems is usually measured by the combination of precision and recall. Precision
is defined by the fraction of the retrieved items that is actually relevant (Equa-
tion 5.1). Recall is defined by the fraction of the relevant items that is actually
retrieved (Equation 5.2).

Precision =
number of relevant elements retrieved

number of elements retrieved
(5.1)

Recall =
number of relevant elements retrieved

total number of relevant elements
(5.2)

Although precision and recall are defined for sets of items, they are in practice
used on ranked lists of documents. One approach (that is used in TREC) is to
report the precision of documents at several document cut-off points, that is, the
precision at 10 documents retrieved, at 20 documents, etc. Furthermore, it makes
good sense to average the precision at n documents retrieved on a number of
queries, to arrive at an average precision at n documents over, i.e., 50 queries.
Averaging over queries is essential, since we cannot possibly draw conclusions on
the performance of the system on one query only. This average precision is what
we also report in this chapter but using a slightly different metric for the reasons
discussed below.

The problem of XML retrieval evaluation

Recent papers [57, 79, 111] have shown that in INEX the issues of element inde-
pendence and uniqueness are not studied in detail, which as a result introduced
problems in the evaluation of search results. Problems are related (1) to the spe-
cific organization of the collection, consisting of tree-structured XML documents,
and (2) to the richness of user requests – a user can now provide structured hints to
the system, including the structured relationship. This is why INEX had difficult
time defining the ultimate measure such as precision-recall one for TREC, and why
every year different measures arise for evaluating XML retrieval [57, 162, 168, 169].

Among these problems the biggest one for ad-hoc retrieval is the problem of
overpopulated recall base and element overlap [111]1. Overpopulated recall base
is the term that is used to denote the fact that in the INEX relevance assessments
set a number of nested (overlapped) relevant XML elements exists. Not taking
this into account, results in the evaluation metric that rewards retrieval systems

1Other problems are not of major importance for the structured retrieval tasks discussed in
this thesis. They include the incorporation of following information into the evaluation metric:
size of XML elements [79], the time for reading XML elements [57], and user browsing behavior
when searching XML collection [169].

5.2. Structured IR evaluation: INEX 123

that retrieve all the (relevant) elements on the path to ones that retrieve the most
relevant elements on the path. To cope with these issues INEX proposed effort-
precision gain-recall (ep/gr) [110] measure (for more detailed discussion of INEX
metrics see [98]).

Although it does not take into account the overlap, we use inex eval (also
called INEX 2002) metric for the evaluation of our document component retrieval
experiments for a number of reasons. First of all, it was the official metric for the
INEX 2003 and 2004 evaluation, and these are the two test collections that we use
in our experiments. Second reason is that we mainly focus on CAS experiments
where we treat structured constraints as strict (SCAS). For such experiments the
overlap is not a predominant issue as it is up to 26% as reported later in this
chapter. Third reason is that inex eval partially incorporates user behavior using
estimated search length concept (see below). Finally, by using another metric we
would not be able to compare our results with the results of other systems testing
their effectiveness on INEX 2003 and 2004 test collections.

Evaluation using inex eval

The inex eval (INEX 2002) metric computes the so-called precall measure, pro-
posed by Raghavan et al. [175], on returned XML elements. It uses the probability
that the element viewed by the user is relevant (P (rel|retr)):

P (rel|retr)(x) =
x · η

x · η + esl(x, η)
(5.3)

In Equation 5.3, esl(x, η) denotes the expected search length [42], i.e. the expected
number of non-relevant elements retrieved until a recall point x is reached, and η is
the total number of relevant elements with respect to a given topic. The expected
search length is specified using the formula given in Equation 5.4.

esl(x, η) = j +
a · i

c + 1
(5.4)

Here j is the total number of non-relevant elements in all levels preceding the
final level, a is the number of relevant elements required from the final level to
satisfy the recall point, i is the number of non-relevant elements in the final level,
and c is the number of relevant elements in the final level. The term level is
used here to denote the set of elements that have the same relevance score in
the retrieval process, but to be evaluated they are ordered in an arbitrary way.
This is termed weak ordering in [42]. Therefore, Equation 5.3 overcomes the weak
ordering problem by incorporating arbitrary order of equally ranked elements in
the evaluation.

The metric given in Equation 5.3 gives the same values as the precision defined
in Equation 5.1 in case the final level has only one (relevant) element. It differs

124 5. Component Retrieval

from the former computation of precision in case there are non-relevant elements
in the final level that have the same relevance score (rank) as the relevant ones.

Two quantization functions are used for mapping relevance dimensions: fstrict

(Equation 5.5) and fgeneralized (Equation 5.6). These mappings are used to deter-
mine the number of relevant elements for a query and precision at different recall
points. The strict quantization function is used to evaluate retrieval methods with
respect to their capability of retrieving highly exhaustive and highly specific XML
elements, while generalized quantization rewards methods that retrieve XML ele-
ments according to their degree of relevance.

fstrict(s, e) =

1 if e = 3 and s = 3,

0 otherwise
(5.5)

fgeneralized(s, e) =

1 if (e, s) = (3, 3),

0.75 if (e, s) ∈ {(2, 3), (3, {2, 1})},

0.5 if (e, s) ∈ {(1, 3), (2, {2, 1})},

0.25 if (e, s) ∈ {(1, 2), (1, 1)},

0 if (e, s) = (0, 0)

(5.6)

As can be seen in the definition of generalized quantization function, this func-
tion favors exhaustivity over specificity. Although other quantizations are possible
(see [98]), these two quantization functions are the official ones used within INEX
in 2003 and 2004.

To draw the recall-precision graph at every 0.01 recall point, as we do in this
chapter, a non-interpolated precall (precision) is computed for every 0.01 recall
point using Equation 5.3. Similar to mean average precision (MAP) for TREC
(see Section 6.2.1 for more details), we average the precall per each recall level
over all queries, and then average it over all recall levels. This average precision
(AP) is what we report in this chapter for most experiments2.

The feature of inex eval metric is that it calculates recall, based on the as-
sessments set that contains overlapping elements. Additionally, it rewards the
retrieval of a relevant component regardless if its part or if it has been seen en-
tirely. This is why we report overlap for some of the runs presented below. We
use a set-based overlap defined in INEX 2004 [58] and specified in Equation 5.7.
Here, L represents a result list, overlap(el1, el2) is true if two elements, el1 and

2We also compared the MAP and AP evaluation results on strict quantization, using trec eval

and inex eval respectively, and found no significant difference in the indication of the effectiveness
of different retrieval models.

5.3. Experimental setup 125

el2, are overlapping one another, i.e., if they are nested. The overlap is computed
for the 1500 elements submitted (by participating groups) for the evaluation.

ov =
|{el1 ∈ L|∃el2 ∈ L ∧ el1 6= el2 ∧ overlap(el1, el2)}|

|L|
(5.7)

The inex eval measure produces the evaluation results that can easily be
grasped and used for comparison among retrieval systems (similar to TREC recall-
precision metric). As strict content-and-structure queries can be considered as a
mean to remove overlap (redundancy) from the result list without loosing much
precision [98] and based on the reasons already discussed, we employ inex eval for
the evaluation of our experimental runs.

5.3 Experimental setup

This section discusses the setup for experimental evaluation of our system on XML
retrieval. We start with introducing additional SRA operators used for modeling
collection specific search requirements, and continue with the retrieval models used
in the experimentation. We end this section with a sketch of the experimental
series we discuss in following sections.

5.3.1 Additional SRA operators

To be able to express INEX NEXI queries in SRA we had to extend the operator
set discussed in Section 3.2.4, consisting of nine basic SRA operators (depicted
in Table 3.2), with two new operators. The first one is a variant of the selection
operator (σ). The second one is used for modeling element prior, i.e., the notion
that elements do not necessarily have a uniform prior relevance to the query.

To model the selection of regions (elements) that contain numerical content
greater, less, equal, greater or equal, and less or equal, than a specified number,
we introduce content selection operator σ⋄num(R1). It is defined in Equation 5.8.

σ⋄num(R1) = {r1|r1 ∈ R1 ∧ ∃r2 ∈ C ∧ r2.t = word ∧ r2 ≺ r1 ∧ r2.n ⋄ num},

where ⋄ ∈ {=, <,>,≤,≥} (5.8)

Such selection is necessary for NEXI queries that include, e.g., selection of
articles for a particular year or a range of years (the list of INEX 2003 and INEX
2004 queries in the Appendix A contains a number of such queries). For example,
the NEXI topic 65 searches for articles that are published after the year 1998:

//article[.//fm//yr > 1998 AND about(., "image retrieval")]

126 5. Component Retrieval

Using content selection operator the selection of yr elements can be expressed as:

σ>1998(σn=yr,t=node(C)) (5.9)

To be able to change the default score of elements (1.0), we introduce element
prior operator ∇(R) defined in Equation 5.10. For computing the element prior
we used only one specification, i.e., length prior, as given in Equation 5.11. The
length prior is based on the assumption that larger elements are more likely to be
the right answers to a query.

∇(R) = {(r.s, r.e, r.n, r.t, fprior(r)|r ∈ R} (5.10)

f lp
prior(r) := r.p · size(r) (5.11)

However, other implementations are possible (such as using element level, or sta-
tistical information on the distribution of elements and their sizes) and they can
easily be incorporated in the SRA element prior operator definition.

5.3.2 Retrieval models

The retrieval models that we tested on effectiveness in this chapter are the ones
specified as a composition of score computation, score combination, and score
propagation functions, defined in Section 4.2. For score computation we use
Boolean model – Bool (Equation 4.6), Garden Point XML – GPX (Equation 4.10),
language model – LMs (Equation 4.8), Okapi (Equation 4.9), and tf.idf (Equa-
tion 4.7). Score combination is implemented as summation – sum, product – prod,
minimum – min, maximum – max, probabilistic sum – prob (Equation 4.17), and
(only in composition with GPX score computation model) exponential sum – exp
(Equation 4.18).

We also use different size computation auxiliary functions, i.e., one that uses
region bounds (Equation 4.2) and the other that uses term count (Equation 4.3).
Furthermore, we tested whether stemming helps in document component retrieval
(see Equation 4.5).

Additionally, as for document component retrieval using the relevance of a
“document like” element in generating the final score of a containing element helps
in some cases [122, 202], we introduce one more score computation model based on
the language model. We call it language model with article weighting, and denote
it as LMA, as in INEX collection ‘article’ element plays the role of a document
in flat text IR. It is depicted in Equation 5.12. Here α and β are smoothing
parameters that regulate the influence of the foreground (element) model (α),
document (article) model (β), and background (collection) model (µ = 1−α−β).

5.4. Relevance score computation 127

fLMA
⊐ (r1, R2) = r1.p·

(

α

∑

r2∈R2|r2≺r1
r2.p

size(r1)
+ β

∑

r2∈R2|r∈C∧r.n=‘article′∧r2≺r r2.p

size(r)
+ µ

|R2|

size(Root)

)

(5.12)

The choice of the ‘document like’ element is not hard coded in the system. It
is one of the parameters that can be set in the retrieval model repository (named
context in Figure 4.3).

Finally, for upwards and downwards score propagation we use the four variants
given in Section 4.2.4: average (Equations 4.19 and 4.24), sum (Equations 4.20
and 4.25), and two weighted sum approaches – wsa (Equations 4.21 and 4.26) and
wsd (Equation 4.22 and 4.27). In the experiments we also use smoothed variants
of these formulas (Equations 4.23 and 4.28)

5.3.3 Experimental series

The experiments performed on INEX collection are classified into four experimen-
tal series. In all series we ’trained’ the models on 2003 collection and test the
outcome on 2004 collection. The first set of experiments tests various aspects of
relevance score computation: (1) what are the best score computation models, (2)
whether stemming helps in the retrieval process, (3) which of the two size com-
putation functions is more effective on document component retrieval, (4) does
length prior helps, and (5) what are the best parameter values (Section 5.4).

In Section 5.5 the result of the evaluation of numerous runs with different AND
and OR score combination function implementations are discussed. The compar-
ison is done using AP values on different score computation function implemen-
tations, comparing recall precision graphs, and comparing the average precision
values per query. Finally, score propagation is analyzed in Section 5.6. Different
implementations of upwards and downwards score propagation functions are tested
on effectiveness. At the end a short discussion of experimental runs is presented.

5.4 Relevance score computation

This section starts with presenting the average precision values obtained on INEX
2003 and 2004 runs with two different element size computation functions in com-
bination with the search where stemming is used or not. Then, the influence of
retrieval model parameter values on AP values are analyzed. The experiments are
performed with four ‘advanced’ score computation models, i.e., GPX, language

128 5. Component Retrieval

models with and without article weighting, and Okapi, as they involve parameters
in the specification of score computation (and combination) function. For the size
and stemming experiments we use the following retrieval model parameter values:
A = 5 for GPX, λ = 0.5 for language model, α = 0.5 and β = 0.25 for language
model with article weighting, and k1 = 1.5 and b = 0.75 for Okapi.

In this set of experiments we use the fixed choice for element score combination
and propagation functions with respect to each score computation model. For the
GPX model we use exponential sum for both AND and OR score combination,
for language models we use product for AND and sum for OR score combination,
and for Okapi we use sum for both AND and OR score combination. Upwards
and downwards score propagation functions are in all cases implemented as sum.

5.4.1 Stemming and element size computation

The results of the experimental evaluation of advanced retrieval models when
stemming is used or not (column stem) and when element size (column size) is
computed using region bounds – entity (Equation 4.2) or counting the number
of contained terms – term (Equation 4.3), are depicted in Table 5.1. The results
are reported on INEX 2003 and 2004 collections using strict (column strict) and
generalized (column general.) quantizations, specified in Equations 5.5 and 5.63.
The best results for each retrieval model, with respect to element size computation
and stemming are given in bold.

By analyzing Table 5.1, we cannot see a clear pattern with respect to the el-
ement size computation and the usage of stemming. While stemming seems to
have positive impact for language models, it is not clear for GPX and Okapi. Fur-
thermore, for strict quantization and strict assessments (INEX 2003 experiments
evaluated using strict quantization) stemming does not seem to work well. This
might indicate that stemming is not useful for getting highly relevant elements,
but further experiments are needed to confirm this hypothesis.

Looking at different implementations of element size computation function, it
seems that counting terms gives better results (see the results on 2003 collection
with generalized quantization). In all cases it gives higher AP except for the Okapi
score computation model where stemming is not used on INEX 2003 collection with
strict quantization. This is confirmed on 2004 collection. However, the differences
are in most cases statistically insignificant.

For comparison, the same set of experiments on INEX 2003 and 2004 CO topics,
which are actually treated as CAS topics in TIJAH (see Section 4.1.1), does not
yield unique conclusions. For some of the models stemming improved the results,
and also for some of them counting terms yielded better results. Furthermore, for
some of the models, the AP is higher on one topic set and lower on the other.

3The AP values for the GPX score computation model are equal for both size computation
functions as the GPX score computation formula does not employ the element size computation
function (see Equation 4.10).

5.4. Relevance score computation 129

Table 5.1: Experiments with stemming and computation of element size. We
report average precision (AP) values.

2003 2004
Model stem size strict general. strict general.

GPX
no

entity 0.29039 0.22403 0.07110 0.03240
term 0.29039 0.22403 0.07110 0.03240

yes
entity 0.28665 0.22410 0.07488 0.03481
term 0.28665 0.22410 0.07488 0.03481

LMs
no

entity 0.23626 0.21302 0.07126 0.03753
term 0.23846 0.21573 0.07381 0.03871

yes
entity 0.22786 0.22202 0.07525 0.03805
term 0.23400 0.22457 0.07787 0.03996

LMA
no

entity 0.24155 0.24370 0.05837 0.03585
term 0.24800 0.24648 0.05983 0.03669

yes
entity 0.23902 0.24750 0.06985 0.03959
term 0.25370 0.25196 0.07045 0.04015

Okapi
no

entity 0.23515 0.19194 0.05662 0.03250
term 0.23463 0.19187 0.06121 0.03380

yes
entity 0.20898 0.19842 0.06270 0.03129
term 0.21107 0.19873 0.06403 0.03266

By comparing the two versions of language models (with and without article
weighting) we can see that while on 2003 runs the language model with article
weighting produces better results this is not the case on 2004 runs. Further ex-
periments are needed to analyze this behavior.

After analyzing the results of using element prior for improving the effective-
ness of retrieval models, we found that the only retrieval models for which the
effectiveness is improved are language models. Thus we use the element prior in
the experiments discussed below. Also, for the rest of our experimental series we
use stemming and Equation 4.3 (term count) for element size computation.

5.4.2 Estimating parameters

Figures 5.3 to 5.5 depict the AP values for structured retrieval models using dif-
ferent parameter values for each score computation model, except for the GPX
model where parameter is varied in the score combination function. The models
are first ‘trained’ on 2003 collection and the outcome is tested on 2004 collection.

Figure 5.3 shows the behavior of the language model based retrieval model,
where parameter λ takes the values between 0 and 1. We can see that for the 2003
experiments the AP values tend to get higher the greater the value of λ, using
both strict and generalized quantization. This is also the case for language models

130 5. Component Retrieval

Figure 5.3: The influence of different values of λ on AP for the language model:

0 0.2 0.4 0.6 0.8 1
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

λ

A
P

lp: strict quantization
lp: generalized quantization
strict quantization
generalized quantization

(a) 2003 runs

0 0.2 0.4 0.6 0.8 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

λ

A
P

lp: strict quantization
lp: generalized quantization
strict quantization
generalized quantization

(b) 2004 runs

Figure 5.4: The influence of different parameter values (k1 and b) on AP for the
Okapi model:

0.6 0.8 1 1.2 1.4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

k
1

A
P

2003:strict quantization
2003:generalized quantization
2004:strict quantization
2004:generalized quantization

(a) k1 estimation for b = 0.75

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

b

A
P

2003:strict quantization
2003:generalized quantization
2004:strict quantization
2004:generalized quantization

(b) b estimation for k1 = 1.3

5.4. Relevance score computation 131

Figure 5.5: The influence of different parameter values on AP for the LMA (β)
and GPX (A) models:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

β

A
P

2003:strict quantization
2003:generalized quantization
2004:strict quantization
2004:generalized quantization

(a) LMA parameter β estimation

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

0.3

A

A
P

2003:strict quantization
2003:generalized quantization
2004:strict quantization
2004:generalized quantization

(b) GPX parameter A estimation

with the usage of length prior (denoted with lp in the figure). We expected the
same behavior on 2004 collection.

The expectation was confirmed on 2004 experiments with generalized quanti-
zation. However, for the strict quantization, the AP is stable across all values of
λ with a small peak around λ = 0.2. Also a big difference in AP values for 2003
and 2004 experiments can be noticed. This is due to difference in the assessment
process. While in 2003 (Figure 5.3a) only the elements that strictly follow the
structured constraints are assessed, in 2004 (Figure 5.3b) all elements that are on
the relevant element path are assessed (as relevant).

Figure 5.4 shows the AP values for the Okapi based model, where k1 = [0.6, 1.5],
and b = [0.4, 0.8]. From 2003 experiments we can see that the AP increases when
larger values for k1 parameter are used, as well as that there is a peak for b ≈ 0.55.
While parameter k1 shows the expected behavior on 2004 runs, this was not the
case for parameter b. On 2004 runs the AP values increase with the larger values
of b.

Figure 5.5a shows that the document (article) smoothing parameter should
have low values, i.e., β ≈ 0.1. This hypothesis, based on 2003 runs, is confirmed on
2004 runs. For these experiments we fixed the ratio of background and foreground
parameters, i.e., α : µ = 9 : 1 (µ = 1 − α − β).

The GPX model parameter A gives stable AP values for A ≥ 2, with the peak
around A = 0.15 on strict quantization for 2003 runs. This is also confirmed on
2004 runs, but without the peak for strict quantization, as depicted in Figure 5.5b.

Just for comparison we evaluated the CO experiments with the same settings.
The best average precision values are obtained in the following cases. For the
language model the highest AP values are for λ = 0.4 to λ = 0.6, depending

132 5. Component Retrieval

on topic set and quantization. The highest AP values for the Okapi model are
obtained for k1 ≈ 0.6 and b ≈ 0.4. For the GPX the highest AP is for A = 2 on
2003 runs and A = 1 on 2004 runs.

Although in some cases we could not confirm that the estimated parameters
on 2003 runs give the best results on 2004 collection, we use these parameters for
our further experiments. The following values of parameters are used: A = 0.5,
λ = 0.9, α = 0.8, β = 0.1, µ = 0.1, k1 = 1.3, and b = 0.6.

5.5 AND and OR score combination

In analyzing different instantiations of score combination functions we make a
distinction between the models that implement AND and OR score combination
using the same function specification, and the ones where these two are different.
For the first set of experiments we tried all instantiations of score combination
functions. For the second series of experiments we illustrate the best AND score
combination functions in composition with different OR score combination func-
tion instantiations.

5.5.1 AND and OR instantiated using the same scoring
function

Table 5.2 depicts the two best and the worst score combination function in case
AND (⊗) and OR (⊕) abstract score combination operators use the same im-
plementation of scoring function. The table shows that the best AND and OR
score combination operator implementations (given in bold) follow the specifica-
tion of the original retrieval models given in Section 2.1 and our hypothesis given
in Section 5.1. The best score combination for Boolean, tf.idf, and Okapi models
are the ones implemented as sum, while for the language models this is the one
implemented as product. Additionally, for the Okapi model and tf.idf model, the
implementation of abstract score combination operator as a probabilistic sum also
shows nearly the same effectiveness as the one implemented as sum.

From the table we can also see the worst choices for score combination imple-
mentations (given in italic). When specifying a Boolean retrieval model one should
not use score combination implemented as probabilistic sum. Similarly, for GPX
and Okapi score computation models, score combination implemented as mini-
mum should be avoided, while for language models and tf.idf score combination
implemented as maximum should be avoided.

The overlap over 1500 returned elements used in the evaluation process is
reported on 2004 runs in the last column of Table 5.2 (column ov). For all the
runs it is below 26%. This indicates that not many overlapping elements exist in
the result set; approximately every fourth element returned by the system overlaps
with the other returned element.

5.5. AND and OR score combination 133

Table 5.2: Experiments with AND and OR score combination operator where
score combination function instantiation is the same for both operators. The two
variants of score combination function with the highest AP and the one with the
lowest AP are presented, along with the percentage of overlap for 2004 runs.

2003 2004
f⊐ ⊗ ⊕ strict general. strict general. ov

Bool
prob prob 0.04823 0.03972 0.00841 0.00478 10.73
prod prod 0.12526 0.06460 0.01783 0.00858 7.02
sum sum 0.13599 0.12064 0.04616 0.02291 15.50

GPX
exp exp 0.28664 0.22410 0.07488 0.03481 20.06
min min 0.18742 0.11041 0.03469 0.01799 14.54
sum sum 0.20039 0.14473 0.04320 0.01997 14.54

LMs
max max 0.07562 0.07398 0.01984 0.01318 18.19
min min 0.22214 0.16265 0.04772 0.02485 16.90
prod prod 0.26942 0.23445 0.08224 0.04233 24.50

LMA
max max 0.07850 0.07460 0.01830 0.01371 17.44
min min 0.22077 0.19457 0.04843 0.02807 18.24
prod prod 0.27290 0.25465 0.07970 0.04320 25.30

Okapi
min min 0.13369 0.08731 0.03176 0.00815 6.63
prob prob 0.20166 0.18865 0.06186 0.03153 17.38
sum sum 0.22280 0.20461 0.06222 0.03220 17.27

tf.idf
max max 0.13437 0.09678 0.01888 0.00978 13.32
prob prob 0.17780 0.12582 0.04718 0.02135 18.70
sum sum 0.18643 0.13160 0.04719 0.02135 18.69

Comparison of recall-precision graphs

In addition to AP comparisons we also compared the inex eval recall-precision
graphs for the best score combinations for each model. Two such graphs for strict
quantization are depicted in Figure 5.6, for 2003 and 2004 runs. The precision is
reported at every (interpolated) 0.01 recall point4. The graphs show that GPX
based model has a high precision at low recall points. This is especially the case
for the 2003 runs with strict quantization and strict assessments (see Figure 5.6a).
The precision significantly drops down at the highest recall points, as can be seen
for the 2004 runs (and also for the generalized quantization for both runs not
presented here).

On the other hand, language models and GPX show constantly higher precision
than Okapi based models. This can be noticed for 2003 runs up to the recall level
of 0.5, and for the 2004 runs up to the recall level of 0.2. Also by comparing

4Both graphs are cut at a recall level of 0.7 as the graphs are flat for all models for recall
points between 0.7 and 1.

134 5. Component Retrieval

Figure 5.6: Recall-precision graphs for the best AND (and OR) score combination
functions on GPX, LMs, LMA, and Okapi score computation model:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

Recall

P
re

ci
si

on

GPX, exp, exp, A=5
LMs, prod, prod, λ=0.9
LMA, prod, prod, α=0.8, β = 0.1
Okapi, prob, prob, k1=1.3, b=0.6
Okapi, sum, sum, k1=1.3, b=0.6

(a) 2003 runs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

P
re

ci
si

on

GPX, exp, exp, A=5
LMs, prod, prod, λ=0.9
LMA, prod, prod, α=0.8, β=0.1
Okapi, prob, prob, k1=1.3, b=0.6
Okapi, sum, sum, k1=1.3, b=0.6

(b) 2004 runs

5.5. AND and OR score combination 135

Figure 5.7: AP value comparison on language model with different implementa-
tions of score combination functions per INEX 2003 query.

62 63 64 65 66 68 70 71 72 74 75 77 78 79 80 81 82 83 84 85 86 87 88 89 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query number

M
A

P

LMs, max, max
LMs, min, min
LMs, prob, prob
LMs, prod, prod
LMs, sum, sum

language models with GPX, the precision is slightly worse for language models
than the GPX model for low recall points, and nearly the same or even better
for the higher recall points. This indicates that the GPX is well suited model for
high precision at low recall points for strict scenario (strict quantization, strict
assessments), while language models are more suitable for finding all relevant
elements (recall oriented) in a more vague scenario.

Score combination analysis per query

For the final analysis we compared the impact of different score combination op-
erator implementations on average precision values per query. This is depicted in
Figures 5.7 and 5.8. From the first figure we can see that for most queries com-
bination operators implemented as product and minimum, in composition with
language models, give higher AP values. Only for few topics other implementa-
tions give higher AP values for language models. Among them, for topics that
include selection of arbitrary descendant nodes (topics 71 and 72 in INEX 2003
and topic 157 in 2004 topic set), score combination implemented as product is not
the best solution. This might indicate that the score combination implemented
as minimum is better for this type of queries. However, further experiments are
needed to confirm this hypothesis.

136 5. Component Retrieval

Figure 5.8: AP value comparison on GPX and Okapi models with different imple-
mentations of score combination functions per INEX 2003 query:

62 63 64 65 66 68 70 71 72 74 75 77 78 79 80 81 82 83 84 85 86 87 88 89 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query number

M
A

P

GPX, exp, exp
GPX, max, max
GPX, min, min
GPX, prob, prob
GPX, prod, prod
GPX, sum, sum

(a) GPX

62 63 64 65 66 68 70 71 72 74 75 77 78 79 80 81 82 83 84 85 86 87 88 89 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query number

M
A

P

Okapi, max, max
Okapi, min, min
Okapi, prob, prob
Okapi, prod, prod
Okapi, sum, sum

(b) Okapi

5.5. AND and OR score combination 137

Analyzing the graphs in Figure 5.8 we can hypothesize that the GPX and Okapi
based models yield better results if score combination is modeled as product for
queries where the answer element is the ‘article’ (document) element and search
is performed either in the ‘article’ element (GPX), or in the ‘article’ and elements
it contains (Okapi). The first set of topics contains topics 65, 79, 87, and 88. For
all of them, score combination implemented as product gives higher AP values
than the score combination implemented as exponential sum for the GPX score
computation model.

The second set of topics contains topics 62, 63, 65, 70, 75, 79, 81, 82, 87,
and 88. For eight of them, Okapi score computation in composition with score
combination implemented as product, gives better results than in composition
with score computation implemented as sum. Similar behavior can be seen for
the topic 137 in the 2004 topic set. Using the paired sign test [193], we can
determine that on this set of topics score combination implemented as product in
composition with the Okapi score computation model is statistically better than
score computation implemented as sum; the probability value of a sign test is
0.0327 which is less than the p value (0.05).

The main conclusion of this effectiveness analysis per query is that different
score combination implementations can yield better results for different user re-
quests. Also some retrieval models are more appropriate for some of the queries,
and others for other queries. For example, GPX with score computation imple-
mented as exponential sum is usually better for longer queries (queries that contain
many terms) than the best performing score combination models for other score
computation functions. Although the classification of queries with respect to the
implementation of score combination operators cannot be clearly determined, this
study indicates that there are relations between the query complexity, type of the
user request, and the form of the retrieval model. However, the full analysis of
these relations would require much larger topic sets and also more analysis of the
user preferences when searching structured collections5.

5.5.2 Analysis of OR score combination function

The AP values for the two best and the worst instantiation of OR score combi-
nation functions for the best (AND) score combination instantiations discussed
above are depicted in Table 5.36. The AP values given in bold represent the high-
est AP for each score computation model, while the ones given in italic represent
the lowest AP values. Based on 2003 experiments we could make a hypothesis
that the OR score combination for GPX should be implemented as exponential
sum, and for language models as minimum. For Boolean, Okapi, and tf.idf score
computation models it is not clear which OR score combination implementation
gives the highest AP.

5That is the task of the INEX Interactive track that started in 2004.
6For this set of experiments the overlap does not differ significantly from the previous set of

experiments as can be seen in the table.

138 5. Component Retrieval

Table 5.3: Experiments with different instantiations of OR score combination
function for the AND/OR score combination function variants with the highest
AP in the previous series of experiments. The two OR score combination function
with the highest AP values and the one with the lowest AP value are presented.

2003 2004
f⊐ ⊗ ⊕ strict general. strict general. ov

Bool
sum prob 0.13230 0.11422 0.03341 0.01670 14.45
sum prod 0.13875 0.11944 0.04548 0.02199 14.91
sum sum 0.13599 0.12064 0.04616 0.02291 15.50

GPX
exp exp 0.28664 0.22410 0.07488 0.03481 20.06
exp min 0.27207 0.21607 0.06638 0.03179 19.93
exp prob 0.28350 0.22042 0.07538 0.03574 20.02

LMs
prod min 0.29344 0.25027 0.07180 0.03771 23.94
prod prod 0.26942 0.23445 0.08224 0.04233 24.50
prod sum 0.29043 0.24733 0.08243 0.04268 23.91

LMA
prod min 0.29648 0.27218 0.06865 0.03859 24.69
prod prod 0.27290 0.25465 0.07970 0.04320 25.30
prod sum 0.29301 0.26469 0.07792 0.04358 24.81

Okapi
sum min 0.21144 0.19570 0.05683 0.02918 16.94
sum prob 0.22217 0.20557 0.06189 0.03204 17.28
sum sum 0.22280 0.20461 0.06222 0.03220 17.27

tf.idf
sum min 0.18072 0.12307 0.04121 0.01813 18.67
sum prob 0.18643 0.13161 0.04719 0.02135 18.69
sum sum 0.18643 0.13160 0.04719 0.02135 18.69

On the other hand, the worst OR score combination implementations could be
clearly identified for each model on 2003 results: probabilistic sum for Boolean,
minimum for GPX, Okapi, and tf.idf, and product for language models. However,
the 2004 experiments could not confirm many of our hypotheses based on 2003
results. Table 5.3 shows that different compositions of OR, AND, and score com-
putation functions give different results on 2003 and 2004 INEX collections. For
example, language models give better results if OR score combination is imple-
mented as minimum on 2003 and as sum or product (which is the worst imple-
mentation on 2003 runs) on 2004 collection. Similarly, for GPX based models, the
AP values are higher for OR score combination implemented as exponential sum
on 2003 collection and as probabilistic sum on 2004 collection.

This also indicates that the OR score combination operator implementation
differs with respect to different queries and different tasks. However, for the full
analysis we would have to use a collection that contains more queries that have
OR statements and not only 9 as in our case (3 in 2003 and 6 in 2004 topic set).
Furthermore, user requests have to be analyzed to determine what is the user
intention with the OR statement within the structured query.

5.6. Upwards and downwards score propagation 139

For our further experiments we use the following implementations for OR score
combination functions in composition with different score computation models:
sum for Boolean, language models, Okapi, and tf.idf, and exponential sum for
GPX.

5.6 Upwards and downwards score propagation

This section illustrates the results of our experiments on different implementations
of score propagation functions. The first part compares four implementations of
upwards score propagation function (Equations 4.19 to 4.22) and discuss why
structured smoothing does not help for component retrieval on INEX collection.
The second part shows the outcome of downwards score propagation experiments.

5.6.1 Upwards score propagation

Table 5.47 presents the AP values for all score computation models with the best
score combination implementations in composition with the four different imple-
mentations of upwards score propagation function given in Equations 4.19 to 4.22.
As can be seen from the table, our training collection, i.e., 2003 test collection,
could not lead to many conclusions, except that for the GPX based model upwards
score propagation function should be implemented as sum.

After testing the models on 2004 collection, we can see that for different im-
plementations of score computation and score combination functions different im-
plementations of upwards score propagation give better results. For example, for
language models, for each quantization and each test collection, different score
propagation implementations give the highest AP.

The only regularity that can be noticed is for the strict quantization AP values
for 2004 collection and for the generalized quantization on both collections and
across all models (excluding GPX based models). In the former case the AP
values are higher for the upwards score propagation implemented using weighted
sum normalized by the size of the containing element – wsa (Equation 4.21).
In the latter case the AP values are higher for the upwards score propagation
implemented using average scores of contained elements – avg (Equation 4.19) or
using a weighted sum normalized by the sizes of the contained elements – wsd
(Equation 4.22).

Based on these results we can conclude that there might be a pattern in the
usage of different upwards score propagation functions for modeling different rel-
evance assessments (vague assessment with strict or generalized quantization). In
other words, a relation might exists between the specific user request expressed in

7The overlap is in the same bounds as for previous experiments: for Boolean model 15.50%−
16.58%, for GPX 19.98% − 20.19%, for LMs 23.91% − 24.61%, for LMA 24.82% − 25.34%, for
Okapi 16.58% − 17.97%, and for tf.idf 18.58% − 18.69%.

140 5. Component Retrieval

Table 5.4: Experiments with different implementations of upwards score propaga-
tion function. We report AP values for all four implementations.

2003 2004
f⊐ ⊗, ⊕ f◮ f◭ strict general. strict general.

Bool

avg sum 0.16811 0.14054 0.05002 0.02397
sum, sum sum 0.13599 0.12064 0.04616 0.02291
sum wsa sum 0.12309 0.11981 0.05898 0.02138

wsd sum 0.15986 0.13882 0.05220 0.02447

GPX

avg sum 0.24957 0.21784 0.07258 0.03443
exp, sum sum 0.28665 0.22410 0.07488 0.03481
exp wsa sum 0.24455 0.20945 0.09108 0.03453

wsd sum 0.24983 0.21806 0.08095 0.03444

LMs

avg sum 0.28882 0.25042 0.08521 0.04336
prod, sum sum 0.29044 0.24733 0.08243 0.04268
sum wsa sum 0.27041 0.24104 0.09116 0.04266

wsd sum 0.27931 0.24937 0.08531 0.04351

LMA

avg sum 0.29134 0.26871 0.08115 0.04508
prod, sum sum 0.29301 0.26469 0.07792 0.04358
sum wsa sum 0.28032 0.25944 0.08763 0.04416

wsd sum 0.29233 0.26871 0.08127 0.04511

Okapi

avg sum 0.26550 0.23573 0.06919 0.03405
sum, sum sum 0.22280 0.20461 0.06222 0.03220
sum wsa sum 0.24326 0.20414 0.07386 0.03151

wsd sum 0.25961 0.23627 0.06947 0.03447

tf.idf

avg sum 0.20803 0.14654 0.05438 0.02349
sum, sum sum 0.18643 0.13160 0.04719 0.02135
sum wsa sum 0.18120 0.12632 0.06029 0.02082

wsd sum 0.20848 0.14594 0.05488 0.02341

the query, e.g., whether the focus is on precise answers or on all possible relevant
answers, and the upwards propagation function used.

We also experimented with different values of structure smoothing parameter
ω = [0, 1]. However, due to the regular structure of INEX IEEE collection, i.e.,
since all articles have sections, that have paragraphs, etc., structured smoothing
does not help in improving the effectiveness for any of the models. This is also true
for downwards score propagation discussed below. In the next chapter we experi-
ment with collections (TREC and CLEF) that do not have a complete structure
and we show what is the influence of the structured smoothing parameter in this
case.

For testing the downwards score propagation, we selected different implementa-
tions of upwards score propagation for different score computation models: average

5.6. Upwards and downwards score propagation 141

Table 5.5: Experiments with different implementations of downwards score prop-
agation function. a|s|d stands for avg, sum, or wsd. AP values are reported.

2003 2004
Model ⊗, ⊕ f◮ f◭ strict general. strict general.

Bool
sum,

avg
a|s|d 0.16811 0.14054 0.05002 0.02397

sum wsa 0.12395 0.11020 0.03876 0.01626

GPX
exp,

sum
a|s|d 0.28665 0.22410 0.07488 0.03481

exp wsa 0.27191 0.21723 0.05930 0.03102

LMs
prod,

avg
a|s|d 0.28882 0.25042 0.08521 0.04336

sum wsa 0.26871 0.23667 0.07368 0.04044

LMA
prod,

wsd
a|s|d 0.29233 0.26871 0.08127 0.04511

sum wsa 0.26580 0.24837 0.07058 0.04052

Okapi
sum,

wsd
a|s|d 0.25961 0.23627 0.06947 0.03447

sum wsa 0.21138 0.19666 0.05596 0.02458

tf.idf
sum,

wsd
a|s|d 0.20848 0.14594 0.05488 0.02341

sum wsa 0.17743 0.12982 0.03603 0.01924

for Boolean and language model, sum for GPX, and wsd for language model with
article weighting, Okapi, and tf.idf. Although wsa gives the highest AP values for
most models on 2004 collection with strict quantization, we do not use it as it gives
usually the lowest AP values for other evaluations (given in italic in Table 5.4).

5.6.2 Downwards score propagation

Here we present the experimental results on using different implementations of
downwards score propagation function. The AP values are given in Table 5.5.
Due to the hierarchical structure of the INEX test collection, and the set of topics,
three variants of downwards score propagation function implementation, i.e., sum
(Equation 4.25), wsd (Equation 4.27), and avg (Equation 4.24), give the same
AP values (denoted with a|s|d in the table). The downwards score propagation in
most cases propagate the score values from one ancestor element to one descendant
element. In this case, avg and sum just copy the scores of ancestor elements, while
wsd normalize it by 1 (multiplies and divides by the size of the ancestor element).

However, for the wsa instantiation (Equation 4.26), in the propagation process
the scores of containing elements are multiplied by their sizes and then divided
by the size of a contained element. Therefore, the application of Equation 4.26
for downwards score propagation yields different scores, and consequently different
AP values, than other implementations.

As can be seen from the table, on the train as well as on the test collection,
in all cases downwards score propagation implemented using Equations 4.24, 4.25,
and 4.27 gives higher AP values than downwards score propagation implemented

142 5. Component Retrieval

using Equation 4.26. However, other implementations might exist that can further
improve the effectiveness of retrieval models. This requires further experiments.

5.7 Discussion

This chapter presents the results of experiments performed to analyze structure
information retrieval. The focus is on the component retrieval where an expert
user explicitly expresses the structured constrains that should be followed when
answering the query, known as strict content-and-structured queries in INEX.
The experiments are performed on INEX 2003 and 2004 collections. We tested the
effectiveness of different retrieval models instantiated following the four elementary
structured retrieval requirements. In Section 5.1 we explained the motivation for
the experiments and introduced several hypotheses that we discuss here.

In the first set of experiments we pointed out that the more advanced score
computation models, i.e., GPX, language models, and Okapi, give higher average
precision (AP) values – higher effectiveness, than the baseline ones, i.e., Boolean
and tf.idf. Although we expected that counting the number of terms would yield
better results (higher effectiveness) than using region bounds to compute the sizes
of elements this could not be confirmed. In many cases, using region bounds for
size computations gives better results. The same conclusion can also be made for
stemming. While for some models the usage of stemming helps for others it lowers
the effectiveness (AP values).

By analyzing the parameter values we noticed that for the Okapi model, the
commonly used values for parameters in retrieval are more or less the ones that give
high effectiveness for document component retrieval (k1 = 1.3, b = 0.4). However,
this is not the case for language models. The parameter λ gives better scores if
it is larger, i.e., λ ≈ 0.9. For the GPX model, designed for structured retrieval,
there is no significant difference for the AP values in the range 2 ≤ A ≤ 10.

For the AND score combination function, the best implementations are the ex-
pected ones (see Hypothesis 3). The highest effectiveness is achieved when employ-
ing AND score computation abstract operator implemented as sum for Boolean,
exponential sum for GPX, product for language model, sum for Okapi, and sum
for tf.idf score computation model. The comparison of recall-precision graphs
for the best composition of score computation and combination implementations
pointed out that the GPX model with exponential sum is a precision oriented
model, while language models with product are recall oriented. The Okapi model
with score combination implemented as sum gave worse results than GPX and lan-
guage models with score combination implemented as exponential sum or product,
respectively.

Furthermore, some compositions of score computation and score combination
functions are better on some queries and worse on some other. We illustrated
this on the Okapi model where the score combination implemented as product
gives better results than the score combination implemented as sum if the answer

5.7. Discussion 143

element in the query is an ‘article’ element and the search is performed in the
‘article’ element or elements inside it. This indicates that experimenting on larger
collections might lead to establishing relations between the score combination in-
stantiations and the query structure for producing better results.

However, for the OR score combination, in most cases it is not clear what is
the best or the worst OR score combination abstract operator implementation (see
Table 5.3). Additionally, some implementations of AND/OR score combinations
give the highest AP on 2003 collection, while on 2004 collection they give the
lowest.

The score propagation is analyzed in the previous section. It is the most
unexplored aspect in structured retrieval. We use several simple formulas for
implementing upwards score propagation function. The experiments show that
the retrieval model effectiveness varies with respect to the choice of the function.
As a result we could not confirm the hypothesis (number 6) that weighted sum
produces higher effectiveness than simple sum or average.

Due to the regular XML structure of the INEX collection, for downwards score
propagation we can say that it is not useful to normalize the scores of contained
regions by their sizes when propagating them from the containing regions. For the
more exhaustive analysis, more advanced models have to be defined for score prop-
agation that would include more information from document structure and content
(one option is given in Section 7.1 using the element nesting level information).

Finally, we tested how models behave when we use structured smoothing for
score propagation. The results show that it is not useful. The document structure
in INEX collection strictly follows the DTD, and for the upwards and downwards
score propagation contained or containing elements always exist. Therefore, mod-
els cannot benefit from the smoothing techniques we implemented. However, other
smoothing technique (like the usage of neighboring elements when propagating
scores) might improve effectiveness.

In this chapter we illustrated some issues that the researchers should have in
mind when implementing structured retrieval models. Also, we show the complex-
ity of the structured retrieval research topic. There are many open questions that
need to be answered in the future. The outcomes of presented experiments can
be used by other researchers as guidelines when developing their own structured
retrieval systems, or when using our algebra/framework for improving the effec-
tiveness of the already existing ones. In the last chapter of this thesis we illustrate
some open questions in structured retrieval that need further attention.

144 5. Component Retrieval

Chapter 6

Document Retrieval and
Structured Queries

While previous chapter focuses on document component retrieval, the topic of this
chapter is improving the effectiveness of document retrieval using query structure
and document structure. The chapter starts with the motivation and specifies the
hypotheses that we test in the experimental evaluation. The test collections are
then presented along with the specification of different structured queries that we
evaluate. The chapter continues with the experiments, analyzing score computa-
tion and AND score combination on unstructured queries, and OR score combi-
nation and upwards score propagation on structured queries. The experimental
results are summarized at the end.

This chapter is partially based on a paper published as a Centre for Telematics
and Information Technology Technical Report [142].

6.1 Motivation

Although most user queries issued to Web search engines constitute of a limited
number of query terms (93% of the Web queries have less than five terms in the
query as reported in [103]), these query terms do not have to be the only input
that the search engines can use to find the relevant information. For instance,
faceted queries [64, 95, 197] utilize knowledge about the semantic relations between
words to retrieve more relevant answers, whereas structured queries (discussed in
previous chapter) utilize document structure to give more precise answers.

The growth of personalized search, i.e., the information about the user who
is performing the search [136, 167], as well as the semantic information that can
be deduced from the search request, e.g., using semantic web resources [201],
enables easier generation of structured queries. In the future we can expect that
the automatic generation of structured queries would be possible, or at least that
many retrieval systems will support users in expressing their information need
as a structured query. We follow this assumption and focus on analyzing the
effectiveness of different retrieval models on document retrieval, using different
types of unstructured and structured queries.

We argue that the automatic generation of simple structured queries, such
as faceted and field search queries (explained in Section 6.2.2), is more realistic

146 6. Document Retrieval and Structured Queries

than the generation of long queries such as TREC title + description or title +
description + narrative queries. However, it is unclear whether we can achieve
higher effectiveness when using these ‘simple’ structured queries in comparison to
the expanded ones (using topic description and narrative).

The question that we try to answer in this chapter is twofold. The first part
is about analyzing the behavior of different retrieval models in unstructured and
structured document retrieval scenarios. The second part tests whether the for-
mation of structured queries by (end) users, either with or without the help of
information automatically extracted from documents, can improve retrieval model
effectiveness. In other words, is a search system that is provided with the ad-
vanced structured queries (either faceted, field-based, or both) more effective on
ad-hoc search task than the same search engine operating on simple or expanded
unstructured text queries.

6.1.1 How to compute scores?

Similarly to document component retrieval, the first set of experiments aims at
finding out what are the best score computation models for document retrieval.
Therefore, the first hypothesis is the same as in the previous chapter.

Hypothesis 1. The effectiveness of more advanced retrieval models, i.e., GPX,
language models, and Okapi, should be higher than the effectiveness of simple
retrieval models, such as Boolean and tf.idf, for document retrieval.

We also tested the two size estimation formulas for score computation, given
in Equation 4.2 and Equation 4.3, and the usage of stemming. Following the
experimental results of state-of-the-art retrieval models, we form the following
two hypotheses.

Hypothesis 2. For document retrieval, it would be more effective to compute
the sizes of elements (documents) by counting the number of terms contained in
them then using region bounds.

Hypothesis 3. The usage of stemming should result in higher effectiveness in
document retrieval.

Furthermore, we compared the retrieval model parameter estimation for docu-
ment retrieval with parameters used in state-of-the-art document retrieval models
and document component retrieval models (see previous chapter). This set of
experiments also tests the usefulness of length prior for the language modeling
approach.

6.1. Motivation 147

6.1.2 How to combine scores?

In this chapter we analyze different implementations of AND and OR score com-
bination functions, in composition with different score computation models. The
AND score combination implementations are tested on unstructured queries, while
OR score combination implementations are tested on structured (faceted) queries.
Besides testing what are the best AND and OR score combination function imple-
mentations, similarly as in previous chapter, we make two additional hypotheses.

Hypothesis 4. The effectiveness of faceted (structured) queries should be higher
than the effectiveness of short title queries as well as the effectiveness of the un-
structured version of structured queries (called expanded queries).

To test this hypothesis we experiment with the short few-term queries, ex-
panded queries (short queries plus synonyms), and the faceted version of the ex-
panded queries where query terms are classified into facets and combined in an
OR expression. Furthermore, we compare these queries with a long queries formed
out of (TREC and CLEF) topic title, description, and narrative. The outcome of
the latter comparison tests the following hypothesis.

Hypothesis 5. The effectiveness of faceted (structured) queries should be the
same or higher than the effectiveness of long title + description + narrative queries.

Proving these two hypotheses on our test collection would show that structuring
queries can help in improving the effectiveness of different retrieval models applied
to document retrieval.

6.1.3 How to propagate scores?

The final set of experiments tests the usefulness of semantically annotated parts
of documents for document retrieval, through different instantiations of upwards
score propagation function.

Hypothesis 6. The usage of semantically tagged document components in en-
hancing document relevance score computation should result in higher effectiveness
on document retrieval task.

We compare the effectiveness of different implementations of upwards score
propagation on document retrieval to the effectiveness of document component
retrieval. Furthermore, due to the incomplete semantic markup of the test col-
lections (see Section 6.2.2) we test whether structured smoothing improves the
effectiveness of document retrieval. The structured smoothing parameter ω is es-
timated on different score propagation functions, and with respect to different
score computation models.

148 6. Document Retrieval and Structured Queries

The experimental results in analyzing the usefulness of query structure and
document structure for document retrieval, as well as in estimating the best im-
plementations of score computation, score combination, and score propagation
functions, are discussed at the end. We also point out which of the models are
most robust and most effective for document retrieval, with respect to different
query types.

6.2 Test collections and experimental setup

This section introduces the test collection and describes the structured query for-
mulation in the first part. Then the retrieval models used in the experimentation
are mentioned and the experimental series discussed in sections to follow are ex-
plained.

6.2.1 Test collections

For our document retrieval runs we use two test collections: TREC and CLEF.
They are discuss below, along with a short description of the TREC and CLEF
evaluation initiatives.

TREC

The Text REtrieval Conference (TREC) [216] has started in 1992 with the purpose
to support research within the information retrieval community by providing the
infrastructure necessary for large-scale evaluation of text retrieval methodologies.
The goals of the initiative are:

• to support information retrieval research

• to increase communication among industry, academia, and government

• to enable faster integration of research into commercial products

• to increase the availability of appropriate evaluation techniques.

Each year U.S. National Institute of Standards and Technology (NIST) pro-
vides a test set of documents and topics (queries). Participants test their retrieval
systems on this test set and send the top-ranked results to NIST. NIST pools
the individual results, judges if the retrieved documents are relevant or not, and
evaluates the results. Finally, each year a workshop is organized that serves as a
forum for sharing experiences among research groups.

A set of tracks is established each year that focuses on the existing problems
or new research areas. Each track has its own goals but it might share data sets
and evaluation strategies with other tracks. TREC started with the Ad-hoc track
and for the year 2006 seven tracks are active: Enterprise track, Genomics track,

6.2. Test collections and experimental setup 149

HARD track, Question Answering track, Robust Retrieval track, SPAM track, and
Terabyte track. Here we present Ad-hoc track as it is the base for all other tracks
and as we use it in our experiments.

The Ad-hoc task has been at the heart of TREC evaluations since the TREC
1 (up to TREC 8). The goal of the Ad-hoc track is to test the effectiveness
of different retrieval systems measured in terms of combination of precision and
recall (see Equations 5.1 and 5.2 in Section 5.2.4). The data collection consisted
of newspaper articles and other documents (500,000 to 700,000 documents) in
roughly two gigabytes of text. The participants were given a set of fifty queries
posed by real users. Using their retrieval systems participants rank documents
from the collection for every query, and the top 1,000 documents for each query
are returned to NIST for evaluation. The assessors judge the top 100 to 200
documents from every system for relevance and these results are used for the
evaluation.

For the experimental evaluation we use four sub-collections from the TREC 6
collection: Foreign Broadcast Information Service (fbis), Federal Register (fr94),
Financial Times (ft), and Los Angeles Times (latimes). The topic set consists of
TREC 6 topics 301 to 350.

For the evaluation we use the TREC relevance assessments and trec eval eval-
uation tool to test the effectiveness of distinct query specifications and different
retrieval models. The evaluation is based on precision and recall definitions given
in Equations 5.1 and 5.2 (in Section 5.2.4). In TREC, precision at several recall
points is reported, e.g., precision when the system retrieved 10% of the relevant
documents, precision when the system retrieved 20%. Usually a fixed number of
recall points is used: 10%, 20%, · · · , 100%. Precision at each natural recall level
for a query might also be computed, e.g., if for a particular topic 20 relevant el-
ements exist, the natural recall points would be {0.05, 0.10, 0.15, ..., 0.95, 1.0}. If
these measures are averaged per query, and the resulting measure is averaged over
all queries, so-called mean average precision (MAP) is computed. This is what we
report for our experiments in this chapter.

CLEF

The Cross-Language Evaluation Forum (CLEF) [165] also started as a track at
TREC (2000-2002). Later it became a separate forum. The goals of the forum are
twofold:

• developing an infrastructure for testing, tuning and evaluation of information
retrieval systems operating on European languages in both monolingual and
cross-language contexts

• creating test-suites of reusable data which can be employed by system de-
velopers for benchmarking purposes.

Similar to TREC, CLEF now contains a number of tracks among which the
most important one is Cross-Language Speech Retrieval track. The test collection

150 6. Document Retrieval and Structured Queries

consists of spontaneous conversational English speech on which queries are speci-
fied in five languages: Czech, English, French, German, and Spanish (in 2005).

The CLEF test collection we use in our experiments consists of two Dutch
newspapers: Algemeen Dagblad (ad) and NRC Handelsblad (nh). CLEF topics
41 to 90, 91 to 140, and 141 to 200 are evaluated in the experiments. Accordingly,
we use the CLEF relevance assessments and trec eval evaluation tool to compute
the MAP and test the effectiveness of retrieval models.

6.2.2 Query formulation

To test the effectiveness of different retrieval models on document retrieval we
use unstructured (list-of-term) and structured (faceted and field-based) query for-
mulations. Unstructured queries are formed using TREC and CLEF topic title,
description, and narrative. Additionally, we use the expanded title queries. We
choose three directions for exploring the potential usage of query structure to test
whether we can make the retrieval more effective in comparison to the list-of-term
queries (ranging from short title queries to long title + description + narrative
queries):

• (re)formulating the queries using faceted (Boolean) query formulation

• (re)formulating the queries using the document structure and the classifica-
tion already present in structured documents

• combing the queries that utilize document structure with the simple title
and faceted queries.

Query formulation for different query types is explained on the TREC ad-hoc
topic 305 depicted in Figure 6.1.

Unstructured queries

In the analysis of unstructured querying we use four types of unstructured queries.
These are: title (T), title + description (TD), title + description + narrative
(TDN), and expanded queries (E). Title, title + description, and title + de-
scription + narrative queries can easily be formed using TREC and CLEF topic
specifications (see the example TREC ad-hoc topic 305 in Figure 6.1).

On the other hand, expanded queries are usually formed by manually or au-
tomatically extending the topic title with more query terms. If we assume that
the user is willing to trade his time/effort in stating his query using more query
terms for effectiveness, or an automatic way to expand the query exists, e.g., using
WordNet [147], routing [24], or relevance feedback [191], a simple title of the TREC
ad-hoc query 305 can be transformed into a non-structured query that looks like:

vehicles crash cars crashworthy death danger

6.2. Test collections and experimental setup 151

Figure 6.1: An example TREC ad-hoc topic 305 specification.

<top>

<num>

<title>

<desc>

<narr>

<top>

Number: 305

Most Dangerous Vehicles

Description:

Which are the most crashworthy, and least crashworthy,

passenger vehicles?

Narrative:

A relevant document will contain information on the

crashworthiness of a given vehicle or vehicles that

can be used to draw a comparison with other vehicles.

The document will have to describe/compare vehicles,

not drivers. For instance, it should be expected

that vehicles preferred by 16-25 year-olds would be

involved in more crashes, because that age group is

involved in more crashes. I would view number of

fatalities per 100 crashes to be more revealing of

a vehicle's crashworthiness than the number of

crashes per 100,000 miles, for example.

In our approach we use manual query expansion (see [64]) based on a faceted
query formulation (see below). Section 6.4 explains in more details the effects of
manual query expansion, as well as the consequence of using the topic description
and narrative in the query formulation, on retrieval effectiveness.

As NEXI query language is used in TIJAH, we transformed unstructured
queries (uq) into structured ones by enclosing them in the following NEXI ex-
pression //DOC[about(., uq)]. For example, the expanded query 305 looks like:

//DOC[about(.,vehicles crash cars crashworthy death danger)]

Faceted query formulation

The origin of this type of Boolean query formulation can be found in the generation
of faceted queries [64, 93] that librarians used in early days of information retrieval,
even before the computer era. However, not many searchers use and not many
retrieval systems support this kind of query formulation. We try to explore whether
faceted search should be supported in retrieval systems, i.e., if it is more effective
than the usage of list-of-term queries.

Faceted queries are designed based on the following approach. The user first
inspects the request and identifies what are the most important keywords in his

152 6. Document Retrieval and Structured Queries

request. Than he groups these keywords into facets. As an example, for our TREC
topic 305 given in Figure 6.1 we can group the following terms:

vehicles crash cars crashworthy death danger

in two facets:

{(vehicles, cars), (crash, crashworthy, death, danger)}.

The final step is combining terms from the same facet using the OR operator,
and combining these faceted expressions using the AND operator. In such a way
we obtain the NEXI query that looks like:

//DOC[(about(., vehicles) OR about(., cars)) AND

(about(., crash) OR about(., crashworthy) OR

about(., death) OR about(., danger))]

So far not many explicit proofs exist that this kind of query formulation is
beneficial for query evaluation, except for some results presented in [95]. However,
there are numerous techniques that use the same idea, except that the faceted
query formulation is hidden in the layer of query routing and refining, starting
with the work of Buckley et al. [24] and Xu and Croft [221]. Additionally, not
many models are tested for their robustness with respect to the faceted query
formulation. We elaborate more on this issue in Section 6.5.

Thanks to Schiettecatte [197] we were in position to use faceted (Boolean)
queries on the TREC collection. We use the whole set of 50 faceted queries for
TREC (the complete list of TREC queries can be found in Appendix B). As we did
not have such queries for the CLEF collection we developed them ourselves (see
the following section) for CLEF 41-90 and CLEF 91-140 topic sets (the complete
list of CLEF queries can also be found in Appendix B).

Using document structure for query formulation

Structured IR queries express a combination of searches in different parts of (hier-
archically) structured documents (see e.g., Appendix A for XML query examples).
In the case of shallow hierarchical documents, such as the ones in TREC and
CLEF collections, structured queries can be formed by adding one or more field-
like structured constraints to the unstructured query. Looking at the description
of the ad-hoc topic 305 in the TREC collection and knowing what are the most
frequent terms within SUBJECT elements in the collection, we can come up with
the following structured query, where the first part is actually the topic title:

most dangerous vehicles

SUBJECT: safety automobile accidents

6.2. Test collections and experimental setup 153

Such queries provide the base for exploring the usefulness of structured infor-
mation in poorly structured documents, such as TREC and CLEF data collections,
and for finding what is the best way of incorporating this additional information
with the traditional document retrieval.

To structure the queries we first analyzed the two selected document collections
to see what kind of useful information we can extract and how we can use it to
help the user in stating his query. In our experiments with field-based queries we
only use the LA Times sub-collection of TREC 6 and the complete CLEF data
collection as they come with the appropriate structure. The other parts of the
TREC collection are not used as they either do not contain meaningful structured
elements or it is too difficult to utilize information contained in the structured
elements for the query formulation.

The LA Times collection contains three types of elements (tags) that can poten-
tially be used for structured search: SUBJECT, SECTION, and TYPE. However,
except for the SUBJECT part, the other two were not suitable for query formu-
lation as the keywords present in these tags are not well classified and they are
difficult to utilize by a user when forming a query. Additionally, there are many
keywords occurring only several times and a few very frequent ones. On the other
hand, the CLEF collection comes with a DTD and is far better organized. Among
others, it also contains four informative elements that can be used for making
structured queries: GEO (location), HTR (keywords), SEC (section), and PER
(persons). Furthermore, unlike in the LA Times collection, tags are populated by
a predefined, more thoughtfully chosen, set of terms.

A potential problem for experiments with field-based queries is that in both
collections only a part of the documents contains these useful tags. For example,
the TREC collection has a SUBJECT tag in 46 849 out of 131 896 documents. It
is similar with GEO, HTR, and PER tags in the CLEF collection. Despite this,
we decided to use it in our experiments, arguing that well organized collections,
with the complete and consistent document annotation, would probably give even
better results on structured queries.

For the TREC collection we formed structured queries in two steps. We first
select the most frequently occurring (more than 500 times) keywords in the SUB-
JECT tags. Then, for each query, we choose the terms that are most relevant to
the query and add them to the original or faceted query (see Appendix B for the
list of faceted queries). For example, the original TREC query 305 with added
structured constraints looks like:

//DOC[(about(., most dangerous vehicles)

AND about(.//SUBJECT, safety automobile accidents)]

We added structured constraints to 41 out of 50 TREC queries.
To make structured queries out of CLEF topics we asked several of our Dutch

colleagues to complete advanced search forms similar to the advanced search forms
in, e.g., Google. Our “users” would first read the CLEF topic description and
narrative and fill in the following:

154 6. Document Retrieval and Structured Queries

• what would be an exhaustive query that they will issue (using TREC faceted
queries as an example)?

• what are the persons involved in the query?

• select from a drop-down box whether the topic is about domestic issues
(“binenland”) or foreign issues (“buitenland”)?

• select from a drop-down box in which section of the newspaper the article is
likely to be found?

• select from a drop-down box where is the location of the event (continent
and country/city)?

• select from a drop-down box what are the keywords that could help the
search?

For all the fields with drop-down boxes, an additional “no preference” option
is provided. The options for section, locations, and keywords are automatically
extracted from the collection. The “searcher’s” input is transformed into a faceted
query, as stated in the previous section, and a field-based query. For example, for
CLEF topic 60 the field-based structured query expressed in NEXI looks like:

//DOC[about(., de franse corruptieschandalen) AND

about(.//HTR, fraude en corruptie) AND

about(.//SEC, buitenland) AND

about(.//GEO, europa frankrijk)]

The results on structured search are presented in Section 6.6.

6.2.3 Retrieval models and experimental series

We tested the same retrieval models as in the previous chapter. The only difference
is that we do not use the score computation implemented as language model with
article weighting. Therefore, for score computation we use Boolean model, GPX,
language model, Okapi, and tf.idf. Score combination is implemented as sum-
mation, product, minimum, maximum, probabilistic sum, and exponential sum.
Upwards score propagation is implemented using Equations 4.19 to Equation 4.22.
We do not analyze downwards score propagation as there are no queries in the test
set that require the usage of downwards score propagation operator. We also use
different size computation auxiliary functions given in Equations 4.2 and 4.3, and
stemming.

The experimental series are organized as follows. The analysis start with com-
paring the effectiveness of different score computation models and estimating their
best parameter values and size computation. We also explore whether stemming
and document length prior help in improving retrieval effectiveness. Then the

6.3. Relevance score computation 155

AND score combination implementations are analyzed on title, title + descrip-
tion, title + description + narrative, and expanded queries. This is followed by
the analysis of experimental results when using structured (faceted) queries with
different OR score combination implementations. The final set of experiments
tests whether different implementations of structured queries that utilize docu-
ment markup can improve effectiveness. This set of experiments also includes the
estimation of structured smoothing parameter ω.

6.3 Relevance score computation

This section discusses the experimental results using different score computation
models, as well as two different element size computation functions and stemming.
Additionally, the best retrieval model parameter values are estimated and com-
pared to the parameters of state-of-the-art retrieval models. The experimentation
is performed using the advanced retrieval models. The retrieval model parameters
are set to the following values in case of size and stemming experiments: A = 5
for GPX, λ = 0.5 for language model, and k1 = 1.5 and b = 0.75 for Okapi.

The fixed choice for AND element score combination with respect to each score
computation model is used in the experiments: GPX with the exponential sum,
language model with the product, Okapi with the sum. We only use the title of the
topics for this set of experiments, and report the mean average precision (MAP)
values. For the experiments we use CLEF 141–200 as a ‘training’ collection and
other collections for testing.

6.3.1 How to compute size and whether to use stemming?

From the experiments on the training set, i.e., CLEF 141–200 collection, depicted
in the last column in Table 6.1, we made a hypothesis that the stemming would
help in improving the retrieval effectiveness. The experimental results are in favor
of this hypothesis, as in all cases on TREC and CLEF collections, the usage of
stemming increases the MAP values (see Table 6.1). The increase goes up to more
than 20% for TREC 6 and CLEF 41–90 runs.

Although we assumed that element size computation based on region indexes
(Equation 4.2) would be less effective than term count (Equation 4.3), especially
because most of the flat text retrieval systems so far use the latter, this is shown to
be a false assumption on CLEF 141–200. The results are confirmed on TREC and
other CLEF collections (see Table 6.1)1. The only run where this is not the case
is the Okapi run with stemming. In other cases MAP improvements are between
0.87% and 4.05%. Therefore, we use the element size computation and stemming
for the rest of our experimentation series.

1This fact is important since precomputations are not used in TIJAH. As a consequence,
element size computation is approximately twice as fast as the term count.

156 6. Document Retrieval and Structured Queries

Table 6.1: Score computation experiments using GPX, language model, and Okapi,
with and without stemming, and with two size computation functions.

TREC CLEF CLEF CLEF
Model stem size 301–350 41–90 91–140 141–200

GPX
no

entity 0.1529 0.2254 0.2782 0.3422
term 0.1529 0.2254 0.2782 0.3422

yes
entity 0.1979 0.2707 0.2880 0.3610
term 0.1979 0.2707 0.2880 0.3610

LMs
no

entity 0.1625 0.2611 0.2903 0.3457
term 0.1600 0.2585 0.2819 0.3349

yes
entity 0.2118 0.3207 0.3099 0.3681
term 0.2093 0.3177 0.3009 0.3538

Okapi
no

entity 0.1650 0.2672 0.2912 0.3457
term 0.1611 0.2648 0.2832 0.3434

yes
entity 0.2093 0.3244 0.3127 0.3683
term 0.2075 0.3252 0.3048 0.3579

6.3.2 Parameter estimation

In the following experiments we try to estimate the best values of retrieval model
parameters for the language model (λ and the usage of document prior) and Okapi
(k1 and b) score computation implementations, and score combination implemen-
tation for the GPX model (A).

For the language model we vary the parameter λ from 0.05 to 1.0, using the
granularity of 0.05. For the prior estimation we use the length prior (Equa-
tion 5.11). The results are depicted in Figure 6.2. As can be seen, the highest
MAP values for the language model are achieved for λ between 0.4 and 0.8, when
length prior is not used on CLEF 141–200 run. This is confirmed on other runs,
although the MAP values are high from λ = 0.3 to λ = 0.8. When using the
length prior (see Figure 6.2b) the high MAP is in the range between 0.3 and 0.6
on CLEF 141–200 experiments, while for other runs we get a similar curve except
that the range is wider (0.2 to 0.8).

Furthermore, by comparing Figure 6.2a and Figure 6.2b we can see that on
three out of four runs the length prior gives higher effectiveness for the best choices
of parameter λ. Only on CLEF 41–90 this is not the case.

In the first set of experiments with the Okapi model we fixed the parameter b to
0.75 and experimented with k1 set from 0.6 to 1.5 with the 0.1 steps. Figure 6.3a
shows that the higher MAP is achieved with lower values of k1 (0.6 to 0.9) on CLEF
141–200 runs. The same behavior can be noticed on other runs. By varying b
from 0.3 to 0.85 (with a step of 0.05), for k1 = 0.7, as can be seen in Figure 6.3b,
the lower values in the range 0.3 to 0.6 give higher MAP values for CLEF 141–200
runs. This is also the case for CLEF 91–140 and TREC 301–305 runs. However,

6.3. Relevance score computation 157

Figure 6.2: The influence of different values of λ on MAP for the language model:

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

λ

M
A

P

TREC 301−350
CLEF 41−90
CLEF 91−140
CLEF 141−200

(a) runs without the length prior

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

λ

M
A

P

TREC 301−350
CLEF 41−90
CLEF 91−140
CLEF 141−200

(b) runs with the length prior

Figure 6.3: The influence of different values of parameters k1 and b on MAP for
the Okapi model:

0.6 0.8 1 1.2 1.4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

k
1

M
A

P

TREC 301−350
CLEF 41−90
CLEF 91−140
CLEF 141−200

(a) k1 estimation for b = 0.75

0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

b

M
A

P

TREC 301−350
CLEF 41−90
CLEF 91−140
CLEF 141−200

(b) b estimation for k1 = 0.7

158 6. Document Retrieval and Structured Queries

Figure 6.4: The influence of different values of parameter A on MAP for the GPX
model.

2 4 6 8 10

0.15

0.2

0.25

0.3

0.35

0.4

A

M
A

P

TREC 301−350
CLEF 41−90
CLEF 91−140
CLEF 141−200

for CLEF 41–90 runs the maximum is around b = 0.75. These are relatively
low values with respect to the usual values for k1 (1.2) and b (0.75) in flat text
retrieval and also the values for structured retrieval discussed in the previous
chapter (k1 = 1.3 and b = 0.6). This might be caused by excluding the third
factor in the product from the Okapi model (compare Equations 2.8 and 4.9).

For GPX we used only one set of experiments where we employed exponential
sum (Equation 4.18) for the score combination operator and estimate the best
value of A. As can be seen in Figure 6.4, after recording MAP values for A set
from 1 to 10 with step 1, the experiments on CLEF 141–200 show stable results
for A ≥ 5. This is confirmed on TREC 301–350, CLEF 41–90, and CLEF 91–140
runs.

In our further experiments we use the following parameters of retrieval models:
language model with prior estimation and with λ = 0.4, Okapi with k1 = 0.7 and
b = 0.4, and exponential sum for GPX model with A = 7.

6.4 Score combination on unstructured queries

The results of our experiments using title (T), expanded (E), title + description
(TD), and title + description + narrative (TDN) queries are depicted in Table 6.2.
In these series of experiments we explore what is the best AND score combination
for different score computation implementations and then analyze the impact of
distinct query formulations on retrieval effectiveness.

We test five different score combination functions: sum, product, minimum,
maximum, and probabilistic sum (Equation 4.17), on Boolean, GPX, language
model, Okapi, and tf.idf score computation functions, and exponential sum (Equa-
tion 4.18) on GPX. By analyzing the two best performing AND score combination
implementations for each score computation function, depicted in Table 6.2, we can

6.4. Score combination on unstructured queries 159

Table 6.2: Unstructured queries: experimental results for the two best-performing
AND score combination functions on title (T), expanded (E), title + description
(TD), and title + description + narrative (TDN) queries.

f⊐ ⊗ T E TD TDN
TREC 301–350

Bool
min 0.0803 0.0317 0.0018 0.0000
prod 0.0803 0.0317 0.0018 0.0000

GPX
exp 0.1997 0.1960 0.1308 0.0143
prod 0.1514 0.0886 0.0734 0.0559

LMs
min 0.1265 0.0467 0.0339 0.0053
prod 0.2223 0.2205 0.2230 0.1878

Okapi
prob 0.2205 0.2232 0.2239 0.1587
sum 0.2205 0.2201 0.2184 0.1551

tfidf
min 0.1004 0.0329 0.0018 0.0000
prod 0.1185 0.0493 0.0019 0.0000

CLEF 41–90

Bool
min 0.1288 0.0681 0.0102 0.0000
prod 0.1288 0.0681 0.0102 0.0000

GPX
exp 0.2752 0.3137 0.2535 0.1246
prod 0.2503 0.1904 0.1776 0.0782

LMs
min 0.1900 0.1025 0.0598 0.0030
prod 0.3080 0.3661 0.3594 0.3302

Okapi
prob 0.3246 0.3728 0.3575 0.3240
sum 0.3257 0.3724 0.3592 0.3215

tfidf
min 0.1541 0.0701 0.0122 0.0000
prod 0.1698 0.0788 0.0133 0.0000

CLEF 91–140

Bool
min 0.1223 0.0051 0.0081 0.0002
prod 0.1223 0.0051 0.0081 0.0002

GPX
exp 0.2896 0.2613 0.2813 0.1791
prod 0.2370 0.0714 0.1127 0.0962

LMs
min 0.2206 0.0374 0.0487 0.0133
prod 0.3211 0.3370 0.3866 0.3658

Okapi
prob 0.3237 0.3499 0.3944 0.3923
sum 0.3247 0.3425 0.3900 0.3889

tfidf
min 0.1600 0.0051 0.0081 0.0002
prod 0.1800 0.0054 0.0095 0.0002

160 6. Document Retrieval and Structured Queries

see that advanced retrieval models by far outperform the baseline ones (Boolean
and tf.idf). Furthermore, for most advanced models, score combination specified
in the original formula of these retrieval models (see Section 2.1) is actually the
best AND score combination function. The only exceptions are the tf.idf model
where the sum is not in the two best performing combination functions, and the
Okapi model where the probabilistic sum implementation (Equation 4.17) shows
equally good performance to the score combination implemented as sum (the best
runs for all three collections are with the probabilistic sum).

Looking at different query formulations, the effectiveness is much higher for
Boolean and tf.idf models on title and expanded queries than on long TD and
TDN queries. This is expected due to the score computation specification for
Boolean and tf.idf models (Equations 4.6 and 4.7). However, this is not the case
for the advanced models where in most cases the mean average precision values
are higher for longer queries (E, TD, and TDN). The MAP values given in bold
represent the best run for each score computation model on one topic set.

By comparing original title queries with the expanded ones we can conclude
that in some cases the simple title queries outperform the expanded ones (espe-
cially for the TREC experiments). In all cases TD queries outperform longer
TDN queries, but it is not clear whether TD or title/expanded queries give bet-
ter results. While on TREC topics there is almost no difference in the results
(except for the GPX model), on CLEF 41–90 expanded queries outperform TD
and TDN queries, and on CLEF 91–140 TD and TDN queries outperform T
and E queries. This indicates that throwing relevant terms in the query, without
properly classifying them, does not necessarily lead to higher effectiveness. The
question still remains if the faceted query specification can outperform both title
and expanded queries, as well as TD and TDN queries.

6.5 Score combination on structured queries

The goal of this experimental series is to test how systems can benefit from faceted
query formulation and to find the best OR score combination instantiation for the
best AND score combination function determined in the previous section. The
results for the two best compositions of AND and OR score combination functions
for Boolean, GPX, language model, and tf.idf score computation functions, and
four in case of the Okapi score computation function, are depicted in Table 6.3.
We report four compositions for the Okapi score computation function as it gives
high MAP values in combination with the AND score combination implemented
as probabilistic sum or sum (see Table 6.2).

If we compare the results of using the expanded queries in Table 6.2 and the
results of using the faceted queries in Table 6.3, we can see no consistent improve-
ments in the MAP values for the Boolean, GPX, and tf.idf models, except in the
CLEF 41–90 experiments. However, for the language model and Okapi, for both
collections and all three topic sets, there is a consistent improvement over both ti-

6.5. Score combination on structured queries 161

Table 6.3: Faceted queries (F): experimental results with different OR score com-
bination functions.

TREC CLEF CLEF
f⊐ ⊗ ⊕ 301–350 41–90 91–140

Bool
min max 0.0759 0.1608 0.0665
min prob 0.0759 0.1608 0.0665

GPX
exp exp 0.1849 0.2965 0.2344
exp min 0.1603 0.2691 0.2413

LMs
prod prob 0.2582 0.3751 0.3450
prod sum 0.2580 0.3754 0.3450

Okapi
prob

max 0.2499 0.3857 0.3773
prob 0.2207 0.3633 0.3217

sum
max 0.2559 0.3886 0.3765
prob 0.2329 0.3711 0.3317

tfidf
prod prob 0.1166 0.2220 0.0965
prod sum 0.1167 0.2220 0.1034

tle and expanded queries. This shows that structuring queries can help improving
effectiveness.

The paired signed tests show that the improvements are statistically signifi-
cant (p < 0.5) only on TREC collection for: (1) language models with AND score
combination implemented as product and OR score combination implemented as
sum or probabilistic sum (p = 0.008), and (2) Okapi model with OR score com-
bination implemented as maximum and AND score combination implemented as
sum or probabilistic sum (p = 0.016). This indicates that structuring helps a lot
but only for a number of queries. For example, although the improvements for
the Okapi model on CLEF 41–90 collection with AND score combination imple-
mented as sum and OR score combination implemented as maximum improves the
effectiveness for more than 10% over E queries, the p value is 0.335.

By comparing the MAP values for faceted runs with the MAP values for the
TD and TDN runs on advanced queries we can see that on TREC and CLEF
41–90 topics faceted queries give better results than TD and TDN queries (given
in bold). For example, for the TREC data, the MAP increases up to 16% for Okapi
with AND combination implemented as sum and OR combination as maximum,
with respect to TD and TDN (as well as T and E) queries. However, similarly
to the previous analysis, none of the results is statistically significant.

On CLEF 91–140 the usage of faceted queries does not result in improved
effectiveness, but it can be due to the high complexity of manually generated
faceted queries. The average length of CLEF 91–140 faceted queries is 14.81 in
contrast to 5.37 in TREC 301–350 and 7.74 in CLEF 41–90. However, faceted
queries show at least equally good effectiveness as long TD and TDN queries.

162 6. Document Retrieval and Structured Queries

Table 6.3 also shows that more than one OR score combination function ex-
ists that has a high MAP on document retrieval: language model with sum and
probabilistic sum implementations, and both Okapi models (AND combination
implemented as sum and probabilistic sum) with maximum and probabilistic sum
as OR combination.

6.6 Score propagation on structured queries

In the last series of experiments we explore how structured information can be
incorporated in retrieval models for document retrieval. We test whether we can
further improve the precision-recall values by adding field-based structured con-
straints to the query, using the information that is tagged in a document. The
structured constraints are added to the original (title) and faceted queries.

We report three advanced models (GPX, language models, and Okapi) with the
best AND and OR score combination functions and using two score propagation
functions. The smoothed versions (Equation 4.23 and 4.28) of functions given
in Equations 4.20 and 4.21 (sum and wsum) are employed to test whether and
up to what degree we can improve the effectiveness obtained with unstructured
queries. Due to the one-to-one score propagation from contained element to the
containing element, the smoothed versions of upwards score propagation function
implementations given in Equations 4.19 and 4.22 (avg and wsd), give the same
results as the one given in Equation 4.20.

With the first set of experiments we try to find out how structured information
should be combined with the “document search”. In other words, what are the
values of the structured smoothing parameter ω that give the highest MAP values
for different retrieval models. Furthermore we want to find out which of the
implementations of the score propagation function are more effective.

We use the LA Times collection for estimating ω. The results are depicted in
Figure 6.5. Looking at the results, there is no significant difference in using dif-
ferent values of ω. However, for models that use sum-like AND score combination
(sum and exponential sum) 0.3 ≤ ω ≤ 0.5 gives slightly better results, while high
values of ω are better for the AND score combination implemented as product.
Furthermore, in all cases with the high MAP values, score propagation imple-
mented as sum gives higher MAP values than score propagation implemented as
weighted sum (wsa). Therefore, in the following experiments we use Equation 4.20
and ω = 0.5 for GPX and Okapi based models and ω = 0.95 for language model
variants.

The mean average precision values of our structured experiments on CLEF col-
lections are reported in Table 6.4. The results clearly indicate that the structured
constrains added to the query improve the mean average precision for different
variations of language models and Okapi (in 11 out of 12 runs presented in the
table) with respect to the title and expanded queries. The best runs (the highest
MAP values) are given in bold.

6.6. Score propagation on structured queries 163

Figure 6.5: The influence of different values of structured smoothing parameter
ω on MAP values for upwards score propagation. The TREC LA Times data
collection is used.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

ω

M
A

P

LMs, prod, sum, sum, λ = 0.4
LMs, prod, sum, wsa, λ = 0.4
Okapi, sum, max, sum, k1 = 0.7, b = 0.4
Okapi, sum, max, wsa, k1 = 0.7, b = 0.4
GPX, exp, exp, sum, A = 7
GPX, exp, exp, wsa, A = 7

Again, the significance tests shown in the table point out that in most cases the
improvements in effectiveness are not significant, except for (given in bold): (1)
faceted queries with the language model in comparison to title queries on CLEF
91–140 collection (2) the Okapi based model on structured + faceted queries in
comparison to the Okapi based model on title queries on both collections, (3)
the Okapi based model on structured queries in comparison to the Okapi based
model on title queries on CLEF 41–91, and (4) Okapi based model on structured
+ faceted queries in comparison to the Okapi based model on faceted queries on
CLEF 91–141.

Also, by comparing the results from Table 6.4 with the results from Table 6.2,
we can see that the effectiveness of structured queries is better on CLEF 41–90
than the effectiveness of TD and TDN queries. On CLEF 91–140 collection the
MAP values are almost the same. However, no statistical significance can be no-
ticed if we compare the effectiveness of structured queries with the effectiveness of
TD and TDN queries. This confirms our hypothesis that structuring helps only
for particular queries. Therefore, to fully exploit query structuring for improving
retrieval effectiveness, detailed analysis on the relation between the query struc-
tures (i.e., user requests) and the retrieval effectiveness on a larger test set needs
to be performed.

164 6. Document Retrieval and Structured Queries

Table 6.4: Comparison of field-based structured queries formed using title (ST)
and faceted (SF) queries, and title (T) and faceted (F) queries: experimental
results on CLEF collections. Beside MAP values we report the outcome of paired
sign tests.

f⊐ ⊗ ⊕ f◮ T ST F SF
CLEF 41 – 90

GPX exp exp sum, ω = 0.5 0.2752 0.2872 0.2965 0.3071

LMs prod sum sum, ω = 0.95 0.3080 0.3314 0.3754 0.3853
paired ST vs. T, F vs. ST, SF vs. F 0.240 0.101 0.664
sign F vs. T, SF vs. ST 0.101 0.444
test SF vs. T 0.161

Okapi sum max sum, ω = 0.5 0.3257 0.3760 0.3886 0.4313
paired ST vs. T, F vs. ST, SF vs. F 0.016 0.336 0.101
sign F vs. T, SF vs. ST 0.336 0.444
test SF vs. T 0.033

CLEF 91 – 140

GPX exp exp sum, ω = 0.5 0.2896 0.2965 0.2344 0.2350

LMs prod sum sum, ω = 0.95 0.3211 0.3161 0.3450 0.3468
paired ST vs. T, F vs. ST, SF vs. F - 0.033 0.556
sign F vs. T, SF vs. ST 0.101 0.101
test SF vs. T 0.101

Okapi sum max sum, ω = 0.5 0.3247 0.3443 0.3765 0.3908
paired ST vs. T, F vs. ST, SF vs. F 0.101 0.444 0.240
sign F vs. T, SF vs. ST 0.101 0.008
test SF vs. T 0.033

The final remark is that the Okapi model with score combination modeled as
sum (⊗) and maximum (⊕) is more robust to score propagation and more effective
than the language model with all score combination and propagation variants (see
Table 6.4 and Figure 6.5).

6.7 Discussion

In this chapter we investigated the composition of different implementations of
structured retrieval abstract functions for computation, combination, and propa-
gation of scores. We illustrate how state-of-the-art retrieval models, such as lan-
guage models and Okapi, can benefit from the formulation of structured queries,
having such a flexible structured retrieval framework.

6.7. Discussion 165

Here we sum up what is the outcome of the experimental runs with respect
to the hypotheses introduced in Section 6.1. As expected, the effectiveness of
more advanced retrieval models (GPX, language model, and Okapi) is better than
the baseline ones (Boolean and tf.idf). Stemming improves the effectiveness in
most cases, supporting the hypothesis number 3. Surprisingly, document size
computation using start and end document index instead of counting the number
of terms in a document showed higher effectiveness.

The parameter values for advanced models were as expected for GPX (A = 7)
and language model (λ = 0.4), but for the Okapi model they were slightly lower
than usual values for document retrieval (k1 = 0.7, b = 0.4). The reason for that
might be the employment of slightly different formula then in the original Okapi
model (see Section 4.2.2).

We were able to prove that the effectiveness of faceted queries for the best
AND and OR score combination implementations on advanced retrieval models is
higher than the effectiveness of using title queries with the best AND score combi-
nation. However, in many cases long title + description and title + description +
narrative queries outperform the faceted ones. Furthermore, the paired signed test
shows that most improvements obtained with faceted queries are not statistically
significant indicating that faceted formulation helps but only for specific queries.

For structured queries we experimented with different values of structured
smoothing parameter. The experiments show that structured smoothing is im-
portant on incompletely structured collections, such as TREC and CLEF. The
highest MAP values are achieved for structured smoothing parameter in the range
0.3 ≤ ω ≤ 0.5 for models that use sum-like implementations for AND score com-
bination (GPX and Okapi models), and for w ∼ 0.9 for models that use product
in implementing AND score combination (language models).

We also compared unstructured (title and expanded) and structured (faceted
and field-based) queries on CLEF test collections. When employing language
model and Okapi based retrieval models the effectiveness is improved when using
faceted queries, queries that utilize document structure, as well as the combination
of faceted and structured queries. Furthermore, the effectiveness of structured
queries is equal or better than when using long title + description or title +
description + narrative queries. However, most improvements are not significant,
pointing out that further research is needed for finding the best way of structuring
queries for effective retrieval.

Comparing different implementations of upwards score propagation functions,
we illustrate that in structured retrieval summing the scores of containing elements
when propagating them to the document (element) gives higher effectiveness then
when using weighted sum (similar as for the document component retrieval dis-
cussed in the previous chapter).

We have also shown that score computation based on Okapi and language
models work well with several score combination functions. For example, Okapi
shows good results for AND score combination implemented as probabilistic sum or
sum and OR score combination implemented as maximum, while language model

166 6. Document Retrieval and Structured Queries

shows good results with AND score combination implemented as product and OR
score combination implemented as probabilistic sum or sum. Additionally, Okapi
based models are more robust to modeling upwards score propagation, i.e., they
show greater improvements when using structured queries for document retrieval.

Chapter 7

Flexibility and Extensibility

In previous chapters we discussed how score region algebra is used for modeling
textual search, and what is the effectiveness of various retrieval models on struc-
tured (document and document component) retrieval. This chapter focuses on
score region algebra extensions for using additional document content informa-
tion in developing new text retrieval models and for modeling retrieval in domains
other than text, such as images and videos. We first present the usage of element
nesting level information for extending the SRA data model and for developing
new retrieval models. How speech transcripts of a video can be utilized by the
SRA framework for video retrieval is then discussed. Afterward we focus on image
retrieval within the SRA framework. The chapter ends with a short overview of
the presented extensions and experimental results.

This chapter is partially based on papers published (1) in the Proceedings of
the 3rd Workshop of the INitiative for the Evaluation of XML Retrieval (INEX)
[144] and (2) in the Proceedings of the 4th Workshop of the INitiative for the
Evaluation of XML Retrieval (INEX) [145].

7.1 Using level information

The score region algebra data model is defined in Section 3.2 using five attributes
that describe entities in a document structure. However, these five attributes are
not the only information that can be used for describing structured documents (see
the XML data model discussed in Section 2.3.2). Here we present one example of
extending the SRA data model with an additional attribute depicting the nesting
level of XML elements. The extension of the data model is explained in the
following section, along with the specification of new retrieval models that use this
additional level attribute. In Section 7.1.2 we present the experimental results
when using new retrieval models on document component retrieval.

7.1.1 Element nesting level in SRA

The score region algebra data model is defined on region sets as depicted in Def-
initions 1 to 5 in Section 3.2.3. Each region consists of five attributes: region
start, region end, region name, region type, and region score. These attributes are
sufficient for modeling structured retrieval, following the elementary structured
retrieval requirements introduced in Section 3.1, and using adaptations of flat text

168 7. Flexibility and Extensibility

retrieval models. However, in case we would like to use additional information
from structured documents in developing more complex retrieval models, we have
to extend the SRA data model.

Here we present the extension of the data model with a level attribute. The
level attribute denotes the nesting level of a structured entity (element) in the
hierarchical document structure. Its introduction requires an extension of Defini-
tion 1 in the SRA data model specification. With the additional level attribute,
the new definition is as shown below.

Definition 6. Region tuple r, r = (r.s, r.e, r.n, r.t, r.l, r.p), is defined by these
six attributes: region start attribute – s, region end attribute – e , region name
attribute – n, region type attribute – t, region level attribute – l, and region score
attribute – p.

Other definitions (Definitions 2 to 5) that specify the SRA data model would
remain the same. The domain of region level attribute is the domain of positive
integers including 0. The level of 0 is reserved for the collection root node while
all other nodes have level attribute value greater than 0, depending how deep they
are in a hierarchical document structure.

For the extended data model, definitions of the basic SRA operators in Ta-
ble 3.2 would remain the same, except that instead of five-attribute regions we
would have six-attribute regions (i.e, (r.s, r.e, r.n, r.t, r.l, r.p) region instead of
(r.s, r.e, r.n, r.t, r.p) region). However, abstract scoring functions and abstract op-
erators would be able to use the sixth (level) attribute in the specification of score
computation, score combination, and score propagation functions. Also new entity
selection operators could be defined, e.g., the selection of elements that are at the
same level, but this is not the goal of this section. Here we explore the usage of
level information for specifying new retrieval models.

As score combination functions most frequently combine scores from regions
with the same region bounds, and with the same region level as well, level infor-
mation is not particularly useful for them. However, it can be exploited in score
computation and score propagation functions. The variants for score computation
and propagation abstract functions are presented below.

A new score computation function, based on the language modeling approach,
that uses the distance between the nesting level of a word’s parent element from
the level of the containing element, is depicted in Equation 7.1. In the equation
maxl denotes the maximal depth (level) of an element in the collection.

fLMs,level
⊐ (r1, R2) = r1.p ·

·

λ

∑

r2∈R2|r2≺r1
r2.p ·

(

1 + r2.l−r1.l
maxl+1

)−1

size(r1)
+ (1 − λ)

|R2|

size(Root)

(7.1)

7.1. Using level information 169

Similarly, we can use the same approach for the other score computation models
where the word region score in the score computation instantiation should be

multiplied by the factor
(

1 + r2.l−r1.l
maxl+1

)−1

. This factor rewards contained elements

(words) that are higher in the document structure. For example, if terms are
directly inside the containing element, the value of this factor is 1, i.e., r2.l−r1.l =
0.

We applied the same line of reasoning for the upwards and downwards score
propagation. The equations defining the score propagation as sum of scores of
descendant/ancestor elements (Equations 4.20 and 4.25) are transformed as de-
picted in Equations 7.2 and 7.3. This implementation is similar to the one that
Sauvagnat and Boughanem introduced in [194].

f sum,level
◮ (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1

r2.p ·
r2.l − r1.l

maxl + 1
(7.2)

f sum,level
◭ (r1, R2) = r1.p ·

∑

r2∈R2|r1≺r2

r2.p ·
r1.l − r2.l

maxl + 1
(7.3)

We choose these versions to be tested in our experiments, but equally likely we
could implement the level upgrade for other score propagation functions specified
in Section 4.2.4. Furthermore, other possibilities exist for incorporating level infor-
mation in the score manipulation functions, but this would require more extensive
analysis that is beyond this thesis.

7.1.2 Experiments with retrieval models that use level info

The usefulness of level information for improving the effectiveness is tested on
INEX. We use the same collections as in Chapter 5, i.e., INEX 2003 and INEX 2004
collections. The results of the experimental evaluation are depicted in Table 7.1.
The first row (fLMs

⊐ , f sum
◮ , f sum

◭) shows the baseline effectiveness (mean average
precision – MAP) when employing language model based retrieval model without
the usage of level information. For score computation λ is set to 0.5, and we
use AND score combination implemented as product, and OR score computation
implemented as sum. Upwards and downwards score propagation is implemented
as sum (Equations 4.20 and 4.25).

The second row shows the results of the same model, except that instead of
Equation 4.8 for score computation we use Equation 7.1. The MAP values are
slightly lower for the runs that use level information than for the ones that do not
use it on both collections and both quantization functions. This indicates that the
presented way of incorporating level information in score computation function
cannot improve the effectiveness, but it also does not decrease the effectiveness
significantly.

170 7. Flexibility and Extensibility

Table 7.1: Experiments with language model based retrieval models where score
computation and score propagation functions use level information.

2003 2004
Model strict general. strict general.

fLMs
⊐ , f sum

◮ , f sum
◭ 0.28620 0.24356 0.08233 0.04126

fLMs,level
⊐ , f sum

◮ , f sum
◭ 0.28498 0.24199 0.08215 0.04121

fLMs
⊐ , f sum,level

◮ , f sum,level
◭ 0.25566 0.22344 0.07199 0.03800

The usage of level information in score propagation implementations does not
lead to higher effectiveness. On the contrary, it significantly worsen the MAP val-
ues (as depicted in the last row of Table 7.1), indicating that this way of modeling
level information in score propagation functions is not desired. There might be
better ways of adding level information to score propagation functions (e.g., see
[194]).

7.2 Video search

This section details the extension of SRA for modeling video search. For video
retrieval we utilize the automatic speech recognition output of a video. The test
collection and speech transcripts are provided by the TRECVID (NIST). The
format of speech transcripts is XML, so it fits well in our structured retrieval
framework.

The following section describes the test collection and presents retrieval models
specially designed for video retrieval, based on the language modeling approach.
Then, we compare the effectiveness of these retrieval models with different param-
eter settings and summarize the results.

7.2.1 Test collection and retrieval models for video search

We first introduce the TRECVID initiative and the test collection we use in our
experiments. Afterward, we define the retrieval models.

TRECVID

TRECVID [114] started as a Video track at TREC in 2001 and 2002 and became
a separate evaluation initiative in 2003. The goal of the TRECVID is to promote
progress in content-based retrieval from digital video via open, metrics-based eval-
uation. Four tasks are defined in TRECVID: (1) shot boundary determination,
(2) low-level feature extraction, (3) high-level feature extraction, and (4) interac-
tive, manual, and automatic search. The data set consists of more than 100 hours
of captured TV programs, and topics that specify search for persons, categories

7.2. Video search 171

of people, specific thing/activity/event, etc. The topics contain, besides textual
description of the information need, reference video clips, images, or audio. The
evaluation is done based on recall-precision metrics on assessed results.

In our experiments we use the TRECVID 2003 and 2004 collections consisting
of CNN World News Tonight and ABC Headline News in MPEG-1 format. We
focus only on the automatic search task. For that we use automatic speech recog-
nition output, provided by Gauvain et al. [76]. The output has the form of an
XML file assigned to each video.

The collection consists of 121 XML files from the 2003 collection and 128 XML
files from the 2004 collection. The data is in MPEG-7 format [127]. The structure
of these files is shown in Figure 7.1. A ‘Video’ element consists of a number of
‘VideoSegment’ elements, i.e., shots, each depicting the recognized speech from
that shot. A shot is selected based on a shot boundary detection algorithm pro-
vided by Quénot et al. [173]. Its bounds are depicted in the ‘MediaTime’ element
with its starting time ‘MediaTimePoint’ and duration ‘MediaTimeDuration’. The
‘TextAnnotation’ element represents the speech transcript record that is enclosed
in ‘FreeTextAnnotation’ tag.

The topic set contains 25 topics in 2003 (topics 100–124) and 24 topics in
2004 (topics 125–148), consisting of few keywords each. The original TRECVID
2003 topic set can be found in [204] and the 2004 topic set can be found in [114].
These topics are transformed into NEXI format where the answer element is the
‘VideoSegment’ element (see Appendix C for the complete set of TRECVID 2003
and 2004 NEXI queries). For example, the TRECVID 2004 topic 127 that looks
like: Find shots of one or more people and one or more dogs walking

together is transformed into the following NEXI query:

//VideoSegment[about(., people dogs walking together)]

We performed the evaluation of our video retrieval experimental runs using
TREC evaluation metrics, i.e., using the trec eval tool.

Video retrieval models

Video shots are short temporal units, usually consisting of few seconds of video ma-
terial. The question is whether the usage of spoken information that is contained
in these short sequences can lead to high effectiveness. We make a hypothesis that
it would probably be more effective to include the information from surrounding
shots for the video search. To test this hypothesis we employed several variants
of language model based retrieval model (Equation 4.8). We fixed the option for
AND score computation and upwards score propagation (due to the query format
OR score computation and downwards score propagation operators are not used):
AND score computation is implemented as product and upwards score propagation
is implemented as sum (Equation 4.20).

Besides the language model score computation implementation given in Equa-
tion 4.8, we use the two other variants given in Equations 7.4 and 7.5. r2 - r1 is

172 7. Flexibility and Extensibility

Figure 7.1: An example speech transcript from a TRECVID video in XML
(MPEG-7) format.

<?xml version="1.0" encoding="UTF-8"?>
<Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
xsi:schemaLocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">

<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="VideoType">

<Video id="TRECVID2004_100">
<MediaLocator><MediaUri>19981204_CNNa.mpg</MediaUri></MediaLocator>
<MediaTime>

<MediaTimePoint>T00:00:00:0F30000</MediaTimePoint>
<MediaDuration>PT28M48S18807N30000F</MediaDuration>

</MediaTime>
<TemporalDecomposition gap="false" overlap="false">

<VideoSegment id="shot100_1">
<MediaTime>

<MediaTimePoint>T00:00:00:0F30000</MediaTimePoint>
<MediaDuration>PT2S18078N30000F</MediaDuration>

</MediaTime>
<TextAnnotation confidence="1.000000">

<FreeTextAnnotation></FreeTextAnnotation>
</TextAnnotation>

</VideoSegment>
<VideoSegment id="shot100_2">

<MediaTime>
<MediaTimePoint>T00:00:02:18078F30000</MediaTimePoint>
<MediaDuration>PT14S6426N30000F</MediaDuration>

</MediaTime>
<TextAnnotation confidence="0.896090">

<FreeTextAnnotation>ALLEGATION AGAINST PRESIDENT CLINTON ON
THE HOUSE JUDICIARY COMMITTEE'S IMPEACHMENT INQUIRY GIVEN ESCAPED DEATH ROW
INMATE BY INDIA'S FREEDOM PRISON EMPLOYEES FOUND OUT THEN WHY A LIGHT TRUCK
BUYERS OF BECOMING THE DRIVING FORCE IN THE AUTO INDUSTRY</FreeTextAnnotation>

</TextAnnotation>
</VideoSegment>
<VideoSegment id="shot100_3">

<MediaTime>
<MediaTimePoint>T00:00:16:24504F30000</MediaTimePoint>
<MediaDuration>PT6S21201N30000F</MediaDuration>

</MediaTime>
<TextAnnotation confidence="0.939161">

<FreeTextAnnotation>FROM ATLANTA THIS IS C. N. N. HEADLINE
NEWS I'M DAVID GOODNOW THOSE STORIES SHORTLY BUT FIRST THE COUNTDOWN IS
APPROACHING FOR NASA'S</FreeTextAnnotation>

</TextAnnotation>
</VideoSegment>

...

</TemporalDecomposition>
</Video>

</MultimediaContent>
</Description>

</Mpeg7>

7.2. Video search 173

defined as follows: r2 - r1 ⇔ (r1.s − win < r2.s ≤ r2.e < r1.s) ∨ (r1.e < r2.s ≤
r2.e < r1.e + win). It denotes the fact that the region r2 is in the area around
the region r1 (but not inside it) with the maximum distance between the start or
end positions of region r2 from the end or start positions of r1 less then win, re-
spectively. λ1, λ2, and λ3 are parameters that control the influence of information
found in a shot, surrounding shots (scene), video, and a collection of videos, on
the resulting relevance score. ||r2, r1|| denotes the distance between the regions r2

and r1 as defined in Equation 7.6.

fLMsFlt
⊐ (r1, R2) = r1.p · (λ1

∑

r2∈R2|r2≺r1
r2.p

size(r1)
+ λ2

∑

r2∈R2|r2-r1
r2.p

2 · win
(7.4)

+ λ3

∑

r2∈R2|r∈C∧r.n=‘V ideo′∧r2≺r r2.p

size(r)
+ (1 − λ1 − λ2 − λ3)

|R2|

size(Root)
)

fLMsLin
⊐ (r1, R2) = r1.p · (λ1

∑

r2∈R2|r2≺r1
r2.p

size(r1)
+ λ2

∑

r2∈R2|r2-r1
r2.p · ||r2, r1||

2 · win2

+ λ3

∑

r2∈R2|r∈C∧r.n=‘V ideo′∧r2≺r r2.p

size(r)
+ (1 − λ1 − λ2 − λ3)

|R2|

size(Root)
) (7.5)

||r1, r2)|| =

r1.s − r2.e if r2.e < r1.s

r2.s − r1.e if r2.s > r1.e
(7.6)

Equations 7.4 and 7.5 use the fact that information from the surrounding shots
(context information) can contribute to the improvement of the effectiveness. They
follow the reasoning in the “article weighting” approach (see Section 5.3). However,
they do not use only the ‘document’ like evidence, i.e., ‘Video’ in our case, but
the evidence from several surrounding ’VideoSegment’ elements, i.e., video shots.
The number of surrounding video shot elements that are used in the equations is
determined by the size of the window (win). The window actually define what is
the estimated size of the video scenes in a video, estimated as a number of tokens
(text plus markup). As we were not in position to use video scene segmentation,
we experimented with several options for video scene size.

The difference between the two equations is that Equation 7.5 does not take
into account the distance of the ‘contained’ region r2 from the ‘containing’ region
r1 when computing scores. However, Equation 7.5 downweights the ‘contained’ re-
gions that are more distant from the ‘containing’ region. The linear downweighting

is used (||r2,r1||
win), as depicted in the equation. How effective these models are, also

with respect to different parameter settings, is discussed in the following section.

174 7. Flexibility and Extensibility

Figure 7.2: Estimating the size of a window (win) parameter that defines a video
scene based on a number of tokens its speech transcript contains.

20 40 60 80 100 120 140 160 180
0.12

0.125

0.13

0.135

0.14

0.145

0.15

win

M
A

P

LMsFLT
LMsLIN

(a) 2003 runs

20 40 60 80 100 120 140 160 180
0.066

0.068

0.07

0.072

0.074

0.076

0.078

win

M
A

P

LMsFLT
LMsLIN

(b) 2004 runs

7.2.2 Experimental evaluation of video search

In the first set of experiments we tested what is the best size for the window (win)
defining a video scene. We have chosen the following values to experiment with
win ∈ {30, 60, 90, 120, 150, 180}. We train the values on the 2003 collection and
test them on the 2004 collection. We fixed the values of λ1, λ2, and λ3 to 0.25.
The results of this set of experiments are presented in Figure 7.2.

From the 2003 runs we can see that for the ‘flat’ version (Equation 7.4) of the
language model score computation implementation – LMsFLT , the best window
size is from 60 to 90. As the average size of the shot on 2003 collection is 27.5
this means that we use approximately 3 predecessor and successor video shots for
score computation. This is in accordance with the other approaches (see, e.g.,
[218]). For the ‘linear’ version (Equation 7.4) – LMsLIN , the best window is in
the range 90 − 120. This result is expected as we use linear downweighting for
terms in surrounding shots (see Equation 7.5). Similar results are obtained on
2004 collection, given in Figure 7.2b.

In the second experimental set we focus on analyzing the influence of different
components in Equations 7.4 and 7.5 on the retrieval model effectiveness. The
outcome is depicted in Table 7.2. The results point out that the most influential
part of the equations, besides the term statistics inside video shots, is the one
that defines the usage of video scene context information (λ2), given in bold in
the table. Furthermore, the ‘Video’ context information alone (λ2), given in the
last column of the table, is less effective than the usage of background statistics
(1− λ1 − λ2 − λ3), given in the second column. This is the case on both, training
and test collection.

7.2. Video search 175

Table 7.2: The influence of the usage of statistical information from different video
components.

Model λ1 λ2 λ3 2003 MAP 2004 MAP

fLMsFlt
⊐ / fLMsLin

⊐ 1.0 0.0 0.0 0.0282 0.0188
fLMsFlt

⊐ / fLMsLin
⊐ 0.5 0.0 0.0 0.0657 0.0489

fLMsFlt
⊐ 0.5 0.5 0.0 0.1188 0.0752

fLMsLin
⊐ 0.5 0.5 0.0 0.1334 0.0751

fLMsFlt
⊐ / fLMsLin

⊐ 0.5 0.0 0.5 0.0640 0.0344

Table 7.3: The influence of parameter values (λ1, λ2, λ3) on retrieval model effec-
tiveness.

2003 2004
λ1 λ2 λ3 fLMsFlt

⊐ fLMsLin
⊐ fLMsFlt

⊐ fLMsLin
⊐

0.10 0.70 0.10 0.1215 0.1321 0.0644 0.0639
0.15 0.45 0.15 0.1381 0.1451 0.0710 0.0717
0.15 0.50 0.10 0.1360 0.1422 0.0706 0.0706
0.15 0.55 0.15 0.1372 0.1428 0.0697 0.0702
0.20 0.40 0.20 0.1413 0.1488 0.0737 0.0731
0.20 0.45 0.15 0.1387 0.1464 0.0734 0.0732
0.40 0.40 0.05 0.1331 0.1438 0.0761 0.0757
0.40 0.45 0.10 0.1384 0.1474 0.0763 0.0755

The final set of experiments tests the behavior of these retrieval models when
retrieval model parameters are changed. The mean average precision values for
these runs are given in Table 7.3. Based on the previous set of experiments we
keep λ3 low (up to 0.2). The best mean average precision values on 2003 runs
are obtained for λ1 around 0.2 and λ2 around 0.4 (given in bold). On the 2004
runs the same values of λ parameters gave high MAP, but are topped by the runs
where λ1 and λ2 are around 0.4. However, runs on both collections indicate that
for the video models given in Equations 7.4 and 7.5 the emphasis should be on
using information from the shot itself and its surrounding shots.

The effectiveness of video variants of the language model is much higher than
the effectiveness of the baseline one used for the text search (see the second row
in Table 7.2). By comparing the two columns (fLMsFlt

⊐ and fLMsLin
⊐) from Ta-

ble 7.3, no significant difference in the effectiveness between the two introduced
video shot score computation models can be noticed, although on 2003 runs linear
version gives higher MAP values. However, the choice of parameter values plays
an important role.

176 7. Flexibility and Extensibility

These experiments show that SRA can support video search using speech tran-
scripts. However, speech transcripts are not the only way of modeling video ma-
terial. Video can be described in terms of video features, that can be used for
detecting the video content. Adding feature extractors and using their output for
retrieval could further improve the video retrieval effectiveness (see e.g., [218]). As
SRA supports content description independence, these features can be modeled at
the physical level and used in SRA for new retrieval operators and retrieval models
without significant modification of the score region algebra. An example of such
an SRA extension is explained in the next section.

7.3 Image search

This section details our approach for image by example search, and explains how
this type of search can be integrated with the text search within the SRA frame-
work. In the first part we present the test collection we use in our experiments.
Then, the SRA extensions for image search are presented along with the specifi-
cation of image retrieval models. The section is closed with a short discussion of
experimental results.

7.3.1 Test collection and retrieval models for image search

For the experimental evaluation of image search we use the test collection provided
within the INEX Multimedia track. The details of the track, the collection data,
and topics are given below. Afterward we discuss how we support image search in
TIJAH, and how image search is modeled within SRA operators.

INEX Multimedia track

The task of the Multimedia track at INEX is to retrieve relevant document com-
ponents based on a structured information need expressed over multimedia docu-
ments. A structured retrieval approach developed by participants should combine
the relevance of different media types into a meaningful ranking. The multime-
dia track focuses on using the structure of the document to extract, relate, and
combine the relevance of different multimedia fragments.

The initiative started in 2005 with the emphasis on combining text and image
search. In our experiments we use the test collection from this year. The data
collection is based on a small Lonely Planet document set, consisting of 462 XML
files. Each XML file contains touristic information about towns, interesting cites,
countries, etc. An example of such file is given in Figure 7.3a. Many files also
contain some pictures illustrating the region discussed in the file. In the text file
this is modeled through the ‘image’ element, where ‘image’ attribute ‘filename’
keeps the relative location of the image (as depicted in the figure). The images
are stored on these locations (see Figure 7.3b for an illustration).

7.3. Image search 177

Figure 7.3: The INEX Multimedia collection provided by Lonely Planet:

<?xml version="1.0" encoding="UTF-8"?>
<destination node_id="627" cobj_id="14644" object_type_id="8" language="eng"

date_exported="2005-02-23">
<name>Amsterdam</name>
<general>

<full_name>Amsterdam</full_name>
<introduction>

<mini>
<p>History, art, a head of beer and a roll-your-own.</p>

</mini>
<short>

<p>Amsterdam is one of the world's best hangouts, a canny blend of
old and new: radical squatter art installations hang off 17th-century eaves;
BMWs give way to bicycles; and triple-strength monk-made beer is drunk in
gleaming, minimalist cafes.</p>

</short>
<medium>

<p>The city seems to thrive on its funky mix and, despite hordes of
tourists, still manages to feel quintessentially Dutch. The old crooked houses,
the cobbled streets, the tree-lined canals and the generous parks all contribute
to the atmosphere.</p>

</medium>

...

<images>
<image filename="/images/BN13629_109.jpg" object_type_id="13">
</image>
<image filename="/images/BN1830_4.jpg" object_type_id="13">
</image>
<image filename="/images/BN13628_30.jpg" object_type_id="63">
</image>
<image filename="/images/BN13629_20.jpg" object_type_id="72">
</image>

...

<copyright>Copyright Â© 2005 Lonely Planet Publications</copyright>
</destination>

(a) an example Lonely Planet file about Amsterdam

BN13629_109.jpg BN1830_4.jpg BN13628_30.jpg

(b) example images from Amsterdam

178 7. Flexibility and Extensibility

Similar to the INEX Ad hoc track, participants are supposed to develop topics
and perform assessments. The topic format used is similar to the NEXI CAS topic
format (see Section 5.2). In 2005 participants developed 25 topics (the complete
list of INEX Multimedia NEXI queries is given in Appendix D). The assessments
process is done similar to the assessments in the INEX Ad hoc track, except that
only elements that strictly follow structured constraints are assessed and that
binary assessments are used, i.e., XML element is either relevant or not.

The evaluation is done using TREC evaluation tool. Therefore, different ap-
proaches are compared using mean average precision and drawing recall-precision
graphs. In this section we report only mean average precision values.

Modeling image search in TIJAH

Image search is handled in the same framework as text search, and our three-level
database system TIJAH is extended to support it. At the end-user level the NEXI
query language is extended for query by example image search, and at logical level
new operators are introduced. However, due to different nature of the domain
data, images are stored and handled in a different manner than textual XML data
at the physical level.

The original NEXI syntax (given in [209]) is extended with an extra token
‘src:’ (as shown in Chapter 1) that defines the location of the sample image with
which the destination image should be matched. For example, the multimedia
query 11 looks like:

//destination[about(.//image, fruit vegetables

src:/images/BN2787_4.jpg)]

//point_of_interest[about(., food fruit vegetable market)]

The first about contains a request for image similarity search. The destination
image that need to be matched is images/BN2787 4.jpg. In the NEXI processing
at the end-user level, the ‘src:’ part of the about is transformed into about image
and its relative path given in the NEXI ‘src:’ specification is resolved into the
path to the location where data for the image matching is stored. The about image
command is then forwarded to the logical level.

To express image search in SRA we extend the SRA operator set with two addi-
tional operators modeling image similarity selection (σi≈sample

n=name (R1)) and element-
image score computation (⊐i

p). The σi≈sample
n=name (R1) operator has a similar defi-

nition to the basic score region algebra selection operator σn=name,t=type(R) (see
Table 3.2), except that it selects attribute regions and that the score of a region (p)
is now computed by a call to an external function f i(r2.n, sample). The function
f i(r2.n, sample) uses information extracted from the sample image and the image
that should be selected and it computes the score of an image region based on
similarity between the sample image and the selected image. The specification of
the image selection operator is given in Equation 7.7.

7.3. Image search 179

σi≈sample
n=name (R1) := {(r1.s, r1.e, r1.n, r1.t, f

i(r2.n, sample)) | r1 ∈ R1 ∧

∃r2 ∈ C ∧ r2 ≺ r1 ∧ r2.t = attr val ∧ r1.t = attr ∧ r1.n = name} (7.7)

Here, sample is the location of the sample image data specified with the ‘src:’
statement in the NEXI query, resolved in the end-user processing step, C is a set
of all regions in the database, attr is the attribute node, and attr val is the value
of the attribute attr.

The operator ⊐i
p is defined in the same way as ⊐p operator (see Table 3.2),

except that it allows computing the score of a region that contains images with
the usage of different scoring formula (f i

⊐(r1, R2)) than for terms (e.g., given in
Equation 4.8). Its definition is given in Equation 7.8.

R1 ⊐i
p R2 = {(r1.s, r1.e, r1.n, r1.t, f

i
⊐(r1, R2))|r1 ∈ R1 ∧ r1.t = node} (7.8)

Having introduced two new operators in score region algebra we can now ex-
press the image search. For example, the about image in the multimedia query 11
(about(.//image, src:/images/BN2787 4.jpg)]) is transformed into the next
SRA expression:

σn=image,t=node(C) ⊐i
p σi≈BN2787 4.jpg

n=file name (C)

As shown in Equations 7.7 and 7.8, we follow the transparency paradigm, i.e.,
we support content description independence and retrieval model independence.
This is achieved through the usage of two abstract functions in the specification of
these operators: f i(r2.n, sample) and f i

⊐(r1, R2). The first one hides how images
are modeled and matched, and the second one abstracts away from the way how
single image scores are combined in case one element in a structured document
contains multiple images.

Image retrieval model

For our implementation we selected an approach of modeling image search based
on a generative probabilistic model. At indexing time, we estimated a generative
probabilistic model of each of the images in the collection. The feature values
(model parameters) are stored in separate tables at the physical level of TIJAH,
i.e., in MonetDB. In addition, we constructed a table that links the image identi-
fiers (sample) to the corresponding nodes in the collection tree. The image selec-
tion operator is implemented as a new MIL function that computes the similarity
between each collection image model and the sample image, as defined below.

Similarity between sample images and collection images is estimated using
Gaussian mixture models (GMM). Each of the images in the collections (I(ni))

180 7. Flexibility and Extensibility

is modeled as mixtures of Gaussians with a fixed number of components K. The
probability of generating a feature vector x from an image I(ni) is defined in
Equation 7.9.

P (x|I(ni)) =

Nk
∑

k=1

P (Ki,k) G(x, µi,k,Σi,k), (7.9)

Here Nk is the number of components in the mixture model, Ki,k is component k of
a class model I(ni), and G(x, µ,Σ) is the Gaussian density with mean vector µ and
covariance matrix Σ. The feature space of the vectors x is based on the discrete
cosine transform (DCT) coefficients obtained from 8x8 pixel blocks. However, as
the image retrieval model is not the primary topic in this section, we do not discuss
it further. For details of the feature vectors and the GMM approach, see [217].

The score of an arbitrary image in a collection, given a sample image from a
query, is determined by the likelihood that the corresponding model generates the
feature vectors (X = {x1, x2, . . . ,xn}) representing the sample image. As in the
language model approach for the relevance score computation (Equation 4.8), we
interpolate image ’foreground model’ with a ‘background model’ based on collec-
tion statistics, as depicted in Equation 7.10.

f i(ni, sample) =
∏

x∈Xsample

(λ · P (x|I(ni)) + (1 − λ) · P (x)) (7.10)

Equation 7.10 defines the abstract function f i(ni, sample) used for similarity com-
putation in the image selection operator σi≈sample

n=name (R1).
In the implementation of the image score computation abstract function for

the ⊐i
p operator, we use the multiplication of a left operand region score and the

average of contained right operand region scores. The specification is depicted in
Equation 7.11. As in the Lonely Planet collection all ‘image’ elements contain one
image, the score computation for the image containment operator results in a score
computed as a product of a left operand region score and a right operand region
score, i.e., r1.p ·r2.p. For other collections or other tasks different implementations
of image score computations might be more appropriate.

f i
⊐(r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1
r2.p

|{r2 ∈ R2|r2 ≺ r1}|
(7.11)

7.3.2 Experimental evaluation of image search

The aim of this set of experiments is to test if using visual similarity can improve
the effectiveness of textual search. Furthermore, the experiments are presented
also to demonstrate the flexibility and extensibility of our framework with respect

7.4. Summary 181

Table 7.4: MAP values for the INEX Multimedia experiments.
Model text only text + image

GPX 0.2567 0.2627
LMs 0.2751 0.2600
Okapi 0.2110 0.2133

to composition of retrieval models in different domains. The MAP values of ex-
perimental runs are presented in Table 7.4.

In the experiments we compared the multimedia queries containing only text
search (text only column) and the ones containing text and image by example
search (text + image column). The first set of queries is generated by removing
(src:) clauses from the original INEX Multimedia NEXI queries. For example,
the query 11 without the image search looks like:

//destination[about(.//image, fruit vegetables)]

//point_of_interest[about(., food fruit vegetable market)]

For the evaluation of these two approaches we use advanced text search models,
i.e., GPX, language models, and Okapi. The parameters used are as follows:
λ = 0.5, k1 = 1.5, b = 0.75, and A = 5. For AND score combination we use
exponential sum for GPX, product for language model, and sum for Okapi. OR
score combination is implemented as exponential sum for GPX, and as sum for
language model and Okapi score computation model. Upwards and downwards
score propagation is implemented as sum (Equations 4.20 and 4.25).

As can be seen in Table 7.4, while for the language model (the best text search
run) image search produce slightly lower MAP values, it is the opposite with
the other two text search models. There is no significant difference between the
retrieval effectiveness of all three models when using or not using image search.
We believe this could be due to the relatively simple image retrieval model we
use and due to the simple collection used. Some more advanced image search
model on more complex collection might give different results. More research is
needed to investigate if and how visual information can help to improve retrieval
effectiveness in this and other collections.

7.4 Summary

Throughout this chapter we showed that the score region algebra (and TIJAH
database system) is an extensible and flexible framework. It is extensible with
respect to:

• modeling additional information describing document content and structure,
as well as with respect to modeling different document content types;

182 7. Flexibility and Extensibility

• incorporating advanced search techniques, such as new retrieval models and
new operators specifying retrieval in domains other than text.

These SRA features are a consequence of SRA supporting retrieval model inde-
pendence and content description independence.

The flexibility and extensibility of SRA is illustrated on the following three
tasks:

1. incorporating element nesting level within the SRA data model and using it
to develop new retrieval models;

2. modeling video retrieval by means of developing new text retrieval models
for search on structured speech transcripts of video material;

3. search on heterogeneous data sources, i.e., a combination of image and text
search

For the first task, SRA data model is extended with the additional attribute
depicting the nesting level of elements in a hierarchical document structure. This
additional information is used for specifying new retrieval models. In this chap-
ter we present the language model score computation extensions that use level
information. Furthermore, we extend the score propagation functions given in
Equations 4.20 and 4.25 to use level information. The extension in both cases
downweights the scores of containing or contained elements with respect to their
relative nesting level distance to the contained or containing elements, respectively.

While the score computation extension resulted in the similar effectiveness as
the original model (not using the level information), the propagation extensions
had negative influence on MAP values. However, these approaches present only
one way how element level information could be used. More advanced models that
can improve the retrieval model effectiveness might exist but to discover them
further research is needed.

Modeling video retrieval within SRA did not require any extensions of the data
model or operator set, as video content is described in terms of XML documents
depicting the speech transcripts of videos. However, retrieval models for struc-
tured text search presented in Section 4.2, such as the one based on the language
modeling approach, resulted in poor effectiveness. To improve the effectiveness
we introduced variants of abstract language model score computation function. In
these variants relevance score is computed using not only foreground and back-
ground statistics, but also statistics from a complete video sequence and from the
surrounding shots modeling a video scene. The usage of these additional statistics
doubled the effectiveness.

For modeling image (query by example) retrieval, and its fusion with text re-
trieval, we extended the SRA operator set and added new abstract functions. New
operators in SRA specify image selection and element-image score computation.
The resulting score attribute in these two new operators is defined throughout two

7.4. Summary 183

new abstract scoring functions. One defines the assignment of a relevance score to
an image, based on its similarity to a sample image. The other defines how score
of an element containing multiple images is computed.

The experimental evaluation showed that using a simple image search model,
based on Gaussian Mixture Models, in combination with text search, shows no or
insignificant improvements when compared to text search models. However, simi-
lar to the video retrieval scenario, more advanced image retrieval models or better
combination of text and image search models might improve the effectiveness.

184 7. Flexibility and Extensibility

Chapter 8

Conclusions and Future
Work
With the rapid growth of documents generated using structured format (XML,
SGML, HTML, etc.) a new information retrieval research area has been created
that addresses the problem of ranked retrieval of elements (document components).
Within the area, the goal of structured retrieval systems is not to merely return the
most relevant documents based on their content. Their aim is to exploit document
structure and semantics of structured annotation of documents to retrieve the most
relevant document components.

We focus on the system-oriented aspects of structured retrieval. We try to
give an answer to the question what future structured retrieval systems need to
support to be effective on structured retrieval, as well as to be flexible with respect
to different retrieval models and different types of content that can be a part of
structured documents. To give an answer to this question we performed an analysis
of structured queries. We identified four elementary requirements that have to be
supported by the structured retrieval framework (see Chapter 3). Guided by these
requirements we explain the development of a flexible and extensible structured
IR framework, with a logical algebra as its central part.

The algebra (framework) supports transparent instantiation of retrieval models
by supporting retrieval model independence and content description independence.
Retrieval model independence denotes the concept that different retrieval models
can be specified within the algebra without affecting the end-user applications and
the logical algebra itself. Content description independence denotes the concept
that different types of document content information can be used for specifying
retrieval models, without knowing how this information is stored and accessed at
the physical level. The flexible structured IR framework, with the algebra that
supports retrieval model independence and content description independence as
its central part, is used in this thesis as an experimental platform for developing
effective structured retrieval systems applicable to different domains, such as text
documents, images, and videos.

The main questions in designing and developing the flexible and extensible
structured retrieval framework that motivates the work presented in this thesis
are the following three:

• to what extent can a logical algebra that models structured IR support
retrieval model independence? (Chapters 3 and 4)

186 8. Conclusions and Future Work

• what is the influence of different retrieval model instantiations within the
algebra on the effectiveness of document component retrieval and document
retrieval? (Chapters 5 and 6)

• can the algebra be extended to support ranked retrieval using richer data
models and to provide effective retrieval in domains other than text? (Chap-
ter 7)

These questions are addressed throughout the development of the score region
algebra (SRA). The algebra is specified in Chapter 3 based on existing region
algebra approaches that do not include relevance ranking (Section 2.5). How SRA
supports retrieval model independence and content description independence, and
how its features can be used to improve the effectiveness is explained in Chapters 4
to 7. Here we only summarize the findings regarding the three research questions
in Sections 8.1, 8.2, and 8.3, respectively. For each question we emphasize what is
our contribution and what are the potential directions for future research.

8.1 Retrieval model independence

The first question addressed in this thesis is how can we define an algebra, which
is a formal mathematical specification, to abstract away from the retrieval model
definition. To give an answer to this question we analyzed the problem of struc-
tured information retrieval, i.e., we analyzed different aspects of structured user
queries. The result of this analysis is the identification of the four elementary
structured retrieval requirements (see Section 3.1):

• entity selection – the selection of different entities in structured documents,
such as elements, terms, attributes, image and video references, which are
parts of the user query;

• relevance score computation – the computation of relevance scores for differ-
ent structured elements with respect to the content they contain;

• relevance score combination – the combination of relevance scores from (dif-
ferent) elements in a document structure, resulting in a common element
relevance score;

• relevance score propagation – the propagation of scores from different ele-
ments to common ancestor or descendant elements following the query.

Score region algebra is developed following these requirements (see Section 3.2).
SRA models structured documents as a set of regions, where each region can
represent different entities in structured documents. Regions also depict the score
of each entity, determined with respect to the user query. On the domain of
region sets, region operators are defined. The operators model different aspects of
elementary structured retrieval requirements. Therefore, SRA consists of selection

8.1. Retrieval model independence 187

operators, score computation operators, score combination operators, and score
propagation operators.

The algebra is the central part of a three-level database system developed
for structured retrieval, called TIJAH. TIJAH supports the specification of user
requests in a structured query language (NEXI), their mapping to an SRA query
plans, and also the transformation from SRA operators to a physical (MIL) query
plan and its execution within a database kernel (MonetDB). This is explained in
Section 4.1.

Contributions

The main contributions of our approach presented in this thesis, with respect to
supporting the instantiation of various retrieval models in the framework, are the
following.

• SRA enables retrieval model independence by abstracting away from the re-
trieval model specification.

• SRA as the central component of the three-level database system (TIJAH)
enables transparent instantiation of retrieval models.

To achieve retrieval model independence, retrieval models in SRA are defined
through abstract scoring functions and abstract operators. In other words, all the
region attributes, except the region relevance score attribute, are specified in the
SRA operator definition. The region relevance score attribute values are computed
using the information from regions in the (left and right) operand region sets
through the abstract scoring functions. Therefore, the user/application program
does not have to be aware of how the retrieval model is implemented, i.e., how
these abstract scoring functions are instantiated.

In the three-level TIJAH architecture this abstraction from retrieval models is
supported through a retrieval model dictionary, responsible for selecting which of
the abstract scoring function instantiations will be used in the query execution.
Based on the specification of abstract functions and the selection of retrieval model
options in the retrieval model dictionary, the proper operators are instantiated at
the physical level.

Having such a transparent architecture, the implementation of new retrieval
models is fairly easy. One just needs to enable new options in the retrieval model
data dictionary, to provide the formal specification of these retrieval models using
SRA abstract functions and abstract operators, and to implement these models at
the physical level reusing parts of already implemented ones. Therefore, TIJAH
is a suitable platform for implementing and testing retrieval models on different
structured retrieval tasks.

188 8. Conclusions and Future Work

Future research

TIJAH uses the ‘fairly simple’ NEXI query language which does not support prox-
imity search, specification of the importance of query parts, parent/child element
selections, following/sibling element specifications, etc. Therefore, more advanced
query languages can be specified on top of SRA, such as TexQuery (XQuery full-
text extension) [7]. Using such query languages requires SRA data model exten-
sions and operator set extensions. This is achievable in SRA as pointed out in this
thesis (see Section 3.3 and Chapter 7).

The current implementation of the SRA operators is done in MonetDB using
MonetDB interpreter language (MIL) [19]. MonetDB operators support database-
like search. It is not always straightforward to implement structured IR operations
(in MIL) using database operators. Therefore, new procedures have been added
to the MonetDB kernel to support IR operations. It might be more appropriate to
develop special-purpose physical implementations that would enable fast execution
of IR operators. Another speed-up solution is the integration with the currently
fastest XQuery engine implemented in MonetDB (called Pathfinder) [20]. First
steps in this direction have already been taken [99].

However, optimization does not only depend on the execution times of physical
operators, but also on the logical query plan. In Section 4.3 we studied the SRA
operator properties. The goal of studying SRA operator properties is to enable
logical query optimization, such as relational algebra query optimization, as can
be seen in, e.g., [16], and obtaining the gain in efficiency. This thesis shows that
the potential for such SRA query optimization exists. However, it demands further
analysis of the physical implementation to estimate the cost of the query execu-
tion, especially when using operators implementing different scoring functions. We
expect this to be an interesting question for future research.

8.2 Effectiveness of structured retrieval models

The main goal of any information retrieval model (system) is to be effective on a
range of information retrieval tasks. For flat text IR numerous retrieval models
exist that achieve high effectiveness, such as language models, BM25, and vector
space models. However, structured information retrieval is in its infancy and
every year new models are being developed achieving high effectiveness (see e.g.,
[74]). These new models are mostly based on flat text retrieval models adapted
to structured retrieval and only a few of them have been developed specially for
structured retrieval (see Section 2.1).

Furthermore, the structured retrieval task consists of many subtasks not rec-
ognized in flat text IR. For example, a subtask where a user does not specify
the desired element to be returned but only the list of search terms. It is up to
the retrieval system to determine the most relevant elements. Another scenario
is where the user specifies structured constraints in the query that need to be

8.2. Effectiveness of structured retrieval models 189

followed strictly or vaguely by the search system. This diversity resulted in the
existence of different types of user requests but also in different retrieval models
being more appropriate for different user requests (see Chapters 5 and 6).

We argue that structured retrieval models can be decomposed into four compo-
nents that match the four elementary structured retrieval requirements. Therefore,
the answer element relevance score can be determined using different models for
entity (element and term) selection, element relevance score computation, rele-
vance score combination, and relevance score propagation. We demonstrate this
in Chapter 4 where we specified variants of entity selection, score computation and
score combination models, based on the original Boolean, GPX, language model,
Okapi, and tf.idf definitions, and proposed several approaches for modeling score
propagation.

Contributions

Considering the implementations of different structured retrieval models within
SRA on (document and document component) retrieval effectiveness, the contri-
butions that can be found in this thesis are the following.

• Using the SRA framework, different retrieval models can be easily imple-
mented, and they can be analyzed and compared with respect to their effec-
tiveness.

• Choosing the right composition of score computation, combination, and prop-
agation abstract functions the effectiveness can be improved for both docu-
ment component retrieval and document retrieval.

To demonstrate the benefits of easy instantiation of different retrieval models
within the SRA framework numerous experiments are presented in Chapter 5 and
6. Chapter 5 illustrates the influence of different instantiations of score compu-
tation, score combination, and score propagation functions on retrieval model ef-
fectiveness for document component retrieval. The document component retrieval
effectiveness depends a lot on the chosen implementations of scoring functions as
well as on their composition. For example, language model score computation
is more effective in composition with score combinations implemented as prod-
uct (AND) and sum (OR), while Okapi score computation is more effective in
composition with score combination implemented as sum (both AND and OR).

Considering the score propagation, different retrieval models show distinct be-
havior for the upwards score propagation, while for the downwards score prop-
agation weighted sum produces less effective results than simple sum of scores
of containing elements. Among retrieval models, the GPX and language model
based ones are more effective on document component retrieval than Okapi based
models. Also, the GPX based models are more precision oriented, while language
models are more recall oriented.

190 8. Conclusions and Future Work

Furthermore, we show that there is a relation between the type and the com-
plexity of user requests and the effectiveness of some structured retrieval models.
This is especially the case for different implementations of score combination func-
tions (see Section 5.5). By choosing the right composition of scoring functions, for
queries with different complexity and for different types of user requests, we can
achieve higher effectiveness.

Similarly, Chapter 6 discusses a set of experiments applied to document re-
trieval. Here we exploit the usage of query structure and document structure for
improving the effectiveness of flat text retrieval models. The results show that
with the clever formulation of structured queries, using document structure and
annotated document content, we can achieve higher effectiveness than when using
flat text queries. The effectiveness is improved using structured queries even in
comparison to using long queries formed out of the topic description and topic
narrative.

The best compositions of scoring functions are similar to ones for document
component retrieval, except that the upwards score propagation function when
using weighted sum is less effective than simple sum in all experiments (see Sec-
tion 6.6). We also show that the structured smoothing is important when prop-
agating scores in collections where documents have incomplete structure (such as
TREC and CLEF). Furthermore, by comparing the effectiveness of different re-
trieval models, we can see that the Okapi based models are more robust to different
score propagation implementations and give higher effectiveness than the language
model and GPX based models on document retrieval.

Future research

The instantiation of retrieval models following the structured retrieval require-
ments is based on flat text retrieval model specifications. However, due to differ-
ent term distributions in structured elements in contrast to documents, and due
to the hierarchical organization of structured documents, new models geared to-
ward structured retrieval might give higher effectiveness. The TIJAH architecture
would be a perfect environment for discovering such new score computation, score
combination, and especially score propagation functions. Eventually, this would
lead to the development of new models that could achieve higher effectiveness on
different structured retrieval tasks.

Furthermore, in the experiments described in this thesis the semantics of an-
notations present in structured documents, as well as the relative position of these
annotations in a hierarchical document structure, was not used. This information
can be utilized for, e.g., assigning a non-uniform element prior (default region
score) to different elements [178]. This prior can also be learned by, e.g., analyzing
user preferences. Furthermore, such user preferences, along with the data obtained
from analyzing the relations between the retrieval models and query types, can be
used for the automatic selection of parameters in the retrieval model dictionary.

8.3. Flexibility and extensibility 191

Finally, we mostly tested retrieval models on a strict scenario where structured
constraints need to be followed strictly. Similar experiments, probably with new
implementations or extensions of scoring functions, can be performed on other
structured retrieval scenarios, e.g., content-only search, vague search (see [145]).
Furthermore, advanced models that describe non-textual content search can be
included in the experiments, and also their tighter integration with the text search
can be tested (see below).

8.3 Flexibility and extensibility

To satisfy various user information needs modern information retrieval systems
need to cope with diverse user requests that can include not only textual search
but also search on images, videos, songs, etc. The design of the TIJAH system
and score region algebra was driven also by the goal to support these searches
(see Section 1.2.3). Therefore, our structured IR system is flexible in supporting
retrieval models in various real world areas, and also with respect to querying and
storage of various data sources.

In this thesis we present how SRA (and TIJAH) can be extended to support
additional algebra operators and additional attributes in the SRA data model. We
also show how search in non-textual domains can be incorporated in the framework.
In all these cases the basic functionality of SRA remains the same.

The SRA data model extension is explained in Section 7.1 on an example that
uses the element level as an additional content information employed in structured
retrieval. Element level information is used for specifying new retrieval models.

Section 7.2 explains how video search is performed in the TIJAH system. The
video data is modeled through speech transcripts of a video material, encoded
in XML. To support search in such XML data, new retrieval models have been
developed that utilize the specific structure of videos, consisting of scenes and
shots.

Finally, Section 7.3 explains how image search (search by example) can be
achieved in TIJAH. Image content is described in terms of low-level video features
that are matched with features from the sample image to find the most similar
images. The image search is then combined with the text search.

Contributions

The SRA data model and operators are designed in such a way that they can
easily be extended. Thus, the contributions presented in this thesis, with respect
to distinct content information conveyed in structured documents are as follows.

• SRA data model and operator set abstract away from the modeling of doc-
ument content at the physical level, providing content description indepen-
dence.

192 8. Conclusions and Future Work

• The SRA data model can be extended for modeling additional information
that describes different types of document content, without affecting the core
SRA functionality.

Besides enabling retrieval model independence and transparent instantiation
of retrieval models, SRA (the TIJAH system) enables the independence between
the generation of a query plan at the logical level and the storage structures and
operators responsible for data manipulation at the physical level. However, this is
not related only to how content is stored at the physical level (physical data inde-
pendence) but also to the high-level representation of distinct types of document
content used for defining retrieval models.

Having distinct selection operators, different types of document content (e.g.,
images, videos, songs) can be selected based on their similarity/equivalence with
the reference content, and incorporated into the SRA framework without major
changes. This is possible as SRA supports content description independence.

In such a way, arbitrary content can be modeled and accessed in SRA. Using
abstract functions, the reasoning can be performed with respect to the relevance
of such content to user queries. At the physical level of the TIJAH system textual,
video, image, and audio content can be represented and stored in different ways,
e.g., terms with and without stemming, video as a transcript of recognized speech
(see Section 7.2), image as a set of high-level image features (see Section 7.3). The
SRA does not have to deal with these internals but only with the way in which this
data is used to compute the (matching) scores for the respective elements inside
a document.

In Chapter 7 we demonstrate that special purpose retrieval models on a video
retrieval task, that use specific structure of videos (each video consists of scenes,
and each scene of shots), significantly improve the effectiveness in comparison to
the baseline language model. However, in the experiments presented in Sections 7.1
and 7.3 we were not able to improve the retrieval effectiveness when using level
information or simple image retrieval models for structured search. Nevertheless,
some more advanced retrieval models might achieve this goal.

Future research

The SRA extensions presented in Chapter 7 illustrate how SRA can be adapted to
different structured retrieval tasks. Many opportunities exist for improving either
expressiveness of the SRA or effectiveness of retrieval models in textual, video,
and image domain. For example, one approach to improve SRA expressiveness
is to introduce new attributes and operators to support the XQuery full text
(TeXQuery) query language. This might result in the integration of TIJAH with
Pathfinder at the physical level (MonetDB) as already explained in the part that
discusses future research in Section 8.1.

Furthermore, we can upgrade the retrieval models to use term proximity for
relevance computation, or semantics of document annotations when computing,

8.3. Flexibility and extensibility 193

combining, and propagating scores. Maybe some more advanced phrase search
methods can improve the results. These are just some of the possible extensions
toward the development of a more effective structured retrieval system.

The image similarity search models employed in Section 7.3 did not show any
significant improvements over models that use image caption text and textual
description for image search. However, the usage of more advanced image search
techniques might give better results. Similarly for video retrieval, audio and video
content analysis techniques can be used to achieve better description of video
sequences. Also more advanced image similarity search techniques can be used for
enhancing the video search subpart of the TIJAH system.

194 8. Conclusions and Future Work

Appendix A

INEX NEXI queries

A.1 2003 content-and-structure queries

61. //article[about(.,clustering +distributed) and about(.//sec,java)]

62. //article[about(.,security +biometrics)

AND about(.//sec,"facial recognition")]

63. //article[about(.,"digital library")

AND about(.//p, +authorization +"access control" +security)]

64. //article[about(., hollerith)]//sec[about(., dehomag)]

65. //article[.//fm//yr > 1998 AND about(., "image retrieval")]

66. //article[.//fm//yr < 2000]//sec[about(.,"search engines")]

67. //article//fm[about(.//(tig|abs), +software +architecture)

and about(., -distributed -web)]

68. //article[about(., +smalltalk) or about(., +lisp) or about(.,+erlang)

or about(., +java)]

//bdy//sec[about(., +"garbage collection" +algorithm)]

69. //article//bdy//sec[about(.//st,"information retrieval")]

70. //article[about(.//fm//abs, "information retrieval"

"digital libraries")]

71. //article[about(.,formal methods verify correctness aviation systems)]

//bdy//*[about(.,case study application model checking theorem

proving)]

72. //article[about(.//fm//au//aff,united states of america)]

//bdy//*[about(.,weather forecasting systems)]

73. //article[about(.//st,+comparison) and

about(.//bib,"machine learning")]

74. //article[about(., video streaming applications)]

//sec[about(., media stream synchronization)

OR about(., stream delivery protocol)]

75. //article[about(., petri net) AND about(.//sec, formal definition)

AND about(.//sec, algorithm efficiency computation approximation)]

76. //article[(.//fm//yr = 2000 OR .//fm//yr = 1999)

AND about(., "intelligent transportation system")]

//sec[about(.,automation +vehicle)]

77. //article[about(.//sec,"reverse engineering")]//sec[about(., legal)

OR about(.,legislation)]

78. //vt[about(.,"information retrieval" student)]

79. //article[about(.,xml) AND about(.,database)]

80. //article//bdy//sec[about(.,"clock synchronization"

196 A. INEX NEXI queries

"distributed systems")]

81. //article[about(.//p,"multi concurrency control") AND

about(.//p, algorithm) AND about(.//fm//atl, databases)]

82. //article[about(.,handwriting recognition) AND about(.//fm//au,kim)]

83. //article//fm//abs[about(., "data mining" "frequent itemset")]

84. //p[about(.,overview "distributed query processing" join)]

85. //article[.//fm//yr >= 1998 and .//fig//no > 9]//sec[about(.//p, VR

"virtual reality" "virtual environment" cyberspace

"augmented reality")]

86. //sec[about(.,mobile electronic payment system)]

87. //article[(.//fm//yr = 1998 OR .//fm//yr = 1999 OR .//fm//yr = 2000

OR .//fm//yr = 2001 OR .//fm//yr = 2002)

AND about(., "support vector machines")]

88. //article[(.//fm//yr = 1998 OR .//fm//yr = 1999 OR .//fm//yr = 2000

OR .//fm//yr = 2001) AND about(., "web crawler")]

89. //article[about(.//bdy,clustering "vector quantization" +fuzzy +k-means

+c-means -sofm -som)]//bm//bb[about(.,"vector quantization"

+fuzzy clustering +k-means +c-means) AND about(.//pdt,1999)

AND about(.//au//snm, -kohonen)]

90. //article[about(.//sec,+trust authentication "electronic commerce"

e-commerce ebusiness marketplace)]

//abs[about(., trust authentication)]

A.2 2004 content-and-structure queries

127. //sec//(p|fgc)[about(., godel lukasiewicz and other fuzzy

implication definitions)]

128. //article[about(., intelligent transport systems)]

//sec[about(., on-board route planning navigation system for

automobiles)]

129. //article[about(.//atl, new book review bookshelf)]

//sec[about(., database "data warehouse")]

130. //article[about(.//p,object database)]

//p[about(.,version management)]

131. //article[about(.//au,"jiawei han")]//abs[about(.,"data mining")]

132. //article[about(.//abs,classification)]

//sec[about(.,experiment compare)]

133. //article[about(.//fm//tig//atl, query)

and about(.//st, optimization)]

134. //article[(about(., "phrase search") OR about(., "proximity search")

OR about(., "string matching")) AND (about(.,tries)

OR about(.,"suffix trees") OR about(.,"pat arrays"))]

//sec[about(.,algorithm)]

135. //article[about(.//atl, summaries)]

A.2. 2004 content-and-structure queries 197

//sec[about(., "Internet security") or

about(.,"network security")]

136. //bib[about(., text categorisation) and

about(., "support vector machines" svm)]

137. //article [about(.//abs, "digital library") or

about(.//ip1, "digital library")]

138. //article[about(.,operating system) and

about(.//sec,thread implementation)]

139. //article[(about(.//bb//au//snm, bertino) or

about(.//bb//au//snm , jajodia)) and

about(.//bb//atl, security model) and

about(.//bb//atl, -"indexing model" -"object oriented model")]

140. //article[about(., xml)]//bdy//sec[about(., "information integration"

+web) or about(., "information exchange" +web)]

141. //article[about(.,java)]//sec[about(.,implementing threads)]

142. //abs[about(.,database access using perl)]

143. //sec[about(.,+stemming +information)]

144. //article[about(.//abs, bioinformatics "software systems") and

about(.//p,data warehouse multi-format multi-type integration)]

145. //article[about(.,information retrieval)]

//p[about(.,relevance feedback)]

146. //article[(.//fm//yr > 1999)]//sec[about(.//*, xml html web)]

147. //sec[about(.//st,conclusions) AND about(.,web) AND about(.,distance)

AND about (.,learning)]

149. //article[about(.//(abs|kwd), "genetic algorithm")]

//bdy//sec[about(.,simulated annealing)]

150. //article[about(., animation)]

//bdy//sec[about(.//st, inverse kinematics)]

151. //article[about(., "web search engine")]

//sec[about(., "vector space model")]

152. //article//p[about(.,+linux "word processing" "word processor"

"office programs")]

153. //article//bm//vt[about(.,"phd student") OR about(.,"phd candidate")]

154. //article[about(.//bib, abiteboul)]

//bdy//*[about(., semistructured + query)]

155. //article[about(.//p,"self organising feature map") and

about(.//fm//yr,2000)]//fig[about(.//fgc,"self organising map")]

156. //article[about(.//abs, "spatial join")]

//bdy//sec[about(., "performance evaluation")]

157. //article[about(.//abs,-query -"query optimization" -linear)

and about(.//bdy,newton +gradient hessian technique)]

//bdy//*[about(.,+optimization -experiments)

and (about(.,maximization) or about(.,minimization))]

158. //article[about(.//fm, turing test) or about(.//abs, turing test)]

//bdy[about(., turning test consciousness intelligence imitation

game)]

159. //article[about(.,"bayesian networks")]

198 A. INEX NEXI queries

//sec[about(.,learning structure)]

160. //article[about(., image retrieval)]

//sec[about(., "latent semantic indexing")]

161. //article[about(., database access methods for spatial data and text)]

//bm//bb[about(.//atl, database access methods)]

Appendix B

NEXI version of TREC
queries

B.1 Title queries

301. //DOC[about(., international organized crime)]

302. //DOC[about(., poliomyelitis and post polio)]

303. //DOC[about(., hubble telescope achievements)]

304. //DOC[about(., endangered species mammals)]

305. //DOC[about(., most dangerous vehicles)]

306. //DOC[about(., african civilian deaths)]

307. //DOC[about(., new hydroelectric projects)]

308. //DOC[about(., implant dentistry)]

309. //DOC[about(., rap and crime)]

310. //DOC[about(., radio waves and brain cancer)]

311. //DOC[about(., industrial espionage)]

312. //DOC[about(., hydroponics)]

313. //DOC[about(., magnetic levitation maglev)]

314. //DOC[about(., marine vegetation)]

315. //DOC[about(., unexplained highway accidents)]

316. //DOC[about(., polygamy polyandry polygyny)]

317. //DOC[about(., unsolicited faxes)]

318. //DOC[about(., best retirement country)]

319. //DOC[about(., new fuel sources)]

320. //DOC[about(., undersea fiber optic cable)]

321. //DOC[about(., women in parliaments)]

322. //DOC[about(., international art crime)]

323. //DOC[about(., literary journalistic plagiarism)]

324. //DOC[about(., argentine british relations)]

325. //DOC[about(., cult lifestyles)]

326. //DOC[about(., ferry sinkings)]

327. //DOC[about(., modern slavery)]

328. //DOC[about(., pope beatifications)]

329. //DOC[about(., mexican air pollution)]

330. //DOC[about(., iran iraq cooperation)]

331. //DOC[about(., world bank criticism)]

332. //DOC[about(., income tax evasion)]

333. //DOC[about(., antibiotics bacteria disease)]

200 B. NEXI version of TREC queries

334. //DOC[about(., export controls cryptography)]

335. //DOC[about(., adoptive biological parents)]

336. //DOC[about(., black bear attacks)]

337. //DOC[about(., viral hepatitis)]

338. //DOC[about(., risk of aspirin)]

339. //DOC[about(., alzheimer drug treatment)]

340. //DOC[about(., land mine ban)]

341. //DOC[about(., airport security)]

342. //DOC[about(., diplomatic expulsion)]

343. //DOC[about(., police deaths)]

344. //DOC[about(., abuses of e mail)]

345. //DOC[about(., overseas tobacco sales)]

346. //DOC[about(., educational standards)]

347. //DOC[about(., wildlife extinction)]

348. //DOC[about(., agoraphobia)]

349. //DOC[about(., metabolism)]

350. //DOC[about(., health and computer terminals)]

B.2 Expanded queries

301. //DOC[about(., trade traffic cocaine drugs cartel organizations

organisations criminal crime)]

302. //DOC[about(., poliomyelitis post polio control protection)]

303. //DOC[about(., hubble telescope achievements accomplishments

knowledge hypotheses hypothesis)]

304. //DOC[about(., endangered species mammals)]

305. //DOC[about(., vehicles cars crash crashworthy death danger)]

306. //DOC[about(., civil civilian war africa african death casualties)]

307. //DOC[about(., new proposed planned hydroelectric projects)]

308. //DOC[about(., implants tooth teeth dentistry dentist)]

309. //DOC[about(., rap crime violence drugs suicide teenagers youth

young)]

310. //DOC[about(., radio waves brain cancer tumor tumour)]

311. //DOC[about(., industrial espionage theft thievery trade secrets)]

312. //DOC[about(., hydroponics advantages agricultural nutrients

substrates)]

313. //DOC[about(., magnetic levitation maglev)]

314. //DOC[about(., food drug medicine algae seaweed kelp marine

vegetation)]

315. //DOC[about(., highway accidents unresolved unexplained)]

316. //DOC[about(., prevalence polygamy -serial)]

317. //DOC[about(., unsolicited junk fax faxes faxing facsimile cost

laws regulation privacy)]

318. //DOC[about(., retirement retiree living conditions foreign abroad)]

319. //DOC[about(., research fuel sources)]

B.3. Faceted queries 201

320. //DOC[about(., undersea underwater fiber optic cable link)]

321. //DOC[about(., women parliaments representation legislatures)]

322. //DOC[about(., international art trade embezzlement fraud)]

323. //DOC[about(., plagiarism literary journalistic journalism)]

324. //DOC[about(., argentine british international relations exchanges)]

325. //DOC[about(., cults activities lifestyles organization dress)]

326. //DOC[about(., ferry sinking sunk death casualties)]

327. //DOC[about(., slaves slavery present modern today buy sell commerce)]

328. //DOC[about(., pope beatified beatifications)]

329. //DOC[about(., mexico city air pollution)]

330. //DOC[about(., iran iraq cooperation friend friendly friendship

relations)]

331. //DOC[about(., world bank criticisms accusations unfair unfairly)]

332. //DOC[about(., unitedstates us usa tax evasion investigations)]

333. //DOC[about(., bacteria antibiotics)]

334. //DOC[about(., export controls encryption cryptography)]

335. //DOC[about(., biological parents adopt adoption adopted children

child)]

336. //DOC[about(., black bear attacks maul mauled mauling)]

337. //DOC[about(., viral hepatitis progress treatment research medical

medicin vaccines drug)]

338. //DOC[about(., aspirin adverse risks)]

339. //DOC[about(., alzheimer treatment prevention drug medecine)]

340. //DOC[about(., ban land mines)]

341. //DOC[about(., airport security passengers luggage carry-on)]

342. //DOC[about(., diplomatic expulsion information sensitive secret

classified trade technology industrial)]

343. //DOC[about(., police policeman policewoman policemen policewomen

death killed shot shooting trial witness testify)]

344. //DOC[about(., email e electronic mail abuse spam)]

345. //DOC[about(., tobacco cigarette sales abroad overseas foreign)]

346. //DOC[about(., education standards abroad overseas foreign)]

347. //DOC[about(., wildlife animals species extinction disappear)]

348. //DOC[about(., agoraphobia agoraphobic agora phobia)]

349. //DOC[about(., metabolic metabolism catabolic anabolic glycolysis

krebs)]

350. //DOC[about(., carpel tunnel rsi cataracts fatigue

disordercomputers)]

B.3 Faceted queries

301. //DOC[(about(., trade) OR about(., traffic)) AND (about(., cocaine)

OR about(., drugs)) AND (about(., cartel) OR

about(., organizations) OR about(., organisations)) AND

(about(., criminal) OR about(., crime))]

202 B. NEXI version of TREC queries

302. //DOC[(about(., poliomyelitis) OR about(., post polio) OR

about(., polio)) AND (about(., control) OR about(., protection))]

303. //DOC[about(., hubble telescope) AND (about(., achievements) OR

about(., accomplishments)) AND (about(., knowledge) OR

about(., hypotheses) OR about(., hypothesis))]

304. //DOC[about(., endangered species mammals)]

305. //DOC[(about(., vehicles) OR about(., cars)) AND (about(., crash) OR

about(., crashworthy) OR about(., death) OR about(., danger))]

306. //DOC[about(., civil civilian war) AND (about(., africa) OR

about(., african)) AND (about(., death) OR about(., casualties))]

307. //DOC[(about(., new) OR about(., proposed) OR about(., planned)) AND

about(., hydroelectric projects)]

308. //DOC[about(., implants) AND (about(., tooth) OR about(., teeth) OR

about(., dentistry) OR about(., dentist))]

309. //DOC[about(., rap) AND (about(., crime) OR about(., violence) OR

about(., drugs) OR about(., suicide)) AND (about(., teenagers) OR

about(., youth) OR about(., young))]

310. //DOC[about(., radio waves brain) AND (about(., cancer) OR

about(., tumor) OR about(., tumour))]

311. //DOC[about(., industrial espionage) OR ((about(., theft) OR

about(., thievery)) AND about(., trade secrets))]

312. //DOC[about(., hydroponics advantages agricultural) AND

(about(., nutrients) OR about(., substrates))]

313. //DOC[about(., magnetic levitation) OR about(., maglev)]

314. //DOC[(about(., food) OR about(., drug) OR about(., medicine)) AND

(about(., algae) OR about(., seaweed) OR about(., kelp) OR

about(., marine vegetation))]

315. //DOC[about(., highway accidents) AND (about(., unresolved) OR

about(., unexplained))]

316. //DOC[about(., prevalence polygamy -serial)]

317. //DOC[(about(., unsolicited) OR about(., junk)) AND (about(., fax) OR

about(., faxes) OR about(., faxing) OR about(., facsimile)) AND

(about(., cost) OR about(., laws) OR about(., regulation) OR

about(., privacy))]

318. //DOC[(about(., retirement) OR about(., retiree)) AND

about(., living conditions) AND (about(., foreign) OR

about(., abroad))]

319. //DOC[about(., research fuel sources)]

320. //DOC[(about(., undersea) OR about(., underwater)) AND

about(., fiber optic) AND (about(., cable) OR about(., link))]

321. //DOC[about(., women) AND (about(., parliaments) OR

about(., representation) OR about(., legislatures))]

322. //DOC[about(., international art trade) AND (about(., embezzlement)

OR about(., fraud))]

323. //DOC[about(., plagiarism) AND (about(., literary) OR

about(., journalistic) OR about(., journalism))]

324. //DOC[about(., argentine british) AND (about(., international

B.3. Faceted queries 203

relations) OR about(., exchanges))]

325. //DOC[about(., cults) AND (about(., activities) OR

about(., lifestyles) OR about(., organization) OR about(., dress))]

326. //DOC[about(., ferry) AND (about(., sinking) OR about(., sunk)) AND

(about(., death) OR about(., casualties))]

327. //DOC[(about(., slaves) OR about(., slavery)) AND (about(., present)

OR about(., modern) OR about(., today)) AND (about(., buy)

OR about(., sell) OR about(., commerce))]

328. //DOC[about(., pope) AND (about(., beatified) OR

about(., beatifications))]

329. //DOC[about(., mexico city air pollution)]

330. //DOC[about(., iran iraq) AND (about(., cooperation) OR

(about(., friend) OR about(., friendly) OR about(., friendship)

AND about(., relations)))]

331. //DOC[about(., world bank) AND (about(., criticisms) OR

about(., accusations) OR about(., unfair) OR about(., unfairly))]

332. //DOC[(about(., united states) OR about(., us) OR about(., usa)) AND

about(., tax evasion investigations)]

333. //DOC[about(., bacteria antibiotics)]

334. //DOC[about(., export controls) AND (about(., encryption) OR

about(., cryptography))]

335. //DOC[about(., biological parents) AND (about(., adopt) OR

about(., adoption) OR about(., adopted)) AND (about(., children)

OR about(., child))]

336. //DOC[about(., black bear) AND (about(., attacks) OR about(., maul)

OR about(., mauled) OR about(., mauling))]

337. //DOC[about(., viral hepatitis) AND (about(., progress) OR

about(., treatment) OR about(., research) OR about(., medical) OR

about(., medicin) OR about(., vaccines) OR about(., drug))]

338. //DOC[about(., aspirin) AND (about(., adverse) OR about(., risks))]

339. //DOC[about(., alzheimer) AND (about(., treatment) OR

about(., prevention)) AND (about(., drug) OR about(., medecine))]

340. //DOC[about(., ban land mines)]

341. //DOC[about(., airport security) AND (about(., passengers) OR

about(., luggage) OR about(., carry on))]

342. //DOC[about(., diplomatic expulsion information) AND

(about(., sensitive) OR about(., secret) OR about(., classified))

AND (about(., trade) OR about(., technology) OR

about(., industrial))]

343. //DOC[(about(., police) OR about(., policeman) OR

about(., policewoman) OR about(., policemen) OR

about(., policewomen)) AND (about(., death) OR about(., killed)

OR about(., shot) OR about(., shooting)) AND (about(., trial) OR

about(., witness) OR about(., testify))]

344. //DOC[(about(., email) OR about(., e mail) OR

about(., electronic mail)) AND (about(., abuse) OR

about(., spam))]

204 B. NEXI version of TREC queries

345. //DOC[(about(., tobacco) OR about(., cigarette)) AND

about(., sales) AND (about(., abroad) OR about(., overseas) OR

about(., foreign))]

346. //DOC[about(., education standards) AND (about(., abroad) OR

about(., overseas) OR about(., foreign))]

347. //DOC[about(., wildlife) AND (about(., animals) OR about(., species))

AND (about(., extinction) OR about(., disappear))]

348. //DOC[about(., agoraphobia) OR about(., agoraphobic) OR

about(., agora phobia)]

349. //DOC[(about(., metabolic) OR about(., metabolism)) AND

(about(., catabolic) OR about(., anabolic) OR

about(., glycolysis) OR about(., krebs))]

350. //DOC[(about(., carpel tunnel) OR about(., rsi) OR

about(., cataracts) OR about(., fatigue) OR about(., disorder))

AND about(., computers)]

B.4 Field-based + title queries

301. //DOC[about(., international organized crime) AND

about(.//SUBJECT, drug crime)]

302. //DOC[about(., poliomyelitis and post polio) AND

about(.//SUBJECT, health)]

303. //DOC[about(., hubble telescope achievements) AND

about(.//SUBJECT, space development)]

304. //DOC[about(., endangered species mammals) AND

about(.//SUBJECT, animal)]

305. //DOC[about(., most dangerous vehicles) AND

about(.//SUBJECT, safety automobile accidents)]

306. //DOC[about(., african civilian deaths)]

307. //DOC[about(., new hydroelectric projects)]

308. //DOC[about(., implant dentistry) AND

about(.//SUBJECT, medical health)]

309. //DOC[about(., rap and crime) AND

about(.//SUBJECT, accidents crime weapons shootings)]

310. //DOC[about(., radio waves and brain cancer) AND

about(.//SUBJECT, health)]

311. //DOC[about(., industrial espionage) AND

about(.//SUBJECT, industry)]

312. //DOC[about(., hydroponics)]

313. //DOC[about(., magnetic levitation maglev) AND

about(.//SUBJECT, transportation)]

314. //DOC[about(., marine vegetation) AND

about(.//SUBJECT, agriculture)]

315. //DOC[about(., unexplained highway accidents) AND

B.4. Field-based + title queries 205

about(.//SUBJECT, accidents traffic)]

316. //DOC[about(., polygamy polyandry polygyny) AND

about(.//SUBJECT, etics law)]

317. //DOC[about(., unsolicited faxes) AND

about(.//SUBJECT, economy)]

318. //DOC[about(., best retirement country)]

319. //DOC[about(., new fuel sources)]

320. //DOC[about(., undersea fiber optic cable)]

321. //DOC[about(., women in parliaments) AND

about(.//SUBJECT, politics)]

322. //DOC[about(., international art crime) AND

about(.//SUBJECT, fraud sales robberies)]

323. //DOC[about(., literary journalistic plagiarism) AND

about(.//SUBJECT, rights)]

324. //DOC[about(., argentine british relations) AND

about(.//SUBJECT, foreign relations international)]

325. //DOC[about(., cult lifestyles) AND

about(.//SUBJECT, culture)]

326. //DOC[about(., ferry sinkings) AND

about(.//SUBJECT, accidents traffic)]

327. //DOC[about(., modern slavery)]

328. //DOC[about(., pope beatifications)]

329. //DOC[about(., mexican air pollution) AND

about(.//SUBJECT, pollution)]

330. //DOC[about(., iran iraq cooperation) AND

about(.//SUBJECT, international)]

331. //DOC[about(., world bank criticism) AND

about(.//SUBJECT, economy finances)]

332. //DOC[about(., income tax evasion) AND

about(.//SUBJECT, fraud)]

333. //DOC[about(., antibiotics bacteria disease) AND

about(.//SUBJECT, medical health)]

334. //DOC[about(., export controls cryptography) AND

about(.//SUBJECT, laws computers legislation safety government)]

335. //DOC[about(., adoptive biological parents) AND

about(.//SUBJECT, rights)]

336. //DOC[about(., black bear attacks) AND

about(.//SUBJECT, animal injuries)]

337. //DOC[about(., viral hepatitis) AND

about(.//SUBJECT, health)]

338. //DOC[about(., risk of aspirin) AND

about(.//SUBJECT, medical drug health)]

339. //DOC[about(., alzheimer drug treatment) AND

about(.//SUBJECT, medical drug)]

340. //DOC[about(., land mine ban) AND

about(.//SUBJECT, foreign relations military)]

341. //DOC[about(., airport security) AND

206 B. NEXI version of TREC queries

about(.//SUBJECT, security)]

342. //DOC[about(., diplomatic expulsion) AND

about(.//SUBJECT, government)]

343. //DOC[about(., police deaths) AND

about(.//SUBJECT, police accident murders)]

344. //DOC[about(., abuses of e mail) AND

about(.//SUBJECT, computer)]

345. //DOC[about(., overseas tobacco sales) AND

about(.//SUBJECT, sales industry)]

346. //DOC[about(., educational standards) AND

about(.//SUBJECT, education school college)]

347. //DOC[about(., wildlife extinction) AND

about(.//SUBJECT, animals)]

348. //DOC[about(., agoraphobia) AND

about(.//SUBJECT, research)]

349. //DOC[about(., metabolism)]

350. //DOC[about(., health and computer terminals) AND

about(.//SUBJECT, health computer)]

B.5 Field-based + faceted queries

301. //DOC[(about(., trade) OR about(., traffic)) AND (about(., cocaine)

OR about(., drugs)) AND (about(., cartel) OR

about(., organizations) OR about(., organisations)) AND

(about(., criminal) OR about(., crime)) AND

about(.//SUBJECT, drug crime)]

302. //DOC[(about(., poliomyelitis) OR about(., post polio) OR

about(., polio)) AND (about(., control) OR about(., protection))

AND about(.//SUBJECT, health)]

303. //DOC[about(., hubble telescope) AND (about(., achievements) OR

about(., accomplishments)) AND (about(., knowledge) OR

about(., hypotheses) OR about(., hypothesis)) AND

about(.//SUBJECT, space development)]

304. //DOC[about(., endangered species mammals) AND

about(.//SUBJECT, animal)]

305. //DOC[(about(., vehicles) OR about(., cars)) AND (about(., crash) OR

about(., crashworthy) OR about(., death) OR about(., danger)) AND

about(.//SUBJECT, safety automobile accidents)]

306. //DOC[about(., civil civilian war) AND (about(., africa) OR

about(., african)) AND (about(., death) OR about(., casualties))]

307. //DOC[(about(., new) OR about(., proposed) OR about(., planned)) AND

about(., hydroelectric projects)]

308. //DOC[about(., implants) AND (about(., tooth) OR about(., teeth) OR

about(., dentistry) OR about(., dentist)) AND

B.5. Field-based + faceted queries 207

about(.//SUBJECT, medical health)]]

309. //DOC[about(., rap) AND (about(., crime) OR about(., violence) OR

about(., drugs) OR about(., suicide)) AND (about(., teenagers) OR

about(., youth) OR about(., young)) AND

about(.//SUBJECT, accidents crime weapons shootings)]

310. //DOC[about(., radio waves brain) AND (about(., cancer) OR

about(., tumor) OR about(., tumour)) AND

about(.//SUBJECT, health)]

311. //DOC[about(., industrial espionage) OR ((about(., theft) OR

about(., thievery)) AND about(., trade secrets)) AND

about(.//SUBJECT, industry)]

312. //DOC[about(., hydroponics advantages agricultural) AND

(about(., nutrients) OR about(., substrates))]

313. //DOC[about(., magnetic levitation) OR about(., maglev) AND

about(.//SUBJECT, transportation)]

314. //DOC[(about(., food) OR about(., drug) OR about(., medicine)) AND

(about(., algae) OR about(., seaweed) OR about(., kelp) OR

about(., marine vegetation)) AND about(.//SUBJECT, agriculture)]

315. //DOC[about(., highway accidents) AND (about(., unresolved) OR

about(., unexplained)) AND about(.//SUBJECT, accidents traffic)]

316. //DOC[about(., prevalence polygamy -serial) AND

about(.//SUBJECT, etics law)]

317. //DOC[(about(., unsolicited) OR about(., junk)) AND (about(., fax) OR

about(., faxes) OR about(., faxing) OR about(., facsimile)) AND

(about(., cost) OR about(., laws) OR about(., regulation) OR

about(., privacy)) AND about(.//SUBJECT, economy)]

318. //DOC[(about(., retirement) OR about(., retiree)) AND

about(., living conditions) AND (about(., foreign) OR

about(., abroad))]

319. //DOC[about(., research fuel sources)]

320. //DOC[(about(., undersea) OR about(., underwater)) AND

about(., fiber optic) AND (about(., cable) OR about(., link))]

321. //DOC[about(., women) AND (about(., parliaments) OR

about(., representation) OR about(., legislatures)) AND

about(.//SUBJECT, politics)]

322. //DOC[about(., international art trade) AND (about(., embezzlement) OR

about(., fraud)) AND about(.//SUBJECT, fraud sales robberies)]

323. //DOC[about(., plagiarism) AND (about(., literary) OR

about(., journalistic) OR about(., journalism)) AND

about(.//SUBJECT, rights)]

324. //DOC[about(., argentine british) AND

(about(., international relations)

OR about(., exchanges)) AND

about(.//SUBJECT, foreign relations international)]

325. //DOC[about(., cults) AND (about(., activities) OR

about(., lifestyles) OR about(., organization) OR about(., dress))

AND about(.//SUBJECT, culture)]

208 B. NEXI version of TREC queries

326. //DOC[about(., ferry) AND (about(., sinking) OR about(., sunk)) AND

(about(., death) OR about(., casualties)) AND

about(.//SUBJECT, accidents traffic)]

327. //DOC[(about(., slaves) OR about(., slavery)) AND (about(., present)

OR about(., modern) OR about(., today)) AND (about(., buy)

OR about(., sell) OR about(., commerce))]

328. //DOC[about(., pope) AND (about(., beatified) OR

about(., beatifications))]

329. //DOC[about(., mexico city air pollution) AND

about(.//SUBJECT, pollution)]

330. //DOC[about(., iran iraq) AND (about(., cooperation) OR

(about(., friend) OR about(., friendly) OR about(., friendship) AND

about(., relations))) AND about(.//SUBJECT, international)]

331. //DOC[about(., world bank) AND (about(., criticisms) OR

about(., accusations) OR about(., unfair) OR about(., unfairly))

AND about(.//SUBJECT, economy finances)]

332. //DOC[(about(., united states) OR about(., us) OR about(., usa)) AND

about(., tax evasion investigations) AND about(.//SUBJECT, fraud)]

333. //DOC[about(., bacteria antibiotics) AND

about(.//SUBJECT, medical health)]

334. //DOC[about(., export controls) AND (about(., encryption) OR

about(., cryptography)) AND

about(.//SUBJECT, laws computers legislation safety government)]

335. //DOC[about(., biological parents) AND (about(., adopt) OR

about(., adoption) OR about(., adopted)) AND (about(., children) OR

about(., child)) AND about(.//SUBJECT, rights)]

336. //DOC[about(., black bear) AND (about(., attacks) OR about(., maul) OR

about(., mauled) OR about(., mauling)) AND

about(.//SUBJECT, animal injuries)]

337. //DOC[about(., viral hepatitis) AND (about(., progress) OR

about(., treatment) OR about(., research) OR about(., medical) OR

about(., medicin) OR about(., vaccines) OR about(., drug)) AND

about(.//SUBJECT, health)]

338. //DOC[about(., aspirin) AND (about(., adverse) OR about(., risks))

AND about(.//SUBJECT, medical drug health)]

339. //DOC[about(., alzheimer) AND (about(., treatment) OR

about(., prevention)) AND (about(., drug) OR about(., medecine))

AND about(.//SUBJECT, medical drug)]

340. //DOC[about(., ban land mines) AND

about(.//SUBJECT, foreign relations military)]

341. //DOC[about(., airport security) AND (about(., passengers) OR

about(., luggage) OR about(., carry on)) AND

about(.//SUBJECT, security)]

342. //DOC[about(., diplomatic expulsion information) AND

(about(., sensitive) OR about(., secret) OR about(., classified))

AND (about(., trade) OR about(., technology) OR

about(., industrial)) AND about(.//SUBJECT, government)]

B.5. Field-based + faceted queries 209

343. //DOC[(about(., police) OR about(., policeman) OR

about(., policewoman) OR about(., policemen) OR

about(., policewomen)) AND (about(., death) OR about(., killed)

OR about(., shot) OR about(., shooting)) AND (about(., trial) OR

about(., witness) OR about(., testify)) AND

about(.//SUBJECT, police accident murders)]

344. //DOC[(about(., email) OR about(., e mail) OR

about(., electronic mail)) AND (about(., abuse) OR

about(., spam)) AND about(.//SUBJECT, computer)]

345. //DOC[(about(., tobacco) OR about(., cigarette)) AND

about(., sales) AND (about(., abroad) OR about(., overseas) OR

about(., foreign)) AND about(.//SUBJECT, sales industry)]

346. //DOC[about(., education standards) AND (about(., abroad) OR

about(., overseas) OR about(., foreign)) AND

about(.//SUBJECT, education school college)]

347. //DOC[about(., wildlife) AND (about(., animals) OR about(., species))

AND (about(., extinction) OR about(., disappear)) AND

about(.//SUBJECT, animals)]

348. //DOC[about(., agoraphobia) OR about(., agoraphobic) OR

about(., agora phobia) AND about(.//SUBJECT, research)]

349. //DOC[(about(., metabolic) OR about(., metabolism)) AND

(about(., catabolic) OR about(., anabolic) OR

about(., glycolysis) OR about(., krebs))]

350. //DOC[(about(., carpel tunnel) OR about(., rsi) OR

about(., cataracts) OR about(., fatigue) OR about(., disorder))

AND about(., computers) AND about(.//SUBJECT, health computer)]

210 B. NEXI version of TREC queries

Appendix C

NEXI version of TRECVID
queries

C.1 TRECVID 2003 queries

100. //VideoSegment[about(., building road city city suburbs)]

101. //VideoSegment[about(., basket basketball hoop net)]

102. //VideoSegment[about(., pitcher baseball game ball batter swings)]

103. //VideoSegment[about(., yasser arafat)]

104. //VideoSegment[about(., airplane taking off)]

105. //VideoSegment[about(., helicopter)]

106. //VideoSegment[about(., tomb unknown soldier arlington national

cemetery)]

107. //VideoSegment[about(., rocket missile taking off)]

108. //VideoSegment[about(., mercedes logo)]

109. //VideoSegment[about(., tanks)]

110. //VideoSegment[about(., person diving water)]

111. //VideoSegment[about(., locomotive railroad cars)]

112. //VideoSegment[about(., flames fire)]

113. //VideoSegment[about(., snow covered moutain peaks ridges

mountains)]

114. //VideoSegment[about(., osama bin laden)]

115. //VideoSegment[about(., roads vehicles traffic highway)]

116. //VideoSegment[about(., sphinx)]

117. //VideoSegment[about(., people crowd walking streets traffic

buildings city street car)]

118. //VideoSegment[about(., congressman mark souder)]

119. //VideoSegment[about(., morgan freeman)]

120. //VideoSegment[about(., dow jones industrial average rise day

points)]

121. //VideoSegment[about(., mug cup coffee)]

122. //VideoSegment[about(., cats)]

123. //VideoSegment[about(., pope john paul II second)]

124. //VideoSegment[about(., white house fountain)]

212 C. NEXI version of TRECVID queries

C.2 TRECVID 2004 queries

125. //VideoSegment[about(., street multiple pedestrians motion multiple

vehicles motion somewhere)]

126. //VideoSegment[about(., buildings flood waters around)]

127. //VideoSegment[about(., people dogs walking together)]

128. //VideoSegment[about(., congressman henry hyde face whole part

angle)]

129. //VideoSegment[about(., zooming capitol dome)]

130. //VideoSegment[about(., hockey rink least nets fully point view)]

131. //VideoSegment[about(., fingers striking keys keyboard least

partially)]

132. //VideoSegment[about(., people moving stretcher)]

133. //VideoSegment[about(., saddam hussein)]

134. //VideoSegment[about(., boris yeltsin)]

135. //VideoSegment[about(., sam donaldson face whole part angle

including both eyes people)]

136. //VideoSegment[about(., person hitting golf ball then hole)]

137. //VideoSegment[about(., benjamin netanyahu)]

138. //VideoSegment[about(., people going down steps stairs)]

139. //VideoSegment[about(., handheld weapon firing)]

140. //VideoSegment[about(., bicycles rolling)]

141. //VideoSegment[about(., umbrellas)]

142. //VideoSegment[about(., tennis player contacting ball tennis

racket)]

143. //VideoSegment[about(., wheelchairs may motorized)]

144. //VideoSegment[about(., bill clinton speaking least part flag

behind)]

145. //VideoSegment[about(., horses motion)]

146. //VideoSegment[about(., skiers skiing slalom course least gate

pole)]

147. //VideoSegment[about(., buildings fire flames smoke)]

148. //VideoSegment[about(., signs banners carried people march

protest)]

Appendix D

INEX Multimedia track
NEXI queries

1. //destination[about(.//images//image, buddha

src:/images/BN417_16.jpg)]

//*[(about(., asia) or about(., asian)) and (about(., buddha)

or about(., buddhist))]

2. //destination[(about(., church) and about(., europe)) or

about(.//images//image, +church +cathedral) or

about(.//images//image, src:/images/BN6082_10.jpg)]

3. //destination[about(., "national park") and about(., africa) and

about(.//health, - malaria)]

//images//image[about(., "national park")

or about(., src:/images/BN1038_32.jpg)]

4. //destination[about(.//general//introduction, best nightlife)]

//images//image[about(., night city view

src:/images/BN145_202.jpg src:/images/BN31_39.jpg)]

5. //destination[about(., asia) and

about(.//point_of_interest, hindu culture)]

//images//image[about(., thaipusam festival

src:/images/BN234_604.jpg)]

6. //destination[about(., europe) and

about(.//culture//history, king queen)]

//images//image[about(., royal palace residence

src:/images/BN7386_10.jpg)]

7. //destination[about(., gambling in casino)]

//image[about(., "glamour and glitter" city life casino

src:/images/BN4079_17.jpg src:/images/BN4879_11.jpg)]

8. //images[about(.,river danube)]

9. //image[about(.,nightlife pubs clubs parties dancing drinking)]

10. //destination[about(.,children activities) AND

about(.,"beautiful beaches") AND

about(.//image, src:/images/BN14115_5.jpg)]

11. //destination[about(.//image, fruit vegetables

src:/images/BN2787_4.jpg)]

//point_of_interest[about(., food fruit vegetable market)]

12. //destination[about(.//attractions//destination, "sea fishing") OR

214 D. INEX Multimedia track NEXI queries

about(.//activity, "sea fishing")]//image[about(., coast)]

13. //destination[about(., city river)]//images//image[about(., river city)

and about(., src:/images/wg-brisbane-400x300.gif)]

14. //images//image[about(.,beach tree)]

15. //destination[about(., mountain and water) and

about(.//activities, holiday)]

//images//image[about(.,mountain water bay sea ocean river)

and about(., src:/images/BN59706.jpg)]

16. //destination[about(., university)]//map[about(., university)]

17. //destination[about(., old city) AND about(.//image, palace) AND

about(.//image, church)]

18. //destination[about(.//map,"latin america")]

19. //destination[(about(.//history, persia) or

about(.//image, persian empire)) and about(.//image, mosque)]

//(point_of_interest|destination)[about(., ancient city)]

20. //destination[about(., "rock museum") and

.//environment//longditude>-130 and .//environment//longditude<-65

and about(.//event, "christmas official holiday")]

//map[about(., station)]

21. //destination[about(., pacific island) AND

about(.//image, island trees plants or rainforest)]

22. //destination[about(., sunset) AND (about(.//image, sunset sun) OR

about(.//image, trees mountain water sunset glow))]

23. //destination[about(., ski resort) AND

about(.//image, ski resort snow mountain)]

24. //destination[about(., us city) AND

about(.//image, street building people)]

25. //destination[about(.//image, ancient ships and vessels)]

//(activities|attractions)

[about(.,harbour visits to ancient ships vessel)]

Bibliography

[1] S. Abiteboul. Querying Semi-Structured Data. In Proceedings of the 6th
International Conference on Database Theory (ICDT), pages 1–17. Springer,
January 1997.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley Professional, 1st edition, November 1994.

[3] M. Abolhassani, N. Fuhr, and S. Malik. HyREX at INEX 2003. In N. Fuhr,
S. Malik, and M. Lalmas, editors, Proceedings of the 2nd Workshop of the
INitiative for the Evaluation of XML Retrieval (INEX), pages 27–32. ERCIM
Workshop Proceedings, March 2004.

[4] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communi-
cations of the ACM, 26(11):832–843, November 1983.

[5] G. Amati, C. Carpineto, and G. Romano. Merging XML Indices. In N. Fuhr,
M. Lalmas, S. Malik, and Z. Szlávik, editors, Proceedings of the 3rd Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX), pages
253–260. Lecture Notes in Computer Science 3493, Springer, March 2005.

[6] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath,
M. Rys, and J. Shanmugasundaram. XQuery 1.0 and XPath 2.0 Full-Text.
Technical Report WD-xmlquery-full-text–20051103, W3C, November 2005.

[7] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-
Text Search Extension to XQuery. In Proceedings of the 13th International
World Wide Web Conference, pages 583–594, May 2004.

[8] S. Amer-Yahia and P. Case. XQuery and XPath Full-Text Use Cases.
Technical Report WD-xmlquery-full-text-use-cases-20030214, W3C, Febru-
ary 2003.

[9] S. Amer-Yahia and P. Case. XQuery 1.0 and XPath 2.0 Full-Text Use
Cases. Technical Report WD-xmlquery-full-text-use-cases-20060501, W3C,
May 2006.

[10] R. Baeza-Yates and G. Navarro. Integrating Contents and Structure in Text
Retrieval. SIGMOD Records, 25(1):67–79, 1996.

[11] R. Baeza-Yates and G. Navarro. XQL and Proximal Nodes. Journal of
the American Society for Information Science and Technology (JASIST),
53(6):504–514, 2002.

216 BIBLIOGRAPHY

[12] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addi-
son Wesley Longman, ACM Press edition, May 1999.

[13] E. M. Bakker, T. S. Huang, M. S. Lew, N. Sebe, and X. S. Zhou, editors.
Image and Video Retrieval, Second International Conference, CIVR, volume
2728 of Lecture Notes in Computer Science. Springer, July 2003.

[14] A. Berglund, S. Boag, D. Chamberlin, M. Fernández, M. Kay, J. Robie,
and J. Siméon. XML Path Language (XPath) 2.0. Technical Report WD-
xpath20-20041029, W3C, October 2004.

[15] P. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition.
Technical Report REC-xmlschema-2-20041028, W3C, October 2004.

[16] H. E. Blok. Database Optimization Aspects for Information Retrieval. PhD
thesis, University of Twente, April 2002.

[17] H. E. Blok, V. Mihajlović, G. Ramı́rez, T. Westerveld, D. Hiemstra, and
A. P. de Vries. The TIJAH XML Information Retrieval System. In S. Du-
mais, E. N. Efthimiadis, D. Hawking, and K. Järvelin, editors, Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, page 725. ACM Press, August 2006.

[18] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. Technical Report WD-xquery-
20041029, W3C, October 2004.

[19] P. Boncz. Monet: A Next Generation Database Kernel for Query Intensive
Applications. PhD thesis, CWI, May 2002.

[20] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teub-
ner. MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational
Engine. In Proceedings of the SIGMOD International Conference on Man-
agement of Data, June 2006.

[21] B. Bos. The XML Data Model. Technical report, W3C, April 1997.

[22] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). Technical Report
REC-xml-20040204, W3C, February 2004.

[23] J. Broglio, J. P. Callan, and W. B. Croft. INQUERY System Overview.
In Proceedings of the TIPSTER Text Program (Phase 1) Workshop, pages
47–67. Morgan Kaufmann, 1994.

[24] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic Query Expansion
Using SMART: TREC 3. In D. Harman, editor, Proceedings of the 3rd Text
Retrieval Conference (TREC), pages 69–80. National Institute of Standards
and Technology (NIST), 1994.

BIBLIOGRAPHY 217

[25] D. Bulterman, G. Grassel, J. Jansen, A. Koivisto, N. Layäıda, T. Michel,
S. Mullender, and D. Zucker. Synchronized Multimedia Integration Lan-
guage (SMIL 2.1). Technical Report REC-SMIL2-20051213, W3C, Decem-
ber 2005.

[26] P. Buneman. Semistructured Data. In Proceedings of the 16th ACM SIGACT
- SIGMOD - SIGART Symposium on Principles of Database Systems, pages
117–121. ACM press, May 1997.

[27] F. Burkowski. Retrieval Activities in a Database Consisting of Heteroge-
neous Collections of Structured Data. In Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pages 112–125, 1992.

[28] S. Buxton and M. Rys. XQuery and XPath Full-Text Requirements. Tech-
nical Report WD-xquery-full-text-requirements-20030502, W3C, May 2003.

[29] J. P. Callan, W. B. Croft, and J. Broglio. TREC and TIPSTER Experiments
with INQUERY. Information Processing and Management: an International
Journal, 31(3):327–343, 1995.

[30] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY Retrieval
System. In Proceedings of the 3rd International Conference on Database and
Expert Systems Applications (DEXA), pages 78–83, 1992.

[31] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching
XML Documents via XML Fragments. In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pages 151–158. ACM Press, July 2003.

[32] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Grey, W. F.
King, B. G. Lindsey, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G.
Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A.
Yost. A History and Evaluation of System R. Communications of the ACM,
24(10):377–387, 1981.

[33] S.-F. Chang, W. Hsu, L. Kennedy, L. Xie, A. Yanagawa, E. Zavesky, and
D.-Q. Zhang. Columbia University TRECVID-2005 Video Search and High-
Level Feature Extraction. In Proceedings of the TRECVID Workshop, 2005.

[34] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR
Technologies: What is the Sound of One Hand Clapping? In M. Stone-
braker, G. Weikum, and D. DeWitt, editors, Proceedings of the 2nd Biennial
Conference on Innovative Data Systems Research (CIDR), pages 1–12. ACM
Press, January 2005.

218 BIBLIOGRAPHY

[35] C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khudanpur, L. Mangu,
H. Printz, E. Ristad, R. Rosenfeld, A. Stolcke, and D. Wu. Structure and Per-
formance of a Dependency Language Model. In Proceedings of Eurospeech,
pages 2775–2778, 1997.

[36] M. G. Christel and A. G. Hauptmann. The Use and Utility of High-Level
Semantic Features in Video Retrieval. In Proceedings of the Conference
on Image and Video Retrieval (CIVR), pages 134–144. Lecture Notes in
Computer Science 3568, July 2005.

[37] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Technical
Report REC-xpath-19991116, W3C, November 1999.

[38] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An Algebra for Struc-
tured Text Search and a Framework for its Implementation. The Computer
Journal, 38(1):43–56, 1995.

[39] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. Schema-Independent
Retrieval from Heterogeneous Structured Text. In Proceedings of the 4th
Annual Symposium on Document Analysis and Information Retrieval, pages
279–290, April 1995.

[40] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, June 1970.

[41] M. Consens and T. Milo. Algebras for querying text regions: Expressive
power and optimization. Journal of Computer and System Sciences (JCSS),
57(3):272–288, December 1998.

[42] W. S. Cooper. Expected Search Length: A Single Measure of Retrieval Effec-
tiveness Based on the Weak Ordering Action of Retrieval Systems. American
Documentation, 19(1):30–41, 1968.

[43] W. S. Cooper. Getting Beyond Boole. Information Processing and Manage-
ment, 24(3):243–248, 1988.

[44] G. V. Cormack, C. L. A. Clarke, C. R. Palmer, and R. C. Good. The
MultiText Retrieval System (demonstration abstract). In Proceedings of
the 22th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, page 334. ACM Press, August 1999.

[45] G. V. Cormack, C. L. A. Clarke, C. R. Palmer, and T. R. Lynam. MultiText
Experiments for TREC. In E. M. Voorhees and D. K. Harman, editors,
TREC Experiments and Evaluation in Information Retrieval, pages 347–
372. MIT Press, 2005.

[46] J. Cowan and R. Tobin. XML Information Set (Second Edition). Technical
Report REC-xml-infoset-20040204, W3C, February 2004.

BIBLIOGRAPHY 219

[47] F. Crestani, L. M. de Campos, J. M. Fernández-Luna, and J. F. Huete. A
Multi-layered Bayesian Network Model for Structured Document Retrieval.
In T. D. Nielsen and N. L. Zhang, editors, Proceedings of the 7th European
Conference Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU), pages 74–86. Lecture Notes in Computer Science,
Springer, July 2003.

[48] W. B. Croft. Knowledge-Based and Statistical Approaches to Text Retrieval.
IEEE Expert: Intelligent Systems and Their Applications, 8(2):8–12, 1993.

[49] W. B. Croft, R. Cook, and D. Wilder. Providing Government Information
on the Internet: Experiences with THOMAS. In Proceedings of the 2nd
Annual Conference on the Theory and Practice of Digital Libraries (DL),
pages 19–24. ERCIM Workshop Proceedings, June 1995.

[50] W. B. Croft and H. Turtle. A Retrieval Model for Incorporating Hypertext
Links. In Proceedings of the 2nd Annual ACM Conference on Hypertext
(HYPERTEXT), pages 213–224. ACM Press, 1989.

[51] C. J. Crouch, A. Mahajan, and A. Bellamkonda. Flexible Retrieval Based
on Vector Space Model. In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik,
editors, Proceedings of the 3rd Workshop of the INitiative for the Evalua-
tion of XML Retrieval (INEX), pages 292–302. Lecture Notes in Computer
Science 3493, Springer, March 2005.

[52] E. Curtmola, S. Amer-Yahia, P. Brown, and M. Fernàndez. GalaTex: A
Conformant Implementation of the XQuery Full-Text Language. In A. Ellis
and T. Hagino, editors, Proceedings of the 14th International Conference on
World Wide Web (WWW), Special interest tracks and posters, pages 1024–
1025. ACM Press, May 2005.

[53] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, and R. Erbe. A DBMS
Prototype to Support Extended NF2 Relations: An Integrated View on Flat
Tables and Hierarchies. SIGMOD Record, 15(2):356–367, 1986.

[54] S. J. de Rose. The SGML FAQ Book: Understanding the Foundation of
HTML and XML, volume 7 of Electronic Publishing. Kluwer Academic Pub-
lishers, July 1997.

[55] A. P. de Vries. Content Independence in Multimedia Databases. Journal
of the American Society for Information Science and Technology (JASIST),
52(11):954–960, 2001.

[56] A. P. de Vries and D. Hiemstra. The Mirror DBMS at TREC-8. In Proceed-
ings of the 8th Text Retrieval Conference (TREC), pages 725–734. National
Institute of Standards and Technology (NIST), November 1999.

220 BIBLIOGRAPHY

[57] A. P. de Vries, G. Kazai, and M. Lalmas. Tolerance to Irrelevance: A User-
effort Oriented Evaluation of Retrieval Systems without Predefined Retrieval
Unit. In Proceedings of the Recherche d’Informations Assistee par Ordinateur
(RIAO), pages 463–473, April 2004.

[58] A. P. de Vries, G. Kazai, and M. Lalmas. Evaluation Metrics 2004. In
N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors, Proceedings of the 3rd
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX).
pre-proceedings, March 2005.

[59] A. P. de Vries, M. G. L. M. van Doorn, H. M. Blanken, and P. M. G. Apers.
The miRRor MMDBMS Architecture. In M. P. Atkinson, M. E. Orlowska,
P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, Proceedings of the
25th International Conference on Very Large Data Bases (VLDB), pages
758–761. Morgan Kaufmann Publishers Inc., September 1999.

[60] A. P. de Vries and A. Wilschut. On the Integration of IR and Databases.
In Proceedings of the 8th IFIP 2.6 Working Conference on Data Semantics,
pages 16–31, 1998.

[61] S. DeRose, R. Daniel, P. Grosso, E. Maler, J. Marsh, and N. Walsh. XML
Pointer Langauge (XPointer). Technical Report WD-xptr-20020816, W3C,
August 2002.

[62] S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink)
Version 1.0. Technical Report REC-xlink-20010627, W3C, June 2001.

[63] A. Doan and A. Halevy. Semantic Integration Research in the Database
Community. AI Magazine, 26:83–94, 2005.

[64] E. N. Efthimiadis. Query Expansion. Annual Review of Information Systems
and Technology (ARIST), 31(4):121–187, 1996.

[65] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery
1.0 and XPath 2.0 Data Model. Technical Report WD-xpath-datamodel-
20041029, W3C, October 2004.

[66] D. Florescu, D. Kossmann, and I. Manolescu. Integrating Keyword Search
into XML Query Processing. Computer Networks, 33(1-6):119–135, May
2000.

[67] N. Fuhr. Probabilistic Models in Information Retrieval. The Computer
Journal, 35(3):243–255, 1992.

[68] N. Fuhr. A Probabilistic Relational Model for the Integration of IR and
Databases. In R. Korfhage, E. M. Rasmussen, and P. Willett, editors,
Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 309–317. ACM
Press, June 1993.

BIBLIOGRAPHY 221

[69] N. Fuhr. Models for Integrated Information Retrieval and Database Systems.
IEEE Data Engineering Bulletin, 19(1):3–13, 1996.

[70] N. Fuhr. Models in Information Retrieval. In M. Agosti, F. Crestani, and
G. Pasi, editors, Lectures in Information Retrieval, pages 21–50. Springer,
2000.

[71] N. Fuhr and K. Grossjohann. XIRQL: A Query Language for Information
Retrieval in XML Documents. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 172–180, September 2001.

[72] N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on
Information Retrieval Concepts. ACM Transactions on Information Systems
(TOIS), 22(2):313–356, 2004.

[73] N. Fuhr, K. Großjohann, and S. Kriewel. A Query Language and User
Interface for XML Information Retrieval. In H. Blanken, T. Grabs, H.-J.
Schek, R. Schenkel, and G. Weikum, editors, Intelligent Search on XML,
volume 2818 of Lecture Notes in Computer Science, pages 59–75. Springer-
Verlag, August 2003.

[74] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors. Advances in XML
Information Retrieval: Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, volume 3493. Springer-Verlag, May 2005.

[75] N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integra-
tion of Information Retrieval and Database Systems. ACM Transactions on
Information Systems (TOIS), 15(1):32–66, 1997.

[76] J.-L. Gauvain, L. Lamel, and G. Adda. The LIMSI Broadcast News Tran-
scription System. Speech Communication, 37(1-2):89–108, 2002.

[77] S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004.
In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors, Proceedings of the
3rd Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),
pages 211–223. Lecture Notes in Computer Science 3493, Springer, March
2005.

[78] G. Gonnet and F. Tompa. Mind Your Grammar: A New Approach to
Modelling Text. In P. M. Stocker, W. Kent, and P. Hammersley, editors,
Proceedings of the 13th International Conference on Very Large Databases
(VLDB), pages 339–346, September 1987.

[79] N. Gövert, M. Abolhassani, N. Fuhr, and K. Grossjohann. Content-Oriented
XML Retrieval with HyREX. In N. Fuhr, N. Gövert, G. Kazai, and M. Lal-
mas, editors, Proceedings of the 1st Workshop of the INitiative for the Eval-
uation of XML Retrieval (INEX), pages 13–17. ERCIM Workshop Proceed-
ings, March 2003.

222 BIBLIOGRAPHY

[80] T. Grabs, K. Böhm, and H.-J. Schek. PowerDB-IR: Information retrieval on
Top of a Database Cluster. In Proceedings of the 10th International Confer-
ence on Information and Knowledge Management (CIKM), pages 411–418.
ACM Press, 2001.

[81] T. Grabs and H.-J. Schek. Generating Vector Spaces On-the-fly for Flexible
XML Retrieval. In XML and Information Retrieval Workshop - 25th An-
nual Intermational ACM SIGIR Conference on Research and Development
in Information Retrieval, August 2002.

[82] T. Grabs and H.-J. Schek. ETH Zürich at INEX: Flexible Information Re-
trieval from XML with PowerDB-XML. In N. Fuhr, N. Gövert, G. Kazai,
and M. Lalmas, editors, Proceedings of the 1st Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX), pages 35–40. ERCIM Workshop
Proceedings, March 2003.

[83] D. A. Grossman and O. Frieder. Information Retrieval: Algorithms and
Heuristics. The Information Retrieval. Springer, 2nd edition, December
2004.

[84] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C. Roberts. Integrating
Structured Data and Text: A Relational Approach. Journal of the American
Society of Information Science (JASIS), 48(2):122–132, 1997.

[85] D. A. Grossman, D. O. Holmes, and O. Frieder. A Parallel DBMS Ap-
proach to IR in TREC-3. In Proceedings of the 3rd Text Retrieval Conference
(TREC), pages 279–288. National Institute of Standards and Technology
(NIST), 1994.

[86] T. Grust. Accelerating XPath Location Steps. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, pages
109–120. ACM Press, June 2002.

[87] T. Grust, J. Teubner, and M. van Keulen. Accelerating XPath Evaluation in
Any RDBMS. ACM Transactions on Database Systems (TODS), 29(1):91–
131, March 2004.

[88] T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach A Relational
DBMS To Watch its (Axis) Steps. In Proceedings of the 29th International
Conference on Very Large Databases (VLDB), pages 524–535, September
2003.

[89] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. In Proceedings of the ACM SIMOD
Conference, pages 16–27, 2003.

[90] D. Harman, R. Baeza-Yates, E. Fox, and W. Lee. Inverted Files, pages
28–43. Prentice-Hall Inc., 1992.

BIBLIOGRAPHY 223

[91] D. Hawking, N. Craswell, F. Crimmins, and T. Upstill. How Valuable is
External Link Evidence when Searching Enterprise Webs? In Proceedings of
the 15th Australasian Database Conference (ADC), pages 77–84. Australian
Computer Society, Inc., 2004.

[92] D. C. Hay. Requirements Analysis: From Business Views to Architecture.
Prentice Hall, 1st edition, August 2002.

[93] M. Hearst. User Interfaces and Visualization, chapter 5. In Baeza-Yates and
Ribeiro-Neto [12], ACM Press edition, May 1999.

[94] A. Henrich and G. Robbert. Combining Multimedia Retrieval and Text
Retrieval to Search Structured Documents in Digital Libraries. In DE-
LOS Workshop: Information Seeking, Searching and Querying in Digital
Libraries. ERCIM Workshop Proceedings, December 2000.

[95] D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, January 2001.

[96] D. Hiemstra. A Database Approach to Content-based XML Retrieval. In
N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, editors, Proceedings of the
1st Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),
pages 53–58. ERCIM Workshop Proceedings, March 2003.

[97] D. Hiemstra and V. Mihajlović. A Database Approach to Information Re-
trieval: The Remarkable Relationship Between Language Models and Region
Models. Technical Report 05-35, Centre for Telematics and Information
Technology, August 2005.

[98] D. Hiemstra and V. Mihajlović. The Simplest Evaluation Measures for XML
Information Retrieval that Could Possibly Work. In A. Trotman, M. Lalmas,
and N. Fuhr, editors, Proceedings of the INEX 2005 Workshop on Element
Retrieval Methodology, pages 6–13, July 2005.

[99] D. Hiemstra, H. Rode, R. van Os, and J. Flokstra. PF/Tijah: Text Search
in an XML Database System. In M. Beigbeder, W. Buntine, and W. G.
Yee, editors, Proceedings of the 2nd International Workshop on Open Source
Information Retrieval (OSIR), pages 12–17. ACM Press, August 2006.

[100] Y. E. Ioannidis. Query Optimization. The Computer Science and Engineer-
ing Handbook, 45:1038–1057, 1996.

[101] J. Jaakkola and P. Kilpeläinen. Using sgrep for Querying Structured Text
Files. In Proceedings of SGML Finland 1996, October 1996.

[102] J. Jaakkola and P. Kilpeläinen. Nested Text-Region Algebra. Technical
Report C-1999-2, Department of Computer Science, University of Helsinki,
1999.

224 BIBLIOGRAPHY

[103] B. J. Jansen. The Effect of Query Complexity on Web Searching Results.
Information Research, 6(1), 2000.

[104] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic Image Annotation and
Retrieval using Cross-Media Relevance Models. In Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, August 2003.

[105] J. Jiang and C. Zhai. Extraction of Coxerent Relevant Passages using Hid-
den Markov Models. ACM Transaction on Information Systems (TOIS),
24(3):295–319, 2006.

[106] M. Jiang, E. Jensen, S. Beitzel, and S. Argamon. Choosing the Right Bi-
grams for Information Retrieval. In Proceeding of the Meeting of the Inter-
national Federation of Classification Societies, 2004.

[107] D. Jurafski and J. Martin. Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics and Speech
Recognition. Prentice-Hall, 2000.

[108] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length Normalization in
XML Retrieval. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
80–87. ACM Press, September 2004.

[109] J. Kamps, G. Mishne, and M. de Rijke. Language Models for Searching in
Web Corpora. In E. M. Voorhees and L. P. Buckland, editors, Proceedings
of the 13th Text Retrieval Conference (TREC), pages 250–261. National
Institute of Standards and Technology (NIST), 2005.

[110] G. Kazai and M. Lalmas. INEX 2005 Evaluation Measures. In N. Fuhr,
M. Lalmas, S. Malik, and G. Kazai, editors, Proceedings of the 4th Workshop
of the INitiative for the Evaluation of XML Retrieval (INEX), pages 16–29.
Lecture Notes in Computer Science 3977, Springer, March 2006.

[111] G. Kazai, M. Lalmas, and A. de Vries. The Overlap Problem in Content-
oriented XML Retrieval Evaluation. In Proceedings of the 27th Annual In-
ternational ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 72–79. ACM Press, July 2004.

[112] M. Kifer, A. Bernstein, and P. M. Lewis. Database Systems: An Application-
Oriented Approach. Addison-Wesley, 2nd edition, 2006.

[113] W. Kraaij and R. Pohlmann. Porter’s Stemming Algorithm for Dutch. In
L. G. M. Noordman and W. A. M. de Vroomen, editors, Informatieweten-
schap 1994: Wetenschappenlijke bijdragen aan de derde STINFON Confer-
entie, pages 167–180, 1994.

BIBLIOGRAPHY 225

[114] W. Kraaij, A. F. Smeaton, and P. Over. TRECVID 2004 – An Overview.
In TREC Video Retrieval Evaluation Online Proceedings (TRECVID).
http://www-nlpir.nist.gov/projects/tvpubs/tvpapers04/tv4overview.pdf,
February 2004.

[115] J. Lafferty and C. Zhai. Document Language Models, Query Models, and
Risk Minimization for Information Retrieval. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 111–119. ACM Press, 2001.

[116] M. Lalmas, T. Rölleke, and N. Fuhr. Intellignet Retrieval of Hypermedia
Documents, volume 111, pages 325–347. Springer-Verlag, 2002.

[117] V. Lavrenko and W. B. Croft. Relevance-Based Language Model. In Proceed-
ings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 120–127, 2001.

[118] C. Lee and G. Lee. Probabilistic Information Retrieval Model for a Depen-
dency Structured Indexing System. Information Processing and Manage-
ment, 41(2):161–175, March 2005.

[119] J. H. Lee. Analyzing the Effectiveness of Extended Boolean Models in In-
formation Retrieval. Technical Report TR95-1501, Cornell University, 1995.

[120] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query Optimization by Predicate
Move-Around. In Proceedings of the 20th Very Large Database Conference
(VLDB), pages 96–107, September 1994.

[121] J. List and A. P. de Vries. CWI at INEX 2002. In N. Fuhr, N. Gövert,
G. Kazai, and M. Lalmas, editors, Proceedings of the 1st Workshop of the
INitiative for the Evaluation of XML Retrieval (INEX), pages 47–52. ERCIM
Workshop Proceedings, March 2003.

[122] J. List, V. Mihajlović, A. P. de Vries, G. Ramı́rez, and D. Hiemstra. The
TIJAH XML-IR System at INEX 2003. In Proceedings of the 2nd Initia-
tive on the Evaluation of XML Retrieval (INEX), pages 102–109. ERCIM
Workshop Proceedings, March 2004.

[123] J. List, V. Mihajlović, G. Ramı́rez, A. P. de Vries, D. Hiemstra, and H. E.
Blok. TIJAH: Embracing IR Methods in XML Databases. Information
Retrieval Journal, 8(4):547–570, 2005.

[124] X. Liu and W. B. Croft. Passage Retrieval Based on Language Models. In
Proceedings of the 11th International Conference on Information and Knowl-
edge Management (CIKM), pages 375–382. ACM Press, 2002.

226 BIBLIOGRAPHY

[125] R. Luk, H. V. Leong, T. Dillon, A. Chan, W. B. Croft, and J. Allan. A
Survey in Indexing and Searching XML Documents. Journal of the American
Society for Information Science and Technology (JASIST), 53(6):415–437,
February 2002.

[126] M. E. Maron and J. L. Kuhns. On Relevance, Probabilistic Indexing and
Information Retrieval. Journal of ACM, 7(3):216–244, 1960.

[127] J. Martinez. MPEG-7 Overview. Technical Report ISO/IEC
JTC1/SC29/WG11, N6828, Internation Organisation for Standardization,
October 2004.

[128] Y. Mass and M. Mandelbrod. Retrieving the most Relevant XML Compo-
nents. In N. Fuhr, S. Malik, and M. Lalmas, editors, Proceedings of the 2nd
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),
pages 12–18. ERCIM Workshop Proceedings, March 2004.

[129] Y. Mass and M. Mandelbrod. Component Ranking and Automatic Query
Refinment for XML Retrieval. In N. Fuhr, M. Lalmas, S. Malik, and
Z. Szlávik, editors, Proceedings of the 3rd Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX), pages 292–302. Lecture Notes in
Computer Science 3493, Springer, March 2005.

[130] K. Masuda. A Ranking Model of Proximal and Structural Text Retrieval
Based on Region Algebra. In K. Funakoshi, S. Kübler, and J. Otterbacher,
editors, Proceedings of the 41st Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 50–57, 2003.

[131] K. Masuda, T. Ninomiya, Y. Miyao, T. Ohta, and J. Tsujii. A Robust
Retrieval Engine for Proximal and Structural Search. In Proceedings of the
Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-NAACL), pages 58–60,
2003.

[132] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. Technical Report REC-owl-features-20040210, W3C, February
2004.

[133] W. Meier. eXist: An Open Source Native XML Database. In A. B. Chaudri,
M. Jeckle, E. Rahm, and R. Unland, editors, Web-Services and Database
Systems, Lecture Notes in Computer Science 2593, pages 169–183. Springer,
2002.

[134] D. Metzler and W. B. Croft. Combining the Language Model and Inference
Network Approaches to Retrieval. Information Processing and Management:
an International Journal, 40(5):735–750, September 2004.

BIBLIOGRAPHY 227

[135] D. Metzler, V. Lavrenko, and W. B. Croft. Formal Multiple-Bernoulli Mod-
els for Language Modeling. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 540–541, 2004.

[136] A. Micarelli, F. Gasparetti, F. Sciarrone, and S. Gauch. Personalized Search
on the World Wide Web. In P. Brusilovsky, A. Kobsa, and W. Nejdl, editors,
The Adaptive Web: Methods and Strategies of Web Personalization. Springer
Verlag, 2006.

[137] V. Mihajlović. Score Region Algebra: A Framework for Structured IR. In
G. Marchionini, A. Moffat, J. Tait, R. Baeza-Yates, and N. Ziviani, editors,
Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (abstract), page 685.
ACM Press, August 2005.

[138] V. Mihajlović, H. E. Blok, D. Hiemstra, and P. M. G. Apers. Score Region
Algebra: Building a Transparend XML-IR Database. In A. Chowdhury,
N. Fuhr, M. Ronthaler, H.-J. Schek, and W. Teiken, editors, Proceedings
of the 14th ACM International Conference on Information Knowledge and
Management (CIKM), pages 12–19. ACM Press, March 2005.

[139] V. Mihajlović, D. Hiemstra, and H. E. Blok. Vague Element Selection and
Query Rewriting for XML Retrieval. In F. de Jong and W. Kraaij, edi-
tors, Proceedings of the 6th Dutch-Belgian Information Retrieval Workshop
(DIR), pages 11–18. TNO ICT, March 2006.

[140] V. Mihajlović, D. Hiemstra, H. E. Blok, and P. M. G. Apers. An XML-IR-
DB Sandwich: Is it Better with an Algebra in Between. In Proceedings of
the Joint Workshop on XML, IR and DB, pages 31–38, July 2004.

[141] V. Mihajlović, D. Hiemstra, H. E. Blok, and P. M. G. Apers. Utilizing
Structural Knowledge for Information Retrieval in XML Databases. Techni-
cal Report 05-19, Centre for Telematics and Information Technology, June
2005.

[142] V. Mihajlović, D. Hiemstra, H. E. Blok, and P. M. G. Apers. Exploiting
Query Structure and Document Structure to Improve Document Retrieval
Effectiveness. Technical Report 06-92, Centre for Telematics and Information
Technology, October 2006.

[143] V. Mihajlović and M. Petković. Automatic Annotation of Formula 1 Races
for Content-Based Video Retrieval. Technical Report 01-34, Centre for
Telematics and Information Technology, December 2001.

[144] V. Mihajlović, G. Ramı́rez, A. P. de Vries, D. Hiemstra, and H. E. Blok. TI-
JAH at INEX 2004: Modeling Phrases and Relevance Feedback. In N. Fuhr,

228 BIBLIOGRAPHY

M. Lalmas, S. Malik, and Z. Szlávik, editors, Proceedings of the 3rd Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX), pages
276–291. Lecture Notes in Computer Science 3493, Springer, March 2005.

[145] V. Mihajlović, G. Ramı́rez, T. Westerveld, D. Hiemstra, H. E. Blok, and
A. P. de Vries. TIJAH Scratches INEX 2005: Vague Element Selection,
Image Search, and Overlap. In N. Fuhr, M. Lalmas, and S. Malik, editors,
Proceedings of the 4th Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX), pages 72–87. Lecture Notes in Computer Science 3977,
Springer, May 2006.

[146] D. Miller, T. Leek, and R. Schwartz. A Hidden Markov Model Information
Retrieval System. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 214–221, 1999.

[147] G. Miller, C. Fellbaum, R. Tengi, S. Wolff, P. Wakefield, H. Langone, and
B. Haskell. WordNet: A Lexical Database for the English Language. Tech-
nical report, Princeton University, 2005.

[148] R. C. Miller. Lightweight Structure in Text. PhD thesis, School of Computer
Science, Carnegie Mellon University, May 2002.

[149] R. C. Miller and B. Myers. Lightweight Structured Text Processing. In
Proceedings of the 1999 USENIX Annual Technical Conference, pages 131–
144, June 1999.

[150] G. Navarro and R. Baeza-Yates. A Language for Queries on Structure and
Contents of Textual Databases. In Proceedings of the 18th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 93–101, 1995.

[151] G. Navarro and M. Ortega. IXPN: An Index-Based XPath Implementa-
tion. Technical Report TR/DCC-2003-5, Departamento de Ciencias de la
Computación, July 2003.

[152] S.-Y. Neo, J. Zhao, M.-Y. Kan, and T.-S. Chua. Video Retrieval using High
Level Features: Exploiting Query Matching and Confidence-based Weight-
ing. In Proceedings of the Conference on Image and Video Retrieval (CIVR),
July 2006.

[153] K. Ng. A Maximum Likelihood Ratio Information Retrieval Model. In
Proceedings of the 8th Text REtrieval Conference (TREC-8), 1999.

[154] P. Ogilvie and J. P. Callan. Language Models and Structured Document Re-
trieval. In N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, editors, Proceedings
of the 1st Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX), pages 33–41. ERCIM Workshop Proceedings, March 2003.

BIBLIOGRAPHY 229

[155] P. Ogilvie and J. P. Callan. Using Language Models for Flat Text Queries in
XML Retrieval. In N. Fuhr, S. Malik, and M. Lalmas, editors, Proceedings
of the 2nd Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX), pages 12–18. ERCIM Workshop Proceedings, March 2004.

[156] P. Ogilvie and J. P. Callan. Hierarchical Language Models for XML Com-
ponent Retrieval. In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors,
Proceedings of the 3rd Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX), pages 224–237. Lecture Notes in Computer Science 3493,
Springer, March 2005.

[157] R. Ordelman. Dutch Speech Recognition in Multimedia Information Re-
trieval. PhD thesis, University of Twente, October 2003.

[158] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and D. John-
son. Terrier Information Retrieval Platform. In D. E. Losada and J. M.
Fernàndez-Luna, editors, Proceeding of the 27th European Conference on
Information Retrieval Research (ECIR), pages 517–519. Lecture Notes in
Computer Science, Springer, March 2005.

[159] C. D. Paice. The Automatic Generation of Literature Abstracts: An Ap-
proach Based on the Identification of Self-Indicating Phrases. In Proceedings
of the 3rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 172–191. Butterworth & Co.,
1981.

[160] C. D. Paice. Soft Evaluation of Boolean Search Queries in Information Re-
trieval Systems. Information Technology Research Development Applica-
tions, 3(1):33–41, 1984.

[161] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers Inc., March 1988.

[162] J. Pehcevski and J. A. Thom. HiXEval: Highlighting XML Retrieval Eval-
uation. In N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors, Proceedings
of the 4th Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX), pages 43–57. Lecture Notes in Computer Science 3977, Springer,
March 2006.

[163] J. Pehcevski, J. A. Thom, S. M. Tahaghoghi, and A.-M. Vercoustre. Hybrid
XML Retrieval Revisited. In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik,
editors, Proceedings of the 3rd Workshop of the INitiative for the Evalua-
tion of XML Retrieval (INEX), pages 153–167. Lecture Notes in Computer
Science 3493, Springer, March 2005.

[164] J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. RMIT INEX Experiments:
XML Retrieval Using Lucy/eXist. In N. Fuhr, S. Malik, and M. Lalmas,

230 BIBLIOGRAPHY

editors, Proceedings of the 2nd Workshop of the INitiative for the Evaluation
of XML Retrieval (INEX), pages 134–141. ERCIM Workshop Proceedings,
March 2004.

[165] C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck, and B. Magnini,
editors. Multilingual Information Access for Text, Speech and Images: 5th
Workshop of the Cross-Language Evaluation Forum, (CLEF), volume 3491.
Springer-Verlag, September 2005.

[166] M. Petković. Content-Based Video Retrieval Supported by Database Tech-
nology. PhD thesis, University of Twente, February 2003.

[167] J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds,
E. Adar, and T. Breuel. Personalized Search. Communications of the ACM,
45(9):50–55, 2002.

[168] B. Piwowarski. EPRUM Metrics and INEX 2005. In N. Fuhr, M. Lalmas,
S. Malik, and G. Kazai, editors, Proceedings of the 4th Workshop of the
INitiative for the Evaluation of XML Retrieval (INEX), pages 30–42. Lecture
Notes in Computer Science 3977, Springer, March 2006.

[169] B. Piwowarski and P. Gallinari. Expected Ratio of Relevant Units: A
Measure for Structured Information Retrieval. In N. Fuhr, S. Malik, and
M. Lalmas, editors, Proceedings of the 2nd Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX), pages 158–166. ERCIM Workshop
Proceedings, March 2004.

[170] B. Piwowarski, H.-T. Vu, and P. Gallinari. Bayesian Networks and INEX’03.
In N. Fuhr, S. Malik, and M. Lalmas, editors, Proceedings of the 2nd Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX), pages
12–18. ERCIM Workshop Proceedings, March 2004.

[171] J. M. Ponte and W. B. Croft. A Language Modeling Approach to Information
Retrieval. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson,
and J. Zobel, editors, Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 275–281. ACM Press, 1998.

[172] M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137,
1980.

[173] G. M. Quénot, D. Moraru, and L. Besacier. CLIPS at TRECVID: Shot
Boundary Detection and Feature Detection. In Proceedings of the TRECVID
Workshop, 2003.

[174] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 Specification. Technical
Report REC-html401-19991224, W3C, December 1999.

BIBLIOGRAPHY 231

[175] V. Raghavan, P. Bollmann, and G. S. Jung. A Critical Investigation on
Recall and Precision as Measures of Retrieval System Performance. ACM
Transactions on Informatin Systems (TOIS), 7(3):205–229, 1989.

[176] E. Rahm and P. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal - The International Journal on Very Large
Databases, 10:334–350, 2001.

[177] G. Ramı́rez and A. P. de Vries. Combining Indexing Schemes to Accelerate
Querying XML on Content and Structure. In V. Mihajlović and D. Hiemstra,
editors, Proceedings of the 1st Twente Data Management Workshop (TDM),
pages 49–56. Centre for Telematics and Information Technology (CTIT),
June 2004.

[178] G. Ramı́rez, T. Westerveld, and A. P. de Vries. Structural Features in
Content Oriented XML Retrieval. Technical Report INS-E0508, Centre voor
Wiskunde en Informatica (CWI), 2005.

[179] M. Rautiainen, M. Varanka, I. Hanski, M. Hosio, A. Parmila, J. Liu,
T. Ojala, and T. Seppänen. TRECVID 2005 Experiments at MediaTeam
Oulu. In Proceedings of the TRECVID Workshop, 2005.

[180] S. E. Robertson. Evaluation in Information Retrieval. In M. Agosti,
F. Crestani, and G. Pasi, editors, Proceedings of the 3rd European Summer
School (ESSIR), Lectures on Information Retrieval, pages 81–92. Springer-
Verlag, September 2000.

[181] S. E. Robertson and S. Walker. Some Simple Effective Approximations to
the 2-Poisson Model for Probabilistic Weighted Retrieval. In W. B. Croft
and C. J. van Rijsbergen, editors, Proceedings of the 17th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 232–241. Springer-Verlag, 1994.

[182] S. E. Robertson and S. Walker. Okapi at TREC-4. In D. Harman, editor,
Proceedings of the 4th Text REtrieval Conference (TREC-4), pages 73–69,
1996.

[183] J. Robie, E. Derksen, P. Frankhauser, E. Howland, G. Huck, I. Macherius,
M. Murata, M. Resnick, and H. Schöning. XQL (XML Query Language).
Technical report, W3C, August 1999.

[184] T. Rölleke and N. Fuhr. Information Retrieval with Probabilistic Datalog,
pages 221–243. Kluwer Academic Publishers, 1998.

[185] D. Rose and C. Stevens. V-Twin: A Lightweight Engine for Interactive
Use. In Proceedings of the 5th Text Retrieval Conference (TREC-5), pages
425–436, 1996.

232 BIBLIOGRAPHY

[186] R. Rosenfeld. A Whole Sentence Maximum Entropy Language Model. In
Proceedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding, pages 230–237. IEEE Press, December 1997.

[187] R. Rosenfeld. Two Decades of Statistical Language Modeling: Where do we
go from here? Proceedings of the IEEE, 88(8):1270–1278, August 2000.

[188] A. Salminen and F. Tompa. PAT Expressions: An Algebra for Text Search.
In Proceedings of the 2nd International Conference in Computational Lexi-
cography (COMPLEX), pages 309–332, June 1992.

[189] G. Salton, J. Allan, and C. Buckley. Approaches to Passage Retrieval in Full
Text Information Systems. In Proceedings of the 16th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 49–58. ACM Press, June 1993.

[190] G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text
Retrieval. Information Processing and Management, 24(5):513–523, 1988.

[191] G. Salton and C. Buckley. Improving Retrieval Performance by Relevance
Feedback. Journal of the American Society for Information Science and
Technology (JASIST), 41(4):288–297, 1990.

[192] G. Salton, E. A. Fox, and H. Wu. Extended Boolean Information Retrieval.
Communications of the ACM, 26(11):1022–1036, 1983.

[193] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
Computer Science. McGrow-Hill, Inc., 1st edition, 1983.

[194] K. Sauvagnat and M. Boughanem. Using Relevance Propagation Method
for Adhoc and Heterogeneous Tracks at INEX 2004. In N. Fuhr, M. Lal-
mas, S. Malik, and Z. Szlávik, editors, Proceedings of the 3rd Workshop of
the INitiative for the Evaluation of XML Retrieval (INEX), pages 337–248.
Lecture Notes in Computer Science 3493, Springer, March 2005.

[195] P. Schäuble. SPIDER: A Multiuser Information Retrieval System for
Semistructured and Dynamic Data. In R. Korfhage, E. M. Rasmussen, and
P. Willett, editors, Proceedings of the 16th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 318–327. ACM Press, June 1993.

[196] H.-J. Schek and P. Pistor. Data Structures for an Integrated Data Base
Management and Information Retrieval System. In Proceedings of the 8th
International Conference on Very Large Data Bases (VLDB), pages 197–207,
September 1982.

BIBLIOGRAPHY 233

[197] F. Schiettecatte. Document Retrieval Using the MPS Information Server (a
report on the trec-6 experiment). In E. Voorhees and D. Harman, editors,
Proceedings of the 6th Text Retrieval Conference TREC-6, pages 477–488.
National Institute of Standards and Technology (NIST), 1998.

[198] T. Schlieder and H. Meuss. Querying and Ranking XML Documents. Journal
of the American Society for Information Science and Technology (JASIST),
53(6):489–503, 2002.

[199] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient Relational
Storage and Retrieval of XML Documents. In Proceedings of the 3rd Inter-
national Workshop of the World Wide Web and Databases (WebDB), pages
47–52, May 2000.

[200] M. E. Senko. DIAM II: The Binary Infological Level and Its Database
Language - FORAL. In Proceedings of the Conference on Data: Abstraction,
Definition and Structure, pages 121–140. ACM Press, March 1976.

[201] U. Shah, T. Finin, and A. Joshi. Information Retrieval on the Semantic
Web. In Proceedings of the 11th International Conference on Information
and Knowledge Management (CIKM), pages 461–468. ACM Press, 2002.

[202] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-based Approach
to XML Retrieval. In N. Fuhr, S. Malik, and M. Lalmas, editors, Proceedings
of the 2nd Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX), pages 12–18. ERCIM Workshop Proceedings, March 2004.

[203] A. Skonnard and M. Gudgin. Essential XML Quick Reference: A Program-
mer’s Reference to XML, XPath, XSLT, XML Schema, SOAP, and More.
The DevelopMentor. Addison Wesley Professional, 1st edition, October 2001.

[204] A. F. Smeaton, W. Kraaij, and P. Over. TRECVID 2003 - An Overview. In
Proceedings of the TRECVID Workshop, 2003.

[205] F. Song and W. B. Croft. A General Language Models for Information
Retrieval. In Proceedings of the 8th international Conference on Information
and Knowledge Management (CIKM), pages 316–321, 1999.

[206] M. Srikanth and R. Srihari. Incorporating Query Term Dependencies in
Language Models for Document Retrieval. In Proceedings of the 26th An-
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 405–406. ACM Press, 2003.

[207] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A Language
Model Based Search Engine for Complex Queries. In Proceedings of the
International Conference on Intelligence Analysis, May 2005.

234 BIBLIOGRAPHY

[208] S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton. Quantitative Eval-
uation of Passage Retrieval Algorithms for Question Answering. In Proceed-
ings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 41–47. ACM Press, July
2003.

[209] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI).
In N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors, Proceedings of the
3rd Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),
pages 16–40. Lecture Notes in Computer Science 3493, Springer, March 2005.

[210] D. Tsichritzis and A. C. Klug. The ANSI/X3/SPARC DBMS Framework
Report of the Study Group on Database Management Systems. Information
Systems, 3(1):173–191, 1978.

[211] H. Turtle and W. B. Croft. Inference Networks for Document Retrieval. In
J. Vidick, editor, Proceedings of the 13th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
1–24. ACM Press, 1990.

[212] M. van Keulen, J. Vonk, A. P. de Vries, J. Flokstra, and H. E. Blok. Moa and
the Multi-model Architecture: A New Perspective on NF2. In V. V. Marik,
W. Retschitzegger, and O. Stepankova, editors, Proceedings of the 14th Inter-
national Conference on Database and Expert Systems Applications (DEXA),
pages 67–76. Springer-Verlag, September 2003.

[213] C. J. van Rijsbergen. Information Retrieval. Department of Computer Sci-
ence, University of Glasgow, 2nd edition, 1979.

[214] S. R. Vasanthakumar, J. P. Callan, and W. B. Croft. Integrating INQUERY
with an RDBMS to Support Text Retrieval. IEEE Data Engineering Bul-
letin, 19(1), 1996.

[215] J.-N. Vittaut, B. Piwowarski, and P. Gallinari. An Algebra for Structured
Queries in Bayesian Networks. In N. Fuhr, M. Lalmas, S. Malik, and
Z. Szlávik, editors, Proceedings of the 3rd Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX), pages 292–302. Lecture Notes in
Computer Science 3493, Springer, March 2005.

[216] E. M. Voorhees and D. K. Harman. TREC: Experiment and Evaluation in
Information Retrieval. MIT Press, 1st edition, 2005.

[217] T. Westerveld. Using Generative Probabilistic Models for Multimedia Re-
trieval. PhD thesis, University of Twente, 2004.

[218] T. Westerveld, J. C. van Gemert, R. Cornacchia, D. Hiemstra, and A. P.
de Vries. An Integrated Approach to Text and Image Retrieval: The Low-
lands Team at Trecvid 2005. In Proceedings of the TRECVID Workshop,
2005.

BIBLIOGRAPHY 235

[219] O. Wilde. The Selfish Giant. Putnam Juvenile, March 1995.

[220] M. Wu, P. Thomas, and D. Hawking. TREC 14 Enterprise Track at CSIRO
and ANU. In Proceedings of the 14th Text Retrieval Conference (TREC-14).
National Institute of Standards and Technology (NIST), November 2005.

[221] J. Xu and W. B. Croft. Query Expansion Using Local and Global Docu-
ment Analysis. In H.-P. Frei, D. Harman, P. Schaüble, and R. Wilkinson,
editors, Proceedings of the 19th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 4–11.
ACM Press, 1996.

[222] M. Young-Lai and F. W. Tompa. One-Pass Evaluation of Region Algebra
Expresions. Information Systems, 28(3):159–168, May 2003.

[223] C. Zhai and J. Lafferty. A Study of Smoothing Methods for Language Mod-
els Applied to Ad Hoc Information Retrieval. In W. B. Croft, D. J. Harper,
D. H. Kraft, and J. Zobel, editors, Proceedings on the 24th Annual Interna-
tional ACM SIGIR Conferenceon Research and Development in Information
Retrieval, pages 334–342. ACM Press, 2001.

[224] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Support-
ing Containment Queries in Relational Database Management Systems. In
Proceedings of the 2001 ACM SIGMOD International Conference on Man-
agement of Data, pages 425–436, 2001.

[225] X. Zhu and R. Rosenfeld. Improving Trigram Language Modeling With
the World Wide Web. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, pages 533–536, 2001.

[226] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted Files Versus Sig-
nature Files for Text Indexing. ACM Transactions on Database Systems,
23(4):453–490, 1998.

236 BIBLIOGRAPHY

SIKS Dissertation Series

1998-01
Johan van den Akker (CWI), DEGAS - An Active, Temporal Database
of Autonomous Objects

1998–02
Floris Wiesman (UM), Information Retrieval by Graphically Browsing
Meta-Information

1998-03
Ans Steuten (TUD), A Contribution to the Linguistic Analysis of Busi-
ness Conversations within the Language/Action Perspective

1998-04 Dennis Breuker (UM), Memory versus Search in Games

1998-05 E.W.Oskamp (RUL), Computerondersteuning bij Straftoemeting

1999-01
Mark Sloof (VU), Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products

1999-02 Rob Potharst (EUR), Classification using decision trees and neural
nets

1999-03 Don Beal (UM), The Nature of Minimax Search

1999-04 Jacques Penders (UM), The practical Art of Moving Physical Objects

1999-05
Aldo de Moor (KUB), Empowering Communities: A Method for the
Legitimate User-Driven Specification of Network Information Systems

1999-06 Niek J.E. Wijngaards (VU), Re-design of compositional systems

1999-07 David Spelt (UT), Verification support for object database design

1999-08
Jacques H.J. Lenting (UM), Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism for Discrete Reallocation.

2000-01 Frank Niessink (VU), Perspectives on Improving Software Mainte-
nance

2000-02 Koen Holtman (TUE), Prototyping of CMS Storage Management

2000-03
Carolien M.T. Metselaar (UVA), Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenadering en actorperspectief.

2000-04
Geert de Haan (VU), ETAG, A Formal Model of Competence Knowl-
edge for User Interface Design

238 SIKS Dissertation Series

2000-05
Ruud van der Pol (UM), Knowledge-based Query Formulation in In-
formation Retrieval.

2000-06 Rogier van Eijk (UU), Programming Languages for Agent Communi-
cation

2000-07
Niels Peek (UU), Decision-theoretic Planning of Clinical Patient Man-
agement

2000-08 Veerle Coup (EUR), Sensitivity Analyis of Decision-Theoretic Net-
works

2000-09 Florian Waas (CWI), Principles of Probabilistic Query Optimization

2000-10
Niels Nes (CWI), Image Database Management System Design Con-
siderations, Algorithms and Architecture

2000-11
Jonas Karlsson (CWI), Scalable Distributed Data Structures for
Database Management

2001-01 Silja Renooij (UU), Qualitative Approaches to Quantifying Probabilis-
tic Networks

2001-02 Koen Hindriks (UU), Agent Programming Languages: Programming
with Mental Models

2001-03 Maarten van Someren (UvA), Learning as problem solving

2001-04
Evgueni Smirnov (UM), Conjunctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets

2001-05
Jacco van Ossenbruggen (VU), Processing Structured Hypermedia: A
Matter of Style

2001-06 Martijn van Welie (VU), Task-based User Interface Design

2001-07 Bastiaan Schonhage (VU), Diva: Architectural Perspectives on Infor-
mation Visualization

2001-08
Pascal van Eck (VU), A Compositional Semantic Structure for Multi-
Agent Systems Dynamics.

2001-09
Pieter Jan ’t Hoen (RUL), Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as Classes

2001-10
Maarten Sierhuis (UvA), Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language for work
practice analysis and design

2001-11
Tom M. van Engers (VUA), Knowledge Management: The Role of
Mental Models in Business Systems Design

2002-01 Nico Lassing (VU), Architecture-Level Modifiability Analysis

SIKS Dissertation Series 239

2002-02 Roelof van Zwol (UT), Modelling and searching web-based document
collections

2002-03 Henk Ernst Blok (UT), Database Optimization Aspects for Information
Retrieval

2002-04
Juan Roberto Castelo Valdueza (UU), The Discrete Acyclic Digraph
Markov Model in Data Mining

2002-05
Radu Serban (VU), The Private Cyberspace Modeling Electronic En-
vironments inhabited by Privacy-concerned Agents

2002-06
Laurens Mommers (UL), Applied legal epistemology; Building a
knowledge-based ontology of the legal domain

2002-07
Peter Boncz (CWI), Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications

2002-08 Jaap Gordijn (VU), Value Based Requirements Engineering: Exploring
Innovative E-Commerce Ideas

2002-09
Willem-Jan van den Heuvel (KUB), Integrating Modern Business Ap-
plications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM), Towards Perfect Play of Scrabble

2002-11
Wouter C.A. Wijngaards (VU), Agent Based Modelling of Dynamics:
Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva), Processing XML in Database Systems

2002-13
Hongjing Wu (TUE), A Reference Architecture for Adaptive Hyperme-
dia Applications

2002-14
Wieke de Vries (UU), Agent Interaction: Abstract Approaches to Mod-
elling, Programming and Verifying Multi-Agent Systems

2002-15
Rik Eshuis (UT), Semantics and Verification of UML Activity Dia-
grams for Workflow Modelling

2002-16
Pieter van Langen (VU), The Anatomy of Design: Foundations, Mod-
els and Applications

2002-17
Stefan Manegold (UVA), Understanding, Modeling, and Improving
Main-Memory Database Performance

2003-01
Heiner Stuckenschmidt (VU), Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02
Jan Broersen (VU), Modal Action Logics for Reasoning About Reactive
Systems

2003-03
Martijn Schuemie (TUD), Human-Computer Interaction and Presence
in Virtual Reality Exposure Therapy

240 SIKS Dissertation Series

2003-04
Milan Petković (UT), Content-Based Video Retrieval Supported by
Database Technology

2003-05
Jos Lehmann (UVA), Causation in Artificial Intelligence and Law - A
modelling approach

2003-06 Boris van Schooten (UT), Development and specification of virtual en-
vironments

2003-07 Machiel Jansen (UvA), Formal Explorations of Knowledge Intensive
Tasks

2003-08 Yongping Ran (UM), Repair Based Scheduling

2003-09 Rens Kortmann (UM), The resolution of visually guided behaviour

2003-10
Andreas Lincke (UvT), Electronic Business Negotiation: Some experi-
mental studies on the interaction between medium, innovation context
and culture

2003-11
Simon Keizer (UT), Reasoning under Uncertainty in Natural Language
Dialogue using Bayesian Networks

2003-12
Roeland Ordelman (UT), Dutch speech recognition in multimedia in-
formation retrieval

2003-13 Jeroen Donkers (UM), Nosce Hostem - Searching with Opponent Mod-
els

2003-14
Stijn Hoppenbrouwers (KUN), Freezing Language: Conceptualisation
Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD), Plan Merging in Multi-Agent Systems

2003-16
Menzo Windhouwer (CWI), Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media Warehouses

2003-17
David Jansen (UT), Extensions of Statecharts with Probability, Time,
and Stochastic Timing

2003-18 Levente Kocsis (UM), Learning Search Decisions

2004-01
Virginia Dignum (UU), A Model for Organizational Interaction: Based
on Agents, Founded in Logic

2004-02 Lai Xu (UvT), Monitoring Multi-party Contracts for E-business

2004-03
Perry Groot (VU), A Theoretical and Empirical Analysis of Approxi-
mation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA), Organizational Principles for Multi-Agent Ar-
chitectures

2004-05 Viara Popova (EUR), Knowledge discovery and monotonicity

SIKS Dissertation Series 241

2004-06
Bart-Jan Hommes (TUD), The Evaluation of Business Process Mod-
eling Techniques

2004-07
Elise Boltjes (UM), Voorbeeldig onderwijs; voorbeeldgestuurd onder-
wijs, een opstap naar abstract denken, vooral voor meisjes

2004-08
Joop Verbeek(UM), Politie en de Nieuwe Internationale Infor-
matiemarkt, Grensregionale politile gegevensuitwisseling en digitale ex-
pertise

2004-09
Martin Caminada (VU), For the Sake of the Argument; explorations
into argument-based reasoning

2004-10 Suzanne Kabel (UVA), Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU), Change Management for Distributed Ontologies

2004-12
The Duy Bui (UT), Creating emotions and facial expressions for em-
bodied agents

2004-13
Wojciech Jamroga (UT), Using Multiple Models of Reality: On Agents
who Know how to Play

2004-14
Paul Harrenstein (UU), Logic in Conflict. Logical Explorations in
Strategic Equilibrium

2004-15 Arno Knobbe (UU), Multi-Relational Data Mining

2004-16
Federico Divina (VU), Hybrid Genetic Relational Search for Inductive
Learning

2004-17 Mark Winands (UM), Informed Search in Complex Games

2004-18
Vania Bessa Machado (UvA), Supporting the Construction of Qualita-
tive Knowledge Models

2004-19 Thijs Westerveld (UT), Using generative probabilistic models for mul-
timedia retrieval

2004-20
Madelon Evers (Nyenrode), Learning from Design: facilitating multi-
disciplinary design teams

2005-01
Floor Verdenius (UVA), Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM), AI techniques for the game of Go

2005-03
Franc Grootjen (RUN), A Pragmatic Approach to the Conceptualisa-
tion of Language

2005-04 Nirvana Meratnia (UT), Towards Database Support for Moving Object
data

242 SIKS Dissertation Series

2005-05
Gabriel Infante-Lopez (UVA), Two-Level Probabilistic Grammars for
Natural Language Parsing

2005-06 Pieter Spronck (UM), Adaptive Game AI

2005-07
Flavius Frasincar (TUE), Hypermedia Presentation Generation for Se-
mantic Web Information Systems

2005-08
Richard Vdovjak (TUE), A Model-driven Approach for Building Dis-
tributed Ontology-based Web Applications

2005-09
Jeen Broekstra (VU), Storage, Querying and Inferencing for Semantic
Web Languages

2005-10
Anders Bouwer (UVA), Explaining Behaviour: Using Qualitative Sim-
ulation in Interactive Learning Environments

2005-11
Elth Ogston (VU), Agent Based Matchmaking and Clustering - A De-
centralized Approach to Search

2005-12 Csaba Boer (EUR), Distributed Simulation in Industry

2005-13
Fred Hamburg (UL), Een Computermodel voor het Ondersteunen van
Euthanasiebeslissingen

2005-14
Borys Omelayenko (VU), Web-Service configuration on the Semantic
Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU), Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU), Usability of XML Query Languages

2005-17
Boris Shishkov (TUD), Software Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU), Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM), Situated Representation

2005-20
Cristina Coteanu (UL), Cyber Consumer Law, State of the Art and
Perspectives

2005-21
Wijnand Derks (UT), Improving Concurrency and Recovery in
Database Systems by Exploiting Application Semantics

2006-01 Samuil Angelov (TUE), Foundations of B2B Electronic Contracting

2006-02
Cristina Chisalita (VU), Contextual issues in the design and use of
information technology in organizations

2006-03
Noor Christoph (UVA), The role of metacognitive skills in learning to
solve problems

SIKS Dissertation Series 243

2006-04 Marta Sabou (VU), Building Web Service Ontologies

2006-05 Cees Pierik (UU), Validation Techniques for Object-Oriented Proof
Outlines

2006-06
Ziv Baida (VU), Software-aided Service Bundling - Intelligent Methods
& Tools for Graphical Service Modeling

2006-07
Marko Smiljanić (UT), XML schema matching – balancing efficiency
and effectiveness by means of clustering

2006-08 Eelco Herder (UT), Forward, Back and Home Again - Analyzing User
Behavior on the Web

2006-09
Mohamed Wahdan (UM), Automatic Formulation of the Auditor’s
Opinion

2006-10 Ronny Siebes (VU), Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT), Flattening Queries over Nested Data Types

2006-12
Bert Bongers (VU), Interactivation - Towards an e-cology of people,
our technological environment, and the arts

2006-13
Henk-Jan Lebbink (UU), Dialogue and Decision Games for Informa-
tion Exchanging Agents

2006-14
Johan Hoorn (VU), Software Requirements: Update, Upgrade, Re-
design - towards a Theory of Requirements Change

2006-15 Rainer Malik (UU), CONAN: Text Mining in the Biomedical Domain

2006-16
Carsten Riggelsen (UU), Approximation Methods for Efficient Learn-
ing of Bayesian Networks

2006-17 Stacey Nagata (UU), User Assistance for Multitasking with Interrup-
tions on a Mobile Device

2006-18
Valentin Zhizhkun (UVA), Graph transformation for Natural Language
Processing

2006-19
Birna van Riemsdijk (UU), Cognitive Agent Programming: A Semantic
Approach

2006-20
Marina Velikova (UvT), Monotone models for prediction in data min-
ing

2006-21 Bas van Gils (RUN), Aptness on the Web

2006-22 Paul de Vrieze (RUN), Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU), Development of Cognitive Model for Navigating on
the Web

244 SIKS Dissertation Series

2006-24 Laura Hollink (VU), Semantic Annotation for Retrieval of Visual Re-
sources

2006-25
Madalina Drugan (UU), Conditional log-likelihood MDL and Evolu-
tionary MCMC

2006-26
Vojkan Mihajlović (UT), Score region algebra: a flexible framework for
structured information retrieval

Sažetak
Pre samo tri decenije istraživači su shvatili neophodnost struktuiranja podataka
radi njihovog lakšeg skladǐstenja i radi lakšeg pristupa iz dana u dan sve većoj
količini digitalnih podataka. Kao rezultat počelo se sa projektovanjem i razvi-
janjem sistema za upravljanje bazama podataka (engl. database management
systems) čiji je cilj bio da čuvaju podatke na jednom mestu i da omoguće brzo
pronalazenje značajnih informacija. Sa druge strane, velika količina tekstualnih
podataka bila je čuvana i pristupalo joj se u nestrukturnom formatu. Pretraživanje
takvih tekstualnih dokumenata radi pronalaženja informacija relevantnih za za-
dati upit otvoreno je istraživacko pitanje u oblasti koja nosi naziv pretraživanje
informacija (engl. information retrieval). Istraživanja u toj oblasti dovela su do
definisanja velikog broja modela za pretraživanje kao i do razvoja sistema za pre-
traživanje čiji je cilj rangiranje dokumenata prema procenjenom stepenu relevat-
nosti u odnosu na zadati upit. Iako su imali slične ciljeve, istraživačka oblast baza
podataka i istraživačka oblast pretraživanja informacija razvijale su se uglavnom
nezavisno jedna od druge. Nedavno, novi talas documenata ‘zapretio’ je da priblizi
istraživanja u ove dve oblasti.

Ovaj talas je krenuo sa eksplozijom digitalnih documenata dostupnih preko In-
terneta. Za razliku od struktuiranja podataka u relacionim bazama podataka, cilj
struktuiranja ovih dokumenata je vizuelna prezentacija i razmena podataka. Kao
rezultat nastali su strukturni formati koji nemaju toliko stroge zahteve za struk-
tuiranje podataka, nazvani polu-struktuirani formati (semi-structured formats).
To su na primer HyperText Markup Language (HTML) i eXtensible Markup Lan-
guage (XML). Kompaktno skladǐstenje ovako struktuiranih podataka, kao i brz i
efikasan pristup informacijama koje se nalaze unutar njih, postali su novi problemi
koji motivǐsu istraživačku zajednicu u poslednjih petnaestak godina. Pored toga,
pretraživanje tako struktuiranih dokumenata ne mora da rezultira u ocenu koliko
je neki dokument relevantan već i koliko su pojedini delovi (elementi unutar tog
dokumenta) relevantni.

Oblast u koju se svrstava iztraživanje predstavljeno u ovoj tezi moze se ukratko
opisati kao pronalaženje relevantnih informacija u polu-struktuiranim dokumen-
tima. U okviru teze je opisan matematički aparat koji je korǐsćen za pretraživanje
polu-struktuiranih dokumente koji sadrže logički i semantički opis strukture doku-
menata, kao što su XML i SGML. Projektovanje i razvoj matematickog aparata
za pretraživanje je u skladu sa preporukama koje dolaze kako iz prakse projekto-
vanja i razvoja sistema za upravljanje bazama podataka, tako i sistema za pre-
traživanje informacija. U projektovanju je korǐsćena troslojna arhitektura sistema
za upravljanje bazama podataka i korǐsćeni su modeli za pretraživanje razvijeni za
sisteme za pretraživanje informacija.

246 Sažetak

Pre projektovanja i razvoja matematičkog aparata, problem pretraživanja struk-
tuiranih dokumenata je analiziran i identifikovani su osnovni zahtevi koji se moraju
poštovati prilikom razvoja sistema za pretraživanje. Ovi zahtevi su: (1) selekcija
entiteta – selekcija različitih entiteta u okviru struktuiranih dokumenata, kao što
su XML elementi, reči, atributi, lokacije slika i video materijala, a koji su deo
upita; (2) odredjivanje stepena relevantnosti elemenata – odredjivanje stepena
relevantnosti razlicitih elemenata uzimajući u obzir informacije koje sadrže; (3)
kombinacija stepena relevantnosti – kombinacija stepena relevantnosti izmedju
(različitih) elemenata unutar strukture koji rezultiraju u jedinstven stepen rele-
vantnosti; (4) prenošenje stepena relevantnosti – prenošenje stepena relevantnosti
od različitih elemenata do zajedničkog elementa pretka ili potomka u hierarhijskoj
strukturi dokumenta. Ova četiri zahteva su osnova za razvoj algebre unutar baze
podataka, koja je takodje u saglasnosti sa modelima za pretraživanje korǐsćenim
za pretraživanje struktuiranih dokumenata. Prilikom definisanja algebre postojao
je izazov koji je nazvani transparentna implementacija modela za pretraživanje,
tj. mogućnost definisanja različitih modela za pretraživanje koji ne utiču na samu
definiciju operatora u okviru algebre. Ovaj izazov je detaljnije opisan u nastavku
u okviru tri aspekta.

Prvi aspekt se odnosi na definisanje algebre u kojoj je moguće specificirati
modele za pretraživanje nezavisno od tipa korisničkog zahteva i bez uticaja na
definiciju operatora u algebri, odnosno koja omogućuje nezavisnost modela za
pretraživanje. Algebra je definisana polazeći od grupe algebri koje nose naziv
prostorne algebre (engl. region algebras). Cilj prostornih algebri je da modeli-
raju pretraživanje struktuiranih dokumenata. Struktuirani dokumenti mogu se
jednoznačno opisati koristeći intervale u prostoru tako što se svaki token (reč, oz-
naka, karakter) u okviru struktuiranih dokumenata može smatrati pozicijom u in-
tervalu tekstualnog prostora. Ipak, postojeće algebre prostora ne sadrže operatore
za odredjivanje stepena relevantnosti i za rangiranje. Iz tog razloga je izvršeno
proširenje ovih algebri mehanizmom za odredjivanje stepena relevantnosti, tj.
modelu podataka dodat je atribut stepena relevantnosti, a skup operatora proširen
je operatorima za odredjivanje stepena relevantnosti. Nova algebra nosi naziv pros-
torna algebra sa stepenima relevantnosti (score region algebra – SRA). Operatori
ove algebre su specificirani prateći dva cilja. Prvi je da operatori treba da budu u
skladu sa četiri osnovna zahteva za razvoj sistema za pretraživanje struktuiranih
dokumenata. Drugi je da operatori treba da obezbede nezavisnost modela za pre-
traživanje. Ova dva cilja dostignuta su zahvaljujući definisanju različitih operatora
za svaki zahtev pri razvoju sistema za pretraživanje struktuiranih dokumenata, pri
čemu se vrednost atributa stepena relevantnosti odredjuje korǐsćenjem apstraktnih
funkcija i apstraktnih operatora. Tačna definicija apstraktnih funkcija i apstrakt-
nih operatora odredjena je od strane administratora baze podataka (ili korisnika)
i implementirana je na fizičkom nivou u okviru baze podataka.

Stepen uspešnosti je osnovna tema drugog aspekta. Cilj svakog sistema za pre-
traživanje je da dostigne što veći stepen uspešnosti na širokom spektru zadataka
koji postoje u pretraživanju podataka. Kako bi ilustrovali stepen uspešnosti ra-

Sažetak 247

zličitih modela za pretraživanje koji se mogu specificirati u okviru prostorne algebre
sa stepenima relevantnosti, opsežno testiranje je predstavljeno u tezi. Testiranje
je izvedeno korǐsćenjem XML i SGML kolekcija podataka na zadacima za pre-
traživanje delova dokumenata kao i za pretraživanje celih dokumenata. Prototip
baze podataka pod nazivom “TIJAH”, čiji centralni deo čini prostorna algebra
sa stepenima relevantnosti, korǐsćen je kao eksperimentalna platforma. Testi-
ranja pokazuju da pri korǐsćenju različitih varijanti najpoznatijih modela za pre-
traživanje, “TIJAH” pokazuje zavidan stepen uspešnosti na oba zadataka. Ipak,
najvažnije karakteristike prostorne algebre sa stepenima relevantnosti su da se
može koristiti za analizu ponašanja različitih modela za pretraživanje koji su
implementirani preko abstraktnih funkcija i abstraktnih operatora, kao i da se
može upotrebiti za razvoj naprednijih modela za pretraživanje. U tezi je takodje
pokazana korisnost algebre prilikom analize povezanosti izmedju implementacije
različitih modela za pretraživanje sa jedne strane i različitih korisničkih upita i
njihove kompleksnosti sa druge strane.

Treći aspect se odnosi na proširljivost i prilagodljivost sistema. Prostorna al-
gebra sa stepenima relevantnosti (i “TIJAH” sistem) je prevashodno razvijena
za pretraživanje u hijerarhijski struktuiranim dokumentima. Osim toga, algebra
je razvijena da pored nezavisnosti modela za pretraživanje podrži i nezavisnost
opisa sadržaja, tj. specifikaciju algebarskih operatora nezavisno od toga kako je
sadržaj dokumenata modeliran na fizičkom nivou. Zahvaljujući tome prostorna
algebra sa stepenima relevantnosti se može vrlo lako proširiti novim atributima u
okviru modela podataka kao i novim operatorima. Novi operatori bi u tom slučaju
sadržali nove funkcije za odredjivanje stepena relevantnosti, koje su zasnovane na
dodatnom opisu sadržaja dokumenata. Tri primera objašnjena u tezi ilustruju
ovakva proširenja. Prvi je proširenje modela podataka u okviru algebre dodat-
nim atributom koji opisuje dubinu ugnježdenja elemenata u strukturi. Drugi je
specifikacija novih modela za pretraživanje, namenjenih pretraživanju video za-
pisa koji su modelirani kao tekstualni zapisi izgovorenih reči. Treći je uvodjenje
novih operatora i definisanje novih modela za pretraživanje slika u kombinaciji sa
tekstualnim pretraživanjem.

248 Sažetak

Samenvatting

Ongeveer dertig jaar geleden realiseerden onderzoekers zich dat gegevens gestruc-
tureerd moeten worden als men in staat zou willen zijn de grote stromen gegevens
die elke dag geproduceerd worden te kunnen benaderen en opslaan. Een resul-
taat hiervan was het ontwerp en de ontwikkeling van database management syste-
men die gegevens centraal opslaan en die relevante gegevens terug kunnen vinden.
Echter, een grote hoeveelheid tekstuele documenten werd nog steeds ongestruc-
tureerd opgeslagen. Het vinden van tekstuele documenten die relevante infor-
matie bevatten op basis van een zoekvraag van de gebruiker is de afgelopen halve
eeuw een belangrijke onderzoeksvraag geweest in het vakgebied van de informa-
tion retrieval. Information retrieval onderzoek heeft tal van modellen en systemen
opgeleverd, waarvan het doel het ordenen van de relevante documenten op basis
van hun geschatte relevantie met betrekking tot een zoekvraag van de gebruiker is.
Hoewel ze vergelijkbare doelen hebben, ontwikkelden de onderzoeksgebieden van
databases en information retrieval zich vooral onafhankelijk van elkaar. Recen-
telijk ‘dreigt’ de nieuwe golf aan documenten deze vakgebieden dichter bij elkaar
te brengen.

Deze golf begon met de nieuwe explosie van digitale documenten die nu publiek
toegankelijk zijn op het Internet. Het structureren van deze documenten op een
databasemanier, bijvoorbeeld in relationele tabellen, zou niet geschikt zijn voor
presentatie en uitwisseling op het Web. Een resultaat hiervan was de ontwikkel-
ing van gestructureerde formaten met minder randvoorwaarden aan de structuur,
de zogenaamde semi-gestructureerde formaten. Dit zijn HyperText Markup Lan-
guage (HTML) en eXtensible Markup Language (XML). Het efficiënt opslaan van
zulke gestructureerde documenten, en het effectief en efficient zoeken naar infor-
matie in de documenten, kwam in de laatste vijftien jaar op als een nieuw onder-
zoeksprobleem. Bovendien, het zoeken in gestructureerde documenten gaat niet
alleen om het vinden van de meest relevante documenten, maar ook om het vinden
van de meeste relevante componenten of elementen.

Het onderzoek dat in dit proefschrift wordt gepresenteerd richt zich op het
zoeken naar relevante informatie in gestructureerde documenten. Het proefschrift
beschrijft een raamwerk voor het zoeken van informatie (information retrieval) in
documenten die annotaties gebruiken voor het beschrijven van hun logische en
semantische structuur, zoals XML en SGML. De ontwikkeling van dit raamwerk
voor het zoeken in gestructureerde informatie volgt de ideeën van de werelden van
zowel databases als information retrieval. Het gebruikt een drie-lagen database
architectuur en implementeert relevantieordening afgeleid van modellen voor in-
formation retrieval.

250 Samenvatting

Voor het ontwikkelen van het raamwerk wordt het probleem van het zoeken
in gestructureerde informatie geanalyseerd waarbij basiseisen voor gestructureerde
zoeksystemen zijn vastgesteld. Deze eisen zijn: (1) selectie van entiteiten – het
selecteren van verschillende entiteiten in gestructureerde documenten zoals el-
ementen, termen, attributen, verwijzingen naar afbeeldingen en video, als on-
derdeel van de gebuikers zoekvraag; (2) relevantie score berekening van elementen
– het berekenen van relevantiescores voor verschillende structuurelementen met
betrekking tot de inhoud die ze bevatten; (3) combinatie van relevantiescores –
het combineren van relevantiescores van (verschillende) elementen in een doc-
umentstructuur, resulterend in a gemeenschappelijke relevantiescore; (4) propa-
gatie van relevantiescores – het propageren van relevantiescores van verschillende
elementen naar gemeenschappelijke ancestor of descendant elementen volgens de
zoekvraag. Aan deze vier eisen wordt voldaan door het ontwikkelen van een logis-
che algebra in overeenstemming met de information retrieval modellen die gebruikt
worden voor het ordenen van zoekresultaten. Bij het specificeren van de algebra
gaan we de uitdaging van transparante instantiatie van retrievalmodellen aan, dat
wil zeggen, de mogelijkheid om verschillende retrievalmodellen te definiëren zonder
dat dat invloed heeft op de algebra operatoren. Deze uitdaging komt tot uiting in
de drie onderstaande onderzoeksthema’s.

Het eerste thema is de transparantie van het retrievalmodel; het ontwikke-
len van een algebra waarin retrievalmodellen gespecificeerd kunnen worden, on-
afhankelijk van het type zoekvraag van de gebruiker en zonder de definitie van
de algebra operatoren te bëınvloeden. De algebra welke wij ontwikkeld hebben
is gebaseerd op regio algebra’s. Het doel van regio algebra’s is het modeleren
van zoeken in gestructureerde documenten. Het toepassen van regio’s op gestruc-
tureerde documenten is eenvoudig aangezien tokens in een gestructureerd docu-
ment gezien kunnen worden als posities in een aaneengesloten tekst regio. Echter,
geen van de traditionele regio algebra’s kan gebruikt worden voor het orderen van
documenten op relevantie. In ons onderzoek hebben wij deze algebra’s daarom
uitgebreid met een scorings mechanisme, dat wil zeggen, we hebben aan het data-
model een score attribuut toegevoegd en de set van operatoren uitgebreid met
scorings mechanismen. Deze nieuw ontwikkelde algebra noemen wij score region
algebra (SRA). SRA operatoren zijn gespecificeerd met twee doelen op het oog.
Als eerste, het voldoen aan de vier basiseisen van structured information retrieval,
en ten tweede, het mogelijk maken van transparantie van het retrievalmodel. Dit
wordt bereikt door het definieren van verschillende operatoren voor iedere basiseis
op een manier dat de waarde van het scorings attribuut bepaald wordt door ab-
stracte functies en abstracte operatoren. De precieze definitie van deze abstracte
functies en abstracte operatoren wordt bepaald door de database administrator
(of gebruiker) en wordt ondersteund door een passende fysieke implementatie.

Het tweede onderzoeksthema heeft van doen met de effectiviteit van het zoeken.
Ieder information retrieval systeem heeft tot doel om effectief te zijn op verscheidene
zoektaken. Om de effectiviteit van verschillende retrievalmodellen gëınstantieerd
in het SRA raamwerk te demonstreren is in dit proefschrift gebruik gemaakt van

Samenvatting 251

een grote hoeveelheid experimenten. Deze experimenten zijn gedaan door gebruik
te maken van XML en SGML collecties op het gebied van document retrieval en
document component retrieval. Voor de experimenten is een prototype van een
database systeem gemaakt, genaamd TIJAH, gefocust op score region algebra’s.
De experimenten laten zien dat, door gebruik te maken van varianten op state-of-
the-art retrievalmodellen, ons systeem effectief is op zowel document retrieval als
document component retrieval. Echter, de belangrijkste eigenschappen van het
raamwerk zijn dat het gebruikt kan worden voor het analyseren van het gedrag
van verscheidene retrievalmodellen gëımplementeerd langs de vier basiseisen van
gestructureerde retrieval en dat het raamwerk gebruikt kan worden voor het on-
twikkelen van effectievere retrievalmodellen. Ook laten we zien dat SRA nut-
tig is voor het bestuderen van relaties tussen aan de ene kant de implementatie
van verschillende retrievalmodellen en aan de andere kant verschillende soorten
zoekvragen van de gebruikers en de complexiteit hiervan.

Het derde en laatste onderzoeksthema gaat over de uitbreidbaarheid en flex-
ibiliteit van het raamwerk. SRA (en het TIJAH systeem) is voornamelijk on-
twikkeld voor het vinden van informatie in hiërarchisch gestructureerde docu-
menten. Verder is het raamwerk, naast voor transparantie van het retrievalmodel,
ook ontwikkeld voor het ondersteunen van transparantie van content beschrijv-
ing. Dit wil zeggen dat de verschillende operatoren van de algebra onafhankelijk
zijn van de manier waarop content in het fysieke model wordt gemodelleerd. Als
gevolg hiervan kan score region algebra eenvoudig worden uitgebreid met nieuwe
attributen in het datamodel, evenals nieuwe operatoren. Deze nieuwe operatoren
omvatten scorings functies welke de toegevoegde informatie over de inhoud van
het document gebruiken. In dit proefschrift worden de uitbreidingen gedemon-
streerd aan de hand van drie case studies. De eerste is een uitbreiding van het
SRA datamodel met een attribuut voor het nesting-nivo van elementen, de twee is
de introductie van een nieuw retrievalmodel voor het zoeken in spraak transcrip-
ties van video’s en de derde is de introductie van nieuwe operatoren en nieuwe
retrievalmodellen voor het zoeken in de combinatie van beeld en tekst.

252 Samenvatting

Summary
Approximately three decades ago researchers realized that they would have to
structure data to be able to store and access large amounts of data streams that
were produced each day. As a result, database management systems were designed
and developed, used to keep the data in one place and for finding relevant infor-
mation in this data. On the other hand, a large amount of textual documents was
still stored and accessed in unstructured format. Retrieval of such textual docu-
ments, containing relevant information with respect to a user query, has been an
open research question studied in the information retrieval area for half a century.
Information retrieval studies resulted in numerous retrieval models and retrieval
systems whose goal is to rank relevant documents according to their estimated rel-
evance to a user query. Although having similar goals research areas of databases
and information retrieval developed mostly independently from each other. Re-
cently, the new ‘wave of documents’ is ‘threatening’ to bring these two areas closer
to each other.

This wave started with the new explosion of electronic documents, now pub-
licly available on the Internet. Structuring these documents in a database way,
for example in relational tables, would not be appropriate for their presentation
and exchange over the Web. As a result structured formats with less structured
constraints, called semi-structured formats, have been developed. These are Hy-
perText Markup Language (HTML) and eXtensible Markup Language (XML).
Efficient storage of such structured documents as well as effective and efficient
retrieval of information in them emerged as a new research problem in the last
fifteen years. Furthermore, retrieval in structured documents is not only about re-
trieving the most relevant documents but also about retrieving the most relevant
document components (elements).

The scope of the research presented in this thesis is the retrieval of relevant
information from structured documents. The thesis describes a framework for
information retrieval in documents that have some form of annotation used for
describing logical and semantical document structure, such as XML and SGML.
The development of the structured information retrieval framework follows the
ideas from both database and information retrieval worlds. It uses the three-
level database architecture and implements relevance scoring mechanisms inherited
from information retrieval models.

To develop the structured retrieval framework, the problem of structured infor-
mation retrieval is analyzed and elementary requirements for structured retrieval
systems are specified. These requirements are: (1) entity selection – the selection
of different entities in structured documents, such as elements, terms, attributes,
image and video references, which are parts of the user query; (2) entity relevance

254 Summary

score computation – the computation of relevance scores for different structured
elements with respect to the content they contain; (3) relevance score combina-
tion – the combination of relevance scores from (different) elements in a document
structure, resulting in a common element relevance score; (4) relevance score prop-
agation – the propagation of scores from different elements to common ancestor or
descendant elements following the query. These four requirements are supported
when developing a database logical algebra in harmony with the retrieval models
used for ranking. In the specification of the logical algebra we face a challenge of a
transparent instantiation of retrieval models, i.e., the specification of different re-
trieval models without affecting the algebra operators. This challenge is portrayed
in the three research issues discussed below.

The first issue is the development of an algebra where retrieval models can be
specified in the algebra independently of the type of user requests and without
affecting the definition of algebra operators, termed retrieval model independence.
The algebra we developed is based on region algebras, whose aim is to model
search in structured documents. The application of regions to structured docu-
ments is easy as tokens in a structured document can be seen as positions in a
contiguous text region. However, none of the region algebras supports relevance
ranking. We extended these algebras with a scoring mechanism, that is, we ex-
tended the data model with an extra score attribute, and extended the operator
set with relevance scoring mechanisms. We call the new algebra score region al-
gebra (SRA). SRA operators are specified with two goals in mind. First is to
follow four elementary structured retrieval requirements. Second is to enable re-
trieval model independence. This is achieved through the definition of distinct
operators for each structured retrieval requirement in such a way that the value
of the scoring attribute is determined through abstract functions and abstract op-
erators. The exact definition of these abstract functions and abstract operators is
set by a database administrator (or user) and is supported by a proper physical
implementation.

The second research issue is concerned with the retrieval effectiveness. The
goal of every information retrieval system is to be effective on various information
retrieval tasks. To demonstrate the effectiveness of various retrieval models in-
stantiated within the SRA framework, extensive experimentation is presented in
this thesis. The experiments are performed using XML and SGML collections on
the tasks of document component retrieval and document retrieval. For the ex-
perimentation a prototype database system is developed, called TIJAH, centered
around SRA. Experiments show that, using variants of state-of-the-art retrieval
models, our system is quite effective on both tasks. However, the most important
properties of the framework are that it can be used for analyzing the behavior of
various retrieval models implemented along four structured retireval requirements
and that it can be employed for developing more effective retrieval models. We
also demonstrate the usefulness of SRA in studying relations between the imple-
mentation of different retrieval models on one side and different user requests and
different query complexities on the other.

Summary 255

The third research issue is about the extensibility and flexibility of the frame-
work. Score region algebra (and the TIJAH system) is predominantly developed
for retrieval in hierarchically structured documents. Furthermore, besides retrieval
model independence, the framework is developed to support content description
independence. That is the independence of the specification of operators within
the algebra from the way how content information is modeled at the physical level.
As a consequence score region algebra can be easily extended with new attributes
in the data model as well as with new operators. These new operators encompass
relevance scoring functions that use additional document content information. In
this thesis the extensions are demonstrated on three case studies. The first one is
the extension of the SRA data model with the element nesting level attribute, the
second one is the introduction of new retrieval models for retrieval from speech
transcripts of a video, and the third one is the introduction of new operators and
new retrieval models for image search in combination with text search.

256 Summary

Curriculum Vitae

Vojkan Mihajlović was born on 27 January 1978 in Nǐs, Serbia (former Yugoslavia).
In 1992 he finished primary school “Ratko Vukićević” in Nǐs. He graduated from
the “Bora Stanković” Gymnasium (Nǐs) in 1996. After graduation, he commenced
his studies at the Faculty of Electrical Engineering, University of Nǐs. In 2002, he
received the title of dipl. ing. in Computer Science, after defending his thesis “De-
tection of Highlights in Formula 1 Videos”. The thesis was a result of a six months
research performed at the University of Twente, Enschede, The Netherlands. From
February 2002 until November 2002, he worked as a research assistant in CG &
GISLAB at Faculty of Electrical Engineering in Nǐs, where he was involved in
geographic information system (GIS) projects and in teaching courses.

From November 2002 until November 2006, he worked as a researcher in
Database Group at the University of Twente in Enschede, The Netherlands. His
research was within the Complex Information Retrieval Queries in a Database
(CIRQUID) project. He worked on developing logical algebra for expressing ranked
retrieval in structured documents. His research resulted in a number of publica-
tions in international journals, conferences, and workshops. Vojkan was also in-
volved in organizing a workshop on XML and Information Retrieval and he was
a reviewer for international journals and international conferences in the area of
information retrieval. As of November 2006, he is working as a senior researcher
on multimedia content analysis and retrieval within Storage Systems and Appli-
cations group at Philips Research in Eindhoven, The Netherlands.

