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Information measures arise in many disciplines, including forecasting (where scoring rules are used to provide incentives for
probability estimation), signal processing (where information gain is measured in physical units of relative entropy), decision
analysis (where new information can lead to improved decisions), and finance (where investors optimize portfolios based
on their private information and risk preferences). In this paper, we generalize the two most commonly used parametric
families of scoring rules and demonstrate their relation to well-known generalized entropies and utility functions, shedding
new light on the characteristics of alternative scoring rules as well as duality relationships between utility maximization
and entropy minimization. In particular, we show that weighted forms of the pseudospherical and power scoring rules
correspond exactly to measures of relative entropy (divergence) with convenient properties, and they also correspond exactly
to the solutions of expected utility maximization problems in which a risk-averse decision maker whose utility function
belongs to the linear-risk-tolerance family interacts with a risk-neutral betting opponent or a complete market for contingent
claims in either a one-period or a two-period setting. When the market is incomplete, the corresponding problems of
maximizing linear-risk-tolerance utility with the risk-tolerance coefficient � are the duals of the problems of minimizing
the pseudospherical or power divergence of order � between the decision maker’s subjective probability distribution and
the set of risk-neutral distributions that support asset prices.
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1. Introduction
Suppose that there is uncertainty concerning which of a set
of n mutually exclusive and exhaustive events will occur,
and the initial representation of that uncertainty consists
of a “baseline” probability distribution q = �q1� � � � � qn�,
which could be the subjective prior distribution of an indi-
vidual or a distribution obtained from a statistical model
or from market prices for contingent claims. If new infor-
mation is subsequently received from an experiment or an
expert’s forecast, causing the baseline distribution to be
revised to another distribution p, how should the quantity
or value of the information be measured?
The need for a quantitative measure of information—or

more generally, a practical measure of the distance from
one distribution p to some other distribution q—arises in
many fields, and the considerable literature on this topic
includes (at least) three distinct but intertwined strands:
scoring rules, entropy, and decision analysis. Scoring rules
are reward functions for eliciting and evaluating proba-
bility forecasts, and the expected score associated with a
forecast can be interpreted as a measure of the value of
the forecaster’s information. Entropy is a measure of the
channel capacity required to communicate a stream of sig-
nals generated by a stationary process, and relative entropy
measures the reduction in channel capacity that is possible

when new information yields an updated signal distribu-
tion. Decision analysis provides a general framework for
measuring information in terms of gains in expected utility
as well for determining how to optimally use information
to choose portfolios of financial assets.
These information-theoretic tools have been used for

many decades, but new applications and theoretical devel-
opments have emerged during the last few years on several
fronts, including experimental economics, Bayesian statis-
tics, and financial engineering. The objective of this paper
is to add to this recent stream of interdisciplinary literature
by broadening the concept of a scoring rule to include a
not-necessarily-uniform baseline distribution and to show
that this leads immediately to tight connections with some
well-known measures of divergence (relative entropy) as
well as with models of utility maximization in markets
under uncertainty. First, in §2 it is shown that the power
and pseudospherical scoring rules (of which the quadratic
and spherical rules are special cases) can be normalized so
that they are continuous functions of their power parameter
(denoted by �) on the entire real line and weighted by a
baseline distribution q to reward updating of probabilities
in relative rather than absolute terms. In §3, the forecaster’s
expected gains under these weighted scoring rules are
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shown to correspond exactly to two well-known paramet-
ric families of generalized divergence that both reduce to
the Kullback-Leibler divergence at �= 1. Section 4 intro-
duces two canonical decision problems in which an indi-
vidual with probability distribution p bets optimally against
a nonstrategic, less well-informed opponent (or market)
with distribution q. The decision maker’s utility function is
assumed to belong to the normalized linear-risk-tolerance
(LRT) family of utility functions, which includes the famil-
iar exponential, logarithmic, and power functions and is
indexed by a single parameter, namely, the risk-tolerance
coefficient (also denoted by �). The solution of one canon-
ical decision problem with LRT utility is shown to yield
the weighted pseudospherical scoring rule and its associ-
ated relative entropy measure, with the same value of �,
while the second canonical problem yields the weighted
power scoring rule and its associated relative entropy mea-
sure. Section 5 generalizes the results of the earlier sections
to the situation in which a decision maker with LRT utility
optimally invests in an incomplete market for contingent
claims, highlighting the duality between expected-utility
maximization and relative-entropy minimization. Conclud-
ing comments are given in §6.

2. Weighted Scoring Rules
Scoring rules are reward functions for eliciting and evaluat-
ing probabilities, and they have played an important role in
the foundations of subjective probability theory (de Finetti
1937, 1974; Good 1952; Winkler 1967, 1996; Savage 1971;
Lindley 1982) as well as practical applications such as
incentive schemes for paying weather forecasters (Brier
1950) and subjects in economic experiments (Selten 1998)
and for evaluating the quality of forecasts used in risk
analysis (Cooke 1991). Consider an individual (the “fore-
caster”) who is asked to assess a probability distribution
over a set of n mutually exclusive and collectively exhaus-
tive events. Let p denote the forecaster’s true distribution,
let r denote her reported distribution (if different from p),
and let ei denote the probability distribution that assigns
probability one to event i and zero to all other events, i.e.,
the indicator vector for event i. A scoring rule is conven-
tionally expressed as a function S�r�p�, linear in its second
argument, such that the score obtained if event i occurs is
S�r� ei�, and the forecaster’s expected score for reporting r
when her true distribution is p is S�r�p�=∑i piS�r� ei�. It
is assumed that the forecaster’s objective is to maximize her
expected score, which means that either she is risk neutral
and S�r� ei� is measured in units of money or else she is
not risk neutral and S�r� ei� is measured in units of utility.
The scoring rule is defined to be (strictly) proper if it

encourages honest reporting in the sense that S�p�p� �
S�r�p� for every r and p (with equality only when r= p),
so that the forecaster whose true distribution is p maximizes
her expected score by truthfully reporting p rather than
some other distribution. The forecaster’s optimal expected

score that is obtained when her distribution is p will be
denoted by merely suppressing the first argument: S�p�≡
S�p�p�. A proper scoring rule is uniquely determined by
its optimal-expected-score function, as noted by McCarthy
(1956) and further elaborated by Hendrickson and Buehler
(1971) and Savage (1971). In particular, if S�·� is a differ-
entiable function, then S�·� ·� satisfies

S�r�p�= S�r�+�S�r� · �p− r�� (1)

where �S�r� denotes the gradient of S�·� evaluated at r,
and conversely every function S that is (strictly) convex and
differentiable uniquely defines a (strictly) proper scoring
rule.
The expected-score function of a proper scoring rule is

closely related to a measure of distance between probabil-
ity distributions known as a Brègman divergence (Brègman
1967), which generalizes the Kullback-Leibler divergence.
Any strictly convex function F defines a Brègman diver-
gence BF �p� r� as follows:

BF �p� r�= F �p�− F �r�−�F �r� · �p− r�� (2)

Letting F �p�= S�p�, it follows that for any strictly proper
scoring rule, the function S�p� − S�r�p�, which repre-
sents the forecaster’s expected loss for reporting r when
the true distribution is p, is a Brègman divergence, and
vice versa. A Brègman divergence BF �p� r� is therefore
a decision-theoretic measure of the “information deficit”
that is faced by a decision maker who acts on the basis
of the distribution r when the true distribution is p. In
this capacity, Brègman divergences (and their correspond-
ing strictly proper scoring rules) provide a potentially rich
class of loss functions that can be used for robust Bayesian
inference, as discussed by Grünwald and Dawid (2004),
Dawid (2007), and Gneiting and Raftery (2007). A prob-
lem of this kind can be framed as a game against nature
in which nature chooses a true distribution p from some
convex set �, such as the set of distributions satisfying a
mean value constraint. The robust Bayes problem for the
decision maker is to determine the distribution r that min-
imizes her maximum expected loss over all p ∈ �, where
the expected loss (in our terms) is the negative expected
score −S�r�p�. Grünwald and Dawid (2004) show that
the optimal expected-loss function, −S�p�, is interpretable
as a generalized entropy, and minimizing the maximum
expected loss is equivalent to maximizing this entropy on
the set �. This scoring-rule entropy uniquely determines
a corresponding Brègman divergence BS�p� r� ≡ S�p� −
S�r�p�, and the distribution r that minimizes the maxi-
mum expected loss on � is also the distribution that min-
imizes this divergence with respect to an uninformative
“reference” distribution p0 at which the entropy −S�p� is
maximized.
In this paper, we will consider a different kind of game

and a correspondingly different decision-theoretic measure
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of information, namely, we will suppose that the decision
maker is in possession of the true distribution p (as seen
from her own perspective), and a less well-informed oppo-
nent has a distribution q that is known to lie in some set �
that is disjoint from p, thus providing the decision maker
with an opportunity for profitable bets. The “information
surplus” enjoyed by this decision maker will be shown to
be measured by the minimum of a generalized divergence
between p and all q ∈ �′, and this divergence also corre-
sponds to a strictly proper scoring rule, but it is a different
kind of generalized divergence than a Brègman divergence.
The literature of scoring rules has focused mainly on a

few strictly proper rules with particularly convenient para-
metric forms, axiomatic representations, and/or geometri-
cal interpretations, namely, the quadratic, logarithmic, and
spherical scoring rules. The quadratic rule (a.k.a. Brier
score) is −��ei−p�2�2. Thus, under the quadratic rule, the
forecast p is treated as an estimate of the indicator vector
ei of the uncertain event, and the forecaster is ultimately
penalized in proportion to the squared Euclidean distance
between p and the realized value of ei, in the tradition
of least-squares estimation. The logarithmic scoring rule is
ln�pi�, whose optimal expected score function is the neg-
ative entropy of the forecaster’s true distribution, an issue
to which we return below. The spherical scoring rule is
pi/�p�2, and it is generated by letting the set of feasible
score vectors be the simplest strictly convex object in �n,
namely, the unit sphere. Some additional properties of these
rules have been studied recently by Bickel (2007).
The quadratic and spherical rules can be generalized into

parametric families by replacing the 2-norm with the vec-
tor �-norm, �p�� ≡ �

∑n
j=1 p

�
j �

1/�. The generalized spheri-
cal rule is the pseudospherical scoring rule, pi/��p����−1,
which was first proposed by Good (1971). The general-
ized quadratic rule is the power scoring rule, �p�−1

i − ��−
1���p����. Written in this conventional fashion, these fam-
ilies of rules are well defined and proper only for � >
1 and the corresponding optimal expected-score functions
that generate them via McCarthy’s formula are ��p���� and
�p��, respectively. The logarithmic scoring rule is the lim-
iting case of affine transformations of the pseudospherical
and power scores as �−→ 1, but otherwise the two families
do not intersect. A unifying perspective on these two fam-
ilies of rules, which might help to provide some guidance
concerning appropriate values of �, has hitherto been lack-
ing. Friedman (1983) attempted to identify scoring rules
with metrics (rather than divergences) on the probability
space, but most metrics turn out not to have associated
scoring rules, and vice versa, as shown by Nau (1985).
More recently, Selten (1998) has discussed the implica-
tions of different values of � in the power scoring rule,
arguing against the logarithmic rule (�= 1) because of its
hypersensitivity to the estimation of small probabilities and
in favor of the quadratic rule (�= 2) because the latter
uniquely satisfies a certain axiom of “neutrality,” namely,

that the expected loss for reporting r when the true distri-
bution is p is the same as the expected loss for reporting
p when the true distribution is r, i.e., S�p�p�− S�r�p�=
S�r� r�− S�p� r�.
A key property of the aforementioned scoring rules is

that they treat events symmetrically in the sense that if pi =
�>� pj , then the score in event i is equal to (greater than)
the score in event j , regardless of the descriptions of the
events, and the forecaster’s expected score is smallest when
p is the uniform distribution. Thus, they implicitly reward
the forecaster in proportion to some measure of the distance
of p from a uniform distribution. However, in most real
(and even hypothetical) applications, the relevant reference
point is not a uniform distribution. For example, in weather
forecasting, the events that are of interest are often known
to have widely varying a priori probabilities, and baseline
values for those probabilities, upon which the forecaster is
supposed to improve, are obtainable from historical records
(Winkler 1994) or alternative forecasting models. In pre-
dicting the outcomes of sporting events or movements of
financial markets, there are public betting lines or posted
prices for contingent claims that implicitly assign probabil-
ities to events. Therefore, we disagree with Selten’s (1998)
additional axiom that scoring rules should not be “preju-
diced” in favor of one hypothesis or another. Rather, we
propose that scoring rules ought to be generalized so as to
reward the forecaster in proportion to some measure of the
distance of p from an appropriate baseline distribution q.
Such a scoring rule will be henceforth referred to as a
weighted scoring rule; it will be expressed as a function
of three arguments, S�r�p�q�, and its associated optimal
expected score will be expressed as a function of two argu-
ments, S�p�q�.
There are various functional forms through which the

dependence of the score on the baseline distribution could
be modeled, and the one we find most compelling (for both
practical and theoretical reasons) is that for fixed p and q,
the score in event i should depend on the ratio pi/qi; if
pi/qi = �>� pj/qj , then the score in event i should be equal
to (greater than) the score in event j . One simple rationale
for this desideratum is that when bets may be placed on
outcomes of events, relative rather than absolute differences
in probabilities are what matter. Another rationale can be
illustrated by a simple example: suppose that the state space
consists of four states formed by the Cartesian product of
two binary events E and F , and suppose it happens that the
forecaster and client both agree on the probability of F and
also agree that E and F are statistically independent. Then,
it seems reasonable that the forecaster’s payment should
depend only on the outcome of E, not F , and this requires
the payoff in each state to depend only on the ratio of the
two agents’ probabilities for that state.
The measurement of distance between two probability

distributions in terms of ratios has a long history in statis-
tics and information theory. It was noted above that under
a strictly proper scoring rule, the forecaster’s expected loss
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for reporting a distribution r that is other than her true
distribution p is a particular kind of divergence between r
and p, namely, a Brègman divergence. Under a weighted
strictly proper scoring rule that bases the score on the ratio
pi/qi, the forecaster’s expected gain for possessing a dis-
tribution p that differs from q is a second kind of diver-
gence, which is not a Brègman divergence. Rather, it turns
out to be a special case (or a monotonic transformation)
of another kind of generalized divergence known as an
f -divergence (Csiszár 1967). If f is a strictly convex func-
tion, the corresponding f -divergence is defined as

Df �p�q�=Ep�f �p/q��� (3)

Divergences of this general form have been widely used
in statistics for many years as (seemingly) utility-free mea-
sures of the value of the information; e.g., Goel (1983)
uses f -divergence to define a “conditional amount of sam-
ple information” for measuring prior-to-posterior informa-
tion gains in Bayesian hierarchical models. More recently,
it has been recognized that f -divergences are interpretable
as measures of expected utility gains that are available to
decision makers who have opportunities to bet against less
well-informed opponents or to invest in financial markets,
as will be more fully discussed in later sections of this
paper.
When the ratio pi/qi is substituted for pi in the pseu-

dospherical and power scoring rules, and they are affinely
transformed to yield scores of zero when p= q, we obtain
the weighted power score, denoted by SP

� , and the weighted
pseudospherical score, denoted by SS

�, with the following
parametric forms:

SP
��p� ei �q�≡

�pi/qi�
�−1 − 1

�− 1
− Eq��p/q�

��− 1

�

= �pi/qi�
�−1 − 1

�− 1
− Ep��p/q�

�−1�− 1

�
� (4)

SS
��p� ei �q�≡

1
�− 1

((
pi/qi

�Eq��p/q����1/�

)�−1
−1
)

= 1

�− 1

((
pi/qi

�Ep��p/q��−1��1/�

)�−1
−1
)
� (5)

The equivalence of the two forms of each rule follows from
the identity Eq��p/q�

��=Ep��p/q�
�−1�. Table 1 highlights

some important special cases.
Note that for any fixed values of p, q� and �, the pseu-

dospherical score vector �SS
��p� e1 �q�� � � � � SS

��p� en �q�� is
a positive affine transformation of the power score vec-
tor �SP

��p� e1 �q�� � � � � SP
��p� en �q�� because both vectors

are affine transformations of �p/q��−1, although the origins
and scale factors of the transformations vary with p, q�
and �. Thus, although the two rules yield different expected
payoffs as a function of p (for the same q and �), and
they create different incentives for information gathering

Table 1. Weighted power and pseudospherical scores.

SP
��p� ei �q� SS

��p� ei �q�

�=−1 − 1
2
�1+ �qi/pi�

2�+Eq��q/p��
1
2
�1− ��qi/pi�/Eq��q/p���

2�

�= 0 1− �qi/pi�+Eq�ln�q/p�� 1− �qi/pi� exp�−Eq�ln�q/p���

�= 1
2

2�2−√qi/pi −Ep�
√
q/p�� 2�1−√qi/piEp�

√
q/p��

�= 1 ln�pi/qi� ln�pi/qi�

�= 2 ��pi/qi�− 1�− 1
2
�Ep�p/q�− 1� ��pi/qi�/

√
Ep�p/q��− 1

and different penalties for dishonest reporting, they never-
theless present the same relative risk profile to a truthful
forecaster whose p is already fixed. At � = 1, both rules
converge to the weighted logarithmic score ln�pi/qi�. At
�= 2, weighted forms of the quadratic and spherical scor-
ing rules are obtained. The cases �= 0 and �= 1

2 have not
received much (if any) attention in the antecedent literature,
but it will be shown later that �= 0 corresponds to a deci-
sion model involving exponential utility, which is the utility
function most commonly used in applied decision analysis;
while �= 1

2 arises from a decision model involving recipro-
cal utility, which has some appealing symmetry properties
and is closely related to the Hellinger distance between p
and q. These special cases will be further explored in the
next two sections.
Figures 1 and 2 illustrate that even a uniform forecast

can be informative when measured against a nonuniform
baseline distribution. The figures show the scores for the
three-event case when the forecast is p = �1/3�1/3�1/3�
and the baseline is q= �1/12�1/3�7/12�, as � varies over
the range from −1 to +2. The vector of relative prob-
abilities that determines the profile of scores is p/q =
�4�1�4/7�. The two rules are qualitatively similar in that
for � ≈ −1, their scores mainly distinguish the lowest
relative-probability event �p3/q3 = 4/7� from all the oth-
ers; and for � ≈ 2, they mainly distinguish the highest
relative-probability event �p1/q1 = 4�; while for � in the
unit interval, they discriminate more finely among events
with a wide range of relative probabilities.

Figure 1. Weighted power score vs. �.
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Figure 2. Weighted pseudospherical score vs. �.
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The corresponding optimal expected-score functions for
the two families of weighted scoring rules can also be
expressed in terms of either an expectation over the base-
line (prior) distribution q or over the true (posterior) distri-
bution p, and the optimal expected score under one rule is
a monotonic transformation of the other:

SP
��p�q�=

Eq��p/q�
��− 1

���− 1�
= Ep��p/q�

�−1�− 1

���− 1�
� (6)

SS
��p�q�=

�Eq��p/q�
���1/� − 1

�− 1
= �Ep��p/q�

�−1��1/� − 1

�− 1
�

(7)

3. Generalized Measures of
Entropy and Divergence

A second strand of literature considers information value
from the perspective of an engineer who designs a commu-
nication channel to transmit the observations of a sequence
of independent, identically distributed events. Shannon
(1948) proved that under the most efficient coding scheme,
the average number of bits needed to report the occurrence
of an event whose relative frequency is p is proportional to
ln�1/p�=− ln�p�, so the expected number of bits per event
(which determines the required capacity of the channel) to
encode events drawn from a distribution p is proportional
to H�p� ≡ −∑i pi ln�pi�. This quantity is known as the
entropy of the distribution p because up to a multiplica-
tive constant (namely, Boltzmann’s constant), it coincides
exactly with the definition of the Gibbs entropy of a physi-
cal system whose distribution of internal states is p, which
in turn is the microscopic interpretation of the macroscopic
concept of entropy from classical thermodynamics. Now
suppose that an engineer who had optimized the encoding
scheme on the assumption that the distribution was q now
learns that it is p instead. A practical measure of the amount
of information gained in updating q to p is the reduction
in the expected number of bits needed to encode an event
using the distribution now believed to be correct, which is

known as the Kullback-Leibler �KL� divergence of p with
respect to q:

DKL�p�q�≡
∑
i

pi�ln�1/qi�−ln�1/pi��=Ep�ln�p/q��� (8)

The KL divergence is measured in physical units, and it is
seemingly utility free insofar as it does not involve the risk
preferences of any individual.
The KL divergence has several very convenient and

appealing properties that are often cited as reasons for
adopting it as a universal measure of information gain.
First, it is naturally additive with respect to independent
experiments. Suppose that A and B are statistically inde-
pendent partitions of the state space whose prior marginal
probability distributions are qA and qB, so their prior joint
distribution is qA × qB. Now suppose that independent
experiments are performed, which result in the updating of
qA and qB to pA and pB, respectively, so that the posterior
joint distribution is pA × pB. Then, the total information
gain of the two experiments is the sum of their separate
KL divergences:

DKL�pA×pB �qA×qB�=DKL�pA �qA�+DKL�pB �qB�� (9)

Second, and even stronger, the KL divergence has the prop-
erty of recursivity with respect to the splitting of events.
Suppose that information is transmitted in a two-step pro-
cess, in which two out of the n possible events—say,
events 1 and 2—are not distinguished on the first step. If the
realized event is neither 1 or 2, the process stops there, but
otherwise a second signal is sent to report which of those
two has occurred. The probabilities of events 1 and 2 are
aggregated in the first step, so the information gain on that
step is DKL�p1+p2� p3� � � � � pn �q1+q2� q3� � � � � qn�. On the
second step, which occurs with probability �p1 + p2�, the
additional gain is

DKL

(
p1

p1 +p2
�

p2
p1 +p2

∥∥∥∥ q1
q1 + q2

�
q2

q1 + q2

)
�

The recursivity property of the KL divergence requires the
expected total information gain of the two-step process to
be the same as that of a one-step process:

DKL�p�q�
=DKL�p1 +p2� p3� � � � � pn �q1 + q2� q3� � � � � qn�

+ �p1 +p2�DKL

(
p1

p1 +p2
�

p2
p1 +p2

∥∥∥∥ q1
q1 + q2

�
q2

q1 + q2

)
�

(10)

The KL divergence is the only information measure that
satisfies both additivity and recursivity; hence, it is the
measure that is naturally obtained if those properties are
embraced as axioms that an information measure should
satisfy. However, it has been discovered that weakenings
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of these axioms lead to several other interesting paramet-
ric families of generalized divergence with their own mer-
its and their own applications. Havrda and Chavrát (1967)
defined a quantity they called the directed divergence of
order � between p and q, and variants of this divergence,
which are equivalent up to a scale factor, were discussed
by Rathie and Kannappan (1972), Cressie and Read (1984),
and Haussler and Opper (1997). Cressie and Read referred
to this quantity as the power divergence, and that is the term
adopted here for the following reason: the power divergence
(as originally introduced by Havrda and Chavrát 1967) is
defined for all � ∈� by

DP
��p�q�≡

Ep��p/q�
�−1�− 1

���− 1�
� (11)

which is identical to SP
� (p�q) with the same power �, and

it is an f -divergence with f �x� = �x�−1 − 1�/����− 1��.
Hence, the power divergence is the information measure
that implicitly underlies the weighted power scoring rule,
and it has the same interesting special cases, namely, �=
−1�0� 1

2 �1, and 2. In particular, at �= 1, the power diver-
gence between p and q is equal to the KL divergence, while
at �= 1

2 , the power divergence is

DP
1/2�p�q�= 4

(
1−

n∑
j=1

√
pjqj

)
� (12)

which is proportional to the squared Hellinger distance
between p and q, as noted by Haussler and Opper (1997).
The Hellinger distance DH (p�q) is widely used in statistics
and is defined by

DH�p�q�≡
( n∑
j=1

�
√
pj −

√
qj�

2

)1/2

� (13)

whence

DP
1/2�p�q�= 2DH�p�q�2� (14)

At �= 2, the power divergence reduces to (a multiple of)
another well-known divergence, the Chi-square divergence
(Pearson 1900):

DP
2 �p�q�= 1

2 �Ep�p/q�− 1�= 1
2�

2�p�q�� (15)

while at � = −1, it is the reverse Chi-square divergence
1
2�

2�q�p�.
Unlike the KL divergence, the power divergence is gen-

erally neither additive nor recursive, but it satisfies two
slightly weaker properties for all values of �. First, it sat-
isfies the following pseudoadditivity property with respect
to independent partitions A and B:

DP
��pA × pB �qA × qB�

=DP
��pA �qA�+DP

��pB �qB�
+���− 1�DP

��pA �qA�DP
��pB �qB�� (16)

Second, it satisfies the following pseudorecursivity prop-
erty with respect to the splitting of events (Rathie and
Kannappan 1972, Cressie and Read 1984):

DP
��p�q�=DP

��p1+p2�p3�����pn �q1+q2�q3�����qn�

+�p1+p2�

(
p1+p2
q1+q2

)�−1

×DP
�

(
p1

p1+p2
�

p2
p1+p2

∥∥∥∥ q1
q1+q2

�
q2

q1+q2

)
� (17)

Pseudoadditivity reduces to additivity in both of the special
cases �= 0 and �= 1 (thus, the “zero power” divergence
DP

0 (p�q) is additive, along with the KL divergence), while
pseudorecursitivity reduces to recursivity only in the special
case � = 1 (the KL divergence). Also note that for � ∈
�0�1�, the power divergence is subadditive, i.e., DP

��pA ×
pB �qA×qB��DP

��pA �qA�+DP
��pB �qB�, while for �< 0

or �> 1, it is superadditive, i.e., DP
��pA × pB �qA × qB��

DP
��pA �qA�+DP

��pB �qB�.
A different form of generalized entropy was introduced

by Arimoto (1971) and further elaborated by Sharma and
Mittal (1975), Boekee and Van der Lubbe (1980), and
Lavenda and Dunning-Davies (2003). Arimoto’s general-
ized entropy of order � is defined for �> 0 as follows:

�

�− 1
�Ep�p

�−1�1/� − 1�� (18)

(Here, � corresponds to the term 1/� in Arimoto’s 1971
original presentation and to the term R in Boekee and Van
der Lubbe’s 1980 presentation.) The factor of � in the
numerator plays no essential role when � is restricted to be
positive, and without it the measure is actually valid for all
real � and closely related to the pseudospherical scoring
rule.
The corresponding relative entropy measure, which we

henceforth call the pseudospherical divergence of order �
between p and q, is obtained by introducing a baseline
distribution q and dividing out the problematic factor of �,

DS
��p�q�≡

�Ep��p/q�
�−1��1/� − 1

�− 1
� (19)

This is seen to be identical to the weighted pseudospherical
optimal expected-score function SS

�(p�q), and it is a non-
linear transformation of the power divergence. Hence, it can
also be expressed as a function of other well-known diver-
gences for special cases of �, as summarized in Table 2
(which highlights the symmetry of the power divergence
around �= 1

2 ).
Like the power divergence, the pseudospherical diver-

gence satisfies a pseudoadditivity property:

DS
��pA × pB �qA × qB�

=DS
��pA �qA�+DS

��pB � qB�
+ ��− 1�DS

��pA �qA�DS
��pB �qB�� (20)
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Table 2. Weighted expected scores and corresponding
generalized divergences.

SP
��p�q�=DP

��p�q� SS
��p�q�=DS

��p�q�
�=−1 1

2�
2�q�p� 1

2 �1− ��2�q�p�+ 1�−1�

�= 0 DKL�q�p� 1− exp�−DKL�q�p��
�= 1

2 2DH�p�q�2 = 2DH�q�p�2 2�1− �1− 1
2DH�p�q�2�2�

�= 1 DKL�p�q� DKL�p�q�
�= 2 1

2�
2�p�q� √

�2�p�q�+ 1− 1

The coefficient of the cross-term in this case is �− 1, not
��� − 1�, and hence DS

��p�q� is subadditive for � < 1
and superadditive for �> 1. However, the pseudospherical
divergence is generally not pseudorecursive, and it is not an
f -divergence, although it is monotonically related to one.

4. Decision Models and
Information Measures

We now consider two generic optimization problems in
which a risk-averse decision maker with probability distri-
bution p bets against a nonstrategic risk-neutral opponent
with distribution q, or equivalently, invests in a complete
market for contingent claims whose supporting risk-neutral
distribution is q. (The assumption of a risk-neutral oppo-
nent is without loss of generality: as long as one party is
more risk averse than the other is risk seeking, the deci-
sion problems can be converted into this form.) Let x ∈�n

denote the vector of monetary payoffs to the decision
maker, and let u�x�≡ �u�x1�� � � � � u�xn�� denote the vector
of utilities that the function u yields when applied to x, and
similarly for other functions with vector arguments.
In the first problem (Problem S), there is a single time

period in which consumption occurs, the decision maker
has a single-attribute vNM utility function u�x�, and her
objective is to find the payoff vector x that maximizes her
subjective expected utility subject to the self-financing con-
straint Eq�x� � 0. The decision maker’s optimal expected
utility, denoted U S�p�q�, is determined by
Problem S: U S�p�q�≡max

x∈Rn
Ep�u�x��

s.t� Eq�x�� 0�
(21)

In the second problem (Problem P), there are two peri-
ods in which consumption occurs, and the decision maker
with probability distribution p has a quasilinear utility func-
tion u�a�b� = a + u�b�, where a is money consumed at
time 0 and b is money consumed at time 1. The decision
maker’s objective is to choose a vector x of time-1 payoffs
to be purchased from time-0 funds at market prices to max-
imize the expected utility of consumption in both periods.
The time-0 cost of purchasing x is Eq�x�, so the optimal
expected utility, denoted U P�p�q�, is the solution of
Problem P: U P�p�q�≡max

x∈Rn
Ep�u�x��−Eq�x�� (22)

The preceding optimization problems will next be given
a more specific form by letting u be a utility function from
the general exponential/logarithmic/power family, which
will be parameterized as

u��x�≡
1

�− 1
��1+�x���−1�/� − 1� if �x >−1�

u��x�≡−� otherwise�

(23)

for all � ∈�, and the corresponding optimal expected util-
ities in Problems S and P will be denoted U S

� �p�q� and
U P
� �p�q�, respectively. This parameterization has two key

properties. First, u��0�= 0 and u′��0�= 1, so for every �
the graph of u� passes through the origin and has the same
slope of one there, and the marginal rate of substitution
between time-0 consumption and time-1 consumption is
unity at x= 0 for the decision maker in Problem P. Second,
the corresponding risk-tolerance function "��x�, which is
the reciprocal of the Pratt-Arrow risk-aversion measure, is
a linear function of wealth with slope equal to � and inter-
cept equal to one: "��x�≡−u′

��x�/u
′′
��x�= 1+�x. Thus,

risk tolerance as well as marginal utility is normalized to
a value of one at x= 0. The LRT utility functions are also
known as hyperbolic absolute risk-aversion (HARA) utility
functions in the literature of financial economics, although
parameterizing them in terms of their risk-tolerance coef-
ficients rather than their risk-aversion coefficients is more
useful for our purposes. Some important special cases of
u��x� are given in Table 3.
The utility functions #u�$ also exhibit a convenient sym-

metry around � = 1
2 , namely, that u1−��x� = −u��−x�,

or equivalently, u��−u1−��−x�� = x. In other words, the
graph of u1−��x� is obtained from the graph of u��x� by
reflecting it around the line y =−x. The power (exponent)
in u� is the term ��− 1�/�, which has the property that
���− 1�/��−1 = ��1− ��− 1�/�1− ��, so that swapping
� for 1−� results in another power utility function whose
power is the reciprocal of the original. Thus, under this
parameterization, the reciprocal utility function (�= 1

2 ) is
its own reflection around the line y = −x, the exponen-
tial and logarithmic utility functions (�= 0 and �= 1) are
reflections of each other, and the power utility function with
exponent & is the reflection of the power utility function
with exponent 1/& for any positive or negative & other than
zero or one.

Table 3. Examples of normalized linear-risk-tolerance
utility functions.

�=−1 Quadratic utility u−1�x�=− 1
2 ��1− x�2 − 1�

�= 0 Exponential utility u0�x�= 1− exp�−x�
�= 1

2 Reciprocal utility u1/2�x�= 2
(
1− 1

1+ x/2

)
�= 1 Logarithmic utility u1�x�= ln�1+ x�

�= 2 Square-root utility u2�x�=
√
1+ 2x− 1
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Henceforth, let xS��p�q� and xP��p�q� denote the solu-
tions of Problems S and P, with ith elements xS�� i�p�q�
and xP�� i�p�q�, respectively. Our first main result is that
the utility gains to the decision maker under Problems S
and P are precisely the pseudospherical and power scores
for the same p, q, and �, and the weighted power expected
score is always greater than or equal to the corresponding
weighted pseudospherical expected score.

Theorem 1. (a) SS
��p� ei �q� = u��x

S
�� i�p�q�� and

SS
��p�q�=U S

� �p�q�.
(b) SP

��p� ei �q� = u��x
P
�� i�p�q�� − Eq�x

P
��p�q�� and

SP
��p�q�=U P

� �p�q�.
(c) SP

��p�q�� SS
��p�q� for all p, q, and �.

Proof. For part (a), note that with utility function u� the
formulation of Problem S becomes

max
x∈Rn

1
�− 1

n∑
j=1

pj��1+�xj�
��−1�/� − 1�

s.t.
n∑

j=1
qjxj � 0�

(24)

Introducing a Lagrange multiplier ', the constrained max-
imization can be rewritten in unconstrained form:

min
'∈�+

max
x∈�n

1
�−1

n∑
j=1

pj��1+�xj�
��−1�/�−1�−'

n∑
j=1

qjxj � (25)

One first-order condition is pi�1 + �xi�
−1/� = 'qi for

all i, whence 1 + �xi = �pi/'qi�
�, or equivalently,

xi = 1
�
��pi/'qi�

� − 1�. The other first-order condition is∑n
j=1 qjxj = 0, which yields '∗ ≡ �

∑n
j=1 qj�pj/qj�

��1/� as
the optimal value of ' (which is the marginal utility of
wealth at the optimum), so the optimal monetary payoff in
event i is

xS�� i�p�q�≡
1
�

((
pi/qi

�
∑n

j=1 qj�pj/qj���1/�

)�

− 1
)
� (26)

whose utility for the risk-averse decision maker with utility
function u��x� is

u��x
S
�� i�p�q��=

1
�− 1

��1+�xS�� i�p�q����−1�/� − 1�

= SS
��p� ei �q�� (27)

For part (b), with utility function u� the formulation of
Problem P becomes

max
x∈Rn

1
�− 1

n∑
j=1

pj��1+�xj�
��−1�/� − 1�−

n∑
j=1

qjxj � (28)

The first-order condition for an optimal solution is pi�1+
�xi�

−1/� = qi for all i, so that 1+ �xi = �pi/qi�
�, which

yields xP�� i�p�q�= 1
�
��pi/qi�

� − 1�, whence

u��x
P
�� i�p�q��−Eq�x

P
��p�q��

= 1
�− 1

��1+�xP�� i�p�q����−1�/� − 1�−
n∑

j=1
qjx

P
�� j �p�q�

= �pi/qi�
�−1 − 1

�− 1
− �

∑n
j=1 qj�pj/qj�

��− 1

�

= SP
��p� ei �q�� (29)

Part (c) merely follows from the fact that both expected
scores are obtained by maximizing the quantity
Ep�u��x�� + 'Eq�−x� over all x, but in the case of the
power score ' is set equal to one, while in the case of
the pseudospherical score ' is set equal to the value that
minimizes the maximum. The optimal values are equal for
p �= q only in the case �= 1, which yields '∗ = 1. �

5. Utility/Entropy Duality in
Incomplete Markets

In situations where the decision maker invests in an incom-
plete market for contingent claims, the relevant baseline
distribution q is not a singleton but rather a convex set
of risk-neutral distributions determined by asset prices.
The problem of expected utility maximization in incom-
plete markets has been widely studied in the mathematical
finance literature in recent years, and it has been shown
that there is a duality relationship between maximization of
expected utility and minimization of an appropriate diver-
gence (e.g., Frittelli 2000, Rouge and El Karoui 2000, Goll
and Rüschendorf 2001, Delbaen et al. 2002, Slomczyński
and Zastawniak 2004, Ilhan et al. 2008, Samperi 2005).
Most of this literature has focused on the case of exponen-
tial utility, for which the dual problem is the minimization
of the reverse KL divergence DKL�q�p� , as well as on
issues that arise in multiperiod or continuous-time markets.
In this section, we will show that in a single-period or two-
period market, the duality relationship applies to the entire
spectrum of LRT utility and pseudospherical divergence or
power divergence.
An incomplete, single-period market can either be param-

eterized in terms of an m× n matrix A, whose rows are
the (net) payoff vectors of available assets (i.e., A= #aij$,
where aij is the net payoff to the decision maker of one
unit of the ith asset in event j), or in terms of a k × n
matrix Q, whose rows are risk-neutral probability distribu-
tions that support the asset prices (i.e., Q= #qij$, where qij
is the probability of event j under the ith risk-neutral distri-
bution). The rows of Q are the extremal risk-neutral proba-
bility distributions assigning nonpositive expectation to all
the rows of A, i.e., the rows of −Q are the dual cone of
the rows of A. The parameterization in terms of Q will be
adopted here. Let x denote an arbitrary n-vector of mone-
tary payoffs to the decision maker (an element of �n), and
let z denote an arbitrary k-vector of nonnegative weights
summing to one (an element of �k, the unit simplex in �k�.
As before, let p denote the decision maker’s subjective
probability distribution, and henceforth let q denote one
of many possible probability distributions attributable to a
risk-neutral trading opponent or market. Then, the decision
problem can summarized in terms of p, Q, and �.
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In the incomplete market generalization of Problem S,
the problem of finding the maximum expected utility,
which will be denoted as U S

� �p�Q�, is dual to the prob-
lem of finding the minimum pseudospherical divergence of
order � between p and all q in the convex hull of the rows
of Q, which will be denoted as DS

��p�Q�.
Primal Problem S:

U S
� �p�Q�≡max

x∈�n
Ep�u��x�� subject to Qx� 0�

Dual Problem S: DS
��p�Q�≡min

z∈�k
DS

��p� zTQ��
Note that −Qx is the k-vector of the opponent’s expected
values for payoff vector x under all the extremal risk-
neutral distributions, hence the condition Qx � 0 means
that x yields nonnegative expected value to the opponent
under all those distributions. In the dual problem, zTQ is a
mixture of the rows of Q using weights z, i.e., it is an ele-
ment of the convex polytope of risk-neutral distributions.
The special case �= 1 corresponds to logarithmic utility in
the primal problem and KL divergence in the dual problem,
while �= 0 corresponds to exponential utility in the primal
problem and reverse KL divergence in the dual problem,
and the cases �= 1/2 and �= 2 are related to the squared
Hellinger distance and the Chi-square divergence, as shown
in the right-hand column of Table 2.
In the incomplete market generalization of Problem P,

the decision maker’s objective is to determine an amount z
to be spent at time 0 to finance consumption in period 1.
For the period-1 payoff vector x that the decision maker
wishes to purchase, the risk-neutral expected value of x
must be less than or equal to z for all the extremal risk-
neutral distributions. The corresponding primal and dual
problems are

Primal Problem P:

U P
� �p�Q�≡max

x∈�n
Ep�u��x��−z subject to Qx�z1�

Dual Problem P: DP
��p�Q�≡min

z∈�k
DP

��p� zTQ��
Note that because the pseudospherical divergence is a
monotonic transformation of the power divergence, the dis-
tribution q (=zTQ) that solves Dual Problem S is the same
one that solves Dual Problem P, although the objective val-
ues and the primal payoff vectors are generally different.
The formal statements and proofs of these duality relation-
ships are as follows.

Theorem 2. (a) In an incomplete, single-period market,
maximization of expected LRT utility with risk-tolerance
coefficient � (Primal Problem S) is equivalent to minimiza-
tion of the pseudospherical divergence of order � between
the decision maker’s subjective distribution p and a risk-
neutral distribution q consistent with asset prices (Dual
Problem S). Their optimal objective values are the same,
and the optimal values of the decision variables in one
problem are equal to the normalized optimal values of the
Lagrange multipliers in the other.

(b) In an incomplete, two-period market, maximization
of expected quasilinear LRT utility with second-period risk-
tolerance coefficient � (Primal Problem P) is equivalent to
minimization of the power divergence of order � between
the decision maker’s subjective distribution p and a risk-
neutral distribution q consistent with asset prices (Dual
Problem P). Their optimal objective values are the same
and the optimal values of the decision variables in one
problem are equal to the normalized optimal values of the
Lagrange multipliers in the other.

Proof. For part (a), Lagrangian relaxation is applicable
because the primal problem has a strictly concave, con-
tinuously differentiable objective function and linear con-
straints. Let � denote the vector of Lagrange multipliers
associated with the constraints Qx� 0. The Lagrangian
relaxation of Primal Problem S, which generalizes (25), is
then min�∈�k+ L���, where

L���=max
x∈�n

Ep�u��x��−�TQx� (30)

The Lagrangian L��� is an unconstrained maximum of
a continuously differentiable concave function, so it can
be solved for x in terms of � by setting ��Ep�u��x�� −
�TQx�= 0, which yields

x= 1
�

((
p

�TQ

)�

−1
)
� (31)

whence

L���=Ep

[
1

�− 1

((
p

�TQ

)�−1
− 1

)]

−�TQ
(
1
�

((
p

�TQ

)�

− 1
))

= 1
�− 1

(
Ep

[(
p

�TQ

)�−1]
− 1

)

− 1
�

(
Ep

[(
p

�TQ

)�−1]
− 1T ��TQ�

)
� (32)

In the optimal solution �∗, where the constraints are satis-
fied, the second term will be zero, which implies

1T ��∗TQ�=Ep

[(
p

�∗TQ

)�−1]
� (33)

and consequently,

L��∗�= 1
�− 1

(
Ep

[(
p

�∗TQ

)�−1]
− 1

)
� (34)

Now let z∗ =�∗/1T�∗ be the probability distribution that is
obtained by normalization of the optimal Lagrange multi-
pliers �∗. Then, it follows from (33) that

z∗TQ= �∗TQ
Ep��p/�∗TQ��−1�

� (35)
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The pseudospherical divergence between p and z∗TQ can
therefore be expressed in terms of �∗ as

DS
��p� z∗TQ�

= �Ep��p/z
∗TQ��−1��1/� − 1

�− 1

= �Ep��Ep��p/�
∗TQ��−1��p/�∗TQ���−1��1/� − 1

�− 1

= �Ep��p/�
∗TQ��−1����−1�/��Ep��p/�

∗TQ��−1��1/� − 1

�− 1

= 1
�− 1

(
Ep

[(
p

�∗TQ

)�−1]
− 1

)
= L��∗�� (36)

which is the optimal objective value of the primal
problem. Furthermore, z∗ = �∗/1T�∗ must also mini-
mize DS

��p� zTQ� over all z ∈ �k, because if there
were some other z∗∗ ∈ �k such that DS

��p� z∗∗TQ� <
DS

��p� z∗TQ�, then it would be possible to find some
�∗∗ ∈ �k+ proportional to z∗∗ such that z∗∗TQ =
�∗∗TQ/�Ep��p/��

∗∗TQ���−1��. By construction, this �∗∗

would satisfy Ep��p/�
∗∗TQ��−1�− 1T ��∗∗TQ�= 0, imply-

ing L��∗∗� = DS
��p� z∗∗TQ�, and it would follow that

L��∗∗� < L��∗�, contradicting the assumption that �∗ was
optimal. (In the optimal solution of Dual Problem P, there
is a single Lagrange multiplier for the constraint 1T q= 1 as
well as m Lagrange multipliers for the constraints Aq� 0.
The latter divided by the former are equal to the optimal
values of the decision variables in Primal Problem P mul-
tiplied by −�.)
For part (b), the problem of finding the feasible risk-

neutral distribution that minimizes the power divergence of
order �,

min
z∈�k

DP
��p� zTQ�� (37)

is equivalent to the Lagrangian problem min�∈�k L���,
where L��� = maxx∈�n Ep�u��x�� − �TQx is the same
Lagrangian that was used in the proof of part (a)
to minimize the pseudospherical divergence, except that
here � is constrained to be in the simplex, not just
the nonnegative orthant (� ∈ �k rather than � ∈ �k+).
The optimal value of � is a unit vector selecting the
largest element of Qx. Let z denote this largest element.
Then, min�∈�k maxx∈�n Ep�u��x��−�TQx is equivalent to
maxx∈�n Ep�u��x��− z subject to Qx� z1. �

The power divergence is always strictly greater than
the pseudospherical divergence (DP

��p�q� > DS
��p�q�),

except at �= 1, as pointed out earlier, but this inequality is
further illuminated by a comparison of the corresponding
Lagrangian relaxation problems: the minimization of L���
over � ∈�k must yield a result greater than or equal to its
minimization over the larger set � ∈ �k+, whether or not
the market is complete.

Versions of the duality relation of Theorem 2 have
been discussed in the mathematical finance literature, as
noted above, although the full spectrum of LRT utility has
not previously been characterized. In particular, Goll and
Rüschendorf (2001) consider the analog of Problem S in
which the state space is � and the decision maker has a
risk-averse utility function u with initial wealth w. In gen-
eral, the solution of this problem does not have a closed
form, but it can be characterized as follows. Translating
from their continuous setting into our discrete setting (i.e.,
replacing dP and dQ with pi and qi, etc.), the primal
utility-maximization problem with respect to a particular
risk-neutral distribution q is

Uw�p�q�≡max
x∈�n

Ep�u�x�� subject to xT q�w� (38)

Let 'w�p�q�≡ 0Uw�p�q�/0w denote the marginal utility
of wealth at the optimum, and let I�y�≡ �u′�y��−1. Then,
'w�p�q� is implicitly uniquely determined by

Ep

[
I

(
'
q
p

)]
=w� (39)

in terms of which the solution of the primal problem,
denoted xw�p�q�, is given by

xw�p�q�= I

(
'w�p�q�

q
p

)
� (40)

It follows that 'w�p�q� and xw�p�q� are the solutions of
the Lagrangian relaxation

min
'>0

max
x∈�n

Ep�u�x��−'�xT q−w��

In the incomplete market case, let � denote the set of
risk-neutral distributions, i.e., the convex hull of the rows
of Q. Then, the maximum expected utility obtainable with
wealth w, denoted here as Uw�p�Q), is also the minimum
of Uw�p�q� over all q in �:

Uw�p�Q�≡max
x∈�n

Ep�u�x��

subject to xTQ�w1=min
q∈�

Uw�p�q�� (41)

Let q∗ ≡ argminq∈� Uw�p�q�, which is the minimax mea-
sure with respect to u, and let 'w�p�Q� ≡ 'w�p�q∗�
denote the marginal utility of wealth at the optimum.
To construct the dual problem, let u∗ denote the convex

conjugate of u:

u∗�y�≡ sup
x∈�

#u�x�− xy$= u�I�y��− yI�y�� (42)

which is strictly convex if u is strictly convex. For any
positive constant ', a corresponding f -divergence can be
defined by setting f �y�= u∗�'y�:

u∗'�p�q�≡Ep�u
∗�'q/p��

=Ep�u�I�'q/p���−'Eq�I�'q/p��� (43)
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Now let

u∗'�p�Q�≡min
q∈�

u∗'�p�q� (44)

be the minimum u∗'-divergence between p and �, also
known as the u∗'-projection of p on �, and let q∗∗ ≡
argminq∈Q u∗'�p�q�, which is the minimal distance mea-
sure with respect to u∗'. Then, when ' = 'w�p�Q�, the
maximum expected utility and minimum divergence are
related by

u∗'�p�Q�=Uw�p�Q�−'w� (45)

and moreover, q∗ = q∗∗, i.e., the minimax measure with
respect to u is the minimal distance measure with respect
to u∗'. (Goll and Rüschendorf 2001, Proposition 4.3 and
Theorem 5.1) Note, however, that when ' is a function of
p and q, as it is in this result, u∗

' is not an f -divergence.
In the special case of LRT utility, the cast of characters

has the following parametric forms:

I�y�= y−� − 1
�

� (46)

u∗�y�= y1−�

���− 1�
+ y

�
− 1
�− 1

� (47)

u∗'�p�q�=
n∑
i=1

Ep

[
�'q/p�1−�

���− 1�
+ �'q/p�

�
− 1
�− 1

]

= �DP
��p�'q� ∀'> 0� (48)

'w�p�q�=
(
Ep��p/q�

�−1�
1+�w

)1/�

� (49)

Finally, setting '= 'w�p�q� yields

Uw�p�q�=
��1+�w��−1Ep��p/q�

�−1��1/� − 1

�− 1
� (50)

which in general is an affine transformation of the pseudo-
spherical divergence, and it is precisely the pseudospherical
divergence when w = 0. Because w enters this expression
only as part of a scale factor, the minimax measure and
minimal distance measure do not depend on it, which is a
convenient property of LRT utility.

6. Concluding Comments
The families of weighted power and pseudospherical scor-
ing rules developed in this paper constitute a rich set of
strictly proper scoring rules. They include but are not lim-
ited to commonly encountered rules such as the quadratic,
logarithmic, and spherical rules, and they can measure
information relative to any baseline distribution, not just
a uniform distribution. Furthermore, the flexibility of the

weighted power and pseudospherical rules and their con-
nections with well-studied generalized divergence measures
and utility functions have the potential to provide further
insight.
Various arguments have been put forth previously in

favor of power or pseudospherical rules with particular
values of �. For example, the logarithmic scoring rule is
unique in that the score depends only on the probability
assigned to the event that actually occurs, consistent with
the likelihood principle (Winkler 1969). Also, the fact that
the logarithmic rule corresponds exactly to the KL diver-
gence and is the limiting case of both the pseudospherical
and power rules at �= 1 might be viewed as a point in its
favor. Selten (1998) has argued that the quadratic rule (the
power rule with �= 2) is superior to the logarithmic rule
precisely because (1) it is less sensitive to errors in judg-
ing small probabilities, (2) its neutrality is between true
and reported distributions, and (3) it follows squarely in the
tradition of least-squares estimation. Meanwhile, the spher-
ical rule (the pseudospherical rule with �= 2) has its own
appealing geometrical properties (Jose 2008). However, the
effect of increasing � above one in the unweighted pseu-
dospherical and power rule is precisely to dampen the dif-
ferences in scores among all events except the one that was
judged the most probable in absolute terms, as illustrated
in Figures 1 and 2. This has the side-effect of reducing sen-
sitivity to forecasts for low-probability events in situations
where n � 3, merely because events deemed unlikely in
absolute terms tend to receive similar scores. But in many
applications, the state space is deliberately constructed to
distinguish events whose a priori probabilities are small
but whose consequences are large (hurricanes, economic
shocks, nuclear accidents, terrorist strikes, etc.), and inter-
est could center on accurately assessing those risks.
When some events are a priori more likely or less

likely than others, this fact will presumably be known in
advance to the client as well as to the forecaster, in which
case a nonuniform baseline distribution is appropriate. The
expected utility analysis makes clear that the usual one-
parameter forms of all the major scoring rules are implicitly
predicated on the assumption of a uniform baseline distri-
bution. If a uniform distribution is not the appropriate straw
man against which to compare the forecast, then those rules
should not be expected to work well, and fiddling with �
instead of q is not the right solution. In particular, the
weighted logarithmic rule responds to Selten’s objection by
basing the score on the ratio pi/qi, i.e., the relative magni-
tude of the forecaster’s probability of event i in comparison
to the baseline probability.
We therefore conclude that (1) the choice between the

pseudospherical rule and the power rule depends to some
extent on whether a one-period market or a two-period
market is the best analogy for the decision problem at
hand; (2) the most appropriate values of � for either rule
appear to be those in the interval from zero to one, and the
cases �= 0 and �= 1

2 , which have received little (if any)
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discussion in the scoring rule literature, are of interest
because of their associations with the exponential utility
function and the Hellinger distance, respectively; and (3) a
well-chosen and not-necessarily-uniform baseline distribu-
tion is the most important parameter of the scoring rule in
any case. With a nonuniform baseline, the expected scores
yielded by both rules are equivalent to well-known general-
ized divergences, providing a natural bridge from decision
analysis to information theory.
Finally, we have shown that when the decision maker

invests in an incomplete market for contingent claims, char-
acterized by a set of risk-neutral distributions rather than
a single baseline distribution, there is a natural duality
between maximizing LRT utility and minimizing pseudo-
spherical or power divergence with the same value of �.
In particular, when the decision maker has subjective prob-
ability distribution p, maximization of logarithmic utility
(�= 1) corresponds to finding the feasible risk-neutral dis-
tribution q that minimizes the KL divergence DKL�p�q�,
maximization of exponential utility (� = 0) corresponds
to minimizing the reverse KL divergence DKL�q�p�, and
maximization of reciprocal utility (� = 1

2 ) or square-root
utility (�= 2) corresponds to minimization of the Hellinger
distance DH�p�q� or the Chi-square divergence �2�p�q),
respectively.
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