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Summary. A no-show paradox occurs each time a single voter or a group of
voters can manipulate the outcome by not participating to the election process.
Among other voting procedures, the scoring run-off methods, which eliminate
progressively the alternatives on the basis of scoring rules, suffer from this flaw.
We here estimate how frequent this paradox is for three candidate elections under
the classical Impartial Culture and Impartial Anonymous Culture assumptions,
for different population sizes. The conditions under which this paradox occurs
are also described, as well as the relationships with manipulations for a fixed
number of voters.
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1 Introduction

One of the most intriguing paradox in social choice literature is the no-show
paradox (a term introduced by Fishburn and Brams, 1983), also called the ab-
stention paradox: For some voting rules and some specific voting situations, some
voters may get a better result by not participating to the election process. All the
Condorcet social choice functions suffer from this flaw (see Moulin, 1988) as
well as all the scoring run-off methods (see Smith, 1973; Lepelley, 1989; Saari,
1994; Merlin, 1996). For example, this means that when a society uses two-stage
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plurality to elect the president of the state, a possible manipulation strategy may
be the abstention!

Nevertheless, in most of the literature, the existence of a paradox is only
proven by providing an example. Few articles go beyond that stage, asking for
example whether these paradoxical situations are scarce or generalized, whether
it is easy or not to react to an attempt to manipulate, etc. Using recent devel-
opment in social choice literature, we here intend to analyze precisely whether
the no-show paradox is an important flaw for multistage scoring processes. Two
approaches will be undertaken. First, using the different statistical techniques that
have been developed and improved since the last twenty years, we will estimate
the likelihood of different types of no-show paradoxes for all the scoring run-off
methods in three candidate elections, for small electorate as well as large popu-
lations. Secondly, using the tools developed by D. Saari in several articles and
in his book, Geometry of Voting (1994), we will propose arguments that tend to
prove that, when one wants to manipulate the outcome, the abstention strategy
is “dominated” by other strategies, which lead to the same result in a somehow
more efficient way. Moreover, this paper can also be viewed as a description of
arguments that can be used in order to determine whether a specified paradox for
a voting rule is really an important drawback or not, the problem of the abstention
paradox for scoring run-off rules being here just an excellent application.

More precisely, when n individuals have to select a candidate among m
alternatives, we may first ask each individual to rank all the alternatives without
tie according to her preference (i.e. her preference is represented by a linear
ordering on A = {a1, . . . , am}, the set of alternatives). Next, we shall give wm

r
points to the alternative aj each time she is ranked in r th position in one individual
ordering. We shall assume throughout the paper that wm

r ≥ wm
r+1 and wm

1 > wm
m ,

i.e., the better the position of an alternative is, the higher is the number of
points a voter gives to her. The scoring rule gwm , defined by the scoring vector
wm = (wm

1 , . . . , wm
r , . . . , wm

m ), ranks the alternatives according to the total number
of points they receive among the whole population and then selects as a winner
the alternative(s) with the highest score.

Scoring methods may also be used in a sequential process. When m = k1
alternatives are to be ranked, we can use a scoring method gwk1 in order to obtain
a first ordering. Next, we may only take into consideration the k2 top ranked
alternatives, k2 < k1, and remove from contention the k1 − k2 bottom ranked
candidates. A new scoring rule gwk2 is then used in order to rank the remaining
candidates. The process may continue in this way as long as we want; the final
winner is the alternative which is never eliminated and is ranked first with the last
scoring rule. This kind of process defines the class of the scoring run-off rules,
characterized by a sequence of scoring vectorsW = {wk1 , wk2 , . . . , wkg , . . . , wkh}.
kg is the number of alternatives in contention at the beginning of stage g and h
is the number of steps. There are at least 2 stages in the elimination process and
m − 1 at most.

The scoring methods as well as the scoring run-off rules are used by many
committees in order to achieve a social consensus. They are democratic in the
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sense that they give the same power to any voter and do not favor any candidate1.
Smith (1973), Young (1975), and Myerson (1995) gave elegant characterizations
of the scoring rules, but this issue is still open for scoring run-offs (see Merlin,
1996). Thus, the main argument in favor of the scoring run-off methods is the
stability of the social outcome when candidates are added to or dropped from the
choice set, as, by definition, the choice on the whole set of candidates depends
upon rankings on subsets of candidates.

However, the scoring run-offs also present serious flaws. The key property
which characterizes the scoring rules is the reinforcement axiom2: when two dif-
ferent populations select the same outcome with a common voting rule, the social
result should be unchanged when the voting mechanism is directly applied to the
whole population. Unfortunately, the sequential use of the scoring vectors does
not satisfy this property. More generally Smith (1973) proves that an increasing
support in favor of one candidate may disfavor her when scoring run-offs are
used. We shall distinguish here the following paradoxes:
– More is Less Paradox (MLP). The winner is ranked higher by some voters
(everything else remaining the same) and becomes a loser.

– Less is More Paradox (LMP). A loser is ranked lower by some voters (ev-
erything else remaining the same) and becomes a winner.

– Positive Participation Paradox (PPP). Some voters with the winner aj ranked
first are added to the population and aj becomes a loser.

– Negative Participation Paradox (NPP). Some voters with the loser aj ranked
last are added to the population and aj becomes a winner.

– Positive Abstention Paradox (PAP). Some voters with a loser aj ranked first
are deleted (or they abstain) and aj becomes a winner.

– Negative Abstention Paradox (NAP). Some voters with a winner aj ranked
last are deleted (or they abstain) and aj becomes a loser.
This list of paradoxes calls some comments. MLP and LMP are fixed pop-

ulation paradoxes, while the other ones require the number of voters to vary.
It is also easy to check that the Positive Participation Paradox and the Positive
Abstention Paradox are equivalent: according to the case, we just add or remove
the same voters, who have the same top ranked candidate. This remark also holds
for NPP and NAP. These four paradoxes are just the more salient examples of a
more general issue, the no show paradox, also called the abstention paradox. A
no show paradox situation occurs if a voter or a group of voters obtains a bet-
ter result by abstaining rather than voting. This strange behavior of some voting
mechanisms has been identified first by Fishburn and Brams (1983) for a specific
scoring run-off (single transferable vote, also called plurality run-off).

The main objective of this paper is to precise to which extent the no-
show paradox is a serious flaw of scoring run-off methods. Lepelley, Chantreuil

1 However, in a case of tie, we may use tie breaking methods that violate these requirements. For
example, the chairman may have the right to select the winner among the tied outcomes, the older
candidate or the statu quo may be favored, etc.

2 This property is called “consistency” by Young (1975) and Saari (1990), and “separability” by
Smith (1973). The word “reinforcement” comes from Moulin (1988) and Myerson (1995).
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and Berg (1996) have already computed the likelihood of More is Less and
Less is More paradoxes of the plurality run-off and antiplurality run-off un-
der a specific assumption for three candidate elections. We here intend to do
the same for the four paradoxes implying variable electorate. In Section 2,we
first present the conditions under which the different paradoxes occur. These
results generalize Ray’s characterization (1986) about the voting situations lead-
ing to the Negative Participation Paradox. In Section 3, we describe the two
main assumptions in Social Choice literature about the occurrence of vot-
ing situations, that is the Impartial Culture condition (IC) and the Impar-
tial Anonymous Culture condition (IAC). Finally, we provide the figures for
the four paradoxes, PPP, NPP, PAP, NAP, and the no-show paradox, for all
the scoring run-off methods in three candidate elections, with both assumptions
IC and IAC, for small committees as well as for large populations. The details
of the computations, which turn out to be somehow tedious, are presented in
Section 5.

The second argument we will present generalizes a previous result about
plurality run-off due to D. Lepelley (1995). For a choice among k alterna-
tives, the plurality rule is described by the scoring vector wk

PL = (1, 0, . . . , 0)
∈ Rk . The class of the plurality run-off methods is characterized by the fact
that, at each stage, a plurality vector is used to select among the candidates.
Lepelley showed that, each time a group of voters has an opportunity to
manipulate the plurality run-off outcome by abstaining, there exists at least
one other strategy which gives the same result without abstaining. In other
words, for this particular rule, the set of voting situations which are manip-
ulable through misrepresentation of voters’ preferences also contains all the
voting situations instable when some voters abstain. In Section 4, using the
framework of the geometry of voting (see Saari, 1994), we shall prove that a
similar result holds for all the scoring run-off methods, not only with one but
with many strategies.

2 Characterization of instable voting situations

A way to evaluate the importance of the no-show paradox for scoring run-offs
is to estimate the likelihood of participation and abstention paradoxes. More
precisely, we will estimate the frequency of the voting situations that may lead
to these paradoxes. A real paradox will effectively occur only if, first, the voters
who may manipulate the outcome know that they can change it (i.e. have enough
information about the individual preferences) and secondly if they are able to
coordinate themselves in order to implement this strategy. One should also keep
in mind that other voters could react to this abstention strategy, and ruin the
chance of a successful manipulation with an appropriate behavior. Thus, even if
we speak about the“likelihood of a voting paradox”, it should be clear that what
we effectively describe are the situations that might give rise to these paradoxes.
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2.1 The basic model for three candidates

Finding the exact figures of the likelihood of a voting paradox is a difficult and
time consuming task, and, as most of contributions in this field, we shall limit
ourselves to the case of three candidate elections. Thus, let A = {a1, a2, a3} be
the set of candidates. The set of individuals who have to choose collectively
among the candidates is I = {1, . . . , i , . . . , n}. We shall assume throughout the
paper that all these individuals (or voters) are able to rank all the candidates
without tie according to their preferences. In the three candidate case, there exist
six possible preference types, labeled as follows:

Type 1 a1 $ a2 $ a3 Type 2 a1 $ a3 $ a2
Type 3 a2 $ a1 $ a3 Type 4 a2 $ a3 $ a1
Type 5 a3 $ a1 $ a2 Type 6 a3 $ a2 $ a1

Let ni be the number of type i voters and n the size of the population. A
voting situation ñ = (n1, n2, n3, n4, n5, n6) gives the distribution of the voters over
the six different possible preference types. Of course,

∑6
t=1 nt = n .

For three candidate elections, the class of scoring run-off methods is uniquely
described by the first vector we use. Without loss of generality, we can use the
family of normalized scoring vectors ws = (1, s, 0), s ∈ [0, 1]. The values s = 0,
s = 1

2 and s = 1 respectively define the plurality run-off, the Borda run-off (also
called Nanson rule or Baldwin rule) and the antiplurality run-off.

2.2 Necessary and sufficient conditions for the occurrence of the paradoxes

Ray (1986) already proposed necessary conditions that may lead to the Negative
Participation Paradox3 for plurality run-off. The next propositions give necessary
and sufficient conditions for the occurrence of the four paradoxes and all the
scoring run-offs. Without loss of generality, we shall assume in all the proposi-
tions that a3 is removed from contention first, and next a2. Thus a1 is the unique
winner. The five other cases are symmetric. We also assume that the ties are
broken in a way that always leads to the considered paradox, as we don’t know a
priori which tie-breaking method is used. This may over estimate the likelihood
of these paradoxes for small populations, but as the size of population grows,
the likelihood of tied outcomes diminishes and this problem vanishes.

Proposition 1 Let us assume that a1 wins the second stage against a2 for the
voting situation ñ = (n1, n2, n3, n4, n5, n6) and the scoring run-off rule gws , s %= 0.
This situation may lead to a Positive Participation Paradox in favor of a3 by
adding type 2 voters if and only if:

3 In Ray’s terminology, a “pre-addition situation of a no-show paradox” is a NPP situation and a
“post-addition situation of a no-show paradox” is a NAP situation.
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n1 + (1− s)n2 + sn3 − sn4 + (s − 1)n5 + n6 ≥ 0 (A.1)
sn1 − sn2 + n3 + (1− s)n4 − n5 + (s − 1)n6 ≥ 0 (A.2)

n1 + n2 − n3 − n4 + n5 − n6 ≥ 0 (A.3)
−2sn1 − (1 + s)n3 + (2s − 1)n4 + (1 + s)n5 + n6 ≥ 0 (A.4)

Proof of Proposition 1. Let Si be the score of alternative ai with the scoring vector
ws , and Mij , the number of voters who ranks ai before aj in their ordering, minus
the number of individuals with the opposite preference. It is easy to check that
the first three inequalities describe the fact that a3 is removed from consideration
at the first stage (S1 > S3 (A.1), S2 > S3 (A.2)) and that a1 wins the pairwise
comparison against a2 (M12 > 0 (A.3)). A PPP occurs if, by adding k type 2
voters, a3 beats a2 at the first stage, and then wins the pairwise comparison
(notice that adding type 2 voters helps a1 against a3 at the first stage, so that a1
still remains in contention). Thus, a3 is the new winner if k is such that:

{

S2 − sk − S3 ≤ 0 (A.5)
M31 − k ≥ 0 (A.6)

By multiplying (A.6) by s , and adding it to (A.5), we obtain the constraint (A.4).
Now let us assume that the conditions (A.1) to (A.4) are satisfied for a voting

situation ñ: a1 is elected and a3 is removed first. First, notice that (A.4) together
with (A.2) implies that a3 beats a1 in the pairwise comparison for the initial
profile. Add k ′ type 2 voters to the initial situation such that the comparison
between a1 and a3 ends up into a tie vote:

−n1 − n2 − k ′ − n3 + n4 + n5 + n6 = 0 (A.6′)

By multiplying this condition by s and adding it to (A.4), we obtain:

sn1 − sn2 − sk ′ + n3 + (1− s)n4 − n5 + (s − 1)n6 ≤ 0 (A.2′)

a3 now beats a2 at the first stage, and, provided that the tie is broken in its favor,
a3 becomes the new winner. '(

Proposition 2 Let us assume that a1 wins the second stage against a2 for the
voting situation ñ = (n1, n2, n3, n4, n5, n6) and the scoring run-off rule gws , s %= 1.
This situation may lead to a Negative Abstention Paradox in favor of a3 by deleting
enough type 4 voters if and only if:























n1 + (1− s)n2 + sn3 − sn4 + (s − 1)n5 − n6 ≥ 0 (B .1)
sn1 − sn2 + n3 + (1− s)n4 − n5 + (s − 1)n6 ≥ 0 (B .2)

n1 + n2 − n3 − n4 + n5 − n6 ≥ 0 (B .3)
−n1 + (2s − 1)n2 + (s − 2)n3 + (2− s)n5 + (2− 2s)n6 ≥ 0 (B .4)

sn1 − sn2 + n3 − n5 + (s − 1)n6 ≤ 0 (B .5)

Proof of Proposition 2. The first three inequalities describe the same voting situ-
ations as in Proposition 1. A negative abstention paradox in favor of a3 occurs if
and only if, by removing enough type 4 voters, a3 first beats a2 and next obtains
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a majority of votes against a1. A necessary condition is that, when all the type 4
voters are removed (n4 = 0), the score of a3 is bigger than a2’s one. This gives
condition (B .5). Let 0 ≤ k ≤ n4 be a number of voters such that:

{

S2 − (1− s)k − S3 < 0 (B .6)
M31 − k > 0 (B .7)

By multiplying (B .7) by (1−s) and adding it to (B .6) we obtain condition (B .4).
Now let us assume that conditions (B .1) to (B .5) are satisfied for a voting

situation ñ . It is easy to check that condition (B .2) and (B .4) imply the fact that
a majority of voters prefers a3 to a1 (M31 ≥ 0). Let k ′ be a number of type 4
voters such that M31 − k ′ = 0:

−n1 − n2 − n3 + n4 − k ′ + n5 + n6 = 0 (B .7′)

Together with (B .4), this condition implies (B .6′). It might be the case that the
number k ′ such as equation (B .7′) is satisfied is greater than n4. However, as
(B .5) is satisfied, we can obtain a NAP by removing k ′′ < k ′ type 4 voters such
as:

sn1 − sn2 + n3 + (1− s)n4 − k ′′(1− s)− n5 + (s − 1)n6 ≤ 0 (B .2′)

Then, for this k ′′, a3 reaches the second stage and still beats a1 as k ′′ < k ′. '(
The last two propositions concern NPP and PAP.

Proposition 3 Let us assume that a1 beats a2 at the second stage for the voting
situation ñ = (n1, n2, n3, n4, n5, n6) and the scoring run-off rule gws , s %= 1. This
situation may lead to a Negative Participation Paradox in favor of a2 by adding
type 5 voters if and only if:























n1 + (1− s)n2 + sn3 − sn4 + (s − 1)n5 − n6 ≥ 0 (C .1)
(−1 + s − s2)n1 + (s2 − 1)n2 + (1− 2s)n3

+(1− s + s2)n4 + (2s − s2)n6 ≥ 0 (C .2)
n1 + n2 − n3 − n4 + n5 − n6 ≥ 0 (C .3)

−sn1 + (2s − 2)n2 + (1− 2s)n3 + n4 + sn6 ≥ 0 (C .4)

Proposition 4 Let us assume that a1 beats a2 at the second stage for the voting
situation ñ = (n1, n2, n3, n4, n5, n6) and the scoring run-off rule gws , s %= 0. This
situation may lead to a Positive Abstention Paradox in favor of a2 by deleting
some type 3 voters if and only if:































n1 + (1− s)n2 + sn3 − sn4 + (s − 1)n5 − n6 ≥ 0 (D .1)
(s2 − 1)n1 + (−1 + s − s2)n2 + (2s − s2)n4

+(1− 2s)n5 + (s2 − s + 1)n6 ≥ 0 (D .2)
n1 + n2 − n3 − n4 + n5 − n6 ≥ 0 (D .3)

(s − 1)n1 − n2 + 2sn4 + (1− 2s)n5 + (1− s)n6 ≥ 0 (D .4)
n1 + (1− s)n2 − sn4 + (s − 1)n5 − n6 ≤ 0 (D .5)
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As their proofs are similar to the ones of Propositions 1 and 2, we shall just
sketch them out.

Proof of Proposition 3. Inequalities (C .1) and (C .3) respectively mean that S1 ≥
S3 and M12 ≥ 0. Inequality (C .2), which is more complex, calls some comments.
In the NPP case, the paradox may occur if and only if there exist k voters such
as the new score of a2 is still greater than the score of a1, while a3 now beats a1.
This gives the inequalities S2−S1−ks ≥ 0 and S3 +(1−s)k−S1 ≥ 0. Combined
together, they give the condition (1− s)(S2−S3) ≥ (S1−S3), that is (C .2). (C .4)
expresses the following constraints: We must simultaneously add k voters such
as the new score of a1 becomes lower than a3’s one (S1 + sk ≤ S3 + k ) and such
as a2 will win the second stage against a3 (M23 − k ≥ 0). These two conditions,
combined together, give (1− s)M23 ≥ S1 − S3, that is, (C .4). '(

Proof of Proposition 4. (D .1) means that, for the initial voting situation, S1 ≥ S3.
However, when all the type 3 voters abstain, S3 becomes greater (D .5). As usual,
(D .3) means that M12 ≥ 0. To get a PAP, we must remove k type 3 voters such
as:







S2 − k ≥ S3
S1 − sk ≤ S3
M23 − k ≥ 0

Combined together, the first two inequalities give s(S2 − S3) ≥ S1 − S3, that is
(D .2). The last two ones induce sM23 ≥ S1 − S3, that is, (D .4). '(

2.3 Relationships with the abstention paradox

The negative abstention paradox and the positive abstention paradox are two
particular sub cases of the no-show paradox: We just consider either the top
ranked alternative or the bottom ranked one. However, for the three candidate
case, these two possibilities encompass all the occurences of a no-show paradox.

Proposition 5 For three candidate elections, suppose that a voting situation may
lead to an abstention paradox under a scoring run-off system, that is, a group
of voters may successfully manipulate the outcome by abstaining. Furthermore,
let us assume that a3 is eliminated at the first stage, and that a1 beats a2 in the
pairwise comparison. Then, the two following cases hold:

– If S2 > S1 > S3 at the first stage, the only type of voter which may manipulate
the outcome is type 3, a2 $ a1 $ a3. A positive abstention paradox will occur
in favor of a2 and against a1.

– If S1 ≥ S2 > S3 at the first stage, the voter type which has an incentive to
abstain is type 4, a2 $ a3 $ a1. This is a negative abstention paradox situation
in favor of a3 and against a1.

The proof is trivial: one just has to check that, in both sub cases, no other
type has an incentive to manipulate by abstaining. A consequence of Proposition
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5 is that, for m = 3 the likelihood of a no-show paradox is the sum of the
probabilities of the positive and negative abstention paradoxes. Unfortunately,
this result does not generalizes to the case of participation paradoxes: there exist
voting situations and scoring run-offs leading to both positive participation and
negative participation paradoxes. The profile displayed in Table 1 gives such an
example for the Borda run-off. Using the vector wB = (2, 1, 0), the scores for
this initial profile are S1 = 49, S2 = 55 and S3 = 46. Then a1 beats a2 with a
10 vote margin. Adding four voters with preference a3 $ a1 $ a2 changes the
scores into S1 = 53, S2 = 55 and S3 = 54. The second stage winner is now a2, by
35 votes against 19, which leads to a negative participation paradox. Similarly,
add 10 voters whose preference type is a1 $ a3 $ a2 to the initial profile. The
new scores are S1 = 69, S2 = 55 and S3 = 56 and a3 beats a1 with a two vote
margin; This is sufficient to create a positive participation paradox.

Table 1

Preference Number of voters
a1 ! a2 ! a3 15
a1 ! a3 ! a2 1
a2 ! a1 ! a3 3
a2 ! a3 ! a1 17
a3 ! a1 ! a2 14

3 The likelihood of variable electorate paradoxes
under IC and IAC assumptions

3.1 Probability models

Propositions 1 to 5 give necessary and sufficient conditions for the existence of
abstention and participation paradoxes. However, these results do not provide
any information about the likelihood of these situations. In order to obtain such
results, we have to set some assumptions about the likelihood of the different
voting situations. Moreover, these assumptions should reflect to some extent a
concept of “impartiality”, and do not favor a priori any alternative.

In Social Choice literature, two assumptions about the occurrence of the dif-
ferent voting situations enable us to formalize more precisely these requirements.
The most common one is the Impartial Culture condition, which assumes that
each voter selects her preference according to a uniform probability distribution.
Thus, each voter has a probability 1

6 to pick the type t preference and the likeli-
hood of a specified voting situation is described by a multinomial distribution:

Prob(ñ = (n1, n2, n3, n4, n5, n6)) =
n!

n1!n2!n3!n4!n5!n6!
6−n

A drawback of this approach is that it puts more weight on the voting situations
close to ñ = (n/6, . . . , n/6), and neglects the impact of unanimous or quasi unan-
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imous profiles. On the other hand, the Impartial Anonymous Culture condition
considers that each voting situation is equally likely. Thus,

Prob(ñ = (n1, n2, n3, n4, n5, n6)) =
120n!
(n + 5)!

∀ñ

To summarize, the IC assumption could be viewed as a case of extremely splitted
opinion, while the IAC takes into account more homogeneous societies. Both are
widely used in Social Choice literature, and we shall evaluate the likelihood of
the different paradoxes we are concerned with for IC as well as IAC. For more
details about these assumptions and their extensive use in the literature, see Berg
and Lepelley (1994) and Gehrlein (1997).

3.2 Results for small electorate

Let P (X , s, n) be the likelihood of the voting situations that may lead to the
paradox X under the scoring run-off method defined by ws = (1, s, 0) for the
population of size n . X stands for PPP , NPP , PAP , NAP or ABS (ABS denoting
the abstention paradox). For small electorate, Propositions 1 to 4 make possible a
computer enumeration of the voting situations giving rise to the various paradoxes
and -a probability model being given- the computation of P (X , s, n) for every
s ∈ [0, 1] and every X ∈ {PPP ,NPP ,PAP ,NAP}; then, from Proposition 5,
P (ABS , s, n) is obtained by summing P (PAP , s, n) and P (NAP , s, n). We have
done these computations for s = 1/2 (Borda run-off), s = 0 (plurality run-off)
and s = 1 (antiplurality run-off). Tables 2 to 4 show the computed values of
P (X , s, n) under IAC as well as under IC for n = 3, 4, 5, ..., 33. Before providing
some comments on these results, two preliminary remarks are in order. First,
neither PPP nor PAP can occur under plurality run-off; hence, for every n ,
P (PPP , 0, n) = P (PAP , 0, n) = 0 and P (ABS , 0, n) = P (NAP , 0, n). Similarly,
NPP and NAP cannot occur when antiplurality run-off is used: P (NPP , 1, n) =
P (NAP , 1, n) = 0 and P (ABS , 1, n) = P (PAP , 1, n). Second, it is easily seen from
Propositions 1 and 2 that, for s = 1

2 , inequalities (A.1) to (A.4) are equivalent to
inequalities (B .1) to (B .4); furthermore, it can be checked that inequalities (B .1)
to (B .4) imply (B .5) when s = 1

2 . Consequently, P (NAP , 12 , n) = P (PPP , 12 , n)
for every n . For this reason, NAP does not appear in Table 2 although this
paradox can occur under Borda run-off.

The main conclusions that emerge from the examination of Tables 2, 3 and
4 are the following:

– First, the values we obtain are more important for the IC case than with the
IAC assumption. This is not an unusual feature in Social Choice literature, as
the IAC assumption introduces some degree of homogeneity in voters’ pref-
erences (the more homogeneous is a society, the less likely is the occurrence
of a paradox).

– The likelihood of the various paradoxes can be surprisingly high (more than
50%) for very small values of n , the number of voters. However, when
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Table 2. Probabilities of paradoxes, Borda run-off, n voters

IAC IC
n PPP NPP PAP ABS PPP NPP PAP ABS
3 0.10714 0.10714 0.10714 0.21428 0.16667 0.16667 0.16667 0.33333
4 0.28571 0.47619 0.33333 0.61905 0.41667 0.66667 0.52778 0.94444
5 0.07143 0.09524 0.07143 0.14286 0.13889 0.16204 0.13889 0.27778
6 0.15584 0.28571 0.19481 0.34990 0.25849 0.45396 0.37423 0.63272
7 0.05303 0.07576 0.05303 0.10606 0.11253 0.14253 0.12153 0.23405
8 0.10256 0.20047 0.13054 0.23310 0.19279 0.35408 0.29982 0.49261
9 0.04795 0.06593 0.04496 0.09291 0.09627 0.12665 0.10978 0.20605
10 0.07393 0.15185 0.09590 0.16983 0.15732 0.29565 0.25630 0.41362
11 0.04258 0.05907 0.03846 0.08104 0.08615 0.11496 0.10143 0.18758
12 0.05915 0.12314 0.07660 0.13575 0.13494 0.10622 0.22732 0.36225
13 0.03782 0.05322 0.03361 0.07143 0.07934 0.10622 0.09530 0.17464
14 0.04954 0.10423 0.06347 0.11300 0.11943 0.22902 0.20631 0.32574
15 0.03483 0.04915 0.03057 0.06540 0.07439 0.09947 0.09060 0.16499
16 0.04275 0.09052 0.05425 0.09701 0.10800 0.20799 0.19022 0.29822
17 0.03235 0.04602 0.02802 0.06038 0.07056 0.09408 0.08683 0.15739
18 0.03834 0.08060 0.04779 0.08612 0.09921 0.19150 0.17741 0.27662
19 0.03021 0.04334 0.02597 0.05618 0.06745 0.08967 0.08371 0.15116
20 0.03501 0.07307 0.04280 0.07781 0.09224 0.17820 0.16691 0.25914
21 0.02864 0.04123 0.02445 0.05309 0.06486 0.08597 0.08105 0.14591
22 0.03233 0.06704 0.03887 0.07120 0.08656 0.16720 0.15809 0.24466
23 0.02729 0.03950 0.02314 0.05043 0.06263 0.08282 0.07874 0.14137
24 0.03031 0.06225 0.03582 0.06614 0.08185 0.15800 0.15057 0.23241
25 0.02610 0.03798 0.02202 0.04812 0.06069 0.08010 0.07670 0.13739
26 0.02867 0.05834 0.03330 0.06197 0.07787 0.15014 0.14404 0.22191
27 0.02518 0.03671 0.02112 0.04630 0.05899 0.07772 0.07488 0.13386
28 0.02728 0.05504 0.03120 0.05847 0.07447 0.14334 0.13832 0.21279
29 0.02437 0.03562 0.02033 0.04470 0.05746 0.07561 0.07323 0.13070
30 0.02615 0.05327 0.02946 0.05561 0.07152 0.13740 0.13325 0.20477
31 0.02363 0.03465 0.01964 0.04327 0.05610 0.07374 0.07173 0.12783
32 0.02519 0.04991 0.02797 0.05316 0.06894 0.13216 0.12871 0.19766
33 0.02302 0.03380 0.01905 0.04208 0.05486 0.07205 0.07036 0.12522

interpreting this conclusion, we have to keep in mind the tie-breaking method
we use in our analysis: Ties are always broken in a way that leads to the
paradox. This method clearly leads to an over estimation of the probabilities
when n is small.

– For each of the paradoxes we have considered, the probabilities of occurrence
tend to decrease when the number of voters becomes larger, but this decreas-
ing is not monotonic. Limiting values for these probabilities are provided in
the subsequent paragraph.

3.3 Results for large electorate

We here provide results for large populations. By large, we mean that the number
of individuals is large enough so that we can approximate the distribution of the
voting situations by a multivariate normal law in the IC case, and by a Dirichlet
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Table 3. Probabilities of paradoxes, plurality run-off, n voters

IAC IC
n NPP NAP(ABS) NPP NAP(ABS)
3 0.21429 0.21429 0.33333 0.33333
4 0.57143 0.38095 0.77778 0.55556
5 0.14386 0.07143 0.27778 0.09259
6 0.36364 0.19481 0.68416 0.44753
7 0.12121 0.10606 0.20405 0.18004
8 0.28438 0.13520 0.44410 0.17404
9 0.13786 0.08991 0.27806 0.17004
10 0.27778 0.11988 0.46457 0.27040
11 0.11538 0.07005 0.23252 0.10452
12 0.22204 0.12023 0.45793 0.26090
13 0.10924 0.07633 0.20952 0.14550
14 0.18060 0.08514 0.37171 0.15497
15 0.11378 0.07237 0.24783 0.13734
16 0.17249 0.09317 0.37440 0.19960
17 0.10390 0.06152 0.21815 0.10029
18 0.16298 0.08416 0.38223 0.20074
19 0.10051 0.06592 0.20680 0.12782
20 0.15008 0.07544 0.33181 0.13940
21 0.10289 0.06312 0.23184 0.12207
22 0.14136 0.07462 0.33225 0.16785
23 0.09717 0.05763 0.21059 0.09625
24 0.14015 0.07366 0.43205 0.17036
25 0.09515 0.05962 0.20343 0.11702
26 0.13009 0.06575 0.30709 0.12869
27 0.09648 0.05837 0.22202 0.11283
28 0.12704 0.06780 0.30717 0.14945
29 0.09276 0.05460 0.20557 0.09302
30 0.12468 0.06528 0.31658 0.15188
31 0.09145 0.05610 0.20048 0.10966
32 0.11967 0.06184 0.29019 0.12095
33 0.09235 0.05506 0.21529 0.10650

distribution in the IAC case. For three candidate elections and large populations,
the computations can be undertaken and our results provide exact figures (see
Section 5 for the details). Table 5 displays the values of P (X , s,∞) for the
plurality run-off (PL), the Borda run-off (BO), and the antiplurality run-off (AP)
under the IC and IAC assumptions. In the IC case, we have been able to derive
formulas for all the values of s ∈ [0, 1] and the five paradoxes (these formulas
are described in Section 5.1). The corresponding figures are displayed in Table 6.

These figures call some comments. First, the limiting values we obtain for the
IC case show a symmetry between NPP and PAP under Borda run-off. Similarly,
we notice that P (PPP , 1,∞) = P (NAP , 0,∞) and P (NPP , 0,∞) = P (PAP , 1,∞)
when IC is assumed. These symmetries are directly related to the fact that the
IC assumption describes extremely splitted societies. When we consider all the
situations rather than only those close to the situation ñ = ( n6 , . . . ,

n
6 ), i.e. when

we move from IC to IAC, these symmetries vanish.
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Table 4. Probabilities of paradoxes, antiplurality run-off, n voters

IAC IC
n PPP PAP(ABS) PPP PAP(ABS)
3 0.21429 0.21429 0.33333 0.33333
4 0.14286 0.23810 0.11111 0.33333
5 0.16667 0.09524 0.23148 0.13889
6 0.20779 0.25974 0.43724 0.57613
7 0.09091 0.09091 0.11403 0.20405
8 0.14452 0.16317 0.29207 0.39209
9 0.09890 0.09890 0.17229 0.22330
10 0.10390 0.12587 0.15625 0.31671
11 0.09066 0.07418 0.15993 0.17017
12 0.10957 0.13187 0.25463 0.39270
13 0.07073 0.07073 0.10512 0.20001
14 0.09288 0.10578 0.20607 0.33965
15 0.07663 0.07624 0.13802 0.22625
16 0.07814 0.09524 0.14194 0.31025
17 0.07177 0.06448 0.13458 0.18889
18 0.08167 0.09682 0.19545 0.34813
19 0.06183 0.06310 0.09916 0.20529
20 0.07612 0.08549 0.17005 0.31843
21 0.06485 0.06567 0.12212 0.22684
22 0.06748 0.08027 0.13039 0.30362
23 0.06264 0.05977 0.12075 0.20292
24 0.06902 0.08155 0.16602 0.32993
25 0.05751 0.05848 0.09488 0.21046
26 0.06611 0.07483 0.15002 0.30684
27 0.05888 0.06031 0.11260 0.22816
28 0.06118 0.07202 0.12191 0.29816
29 0.05731 0.05643 0.11190 0.20990
30 0.06254 0.07269 0.14822 0.31794
31 0.05399 0.05575 0.09167 0.21530
32 0.06043 0.06855 0.13710 0.29963
33 0.05503 0.05683 0.10611 0.22855

It is well known that the plurality run-offs are the only scoring run-off methods
which are immune to PPP and PAP, while a symmetric result hold for anti-
plurality run-offs with NPP and NAP (see Smith, 1973; Lepelley, 1989; Saari,
1994; Merlin, 1996). But here, we get a stronger result under the IC assumption:
The likelihood of PPP and PAP is increasing with s and is maximal for s = 1. A
similar result holds for the antiplurality run-off with NPP and NAP as s decreases.

The abstention paradoxes can be easily interpreted. The figures give the prob-
ability that a group of individuals has an incentive to abstain (whether or not they
effectively implement this strategy). Moreover, by summing the NAP and PAP
data, we obtain the probability of a no-show paradox. The comparison with the
probabilities of More is Less and Less is More paradoxes obtained by Lepelley,
Chantreuil and Berg (1996) for the IAC case (see Table 7) indicates similar orders
of magnitude. Still with the IAC assumption, the data clearly indicate that Borda
run-off does better than plurality or plurality run-off. This is also true with the
IC assumption, but the picture is somewhat different: The advantage of Borda



66 D. Lepelley and V. Merlin

Table 5. Probabilities of paradoxes for plurality run-off, Borda run-off, and antiplurality run-off

IAC IC
Properties PL BO AP PL BO AP

PPP 0 0.014a 43
1125 0 0.02198 0.05583

(0.0382)

NPP 7
96 0.020a 0 0.16230 0.02825 0

(0.0729)

PAP 0 0.010a 49
1152 0 0.02825 0.16230

(0.0425)

NAP 47
1152 0.014a 0 0.05583 0.02198 0

(0.0408)

ABS 35
648 0.0214a 49

1152 0.05583 0.05022 0.16230

(0.054) (0.0425)

a Estimates obtained by using Monte-Carlo simulations.

run-off over plurality is tiny, and the minimal value for the abstention paradox
is obtained with s + 0.4.

Giving an interpretation for the participation paradoxes is harder. For exam-
ple, the figure 16.23% for a NPP with plurality run-off indicates that in these
situations, extra voters may hurt themselves by voting. But where do they come
from ? Such scenario would imply that some voters have already given their bal-
lots, while others haven’t, and that this second group knows the results obtained
by the first voters. Although such situations are not completely impossible, it
might be difficult to find convincing examples for this scenario.

One last remark is worth noticing: whatever the assumption, the paradox and
the rule we consider, our figures are systematically lower than the figures obtained
for the likelihood of coalitional manipulations (CM, see Table 7). By coalitional
manipulation, we mean that some voters may change the outcome in their favor
by misrepresenting their sincere preference, without abstaining. However, the
data we display are just partial, only concerning the plurality and antiplurality
run-offs for three candidate elections. Could it be possible that the situations that
lead to a no-show paradox would be also manipulable by coalitions of voters ?
The next section will indicate to which extent this comment is funded.

4 Is abstaining the only possible strategy ?

The previous section describes the conditions under which some voters sharing
the same preference type may choose to abstain in order to obtain a better result.
However, one may wonder whether abstention was the optimal strategy in these
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Table 6. The likelihood of paradoxes under IC for large populations as λ varies

λ P (PPP , s, ∞) P (NPP , s, ∞) P (PAP , s, ∞) P (NAP , s, ∞) P (ABS , s, ∞)
1 0.0558269 0 0.1622955 0 0.1622955
0.9 0.0478496 0.0059425 0.1340079 0.0070622 0.1410701
0.8 0.0403399 0.0114469 0.1010195 0.0123198 0.1133393
0.7 0.0335467 0.0163528 0.0684872 0.0160035 0.0844907
0.6 0.0274304 0.0211161 0.0431940 0.0188015 0.0619955
0.5 0.0219771 0.0282491 0.0282491 0.0219771 0.0502262
0.4 0.0188015 0.0431940 0.0211161 0.0274304 0.0485465
0.3 0.0160035 0.0684872 0.0163528 0.0335467 0.0498995
0.2 0.0123198 0.1010195 0.0114469 0.0403399 0.0517868
0.1 0.0070622 0.1340079 0.0059425 0.0478496 0.0537921
0 0 0.1622955 0 0.0558269 0.0558291

Table 7. Other manipulation paradoxes for plurality and antiplurality run-off

Assumption Paradox P(X, ∞, 0) P(X,∞, 1)
MLP 0.0451a 0.0556a

(

12
288

) (

7
18

)

IAC LMP 0.0197a 0.0648a
(

17
864

) (

7
108

)

CM 0.1111b 40.43056b
(

1
9

) (

31
72

)

IC CM 0.16887c 1d

a Lepelley, Chantreuil and Berg (1996);
b Lepelley and Mbih (1994);

c Lepelley and Valognes (1999);
d Kim and Roush (1997)

situations. Could a “classical manipulation”, that is a coordinated change of
preferences for a group of voters, give exactly the same result ? Lepelley (1995)
showed that the set of voting situations leading to the possibility of a no-show
paradox was a proper subset of the set of manipulable situations for plurality
run-off. This section will generalize this result to all the scoring run-offs, and a
wider class of voting mechanisms. In order to achieve this aim, we shall borrow
some tools of the geometric approach, introduced in Social Choice literature by
Saari (1994).

4.1 The definition of the domains

Until now, we considered voting procedures as functions from the set of all the
possible voting situations into A, the set of possible candidates. For most of the
voting rules, it is possible to go a step further and to define them on the simplex
Si (m!):

Si (m!) =

{

p = (p1, . . . , pt , . . . , pm!) ∈ R
m! :

m!
∑

t=1

pt = 1, pt ≥ 0

}
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where pt gives the fraction of voters with the type t preference. We do not
lose anything by working with profiles p rather than with voting situations ñ
as long as the voting rule is homogeneous4: when we replicate each individ-
ual preference k times, k ∈ N, to obtain a new population, the social out-
come should stay unchanged. For example, the profile on Table 1 can be ex-
pressed as p = ( 1550 ,

1
50 ,

3
50 ,

17
50 ,

14
50 , 0). Similarly, this point in Si (m!) represents

ñ = (15, 1, 3, 17, 14, 0) as well as all the voting situations k .ñ , k ∈ N.
By defining the set of possible profiles as the set of rational points in the

simplex Si (m!), we are now able to use all the tools of geometry and linear
algebra for the study of voting procedures. However, there is one limit to this
setup. When we state a result for a profile in Si (m!), we know that there exists
a voting situation that gives the same result, but we don’t know what is the size
of this population. It might be the case that the theorem is not true for small
numbers of individuals.

In this context, let us consider a voting procedure g as a function from Si (m!)
into 2A\∅, the set of all the non-empty subsets of A. For g, the domain of an
alternative a is the set of profiles in Si (m!) which lead to this outcome:

Dg(a) = {p ∈ Si (m!) : a ∈ g(p)}

The simplest way to describe a domain is to characterize its boundaries. Fortu-
nately, for most voting processes, the boundaries are just portions of hyperplanes.
In particular, this is true for the scoring rules (see Young, 1975; Saari, 1994) as
well as for the scoring run-offs. For example, the inequalities (A.1) to (A.3)
clearly show that the conditions that lead to a1’s victory are linear (just divide
them by n and replace the inequalities by equalities to obtain the exact equations
in Si (m!)). The linearity of the boundaries is not a characteristic feature of the
scoring rules, and this property has been also used for the study of other voting
rules like the Copeland method (see Merlin and Saari, 1998) or the Kemeny rule
(see Saari and Merlin, 2000).

Table 8. Boundaries of the domain of a1 for scoring run-off ws = (1, s, 0)

Vectors Coordinates Boundary with
M 12 (1, 1, −1, −1, 1, −1) D(a2)
M 13 (1, 1, 1, −1, −1, −1) D(a3)
S 12 (1− s, 1, s − 1, −1, s, −s) D(a3)
S 13 (1, 1− s, s, −s, s − 1, −1) D(a2)
S 23 (s, −s, 1, 1− s, −1, s − 1) D(a3)
S 32 (−s, s, −1, s − 1, 1, 1− s) D(a2)

For a specified voting procedure, each linear boundary is characterized by
its normal vectors. To precise the shape of a domain, we just have to choose a
normal vector pointing toward the interior of the domain for each boundary. As
an example, Table 8 displays these vectors for the domain of a1 and the scoring

4 This property was first introduced by Young (1975).
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run-off ws = (1, s, 0). Vectors M 12 and M 13 describe the hyperplanes where
the pairwise outcome is a tie between a1 and a2 or a3. Vectors S 12 and S 13
characterize the situations where a1 shares the last position at the first stage with
another alternative. Vectors S 23 and S 32 represent the cases where, by changing
a1’s second stage opponent, we can end up with a victory for a1 instead of a
defeat.

4.2 Changes of preferences that change the outcome

In Si (m!), any change of preferences by a voter or a group of voters can be
represented by a vector d = pf − pi , where pi is the initial profile, while pf is
the final profile. By this way, we can describe many senarii involving changes
of preferences, like monotonicity, coalitional manipulation, and all the different
types of participation and abstention paradoxes.

Let us assume that a2 is elected and that an abstention paradox occurs in
favor of a1. Moreover, let us consider in a first step that the voters who abstain
share the same preference type. Thus, for these voters, a1 $ a2. Let Et be the
preference profile where all the coordinates are zero’s except the t th one; Et
represents the voting situations for which all the individuals share the same type
t preference. Let d be a change of preference which describe the abstention of
k type t voters among n individuals. Thus,

ñ f = ñ i − kEt (1)
⇔ (n − k )pf = npi − kEt (2)

⇔ pf = γpi + (1− γ)Et (3)

with γ = n
n−k , γ > 1. In turns,

d = pf − pi = (γ − 1)(pi − Et ) (4)

As this strategy is successful, the vector d must cross one of the boundaries
between Dg(a2) and Dg(a1). This is the case if and only if Nd > 0 for at least one
normal vector N pointing inside the domain of a1, i.e. if there exists a normal
vector N for one of the boundary hyperplanes such that:

d .N = (γ − 1)Npi − (γ − 1)NEt > 0 (5)

As Npi is negative by assumption (pi is in the domain of a2), a necessary
condition for the abstention paradox to occur is that NEt < 0. As an example,
one may check in Table 8 that S 32E1 = −s < 0, for s %= 0. Thus, if pi is close
enough to the boundary S 32pi = 0, it is possible for type 1 voters to manipulate
the outcome by abstaining. This leads to a positive abstention paradox in favor
of a1. Similarly, S 32E4 = s − 1 < 0, s %= 1 shows that a NPP may also occur in
some situations.

Equation (4) describes the abstention of a fraction of γ−1
γ = k

n voters. It is
easy to generalize this equation into d = (γ − 1)(pi − pa ), where pa describes
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the preference profiles of the people who abstain, whether or not they share the
same preference type. Then, a necessary condition for abstention behavior to be
successful for a1 against a2 is Npa < 0, with all the individuals in profile pa
preferring a1 to a2.

Nevertheless, consider this other scenario: Instead of abstaining, the voters
in pa decide to coordinate themselves in order to report a structure of preference
equivalent to the one given by the vector pi . It is exactly as if the k voters had
decided to mimic the average opinion! Thus, the change d is (γ−1)

γ (pi − pa ).
This “camouflage behavior” is equally successful as the abstention, as we got
N (pi − pa ) < 0 in both cases, with just a different scalar. Similarly, instead of
mimicking the average opinion or abstaining, these voters could have decided to
report unanimously preference t ′. Thus the change becomes d = (γ−1)

γ (Et ′ − pa ),
with γ > 1.

Proposition 6 Consider a scoring run-off method characterized by a sequence
of scoring vectors W = {wk1 , wk2 , . . . , wkg , . . . , wkh}. Let ñ be a voting situation
leading to a no-show paradox. More precisely, assume that k voters who prefer
a1 to a2 favor a1 against a2 by abstaining. Thus, provided that the initial profile
is such that only one boundary can be crossed by the coordinated actions of the k
voters, they can manipulate the outcome in the same way by pretending of being
unanimously a certain type of voter rather than by abstaining. At least half of the
possible preference types will lead to this result.

Proof of Proposition 6. For the profile pi , the abstention strategy is successful
and one hyperplane, corresponding to some equation Sp = Sq , is crossed. Thus,
(γ − 1)S pq (pi − pa ) > 0, with S pq pointing toward the domain of a1. Assume
now that the k voters who abstained decide to report unanimously preference
type t instead of abstaining. This shifts the profile from the point pf to pm , the
new profile, with:

npm = (n − k )pf + kEt (6)

⇔ pm =
1
γ
pf +

γ − 1
γ

Et (7)

By definition, S pqpf > 0, as pf is in Dg(a1). It is easy to check that S pqEt ≥ 0
for at least half of the preference types. This is due to the fact that, for the scoring
rule wk

g , the dot product S pqEt is equal to the difference of scores between the
two alternatives ap and aq in the t th preference type reduced to a certain subset
of candidates. By interchanging the positions of ap and aq in the t th ordering,
everything else unchanged, we obtain a new preference type, t ′. However, the
difference of scores between ap and aq has been reversed too. S pqEt ′ = −S pqEt .
Thus at least half of preference type gives S pqEt ≥ 0. So, for at least half of
the preference types, S pqpm > 0, and provided that only one boundary can be
crossed, the new profile stays on the good side of the hyperplane. '(

We assume in Proposition 6 that only one boundary can be reached by the
k voters when they change their preferences. In fact, if the run is close enough
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between more than two candidates, it might be the case that a change of pref-
erences crosses several boundaries, leading to an unexpected outcome. Such a
situation is described in Figure 1. By abstaining, k individuals change the out-
come (hyperplane H1 is crossed), pushing the outcome from pi to pf . If they
decide to come back with a new strategy Et , they will push again the profile
in the direction of Et . Although N1E3 > 0, this strategy may not be successful
as, by adopting this preference, another boundary, H2, is also crossed. Similarly,
although N1E2 < 0, this shift is not sufficient to cross back the hyperplane H1:
this supports the assertion that in some cases, more than half of the possible
preferences are possible strategies. When the population is large, it should be
possible to apply Proposition 6 almost everywhere, the likelihood of being close
to several hyperplanes at the same time being small. Anyway, for small popula-
tions, or nearby the equally splitted profile p = ( 1m! , . . . ,

1
m! ), situations like the

one described on Figure 1 may arise. Thus, can we still find a strategy that is
exactly equivalent in its result to an abstention behavior ?

Proposition 7 Consider a scoring run-off method characterized by a sequence
of scoring vectors W . Let ñ be a voting situation leading to a no-show paradox.
More precisely, assume that k voters who prefer a1 to a2 favor a1 against a2 by
abstaining. For any population size, one successful strategy for the k voters is
to exhibit as a preference type the reversed order of elimination which leads to
the victory of a1 when they abstain: the alternative removed first is ranked last in
their preference, the alternative removed in second is next to the last, etc, and the
winner, a1 is ranked first.

Proof of Proposition 7. Suppose that the abstention strategy is successful. Then, at
each stage the alternative(s) with the lowest score(s) are removed and a1 always
obtains enough points to remain in contention until the end of the elimination
process. By adding back the k voters with exactly the reversed order of this elim-
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ination process as a preference type, nothing is changed through the elimination
process: the first alternative to remove is still eliminated first, etc, and a1 is still
the winner5. '(

Proposition 7 can be stated without the setup of the geometry of voting.
However, Proposition 6 is clearly richer, as it states that in many situations there
is not just one, but many different possible ways to manipulate the outcome. In
that sense, a slight error in the way the voters coordinate and/or differences in
the beliefs about the actual tallies will be benign most of the time. Moreover, the
spirit of Proposition 6 can be applied to many other voting rules. As long as the
boundaries of domains are hyperplanes H , with the properties that there exists a
preference type t ′ such that NEt = −NEt ′ for each t ∈ {1, . . . ,m!} and each N ,
Proposition 6 applies: The voting situations which may lead to a no-show paradox
are also likely to be manipulated by misrepresentation of preferences; Half of
the possible preference types may lead to such results. This is especially true for
two famous Condorcet voting rules, the Copeland method and the Kemeny rule,
which boundaries have been described by Merlin and Saari (1998, 2000). We
can even go further for the Kemeny rule, as the argument of Proposition 7 also
applies (see Young and Levenglick, 1978).

Table 9

Preference Number of voters
a1 ! a2 ! a3 ! a4 1
a2 ! a3 ! a1 ! a4 3
a2 ! a3 ! a4 ! a1 1
a3 ! a4 ! a1 ! a2 3
a4 ! a2 ! a1 ! a3 4

This comment clearly raises the question of the existence of voting rules
where the abstention is the only possible manipulation behavior for some voting
situations. In fact, we can exhibit a voting rule and a voting situation where
the only possible strategy is the abstention. The rule is a slight modification of
antiplurality run-off we worked with until now; It is the Balanced Voting, intro-
duced recently in the literature by Kim and Roush (1997). Instead of eliminating
a precise number of alternatives at each stage, they suggest to remove from con-
sideration the alternative(s) the score of which is lower than the average number
of points a candidate receives; And all along the elimination process, they use
the scoring vector w = (1, . . . , 1, 0). Consider the example in Table 9, with 12
voters and 4 candidates. First, notice that a1 loses all the pairwise comparisons:
M12 = −4, M13 = −2 and M14 = −4. Nevertheless she gets the highest score
with w = (1, 1, 1, 0): S1 = 11, S2 = 9, S3 = 8 and S4 = 8. The only way for a1 to
get elected is to be at the first stage the only candidate who has more points than
the average number, 3×124 = 9, as she will lose all the final confrontations. By
changing her preference, the unique voter with the preference a1 $ a2 $ a3 $ a4

5 A similar argument is used by Merlin (1996) to describe the properties of scoring run-offs.
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cannot get this result. On the other hand, if she abstains, the new threshold is
8.25, and the scores of the other candidates are smaller (S2 = 8, S3 = 7 and
S4 = 8). There is no second stage, and a1 is the winner. Of course, such situa-
tions may be extremely rare, but Proposition 7 does not apply for the Balanced
Voting.

To conclude, notice that the arguments we developed here are also true for
the participation paradoxes. Especially, when some voters may hurt themselves
by giving their true preference ordering, it is possible for them to adopt the
inverse of the initial elimination ordering to keep everything unchanged. And,
in most of the cases, half of the possible preference orderings will avoid this
paradox. Thus, we strongly believe that the no-show paradox is not an important
flaw of the scoring run-off voting systems. As a possible strategic behavior,
abstention is clearly dominated by other strategies. It remains possible that in
a decision process, some voters realize ex-post that, by non-voting, they could
have obtained a better outcome. These situations could be somewhat damaging
for the trust the citizen or any member of a collectivity puts in the institutions.
However, even in these cases, the figures we obtain suggest that with a limited
amount of homogeneity in the distribution of the preferences, such events are
unlikely.

5 Remaining Proofs

5.1 Probability computations under IC for large electorate

The technique we use to compute the probability of specific events under IC for
large electorate is the one proposed by Saari and Tataru (1999). We just present
here the results of the main computations; for more details see also Tataru and
Merlin (1997) and Merlin, Tataru and Valognes (2000). The main argument is
the following: the conditions which characterize a specified situation, like (A.1)
to (A.4), lie in four dimensional subspace of R6. Their intersection with the unit
sphere in R4 defines a three-dimensional spherical simplex C on its surface.
Then, the desired probability is the ratio between the area of the surface of C
and the area of the 4-dimensional hyper sphere. This area is evaluated through
the Schläfli’s formula (1950):

dvolu (C ) =
1

u − 1
∑

1≤j<k<l

volu−2

(

Sj
⋂

Sk
)

dαjk ; vol0 = 1

where u is the dimension of the spherical simplex, l the number of facets, and
αjk the dihedral angle formed by the facets Sj and Sk . We provide in the next
subsections the results we obtain for the values for the αjk ’s and the Sj

⋂

Sk ’s
for the positive participation paradox and the positive abstention paradox. For
the IC case, the results for the NAP and NPP are respectively equivalent to the
PPP and PAP cases.
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5.1.1 Positive participation paradox

The vectors orthogonal to the hyperplanes defining the spherical simplex are:

N1 = (1, 1− s, s,−s, s − 1,−1)
N2 = (s,−s, 1, 1− s,−1, s − 1)
N3 = (1, 1,−1,−1, 1,−1)
N4 = (−2s, 0,−1− s, 2s − 1, 1 + s, 1)

Thus, the differential angles between these hyperplanes are:

dα12 = 0

dα13 =
1− 2 s√

6 s2 − 6 s + 5
(

2 s2 − 2 s + 2
)

dα14 =
15 s4 − 9 s2 + s3 + 8 s − 6

2
√
9 s4 + 11 s2 − 12 s3 − 6 s + 3

(

s2 − s + 1
) (

5 s2 + 2
)

dα23 =
2 s − 1√

6 s2 − 6 s + 5
(

2 s2 − 2 s + 2
)

dα24 =
17 s2 − 18 s + 10

2
√
6 s2 − 6 s + 5

(

s2 − s + 1
) (

5 s2 + 2
)

dα34 = − 2 + 5 s√
14 s2 + 5 + 2 s

(

5 s2 + 2
)

The volumes of the intersection between the faces are:

S1
⋂

S3

= arccos





(

3 s4 − 5 s3 + 6 s2 − 4 s + 1
) √

3
√

(

3 s2 − 3 s + 1
) (

s2 − s + 1
) (

25 s4 − 28 s3 + 20 s2 − 12 s + 3
)





S1
⋂

S4

= arccos





s2
√
3

(

s2 + s − 1
)

√

(

3 s2 − 3 s + 1
) (

s2 − s + 1
) (

25 s4 − 28 s3 + 20 s2 − 12 s + 3
)





S2
⋂

S3 = arccos





√
12 s2 − 12 s + 6

4
√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
)
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S2
⋂

S4 = π − arccos





√
12 s2 − 12 s + 6

4
√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
)





S3
⋂

S4 = arccos

(

(3− 4 s)
√
4 s2 − 4 s + 2

4
√
25 s4 − 28 s3 + 20 s2 − 12 s + 3

)

Let us define:
I1(s) =

∑

1≤i<j≤4
Si

⋂

Sj dαij

We have to divide this value by 2 (as u = 3 in Schlafli’s formula) and by 2π2, the
area of the four dimensional hyper sphere, and then to multiply it by 6. Hence,

P (PPP , λ,∞) =
3
2π2

∫ λ

0
I1(s)ds

5.1.2 Positive abstention paradox

First, notice that the condition (D.5) is trivially satisfied for IC when the popu-
lation is large. The vectors orthogonal to the hyperplanes defining the spherical
simplex C are:

N1 = (1, 1− s, s,−s, s − 1,−1)
N2 = (s2 − 1,−1 + s − s2, 0, 2s − s2, 1− 2s, s2 − s + 1)
N3 = (1, 1,−1,−1, 1,−1)
N4 = (s − 1,−1, 0, 2s, 1− 2s, 1− s)

Thus, the differential angles between the faces are:

dα12 =
√
3

2 s2 − 2 s + 2

dα13 =
1− 2 s√

6 s2 − 6 s + 5
(

2 s2 − 2 s + 2
)

dα14 =
(5− 4 s)

(

3 s2 − 2 s + 2
)

2
√
6 s2 − 6 s + 5

(

s2 − s + 1
) (

5 s2 − 4 s + 2
)

dα23 =
s2 + 2 s − 2√

5− 14 s + 17 s2 − 12 s3 + 6 s4
(

s2 − s + 1
)

dα24 = − 18 s4 − 32 s3 + 25 s2 − 10 s + 2
√

(

3 s2 − 4 s + 2
) (

3 s2 − 2 s + 1
) (

s2 − s + 1
) (

5 s2 − 4 s + 2
)

dα34 =
7 s − 4√

14 s2 − 14 s + 5
(

5 s2 − 4 s + 2
)
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and the volumes:
S1

⋂

S2 = arccos
(

s (s − 1)
3 s2 − 3 s + 1

)

S1
⋂

S3 = π − arccos





√
12 s2 − 12 s + 6

4
√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
)





S1
⋂

S4 = arccos





√
12 s2 − 12 s + 6

4
√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
)





S2
⋂

S3

= arccos





s
(

3 s2 − 4 s + 2
)

(s − 1)
√
3

√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
) (

25 s4 − 56 s3 + 52 s2 − 24 s + 5
)





S2
⋂

S4

= arccos





(s − 1)
(

s3 − 4 s2 + 3 s − 1
) √

3
√

(

s2 − s + 1
) (

3 s2 − 3 s + 1
) (

25 s4 − 56 s3 + 52 s2 − 24 s + 5
)





S3
⋂

S4 = arccos

(

(5− 4 s)
√
4 s2 − 4 s + 2

4
√
25 s4 − 56 s3 + 52 s2 − 24 s + 5

)

Let us define:
I2(s) =

∑

1≤i<j≤4
Si

⋂

Sj dαij

Again, we have to divide this value by 2 (as n = 3 in Schlafli’s formula) and by
2π2, the volume of the four dimensional hyper sphere, and then to multiply it by
6. Hence,

P (PAP , λ,∞) =
3
2π2

∫ λ

0
I2(s)ds

5.2 Probability computations under the IAC assumption for large electorate

Although a general representation -similar to the ones we have obtained under IC-
cannot be considered under IAC, it is possible to compute under this assumption
the limiting probabilities of the paradoxes for specific scoring run-off methods.
We give in this paragraph the details of our computations for the plurality run-
off and the antiplurality run-off methods. The case of the Borda run-off method
turned out to be very intricate; for this reason, we have resorted to simulation
techniques in order to derive estimates for the desired probabilities.
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5.2.1 Positive participation paradox, antiplurality run-off

Let pi = ni/n (this notation is valid for each of the proofs that follow). Assume
that a1 is the antiplurality run-off winner and the electorate is large. From Propo-
sition 1, a PPP in favor of a3 occurs with s=1 if and only if

p1 + p3 > p4 + p6,
p1 + p3 > p2 + p5,
p1 + p2 + p5 > 1/2,
p4 + 2p5 + p6 > 2p1 + 2p3.

As
∑

pi = 1, this set of inequalities is easily seen to be equivalent to:
1
3 < p13 < 1

2 ,
1− 2p13 < p46 < MIN (p13, 2− 4p13),

2p13−p46
2 < p5 < 1− p13 − p46,
0 < p3 < 1

2 − p46,

with pij = pi + pj . In order to eliminate the MIN argument, we partition the set
of situations satisfying the above inequalities in two subsets defined as follows:

1
3 < p13 < 2

5 ,
1− 2p13 < p46 < p13,

2p13−p46
2 < p5 < 1− p13 − p46,
0 < p3 < 1

2 − p46,

and
2
5 < p13 < 1

2 ,
1− 2p13 < p46 < 2− 4p13,
2p13−p46

2 < p5 < 1− p13 − p46,
0 < p3 < 1

2 − p46.

The desired probability is then given as:

6
(

∫ 2/5

p13=1/3

∫ p13

p46=1−2p13

∫ 1−p13−p46

p5=(2p13−p46)/2

∫ 1/2−p46

p3=0
120p46dp13dp46dp5dp3

+
∫ 1/2

p13=2/5

∫ 2−4p13

p46=1−2p13

∫ 1−p13−p46

p5=(2p13−p46)/2

∫ 1/2−p46

p3=0
120p46dp13dp46dp5dp3

)

=
43
1125

.

5.2.2 Negative abstention paradox, plurality run-off

Assume that a1 is the plurality run-off winner. From Proposition 2, a NAP in
favor of a3 occurs with s = 0 if and only if:

p1 + p2 > p5 + p6,
p3 + p4 > p5 + p6,
p1 + p2 + p5 > 1/2,
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2p5 + 2p6 > p1 + p2 + 2p3,
and

p5 + p6 ≥ p3.
Clearly, the ante-penultimate inequality implies the last one. Moreover, it can be
checked that the four first inequalities are equivalent to:

1
6 < p56 < 1

3 ,
MAX (p56, 1− 3p56) < p34 < MIN ( 12 , 1− 2p56),

0 < p6 < 1
2 − p34,

0 < p3 < 3p56+p34−1
2 ,

with pij = pi + pj . To eliminate the MAX and MIN arguments, we partition the
set of situations satisfying these inequalities in two subsets defined as follows:

1
6 < p56 < 1

4 ,
1− 3p56 < p34 < 1

2 ,
0 < p6 < 1

2 − p34,
0 < p3 < 3p56+p34−1

2 ,

and
1
4 < p56 < 1

3 ,
p56 < p34 < 1− 2p56,
0 < p6 < 1

2 − p34,
0 < p3 < 3p56+p34−1

2 ,

Integrating over the domains defined by the above inequalities and multiplying
by 6, we obtain 47/1152.

5.2.3 Negative participation paradox, plurality run-off

Assume that a1 is the plurality run-off winner. From Proposition 3, a NPP in
favor of a3 occurs with s = 0 if and only if

p1 + p2 > p5 + p6,
p3 + p4 > p1 + p2,
p1 + p2 + p5 > 1/2,

and
p3 + p4 > 2p2.

As
∑

pi = 1, this set of inequalities is equivalent to:
1
3 < p34 < 1

2 ,
1−p34
2 < p12 < p34

0 < p6 < 1
2 − p34,

0 < p2 < p34
2 .

Integrating over the domain defined by the above inequalities and multiplying
by 6, we obtain 7/96.
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5.2.4 Positive abstention paradox, antiplurality run-off

Assume that a1 is the plurality runoff winner. From Proposition 4, a PAP in favor
of a3 occurs with s=1 if and only if

p1 + p3 > p4 + p6,
p4 + p6 > p2 + p5,
p1 + p2 + p5 > 1/2,
2p4 > p2 + p5,

and
p4 + p6 > p1.

This set of inequalities is equivalent to:
1
3 < p13 < 1

2 ,
1−p13
2 < p46 < p13

p13 + p46 − 1
2 < p1 < p46,

1−p13−p46
2 < p4 < p34.

The desired probability immediately follows.
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Schläfli L.: Theorie der Vielfachen Kontinuität. Gesammelte Mathematische Abhandlungen 1. Basel:
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