
978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

SCORPIO: A 36-Core Research Chip Demonstrating Snoopy Coherence on a

Scalable Mesh NoC with In-Network Ordering §

Bhavya K. Daya, Chia-Hsin Owen Chen, Suvinay Subramanian, Woo-Cheol Kwon, Sunghyun Park, Tushar
Krishna, Jim Holt, Anantha P. Chandrakasan, Li-Shiuan Peh†

Massachusetts Institute of Technology

Abstract

In the many-core era, scalable coherence and on-chip in-

terconnects are crucial for shared memory processors. While

snoopy coherence is common in small multicore systems,

directory-based coherence is the de facto choice for scala-

bility to many cores, as snoopy relies on ordered interconnects

which do not scale. However, directory-based coherence does

not scale beyond tens of cores due to excessive directory area

overhead or inaccurate sharer tracking. Prior techniques

supporting ordering on arbitrary unordered networks are im-

practical for full multicore chip designs.

We present SCORPIO, an ordered mesh Network-on-Chip

(NoC) architecture with a separate fixed-latency, bufferless net-

work to achieve distributed global ordering. Message delivery

is decoupled from the ordering, allowing messages to arrive

in any order and at any time, and still be correctly ordered.

The architecture is designed to plug-and-play with existing

multicore IP and with practicality, timing, area, and power

as top concerns. Full-system 36 and 64-core simulations on

SPLASH-2 and PARSEC benchmarks show an average appli-

cation runtime reduction of 24.1% and 12.9%, in comparison

to distributed directory and AMD HyperTransport coherence

protocols, respectively.

The SCORPIO architecture is incorporated in an 11 mm-by-

13 mm chip prototype, fabricated in IBM 45nm SOI technology,

comprising 36 Freescale e200 Power ArchitectureTMcores with

private L1 and L2 caches interfacing with the NoC via ARM

AMBA, along with two Cadence on-chip DDR2 controllers.

The chip prototype achieves a post synthesis operating fre-

quency of 1 GHz (833 MHz post-layout) with an estimated

power of 28.8 W (768 mW per tile), while the network con-

sumes only 10% of tile area and 19 % of tile power.

1. Introduction

Shared memory, a dominant communication paradigm in main-

stream multicore processors today, achieves inter-core com-

munication using simple loads and stores to a shared address

space, but requires mechanisms for ensuring cache coherence.

Over the past few decades, research in cache coherence has

§This work was supported by DARPA UHPC grant at MIT (Angstrom)

and by the Center for Future Architectures Research (C-FAR), one of six SRC

STARnet Centers, sponsored by MARCO and DARPA.
†Tushar Krishna and Jim Holt performed the research while at MIT as

PhD student and visiting research scientist from Freescale respectively.

led to solutions in the form of either snoopy or directory-based

variants. However, a critical concern is whether hardware-

based coherence will scale with the increasing core counts of

chip multiprocessors [18,21]. Existing coherence schemes can

provide accurate functionality for up to hundreds of cores, but

area, power, and bandwidth overheads affect their practical-

ity. Two main scalability concerns are (1) directory storage

overhead, and (2) uncore (caches+interconnect) scaling.

For scalable directory-based coherence, the directory stor-

age overhead has to be kept minimal while maintaining accu-

rate sharer information. Full bit-vector directories encode the

set of sharers of a specific address. For a few tens of cores

it is very efficient, but requires storage that linearly grows

with the number of cores; limiting its use for larger systems.

Alternatives, such as coarse-grain sharer bit-vectors and lim-

ited pointer schemes contain inaccurate sharing information,

essentially trading performance for scalability. Research in

scalable directory coherence is attempting to tackle the storage

overhead while maintaining accurate sharer information, but

at the cost of increased directory evictions and corresponding

network traffic as a result of the invalidations.

Snoopy coherence is not impacted by directory storage over-

head, but intrinsically requires an ordered network to ensure

all cores see requests in the same order to maintain mem-

ory consistency semantics. Snoopy compatible interconnects

comprise buses or crossbars (with arbiters to order requests),

or bufferless rings (which guarantee in-order delivery to all

cores from an ordering point). However, existing on-chip or-

dered interconnects scale poorly. The Achilles heel of buses

lie in limited bandwidth, while that of rings is delay, and for

crossbars, it is area. Higher-dimension NoCs such as meshes

provide scalable bandwidth and is the subject of a plethora

of research on low-power and low-latency routers, including

several chip prototypes [16, 17, 27, 30]. However, meshes are

unordered and cannot natively support snoopy protocols.

Snoopy COherent Research Processor with Interconnect

Ordering (SCORPIO) incorporates global ordering support

within the mesh network by decoupling message delivery from

the ordering. This allows flits to be injected into the NoC and

reach destinations in any order, at any time, and still main-

tain a consistent global order. The SCORPIO architecture

was included in an 11 mm-by-13 mm chip prototype in IBM

45 nm SOI, to interconnect 36 Freescale e200 cores, compris-

ing private L1 and L2 caches, and two Cadence on-chip DDR

controllers. The SCORPIO NoC is designed to comply with

the ARM AMBA interface [2] to be compatible with existing

SoC IP originally designed for AMBA buses.

Section 2 covers prior work on snoopy coherence on un-

ordered networks. Section 3 delves into the overview and

microarchitecture of the globally ordered mesh network. Sec-

tion 4 describes the 36-core chip with the SCORPIO NoC.

Section 5 presents the architecture evaluations, design explo-

ration, and area and power results. Section 6 discusses related

multicore chips and NoC prototypes, and Section 7 concludes.

2. Background

Various proposals, such as Token Coherence (TokenB), Un-

corq, Time-stamp snooping (TS), and INSO extend snoopy

coherence to unordered interconnects. TokenB [23] performs

the ordering at the protocol level, with tokens that can be

requested by a core wanting access to a cacheline. TokenB

assigns T tokens to each block of shared memory during sys-

tem initialization (where T is at least equal to the number of

processors). Each cacheline requires an additional 2+ logT

bits. Although each token is small, the total area overhead

scales linearly with the number of cachelines.

Uncorq [29] broadcasts a snoop request to all cores followed

by a response message on a logical ring network to collect

the responses from all cores. This enforces a serialization of

requests to the same cacheline, but does not enforce sequential

consistency or global ordering of all requests. Although read

requests do not wait for the response messages to return, the

write requests have to wait, with the waiting delay scaling

linearly with core count, like physical rings.

TS [22] assigns logical time-stamps to requests and per-

forms the reordering at the destination. Each request is tagged

with an ordering time (OT), and each node maintains a guaran-

teed time (GT). When a node has received all packets with a

particular OT, it increments the GT. TS requires a large num-

ber of buffers at the destinations to store all packets with a

particular OT, prior to processing time. The required buffer

count linearly scales with the number of cores and maximum

outstanding requests per core. For a 36-core system with 2

outstanding requests per core, there will be 72 buffers at each

node, which is impractical and will grow significantly with

core count and more aggressive cores.

INSO [11] tags all requests with distinct numbers (snoop

orders) that are unique to the originating node which assigns

them. All nodes process requests in ascending order of the

snoop orders and expect to process a request from each node. If

a node does not inject a request, it is has to periodically expire

the snoop orders unique to itself. While a small expiration win-

dow is necessary for good performance, the increased number

of expiry messages consume network power and bandwidth.

Experiments with INSO show the ratio of expiry messages to

regular messages is 25 for a time window of 20 cycles. At

the destination, unused snoop orders still need to be processed

leading to worsening of ordering latency.

3. Globally Ordered Mesh Network

Traditionally, global message ordering on interconnects relies

on a centralized ordering point, which imposes greater indi-

rection1 and serialization latency2 as the number of network

nodes increases. The dependence on the centralized order-

ing point prevents architects from providing global message

ordering guarantee on scalable but unordered networks.

To tackle the problem above, we propose the SCORPIO

network architecture. We eliminate the dependence on the

centralized ordering point by decoupling message ordering

from message delivery using two physical networks:

Main network. The main network is an unordered network

and is responsible for broadcasting actual coherence requests

to all other nodes and delivering the responses to the requesting

nodes. Since the network is unordered, the broadcast coher-

ence requests from different source nodes may arrive at the

network interface controllers (NIC) of each node in any or-

der. The NICs of the main network are then responsible for

forwarding requests in global order to the cache controller,

assisted by the notification network.

Notification network. For every coherence request sent on

the main network, a notification message encoding the source

node’s ID (SID) is broadcast on the notification network to

notify all nodes that a coherence request from this source node

is in-flight and needs to be ordered. The notification network

microarchitecture will be detailed later in Section 3.3; Essen-

tially, it is a bit vector where each bit corresponds to a request

from a source node, so broadcasts can be merged by OR-ing

the bit vectors in a contention-less manner. The notification

network thus has a fixed maximum network latency bound.

Accordingly, we maintain synchronized time windows, greater

than the latency bound, at each node in the system. We syn-

chronize and send notification messages only at the beginning

of each time window, thus guaranteeing that all nodes received

the same set of notification messages at the end of that time

window. By processing the received notification messages in

accordance with a consistent ordering rule, all network inter-

face controllers (NIC) determine locally the global order for

the actual coherence requests in the main network. As a result,

even though the coherence requests can arrive at each NIC in

any order, they are serviced at all nodes in the same order.

Network interface controller. Each node in the system con-

sists of a main network router, a notification router, as well as a

network interface controller or logic interfacing the core/cache

and the two routers. The NIC encapsulates the coherence re-

quests/responses from the core/cache and injects them into

the appropriate virtual networks in the main network. On the

receive end, it forwards the received coherence requests to

the core/cache in accordance with the global order, which is

1Network latency of a message from the source node to ordering point.
2Latency of a message waiting at the ordering point before it is ordered and

forwarded to other nodes.

21 43

65 87

109 1211

1413 1615

M2

N2

N1

M1

Main

network

Notification

network

T3

T2

N1
Broadcast

notification for M1 0 0 0 ••• •••1 0 0

1 2 3 ••• ••• 11 15 16

N2
Broadcast

notification for M2

21 43

65 87

109 1211

1413 1615

T3

T1

Core

M2

1

M2

1

M2

1

M2

1

M2

1

M2

1

M1

1

M1

1

M1

1

M1

1

M1

1

M2 is forwarded to the core (SID == ESID)

M1 is not forwarded to the core (SID != ESID)

Notification

Tracker

1 0 0 ••• •••1 0 0

1 2 3 ••• ••• 11 15 16

1
Priority

Arbiter

ESIDMerged Notification

T4

T5

21 43

65 87

109 1211

1413 1615

R2

R1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

M2
M1

Timeline

T1. Core 11 injects

T2. Core 1 injects

T3. Both cores inject

notificationM1 N1 N2

M2

T4. Notifications guaranteed

to reach all nodes now

N1 N2

Core 1, 2, 3, 5, 6, 9 receive M2 T5. Core 1, 2, 3, 5, 6, 9 processed M2
Time Window

Cores receive in any order,

and process followed by

M2M1

M2 M1

T6. Core 13, owner of Addr2,

responds with data to Core 1 R2

T7. Core 6, owner of Addr1,

responds with data to Core 11 R1

M2
M1

M2 M1

GETS

Addr2

GETX

Addr1

Data

Addr2

Data

Addr1

T6

T7

All cores receive and process followed by

Figure 1: SCORPIO Ordered Network 16-Node Walkthrough Example

determined using the received notification messages at the end

of each time window. The NIC uses an Expected Source ID

(ESID) register to keep track of and informs the main network

router which coherence request it is waiting for. For example,

if the ESID stores a value of 3, it means that the NIC is waiting

for a coherence request from node 3 and would not forward

coherence requests from other nodes to the core/cache. Upon

receiving the request from node 3, the NIC updates the ESID

and waits for the next request based on the global order de-

termined using the received notification messages. The NIC

forwards coherence responses to the core/cache in any order.

3.1. Walkthrough Example

The walkthrough example in Figure 1 demonstrates how two

messages are ordered.

1. At times T1 and T2, the cache controllers inject cache miss

messages M1, M2 to the NIC at cores 11, 1 respectively.

The NICs encapsulate these coherence requests into single

flit packets, tag them with the SID of their source (11, 1

respectively), and broadcast them to all nodes in the main

network.

2. At time T3, the start of the time window, notification mes-

sages N1 and N2 are generated corresponding to M1 and

M2, and sent into the notification network.

3. Notification messages broadcast at the start of a time win-

dow are guaranteed to be delivered to all nodes by the end

of the time window (T4). At this stage, all nodes process

the notification messages received and perform a local but

consistent decision to order these messages. In SCORPIO,

we use a rotating priority arbiter to order messages accord-

ing to increasing SID – the priority is updated each time

window ensuring fairness. In this example, all nodes decide

to process M2 before M1.

4. The decided global order is captured in the ESID register

in NIC. In this example, ESID is currently 1 – the NICs are

waiting for the message from core 1 (i.e. M2).

5. At time T5, when a coherence request arrives at a NIC, the

NIC performs a check of its source ID (SID). If the SID

matches the ESID then the coherence request is processed

(i.e. dequeued, parsed and handed to the cache controller)

else it is held in the NIC buffers. Once the coherence re-

quest with the SID equal to ESID is processed, the ESID

is updated to the next value (based on the notification mes-

sages received). In this example, the NIC has to forward

M2 before M1 to the cache controller. If M1 arrives first,

it will be buffered in the NIC (or router, depending on the

buffer availability at NIC) and wait for M2 to arrive.

6. Cores 6 and 13 respond to M1 (at T7) and M2 (at T6)

respectively. All cores thus process all messages in the

same order, i.e. M2 followed by M1.

3.2. Main Network Microarchitecture

Figure 2 shows the microarchitecture of the three-stage main

network router. During the first pipeline stage, the incoming

flit is buffered (BW), and in parallel arbitrates with the other

virtual channels (VCs) at that input port for access to the

crossbar’s input port (SA-I). In the second stage, the winners

of SA-I from each input port arbitrate for the crossbar’s output

ports (SA-O), and in parallel select a VC from a queue of

free VCs (VS) [20]. In the final stage, the winners of SA-O

traverse the crossbar (ST). Next, the flits traverse the link to

the adjacent router in the following cycle.

Single-cycle pipeline optimization. To reduce the network

latency and buffer read/write power, we implement looka-

Vc1
Vc2
Vc3
Vc4

Vc6

VC Selection (VS)

Vc1

Vc2

Vc3S
w

it
ch

R
e

q
u

e
st

Next Route

Computation

Header Generation

Switch

Allocator

Vc5

rVC

rVC transfer logic

Point-to-Point

Ordering

Unit Link

Updated

Switch Req

Input

Flits

Credit

signals

from

prev.

router

Switch Arbiter

Inport

0

1

0

1

Kill LA

Bypass Path

Lookahead

VC State

LA

State

LA

State

Buffer Write (BW)

Switch Arbitration Inport (SA-I)

Buffer Read (BR)

Switch Allocation Outport (SA-O)

VC Selection (VS)

Lookahead/Header Generation

Switch Traversal

(ST)

Pipeline

Stages

Bypass

Pipeline

Stages

Switch Traversal

(ST)

Bypass Intermediate Pipelines

Figure 2: Router Microarchitecture

head (LA) bypassing [19, 27]; a lookahead containing control

information for a flit is sent to the next router during that

flit’s ST stage. At the next router, the lookahead performs

route-computation and tries to pre-allocate the crossbar for

the approaching flit. Lookaheads are prioritized over buffered

flits3 – they attempt to win SA-I and SA-O, obtain a free VC

at the next router, and setup the crossbar for the approaching

flits, which then bypass the first two stages and move to ST

stage directly. Conflicts between lookaheads from different

input ports are resolved using a static, rotating priority scheme.

If a lookahead is unable to setup the crossbar, or obtain a free

VC at the next router, the incoming flit is buffered and goes

through all three stages. The control information carried by

lookaheads is already included in the header field of conven-

tional NoCs – destination coordinates, VC ID and the output

port ID – and hence does not impose any wiring overhead.

Single-cycle broadcast optimization. To alleviate the over-

head imposed by the coherence broadcast requests, routers

are equipped with single-cycle multicast support [27]. Instead

of sending the same requests for each node one by one into

the main network, we allow requests to fork through multiple

router output ports in the same cycle, thus providing efficient

hardware broadcast support.

Deadlock avoidance. The snoopy coherence protocol mes-

sages can be grouped into network requests and responses.

Thus, we use two message classes or virtual networks to avoid

protocol-level deadlocks:

• Globally Ordered Request (GO-REQ): Delivers coher-

ence requests, and provides global ordering, lookahead-

bypassing and hardware broadcast support. The NIC pro-

cesses the received requests from this virtual network based

on the order determined by the notification network.

• Unordered Response (UO-RESP): Delivers coherence

responses, and supports lookahead-bypassing for unicasts.

3Only buffered flits in the reserved VCs, used for deadlock avoidance, are an

exception, prioritized over lookaheads.

The NIC processes the received responses in any order.

The main network uses XY-routing algorithm which ensures

deadlock-freedom for the UO-RESP virtual network. For the

GO-REQ virtual network, however, the NIC processes the

received requests in the order determined by the notification

network which may lead to deadlock; the request that the

NIC is awaiting might not be able to enter the NIC because

the buffers in the NIC and routers enroute are all occupied

by other requests. To prevent the deadlock scenario, we add

one reserved virtual channel (rVC) to each router and NIC,

reserved for the coherence request with SID equal to ESID of

the NIC attached to that router.

Proof: Suppose there is a deadlock in the network and the

highest priority flit, flit earliest in global order, is unable to

make progress. Let flit F be the highest priority flit, stuck at

router R with ESID = E. If the flit is unable to make progress

it implies either (a) F is unable to go up to the NIC at router

R, or (b) F is unable to proceed to a neighboring router S.

Since F is the highest priority flit, it must have SID equal

to ESID of the router R because a lower priority ESID is only

obtained if the higher priority flit has been received at the NIC.

Since a rVC is available for F in the NIC, flit F can be sent to

the NIC attached to router R.

Flit F can’t proceed to router S if the rVC and other VCs

are full. The rVC is full if router S has an ESID with a higher

priority than E. This is not possible because F is the highest

priority flit which implies any flit of higher priority has already

been received at all nodes in the system. For E1 with lower or

same priority as E, the rVC is available and flit F can make

progress. Thus, there is a contradiction and we can ensure that

the requests can always proceed toward the destinations.

Point-to-point ordering for GO-REQ. In addition to en-

forcing a global order, requests from the same source also

need to be ordered with respect to each other. Since requests

are identified by source ID alone, the main network must en-

sure that a later request does not overtake an earlier request

from the same source. To enforce this in SCORPIO, the fol-

lowing property must hold: Two requests at a particular input

port of a router, or at the NIC input queue cannot have the

same SID. At each output port, a SID tracker table keeps track

of the SID of the request in each VC at the next router.

Suppose a flit with SID = 5 wins the north port during SA-O

and is allotted VC 1 at the next router in the north direction.

An entry in the table for the north port is added, mapping (VC

1) → (SID = 5). At the next router, when flit with SID = 5

wins all its required output ports and leaves the router, a credit

signal is sent back to this router and then the entry is cleared

in the SID tracker. Prior to the clearance of the SID tracker

entry, any request with SID = 5 is prevented from placing a

switch allocation request.

3.3. Notification Network Microarchitecture

The notification network is an ultra-lightweight bufferless

mesh network consisting of 5 N-bit bitwise-OR gates and

1

0

Bitwise-OR

DFF

Outeast

Ineast Insouth Inwest Innorth Innic

Outsouth

Outwest

Outnorth

Notification Tracker (in NIC)

Notification Router

Merged

Notification

End of time window?

Figure 3: Notification Router Microarchitecture

5 N-bit latches at each “router” as well as N-bit links con-

necting these “routers”, as shown in Figure 3, where N is the

number of cores. A notification message is encoded as a N-bit

vector where each bit indicates whether a core has sent a coher-

ence request that needs to be ordered. With this encoding, the

notification router can merge two notification messages via a

bitwise-OR of two messages and forward the merged message

to the next router. At the beginning of a time window, a core

that wants to send a notification message asserts its associated

bit in the bit-vector and sends the bit-vector to its notification

router. Every cycle, each notification router merges received

notification messages and forwards the updated message to

all its neighbor routers in the same cycle. Since messages

are merged upon contention, messages can always proceed

through the network without being stopped, and hence, no

buffer is required and network latency is bounded. At the

end of that time window, it is guaranteed that all nodes in the

network receive the same merged message, and this message

is sent to the NIC for processing to determine the global order

of the corresponding coherence requests in the main network.

For example, if node 0 and node 6 want to send notification

messages, at the beginning of a time window, they send the

messages with bit 0 and bit 6 asserted, respectively, to their

notification routers. At the end of the time window, all nodes

receive a final message with both bits 0 and 6 asserted. In a

6× 6 mesh notification network, the maximum latency is 6

cycles along the X dimension and another 6 cycles along Y, so

the time window is set to 13 cycles.

Multiple requests per notification message. Thus far, the

notification message described handles one coherence request

per node every time window, i.e. only one coherence request

from each core can be ordered within a time window. However,

this is inefficient for more aggressive cores that have more

outstanding misses. For example, when the aggressive core

generates 6 requests at around the same time, the last request

can only be ordered at the end of the 6th time window, incurring

latency overhead. To resolve this, instead of using only 1 bit

per core, we dedicate multiple bits per core to encode the

number of coherence requests that a core wants to order in

this time window, at a cost of larger notification message size.

For example, if we allocate two bits instead of 1 per core in

the notification message, the maximum number of coherence

UO-RESP

GO-REQ

Notification

Tracker

Notificationin

Notificationout

Flitout

Lookaheadout

VC

Allocator

Notification

Counter

Arbiter

Time

Counter

UO-RESP

GO-REQ

Creditin

Arbiter
Creditout

Flitin

Packet

Composer

Packet

Parser

AC

B

R

AR

AW

W

CR

CD

A
M

B
A

 A
C

E
 I

n
te

rf
a

ce
 t

o
 L

2
 C

a
ch

e

M
a

in
 N

e
tw

o
rk

N
o

ti
fi

ca
ti

o
n

N
e

tw
o

rk
M

a
in

 N
e

tw
o

rk

Figure 4: Network Interface Controller Microarchitecture

requests can be ordered in this time window can be increased

to three4. Now, the core sets the associated bits to the number

of coherence requests to be ordered and leaves other bits as

zero. This allows us to continue using the bitwise-OR to merge

the notification messages from other nodes.

3.4. Network Interface Controller Microarchitecture

Figure 4 shows the microarchitecture of the NIC, which in-

terfaces between the core/cache and the main and notification

network routers.

Sending notifications. On receiving a message from

core/cache, the NIC encapsulates the message into a packet

and sends it to the appropriate virtual network. If the message

is a coherence request, the NIC needs to send a notification

message so that the coherence request can be ordered. Since

the purpose of the notification network is to decouple the coher-

ence request ordering from the request delivery, the NIC can

always send the coherence requests to the main network when-

ever possible and send the corresponding notification messages

at the beginning of later time windows. We use a counter to

keep track of how many pending notification messages still

remain to be sent. The counter can be sized arbitrarily for

expected bursts; when the maximum number of pending noti-

fication messages, represented by this counter, is reached, the

NIC blocks new coherence requests from injecting into the

main network.

Receiving notifications. At the end of every time window,

the NIC pushes the received merged notification message into

the notification tracker queue. When the notification tracker

queue is not empty and there is no previously read notification

message being processed, the head of the queue is read and

passed through a rotating priority arbiter to determine the order

of processing the incoming coherence requests (i.e. to deter-

mine ESIDs). On receiving the expected coherence request,

the NIC parses the packet and passes appropriate information

to the core/cache, and informs the notification tracker to up-

4The number of coherence requests is encoded in binary, where a value of

0 means no request to be ordered, 1 implies 1 request, while 3 indicates 3

requests to be ordered (maximum value that a 2-bit number can represent).

date the ESID value. Once all the requests indicated by this

notification message are processed, the notification tracker

reads the next notification message in the queue if available

and re-iterate the same process mentioned above. The rotating

priority arbiter is updated at this time.

If the notification tracker queue is full, the NIC informs

other NICs and suppresses other NICs from sending notifi-

cation messages. To achieve this, we add a “stop” bit to the

notification message. When any NIC’s queue is full, that

NIC sends a notification message with the “stop” bit asserted,

which is also OR-ed during message merging; consequently all

nodes ignore the merged notification message received; also,

the nodes that sent a notification message this time window

will resend it later. When this NIC’s queue becomes non-full,

the NIC sends the notification message with the “stop” bit

de-asserted. All NICs are enabled again to (re-)send pend-

ing notification messages when the “stop” bit of the received

merged notification message is de-asserted.

Memory controller 1

Memory controller 0

Tile

7

Tile

8

Tile

9

Tile

6

Tile

10

Tile

11

Tile

13

Tile

14

Tile

15

Tile

12

Tile

16

Tile

17

Tile

19

Tile

20

Tile

21

Tile

18

Tile

22

Tile

23

Tile

25

Tile

26

Tile

27

Tile

24

Tile

28

Tile

29

Tile

31

Tile

32

Tile

33

Tile

30

Tile

34

Tile

35

Tile

0

Tile

1

Tile

3

Tile

4

Tile

5

Tile

2
L1 Data Cache

(Data Array)

L1 Inst Cache

(Data Array)

L1 Data

Cache

(Tag

Array)

L1 Inst

Cache

(Tag

Array)

Core Logic

L2 Cache

(Data Array)

L2 Cache

(Tag Array)

NIC + Router
(with Network

Tester)

L2 Cache Controller
(with Region Tracker and L2 Tester)

Figure 5: 36-Core chip layout with SCORPIO NoC

4. 36-Core Processor with SCORPIO NoC

The 36-core fabricated multicore processor is arranged in a

grid of 6×6 tiles, as seen in Figure 5. Within each tile is

an in-order core, split L1 I/D caches, private L2 cache with

MOSI snoopy coherence protocol, L2 region tracker for des-

tination filtering [26], and SCORPIO NoC (see Table 1 for a

full summary of the chip features). The Freescale e200 core

simply assumes a bus is connected to the AMBA AHB data

and instruction ports, cleanly isolating the core from the details

of the network and snoopy coherence support. Between the

network and the processor core IP is the L2 cache with AMBA

AHB processor-side and AMBA ACE network-side interfaces.

Two Cadence DDR2 memory controllers attach to four unique

routers along the chip edge, with the Cadence IP comply-

ing with the AMBA AXI interface, interfacing with Cadence

PHY to off-chip DIMM modules. All other IO connections

go through an external FPGA board with the connectors for

RS-232, Ethernet, and flash memory.

Table 1: SCORPIO chip features

Process IBM 45 nm SOI

Dimension 11×13 mm2

Transistor count 600 M
Frequency 833 MHz

Power 28.8 W

Core Dual-issue, in-order, 10-stage pipeline
ISA 32-bit Power ArchitectureTM

L1 cache Private split 4-way set associative write-through 16 KB I/D

L2 cache Private inclusive 4-way set associative 128 KB
Line Size 32 B

Coherence protocol MOSI (O: forward state)
Directory cache 128 KB (1 owner bit, 1 dirty bit)

Snoop filter Region tracker (4KB regions, 128 entries)

NoC Topology 6×6 mesh
Channel width 137 bits (Ctrl packets – 1 flit, data packets – 3 flits)

Virtual networks 1. Globally ordered – 4 VCs, 1 buffers each
2. Unordered – 2 VCs, 3 buffers each

Router XY routing, cut-through, multicast, lookahead bypassing
Pipeline 3-stage router (1-stage with bypassing), 1-stage link

Notification network 36-bits wide, bufferless, 13 cycles time window,
max 4 pending messages

Memory controller 2× Dual port Cadence DDR2 memory controller + PHY
FPGA controller 1× Packet-switched flexible data-rate controller

4.1. Processor Core and Cache Hierarchy Interface

While the ordered SCORPIO NoC can plug-and-play with

existing ACE coherence protocol controllers, we were unable

to obtain such IP and hence designed our own. The cache

subsystem comprises L1 and L2 caches and the interaction

between a self-designed L2 cache and the processor core’s L1

caches is mostly subject to the core’s and AHB’s constraints.

The core has a split instruction and data 16/,KB L1 cache

with independent AHB ports. The ports connect to the multiple

master split-transaction AHB bus with two AHB masters (L1

caches) and one AHB slave (L2 cache). The protocol supports

a single read or write transaction at a time, hence there is

a simple request or address phase, followed by a response

or data phase. Transactions, between pending requests from

the same AHB port, are not permitted thereby restricting the

number of outstanding misses to two, one data cache miss and

one instruction cache miss, per core. For multilevel caches,

snooping hardware has to be present at both L1 and L2 caches.

However, the core was not originally designed for hardware

coherency. Thus, we added an invalidation port to the core

allowing L1 cachelines to be invalidated by external input

signals. This method places the inclusion requirement on

the caches. With the L1 cache operating in write-through

mode, the L2 cache will only need to inform the L1 during

invalidations and evictions of a line.

4.2. Coherence Protocol

The standard MOSI protocol is adapted to reduce the writeback

frequency and to disallow the blocking of incoming snoop

requests. Writebacks cause subsequent cacheline accesses

to go off-chip to retrieve the data, degrading performance,

hence we retain the data on-chip for as long as possible. To

achieve this, an additional O_D state instead of a dirty bit

per line is added to permit on-chip sharing of dirty data. For

example, if another core wants to write to the same cacheline,

the request is broadcast to all cores resulting in invalidations,

while the owner of the dirty data (in M or O_D state) will

respond with the dirty data and change itself to the Invalid

state. If another cores wants to read the same cacheline, the

request is broadcast to all cores. The owner of the dirty data

(now in M state), responds with the data and transitions to the

O_D state, and the requester goes to the Shared state. This

ensures the data is only written to memory when an eviction

occurs, without any overhead because the O_D state does not

require any additional state bits.

When a cacheline is in a transient state due to a pending

write request, snoop requests to the same cacheline are stalled

until the data is received and the write request is completed.

This causes the blocking of other snoop requests even if they

can be serviced right away. We service all snoop requests

without blocking by maintaining a forwarding IDs (FID) list

that tracks subsequent snoop requests that match a pending

write request. The FID consists of the SID and the request

entry ID or the ID that matches a response to an outstanding

request at the source. With this information, a completed write

request can send updated data to all SIDs on the list. The core

IP has a maximum of 2 outstanding messages at a time, hence

only two sets of forwarding IDs are maintained per core. The

SIDs are tracked using a N bit-vector, and the request entry

IDs are maintained using 2N bits. For larger core counts and

more outstanding messages, this overhead can be reduced by

tracking a smaller subset of the total core count. Since the

number of sharers of a line is usually low, this will perform as

well as being able to track all cores. Once the FID list fills up,

subsequent snoop requests will then be stalled.

The different message types are matched with appropriate

ACE channels and types. The network interface retains its

general mapping from ACE messages to packet type encoding

and virtual network identification resulting in a seamless inte-

gration. The L2 cache was thus designed to comply with the

AMBA ACE specification. It has five outgoing channels and

three incoming channels (see Figure 4), separating the address

and data among different channels. ACE is able to support

snoop requests through its Address Coherent (AC) channel,

allowing us to send other requests to the L2 cache.

4.3. Functional Verification

We ensure correct functionality of the SCORPIO RTL using a

suite of regression tests that verify the entire chip. Since the

core is verified commercial IP, our regression tests focus on

verifying integration of various components, which involves

(1) load/store operations on both cacheable and non-cacheable

regions, (2) lock and barrier instructions, (3) coherency be-

tween L1s, L2s and main memory, and (4) software-triggered

interrupts. The tests are written in assembly and C, and we

built a software chain that compiles tests into machine code.

5. Architecture Analysis

Modeled system. For full-system architectural simulations

of SCORPIO, we use Wind River Simics [6] extended with the

GEMS toolset [24] and the GARNET [9] network model. The

SCORPIO and baseline architectural parameters as shown in

Table 1 are faithfully mimicked within the limits of the GEMS

and GARNET environment:

• GEMS only models in-order SPARC cores, instead of

SCORPIO’s Power cores.

• L1 and L2 cache latency in GEMS are fixed at 1 cycle

and 10 cycles. The prototype L2 cache latency varies with

request type and cannot be expressed in GEMS, while the

L1 cache latency of the core IP is 2 cycles.

• The directory cache access latency is set to 10 cycles and

DRAM to 80 cycles in GEMS. The off-chip access latency

of our chip prototype is unknown as it depends on the PCB

board and packaging, which is still being designed. The

directory cache access was approximated from the directory

cache parameters, but will also vary depending on request

type for the chip.

• The L2 cache, NIC, and directory cache accesses are fully-

pipelined in GEMS.

• Maximum of 16 outstanding messages per core in GEMS,

unlike our chip prototype which has a maximum of two

outstanding messages per core.

Directory baselines. For directory coherence, all requests

are sent as unicasts to a directory, which forwards them to

the sharers or reads from main memory if no sharer exists.

SCORPIO is compared with two baseline directory protocols.

The Limited-pointer directory (LPD) [8] baseline tracks when

a block is being shared between a small number of processors,

using specific pointers. Each directory entry contains 2 state

bits, log N bits to record the owner ID, and a set of pointers to

track the sharers. We evaluated LPD against full-bit directory

in GEMS 36 core full-system simulations and discovered al-

most identical performance when approximately 3 to 4 sharers

were tracked per line as well as the owner ID. Thus, the pointer

vector width is chosen to be 24 and 54 bits for 36 and 64 cores,

respectively. By tracking fewer sharers, more cachelines are

stored within the same directory cache space, resulting in a

reduction of directory cache misses. If the number of sharers

exceeds the number of pointers in the directory entry, the re-

quest is broadcast to all cores. The other baseline is derived

from HyperTransport (HT) [14]. In HT, the directory does not

record sharer information but rather serves as an ordering point

and broadcasts the received requests. As a result, HT does not

suffer from high directory storage overhead but still incurs on-

chip indirection via the directory. Hence for the analysis only

2 bits (ownership and valid) are necessary. The ownership bit

indicates if the main memory has the ownership; that is, none

of the L2 caches own the requested line and the data should

be read from main memory. The valid bit is used to indicate

whether main memory has received the writeback data. This

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

b
a
rn
e
s	

/
	

fm
m
	

lu
	

n
lu
	

ra
d
ix
	

w
a
te
r-­‐
n
sq
	

w
a
te
r-­‐
sp
a
<
a
l	

b
la
ck
sc
h
o
le
s	

ca
n
n
e
a
l	

fl
u
id
a
n
im

a
te
	

sw
a
p
<
o
n
s	

A
V
G
	

b
a
rn
e
s	

/
	

fm
m
	

lu
	

n
lu
	

ra
d
ix
	

w
a
te
r-­‐
n
sq
	

w
a
te
r-­‐
sp
a
<
a
l	

b
la
ck
sc
h
o
le
s	

ca
n
n
e
a
l	

fl
u
id
a
n
im

a
te
	

sw
a
p
<
o
n
s	

A
V
G
	

36	
 Cores	
 64	
 Cores	

N
o
r
m
a
li
z
e
d
	
 R
u
n
/
m
e
	

LPD-­‐D	
 HT-­‐D	
 SCORPIO-­‐D	

(a) Normalized runtime for 36 and 64 cores

0	

20	

40	

60	

80	

100	

120	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

barnes	
 9	
 lu	
 blackscholes	
 canneal	
 fluidanimate	
 average	

C
y
cl
e
s	

Network:	
 Req	
 to	
 Dir	
 Dir	
 Access	
 Network:	
 Dir	
 to	
 Sharer	
 Network:	
 Bcast	
 Req	

Req	
 Ordering	
 Sharer	
 Access	
 Network:	
 Resp	

(b) Served by other caches (36 cores)

0	

50	

100	

150	

200	

250	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

LP
D
-­‐D
	

H
T
-­‐D
	

S
C
O
R
P
IO
-­‐D
	

barnes	
 7	
 lu	
 blackscholes	
 canneal	
 fluidanimate	
 average	

C
y
cl
e
s	

Network:	
 Req	
 to	
 Dir	
 Network:	
 Bcast	
 Req	
 Dir	
 Access	

Req	
 Ordering	
 Network:	
 Resp	

(c) Served by directory (36 cores)

Figure 6: Normalized Runtime and Latency Breakdown

is a property of the network, where the writeback request and

data may arrive separately and in any order because they are

sent on different virtual networks.

Workloads. We evaluate all configurations with SPLASH-

2 [5] and PARSEC [12] benchmarks. Simulating higher than

64 cores in GEMS requires the use of trace-based simulations,

which fail to capture dependencies or stalls between instruc-

tions, and spinning or busy waiting behavior accurately. Thus,

to evaluate SCORPIO’s performance scaling to 100 cores, we

obtain SPLASH-2 and PARSEC traces from the Graphite [25]

simulator and inject them into the SCORPIO RTL.

Evaluation Methodology. For performance comparisons

with baseline directory protocols and prior in-network coher-

ence proposals, we use GEMS to see the relative runtime

improvement. The centralized directory in HT and LPD adds

serialization delay at the single directory. Multiple distributed

directories alleviates this but adds on-die network latency be-

tween the directories and DDR controllers at the edge of the

chip for off-chip memory access, for both baselines. We evalu-

ate the distributed versions of LPD (LPD-D), HT (HT-D), and

SCORPIO (SCORPIO-D) to equalize this latency and specif-

ically isolate the effects of indirection and storage overhead.

The directory cache is split across all cores, while keeping

the total directory size fixed to 256 KB. Our chip prototype

uses 128KB, as seen in Table 1, but we changed this value

for baseline performance comparisons only so that we don’t

heavily penalize LPD by choosing a smaller directory cache.

The SCORPIO network design exploration provides insight

into the performance impact as certain parameters are varied.

The finalized settings from GEMS simulations are used in the

fabricated 36-core chip NoC. In addition, we use behavioral

RTL simulations on the 36-core SCORPIO RTL, as well as 64

and 100-core variants, to explore the scaling of the uncore to

high core counts. For reasonable simulation time, we replace

the Cadence memory controller IP with a functional memory

model with fully-pipelined 90-cycle latency. Each core is

replaced with a memory trace injector that feeds SPLASH-2

and PARSEC benchmark traces into the L2 cache controller’s

AHB interface. We run the trace-driven simulations for 400 K

cycles, omitting the first 20 K cycles for cache warm-up.

We evaluate the area and power overheads to identify the

practicality of the SCORPIO NoC. The area breakdown is

obtained from layout. For the power consumption, we per-

form gate-level simulation on the post-synthesis netlist and

use the generated value change dump (VCD) files and Syn-

opsys PrimeTime PX. To reduce the simulation time, we use

trace-driven simulations to obtain the L2 and network power

consumption. We attach a mimicked AHB slave, that responds

to memory requests in a few cycles, to the core and run the

Dhrystone benchmark to obtain the core power consumption.

5.1. Performance

To ensure the effects of indirection and directory storage are

captured in the analysis, we keep all other conditions equal.

Specifically, all architectures share the same coherence pro-

tocol and run on the same NoC (minus the ordered virtual

network GO-REQ and notification network).

Figure 6 shows the normalized full-system application run-

0	

1	

2	

3	

4	

5	

6	

7	

8	

blackscholes	
 streamcluster	
 swap:ons	
 vips	
 Avg	

N
o
r
m
a
li
z
e
d
	
 R
u
n
/
m
e
	

SCORPIO	
 TokenB	
 INSO	
 (exp	
 window=20)	
 INSO	
 (exp	
 window=40)	
 INSO	
 (exp	
 window=80)	

Figure 7: Comparison with TokenB and INSO

time for SPLASH-2 and PARSEC benchmarks simulated on

GEMS. On average, SCORPIO-D shows 24.1% better perfor-

mance over LPD-D and 12.9% over HT-D across all bench-

marks. Diving in, we realize that SCORPIO-D experiences

average L2 service latency of 78 cycles, which is lower than

that of LPD-D (94 cycles) and HT-D (91 cycles). The average

L2 service latency is computed over all L2 hit, L2 miss (includ-

ing off-chip memory access) latencies and it also captures the

internal queuing latency between the core and the L2. Since

the L2 hit latency and the response latency from other caches

or memory controllers are the same across all three configura-

tions, we further breakdown request delivery latency for three

SPLASH-2 and three PARSEC benchmarks (see Figure 6).

When a request is served by other caches, SCORPIO-D’s av-

erage latency is 67 cycles, which is 19.4% and 18.3% lower

than LPD-D and HT-D, respectively. Since we equalize the

directory cache size for all configurations, the LPD-D caches

fewer lines compared to SCORPIO-D and HT-D, leading to a

higher directory access latency which includes off-chip latency.

SCORPIO provides the most latency benefit for data transfers

from other caches on-chip by avoiding the indirection latency.

As for requests served by the directory, HT-D performs bet-

ter than LPD-D due to the lower directory cache miss rate.

Also, because the directory protocols need not forward the

requests to other caches and can directly serve received re-

quests, the ordering latency overhead makes the SCORPIO

delivery latency slightly higher than the HT-D protocol. Since

the directory only serves 10% of the requests, SCORPIO still

shows 17% and 14% improvement in average request delivery

latency over LPD-D and HT-D, respectively, leading to the

overall runtime improvement.

To compare SCORPIO’s performance with TokenB and

INSO, we ran a subset of benchmarks on a 16 core system in

GEMS. Figure 7 shows the normalized runtime when keeping

all conditions equal besides the ordered network. It was found

that SCORPIO’s runtime is 19.3% and 70% less than INSO

with an expiration window of 40 and 80 cycles, respectively.

TokenB’s performance is similar to SCORPIO because we do

not model the behavior of TokenB in the event of data races

where retries and expensive persistent requests affect it signifi-

cantly. Thus, SCORPIO performs as well as TokenB without

persistent requests and INSO with an impractical expiration

window size of 20 cycles.

5.2. NoC Design Exploration for 36-Core Chip

In GEMS, we swept several key SCORPIO network param-

eters, channel-width, number of VCs, and number of simul-

taneous notifications, to arrive at the final 36-core fabricated

configuration. Channel-width impacts network throughput by

directly influencing the number of flits in a multi-flit packet,

affecting serialization and essentially packet latency. The num-

ber of VCs also affects the throughput of the network and

application runtimes, while the number of simultaneous notifi-

cations affect ordering delay. Figure 8 shows the variation in

runtime as the channel-width and number of VCs are varied.

All results are normalized against a baseline configuration of

16-byte channel-width and 4 VCs in each virtual network.

Channel-width. While a larger channel-width offers better

performance, it also incurs greater overheads – larger buffers,

higher link power and larger router area. A channel-width of

16 bytes translates to 3 flits per packet for cache line responses

on the UO-RESP virtual network. A channel-width of 8 bytes

would require 5 flits per packet for cache line responses, which

degrades the runtime for a few applications. While a 32 byte

channel offers a marginal improvement in performance, it

expands router and NIC area by 46%. In addition, it leads

to low link utilization for the shorter network requests. The

36-core chip contains 16-byte channels due to area constraints

and diminishing returns for larger channel-widths.

Number of VCs. Two VCS provide insufficient bandwidth

for the GO-REQ virtual network which carries the heavy re-

quest broadcast traffic. Besides, one VC is reserved for dead-

lock avoidance, so low VC configurations would degrade run-

time severely. There is a negligible difference in runtime

between 4 VCs and 6 VCs. Post-synthesis timing analysis of

the router shows negligible impact on the operating frequency

as the number of VCs is varied, with the critical path timing

hovering around 950ps. The number of VCs indeed affects the

SA-I stage, but it is off the critical path. However, a tradeoff of

area, power, and performance still exists. Post-synthesis evalu-

ations show 4 VCs is 15% more area efficient, and consumes

12% less power than 6 VCs. Hence, our 36-core chip contains

4 VCs in the GO-REQ virtual network. For the UO-RESP

virtual network, the number of VCs does not seem to impact

run time greatly once channel-width is fixed. UO-RESP pack-

ets are unicast messages, and generally much fewer than the

GO-REQ broadcast requests. Hence 2 VCs suffices.

Number of simultaneous notifications. The Freescale

e200 cores used in our 36-core chip are constrained to two

outstanding messages at a time because of the AHB interfaces

at its data and instruction cache miss ports. Due to the low

injection rates, we choose a 1-bit-per-core (36-bit) notification

network which allows 1 notification per core per time window.

We evaluate if a wider notification network that supports

more notifications each time window will offer better perfor-

mance. Supporting 3 notifications per core per time window,

will require 2 bits per core, which results in a 72-bit notifica-

tion network. Figure 8d shows 36-core GEMS simulations of

0

0.2

0.4

0.6

0.8

1

barnes fft fmm lu nlu radix water-

nsq

water-

spatial

avg

N
o

r
m

a
li

z
e

d
 R

u
n

t
im

e

CW=8B CW=16B CW=32B

(a) Channel-widths

0

0.2

0.4

0.6

0.8

1

barnes fft fmm lu nlu radix water-

nsq

water-

spatial

avg

N
o

r
m

a
li

z
e

d
 R

u
n

t
im

e

#VCS=2 #VCS=4 #VCS=6

(b) GO-REQ VCs

0

0.2

0.4

0.6

0.8

1

fmm lu nlu radix water-nsq water-

spatial

avg

N
o

r
m

a
li

z
e

d
 R

u
n

t
im

e

CW=8B/#VCS=2 CW=8B/#VCS=4 CW=16B/#VCS=2 CW=16B/#VCS=4

(c) UO-RESP VCs

0

0.2

0.4

0.6

0.8

1

fft fmm lu nlu radix water-

nsq

water-

spatial

avg

N
o

r
m

a
li

z
e

d
 R

u
n

t
im

e

BW=1b BW=2b BW=3b

(d) Simultaneous notifications

Figure 8: Normalized Runtime with Varying Network Parameters

Core

54%

L1 Data Cache

4%

L1 Inst Cache

4%

L2 Cache

Controller

2%

L2 Cache Array

7%

RSHR

4%

AHB+ACE

2% Region Tracker

0%

L2 Tester

2%

NIC+Router

19%

Other

1%

L2 Cache

18%

(a) Tile power breakdown

Core

32%

L1 Data Cache

6%

L1 Inst Cache

6%

L2 Cache

Controller

2%

L2 Cache Array

34%

RSHR

4%

AHB+ACE

4%

Region Tracker

0%L2 Tester

2%

NIC+Router

10%
L2 Cache

46%

(b) Tile area breakdown

Figure 9: Tile Overheads

SCORPIO achieving 10% better performance for more than

one outstanding message per core with a 2-bit-per-core no-

tification network, indicating that bursts of 3 messages per

core occur often enough to result in overall runtime reduction.

However, more than 3 notifications per time window (3-bit-

per-core notification network) does not reap further benefit, as

larger bursts of messages are uncommon. A notification net-

work data width scales as O(m×N), where m is the number of

notifications per core per time window. Our 36-bit notification

network has < 1% of tile area and power overheads; Wider

data widths only incurs additional wiring which has minimal

area and power compared to the main network and should not

be challenging given the excess wiring space remaining in the

our chip.

5.3. Scaling Uncore Throughput for High Core Counts

As core counts scale, if each core’s injection rate (cache miss

rate) remains constant, the overall throughput demand on the

uncore scales up. We explore the effects of two techniques to

optimize SCORPIO’s throughput for higher core counts.

Pipelining uncore. Pipelining the L2 caches improves its

throughput and reduces the backpressure on the network

which may stop the NIC from de-queueing packets. Simi-

larly, pipelining the NIC will relieve network congestion. The

performance impact of pipelining the L2 and NIC can be seen

in Figure 10 in comparison to a non-pipelined version. For 36

and 64 cores, pipelining reduces the average latency by 15%

and 19%, respectively. Its impact is more pronounced as we

increase to 100 cores, with an improvement of 30.4%.

Boosting main network throughput with VCs. For good

scalability on any multiprocessor system, the cache hierarchy

and network should be co-designed. As core count increases,

assuming similar cache miss rates and thus traffic injection

rates, the load on the network now increases. The theoretical

throughput of a k× k mesh is 1/k2 for broadcasts, reducing

from 0.027 flits/node/cycle for 36-cores to 0.01 flits/node/cycle

for 100-cores. Even if overall traffic across the entire chip re-

mains constant, say due to less sharing or larger caches, a

100-node mesh will lead to longer latencies than a 36-node

mesh. Common ways to boost a mesh throughput include mul-

tiple meshes, more VCs/buffers per mesh, or wider channel.

Within the limits of the RTL design, we analyze the scal-

ability of the SCORPIO architecture by varying core count

and number of VCs within the network and NIC, while keep-

ing the injection rate constant. The design exploration results

show that increasing the UO-RESP virtual channels does not

yield much performance benefit. But, the OREQ virtual chan-

nels matter since they support the broadcast coherent requests.

Thus, we increase only the OREQ VCs from 4 VCs to 16

VCs (64 cores) and 50 VCs (100 cores), with 1 buffer per VC.

Further increasing the VCs will stretch the critical path and

affect the operating frequency of the chip. It will also affect

area, though with the current NIC+router taking up just 10%

of tile area, this may not be critical. A much lower overhead

solution for boosting throughput is to go with multiple main

networks, which will double/triple the throughput with no im-

pact on frequency. It is also more efficient area wise as excess

wiring is available on-die.

For at least 64 cores in GEMS full-system simulations,

SCORPIO performs better than LPD and HT despite the broad-

cast overhead. The 100-core RTL trace-driven simulation

0	

50	

100	

150	

200	

250	

300	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

N
o
n
-­‐P
L	

P
L	

barnes	
 blackscholes	
 canneal	
 6	
 fluidanimate	
 lu	
 avg	

A
v
e
ra
g
e
	
 S
e
rv
ic
e
	
 L
a
te
n
cy
	
 (
C
y
cl
e
s)
	

6x6	
 8x8	
 10x10	

Figure 10: Pipelining effect on performance and scalability

Table 2: Comparison of multicore processors5

Intel Core i7 [7] AMD Opteron [1] TILE64 [31] Oracle T5 [4] Intel Xeon E7 [3] SCORPIO

Clock frequency 2–3.3 GHz 2.1–3.6 GHz 750 MHz 3.6GHz 2.1–2.7 GHz 1 GHz (833 MHz post-layout)

Power supply 1.0 V 1.0 V 1.0 V - 1.0 V 1.1 V

Power consumption 45–130 W 115–140 W 15–22 W - 130 W 28.8 W

Lithography 45 nm 32 nm SOI 90 nm 28 nm 32 nm 45 nm SOI

Core count 4–8 4–16 64 16 6–10 36

ISA x86 x86 MIPS-derived VLIW SPARC x86 Power

Cache
hierarchy

L1D 32 KB private 16 KB private 8 KB private 16 KB private 32 KB private 16 KB private

L1I 32 KB private 64 KB shared among 2 cores 8 KB private 16 KB private 32 KB private 16 KB private

L2 256 KB private 2 MB shared among 2 cores 64 KB private 128 KB private 256 KB private 128 KB private

L3 8 MB shared 16 MB shared N/A 8 MB 18–30 MB shared N/A

Consistency model Processor Processor Relaxed Relaxed Processor Sequential consistency

Coherency Snoopy Broadcast-based directory (HT) Directory Directory Snoopy Snoopy

Interconnect Point-to-Point (QPI) Point-to-Point (HyperTransport) 5 8×8 meshes 8×9 crossbar Ring 6×6 mesh

results in Figure 10 show that the average network latency

increases significantly. Diving in, we realize that the network

is very congested due to injection rates close to saturation

throughput. Increasing the number of VCs helps push through-

put closer to the theoretical, but is ultimately still constrained

by the theoretical bandwidth limit of the topology. A possible

solution is to use multiple main networks, which would not

affect the correctness because of we decouple message deliv-

ery from ordering. Our trace-driven methodology could have

a factor on the results too, as we were only able to run 20K

cycles for warmup to ensure tractable RTL simulation time;

we noticed that L2 caches are under-utilized during the entire

RTL simulation runtime, implying caches are not warmed up,

resulting in higher than average miss rates.

An alternative to boosting throughput is to reduce the band-

width demand. INCF [10] was proposed to filter redundant

snoop requests by embedding small coherence filters within

routers in the network. We leave this for future work.

5.4. Overheads

Power. Overall, the aggregated power consumption of

SCORPIO is around 28.8 W and the detailed power break-

down of a tile is shown in Figure 9a. The power consumption

of a core with L1 caches is around 62% of the tile power,

whereas the L2 cache consumes 18% and the NIC and router

19% of tile power. A notification router costs only a few OR

gates; as a result, it consumes less than 1% of the tile power.

Since most of the power is consumed at clocking the pipeline

and state-keeping flip-flops for all components, the breakdown

is not sensitive to workload.

Area. The dimension of the fabricated SCORPIO is

11×13 mm2. Each memory controller and each memory inter-

face controller occupies around 5.7 mm2 and 0.5 mm2 respec-

tively. Detailed area breakdown of a tile is shown in Figure 9b.

Within a tile, L1 and L2 caches are the major area contributors,

taking 46% of the tile area and the network interface controller

together with router occupying 10% of the tile area.

6. Related Work

Multicore processors. Table 2 includes a comparison of

AMD, Intel, Tilera, SUN multiprocessors with the SCORPIO

chip. These relevant efforts were a result of the continuing

challenge of scaling performance while simultaneously man-

aging frequency, area, and power. When scaling from multi to

many cores, the interconnect is a significant factor. Current in-

dustry chips with relatively few cores typically use bus-based,

crossbar or ring fabrics to interconnect the last-level cache,

but suffers from poor scalability. Bus bandwidth saturates

with more than 8 to 16 cores on-chip [15], not to mention

the power overhead of signaling across a large die. Crossbars

have been adopted as a higher bandwidth alternative in sev-

eral multicores [4, 13], but it comes at the cost of a large area

footprint that scales quadratically with core counts, worsened

by layout constraints imposed by long global wires to each

core. From the Oracle T5 die photo, the 8-by-9 crossbar has an

estimated area of 1.5X core area, hence about 23mm2 at 28nm.

Rings are an alternative that supports ordering, adopted in Intel

Xeon E7, with bufferless switches (called stops) at each hop

delivering single-cycle latency per hop at high frequencies and

low area and power. However, scaling to many cores lead to

unnecessary delay when circling many hops around the die.

The Tilera TILE64 [31] is a 64-core chip with 5 packet-

switched mesh networks. A successor of the MIT RAW chip

which originally did not support shared memory [30], TILE64

added directory-based cache coherence, hinting at market sup-

port for shared memory. Compatibility with existing IP is not

a concern for startup Tilera, with cache, directory, memory

controllers developed from scratch. Details of its directory

protocol are not released but news releases suggest directory

cache overhead and indirection latency are tackled via trading

off sharer tracking fidelity. Intel Single-chip Cloud Computer

5Core i7 Nehalem Architecture(2008) and Xeon E7-4800 Series(2011) values.

(SCC) processor [17] is a 48-core research chip with a mesh

network that does not support shared memory. Each router

has a four stage pipeline running at 2 GHz. In comparison,

SCORPIO supports in-network ordering with a single-cycle

pipeline leveraging virtual lookahead bypassing, at 1 GHz.

NoC-only chip prototypes. Swizzle [28] is a self-

arbitrating high-radix crossbar that embeds arbitration within

the crossbar to achieve single cycle arbitration. Prior crossbars

require high speedup (crossbar frequency at multiple times

core frequency) to boost bandwidth in the face of poor arbiter

matching, leading to high power overhead. Area remains a

problem though, with the 64-by-32 Swizzle crossbar taking up

6.65mm2 in 32nm process [28]. Swizzle acknowledged scala-

bility issues and proposed stopping at 64-port crossbars, and

leveraging these as high-radix routers within NoCs. There are

several other stand-alone NoC prototypes that also explored

practical implementations with timing, power and area consid-

eration, such as the 1 GHz Broadcast NoC [27] that optimizes

for energy, latency and throughput using virtual bypassing

and low-swing signaling for unicast, multicast, and broadcast

traffic. Virtual bypassing is leveraged in the SCORPIO NoC.

7. Conclusion

The SCORPIO architecture supports global ordering of re-

quests on a mesh network by decoupling the message delivery

from the ordering. With this we are able to address key coher-

ence scalability concerns. While our 36-core SCORPIO chip

is an academic chip design that can be better optimized , we

learnt significantly through this exercise about the intricate in-

teractions between processor, cache, interconnect and memory

design, as well as the practical implementation overheads.

Acknowledgements

SCORPIO is a large project involving 6 students collaborating

closely. Key contributions: Core integration(Bhavya,Owen),

Coherence protocol design(Bhavya,Woo Cheol), L2

cache(Bhavya), Memory interface(Owen), High-level idea of

notification network (Woo Cheol), Network architecture (all),

Network RTL(Suvinay), DDR2 integration(Sunghyun,Owen),

Backend(Owen), On-chip testers(Tushar), RTL verifica-

tion(Bhavya,Suvinay), GEMS(Woo Cheol).

References

[1] “AMD Opteron 6200 Series Processors,” http://www.amd.com/
us/products/server/processors/6000-series-platform/6200/Pages/
6200-series-processors.aspx.

[2] “ARM AMBA,” http://www.arm.com/products/system-ip/amba.

[3] “Intel Xeon Processor E7 Family,” http://www.intel.com/content/www/
us/en/processors/xeon/xeon-processor-e7-family.html.

[4] “Oracle’s SPARC T5-2, SPARC T5-4, SPARC T5-8, and
SPARC T5-1B Server Architecture,” http://www.oracle.com/
technetwork/server-storage/sun-sparc-enterprise/documentation/
o13-024-sparc-t5-architecture-1920540.pdf.

[5] “SPLASH-2,” http://www-flash.stanford.edu/apps/SPLASH.

[6] “Wind River Simics,” http://www.windriver.com/products/simics.

[7] “First the tick, now the tock: Next generation Intel microarchitec-
ture (Nehalem),” http://www.intel.com/content/dam/doc/white-paper/
intel-microarchitecture-white-paper.pdf, 2008.

[8] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation
of directory schemes for cache coherence,” in Computer Architecture
News, May 1988.

[9] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
Detailed On-Chip Network Model Inside a Full-System Simulator,” in
ISPASS, 2009.

[10] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network coherence filtering:
Snoopy coherence without broadcasts,” in MICRO, 2009.

[11] ——, “In-Network Snoop Ordering (INSO): Snoopy Coherence on
Unordered Interconnects,” in HPCA, 2009.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” 2008.

[13] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Sneger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The IBM Blue Gene/Q Interconnection Fabric,” IEEE
Micro, vol. 32, no. 1, pp. 32–43, 2012.

[14] P. Conway and B. Hughes, “The AMD Opteron Northbridge Architec-
ture,” IEEE Micro, vol. 27, pp. 10–21, 2007.

[15] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann, 1999.

[16] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W.
Keckler, and D. Burger, “On-chip interconnection networks of the trips
chip,” IEEE Micro, vol. 27, no. 5, pp. 41–50, 2007.

[17] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Ja-
cob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borakar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core ia-32 message-passing processor with dvfs in
45nm cmos,” in ISSCC, 2010.

[18] D. R. Johnson, M. R. Johnson, J. H. Kelm, W. Tuohy, S. S. Lumetta, and
S. J. Patel, “Rigel: A 1,024-core single-chip accelerator architecture,”
IEEE Micro, vol. 31, no. 4, pp. 30–41, 2011.

[19] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang, “SWIFT:
A SWing-reduced Interconnect For a Token-based Network-on-Chip in
90nm CMOS,” in ICCD, 2010.

[20] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A 4.6tbits/s
3.6ghz single-cycle noc router with a novel switch allocator,” in ICCD,
2007.

[21] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimer-
ling, and A. Agarwal, “Atac: A 1000-core cache-coherent processor
with on-chip optical network,” in PACT, 2010.

[22] M. M. Martin, M. D. Hill, and D. A. Wood, “Timestamp snooping: An
approach for extending smps,” in ASPLOS, 2000.

[23] ——, “Token coherence: Decoupling performance and correctness,” in
ISCA, 2003.

[24] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” Computer Architecture News, 2005.

[25] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator
for multicores,” in HPCA, 2010.

[26] A. Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence,” in ISCA, 2005.

[27] S. Park, T. Krishna, C.-H. O. Chen, B. K. Daya, A. P. Chandrakasan,
and L.-S. Peh, “Approaching the theoretical limits of a mesh NoC with
a 16-node chip prototype in 45nm SOI,” in DAC, 2012.

[28] K. Sewell, “Scaling high-performance interconnect architectures to
many-core systems,” Ph.D. dissertation, University of Michigan.

[29] K. Strauss, X. Shen, and J. Torrellas, “Uncorq: Unconstrained Snoop
Request Delivery in Embedded-Ring Multiprocessors,” in MICRO,
2007.

[30] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffmann, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal, “The RAW microprocessor: A computational fab-
ric for software circuits and general-purpose programs,” IEEE Micro,
vol. 22, no. 2, pp. 25–35, 2002.

[31] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip in-
terconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

