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The notion of Filippov's generalized solution of differential equation
[1] can be introduced in the following way. A function x(t) is a
solution in Filippov's sense of x — f(t, x) if x(t) is a solution of differential
relation x e F(t, x) where the Filippov mapping F is defined by

x) = Π Π Conv/(ί, U(x, d) - N)
rf>0 l(N)=0

where U(x9 d) = {y: \\y — x\\ < d) are regions on an ^-dimensional linear
normed space Rn, NaU(x, d) and I is the Lebesgue measure in Rn.

To the author's best knowledge, the first who pointed out a certain
minimality property of the Filippov mapping was Kurzweil who formulated
this property in [2] for the autonomous case. In particular, it is proved
there that the Filippov mapping F{x) has the smallest possible value for
every x among all upper semi-continuous mappings having compact,
convex values and containing values of / almost everywhere. The
precise formulation of this property will be given later.

It was shown in [3] that the construction of the Filippov mapping
can be based solely on the minimal property. Further, it was shown
there that in the frame of this new construction we can easily modify
the definition in the way that the values of the modified Filippov mapping
need not be convex. Generally we assume that F(t, x) takes its values
from a given family g? of sets. The family g? may be the family of
all compact sets. If, for example, g* is the family of all Cartesian
products of intervals, the solutions of the corresponding differential
relation are precisely the generalized solutions in Viktorovskii's sense
of the original equation [4]. Note that the definition of Viktorovskii is
a pure analytical one and the above geometrical characterization of
Viktorovskii's solutions is due to Pelant [5], [6].

The aim of the present paper is the investigation of measurability
properties of the modified Filippov mappings. Roughly speaking a
mapping has the Scorza-Dragoni property if there exists a sequence of
cylindrical sets covering the domain of definition up to a set of measure
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zero such that the mapping is upper semi-continuous on each of them.
The precise definition is given below.

The theory of differential relations can be limited to those which have
right hand sides with the Scorza-Dragoni property. This follows from
[7]. It is proved there that the right hand side of a differential relation
(provided it is upper semi-continuous in x for every t and in a certain
sense measurable) can be replaced by a mapping having the Scorza-
Dragoni property without changing the system of solutions. Since the
Scorza-Dragoni property implies measurability, the question naturally
arises whether the modified Filippov mappings have automatically the
Scorza-Dragoni property. This question has an affirmative answer in the
case of Filippov mappings [2]. The result about measurability proved in
[3] is now a consequence of the stronger result expressed in Theorem 3
of the present paper.

Definitions and notation. Let G be a region in Rn+1. Denote the
points of Rn+1 by [t, x] where teR1 and x e Rn. A denotes the closure
of the set A. We shall use the notation At = {x: [t, x] e A) for A c Rn+1.
Let h be a mapping h: G —> J^ζ where *J%ζ is the class of all subsets of
Rm. We can define mappings ht on Gt for every t by ht(x) = h(t, x) for
x e Gt. In addition to J < we shall need the class ^ of all compact sub-
sets of Rm. By gfo we denote a class fulfilling

(a) to every i e ^ 0 there exists a set Be gfo> AaB;
(b) if Bp e &0 then fl* BP e &*\
(c) if A e gf0 then A e rέ?0.

Let ^ , gf and <Szf be classes originating respectively from ^ 0 , g^ and
J2< by excluding the empty set.

DEFINITION. If A is a bounded set in Rm, then g'(A) = ΠB-ABS, B
is called the g^-closure of A. The if-closure is called continuous if
Γ\n S?(AJ = ξf(Γ\n ^n) for every sequence of nonempty compact sets

Note that &(A) is the ordinary closure if & is the class of all non-
empty compact sets and if (A) is the closed convex hull if if is the class
of all nonempty compact convex sets. In both the cases the if-closure
is continuous.

Recall that a mapping h: D —> J < (D is a nonempty subset of R%+1)
is upper semi-continuous if to every d > 0 and [t, x] G D there exists
r > 0 such that h(s, y)aU(h(t, x), d) for [s, y] e U([t, x], r) f) D where

, ώ) is the d-neighborhood of the set A with 17(0, d) = 0 .

DEFINITION. The mapping h:G -* j^J has the Scorza-Dragoni property
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if to every d > 0 there exists a measurable set T, T (zRx such that
l(T) <d and h is upper semi-continuous on G — (T x Rn). We say briefly
that the mapping h is SD.

DEFINITION. A vector function f:G -+ Rm is ί-locally essentially
bounded if to every point [t0, xQ] e G there exist d > 0 and a function
c(t) defined on the interval (t0 — d, to + d) such that l{x: x e U(xQ, d\ f(t, x) $
[7(0, c(t))} = 0 for all t.

This definition is slightly different from the corresponding one in
[3].

Further, let {hz, z e Z), Z Φ 0 be a family of mappings hz: G -» J<.
The greatest lower bound h: G —> J ^ of the family is the mapping defined
by h(t, x) = Γ\zezhz(t, x). We shall write h = AzezK The mapping fex

is before fe2 (hx ^ fe2) if fe^ί, x)ah2(t, x) for all [£, x]eG.

Construction of modified mappings. Since the construction is given
in [3] we repeat only the basic steps here.

DEFINITION. Let / be a vector function f:G —> Rm and g* a class
such that gf0 fulfills (a) to (c). Denote by R(f, gf) the family of all
mappings h fulfilling

( i ) hit, x)e& for all [t, x] e G;

(ii) ht(x) is upper semi-continuous on Gt for every t;
(iii) ft(x)eht(x) for almost all xeGt and all t.

A condition under which the set R(f, i?) is nonempty is given in

THEOREM 1. Let a class g^ fulfill (a) to (c). The set R{f, g7) is
nonempty if and only if the vector function f is t-locally essentially
bounded.

Given a class g7 and a vector function /, Theorem 1 enables us to
construct the greatest lower bound S = Ahemf,&) h. We shall write
S(t, x), S(/), S(t, x) f), S(t,x;f;'ί?) etc. if we need to emphasize, the
dependence of S on parameters. Basic properties of S are given in

THEOREM 2. Let a class &0 fulfill (a) to (c). If the vector function
f: G —> Rm is t-locally essentially bounded then SeR(f, £?).

If the class 8" is the class of all nonempty compact convex subsets
of Rn then S is the Filippov mapping defined at the beginning of the
article. Theorem 2 yields that F(t, x)ah(t, x) for all heR(f, ξ?) which
is the minimum property mentioned above. If g* is the class of all
Cartesian products Πϊ^i of compact nonempty intervals, then the solu-
tions of the corresponding differential relation x e S(ί, x) are the gener-
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alized solutions of A = f(t9 x) in the sense of Viktorovskii [4] as was
mentioned in introduction.

Scorza-Dragoni property of S. In this section we use the definition
of S as the greatest lower bound to prove that S is SD.

THEOREM 3. Let &0 fulfill (a) to (c) and let the ^-closure be con-
tinuous. If the vector function f:G —> Rm is measurable and t-locally
essentially bounded then the corresponding mapping S(f) is SD.

The proof will be divided into several lemmas. First we prove
Theorem 3 if m = 1, έf = cέ? and / is an indicator.

LEMMA 1. Let r£ — C6P. If f is a measurable function f: G —> Rι

assuming only values 0 or 1, then S = S(t, x f; ^) is SD.

PROOF. According to Theorem 2 there exists a mapping S(t, x; /; ^ )
fulfilling (i) to (iii). We have S(t, x)c{0, 1} for all [t, x]eG. Certainly
the constant mapping h(t, x) = {0, 1} fulfills (i) to (iii) so that S ^
heR(f,W). We pass to the proof that S is SD. Denote Γ(ε) =
{t: Ix, ε 6 S(ί, x)} where ε = 0 or ε = 1. First we shall prove that T(ε)
are measurable, and for that we need to prove that T(ε) =
{t- le{y'f(t, v) — ε} > 0} where le is the Lebesgue outer measure. Let a
point [t, x]eG fulfill

(1) e 6 S(t, x) ,

then

(2) le{y:f(t,y) = e}>Q.

If (2) did not hold, we could define S0(τ, z) = S(τ, z) for τ Φ t and S0(t, z) =
{1 — ε} for zeGt. The mapping So belongs evidently to R(f, r<^) and at
the same time SQ(τ, z)czS(τ, z) for all [τ, z]eG, S0(t, z) Φ S(t, z) due to
(1). This would contradict Theorem 2. Conversely let (2) be fulfilled
for some t. Assume for the moment that S(t9 x) = {1 — ε} for all xeGt.
By (iii) we obtain f(t, x) — 1 — ε for almost all xeGt and this contradicts
(2). Thus inequality (2) implies that there exists x such that (1) is ful-
filled. We have proved T(e) = {t: le{y:f(t, y) = ε} > 0}.

Denote g(t, x; ε) = εf(tf x) + (1 - ε)(l — f(t, x)). Since g(t, x; ε) is
measurable in t, x for both ε = 0 and ε = 1, 0 <̂  g(t, x; ε) ^ 1, the

integrals I g(t, y; ε)dtdy exist. Fubini's theorem yields that the integrals

S JG
g(t, y\ε)dy exist for almost all t, i.e., for teRλ — N where l(N) = 0.

Gt

(For simplicity we assume that the last integrals exist and equal zero
even if Gt = 0.) Define
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T0(ε) = \t: \ g(t, y; ε)dy exists and is positive[ .
( JGt )

First we prove T(ε) - T0(ε) c N. Let t e T(e) - Γ0(s). Since t g T0(e) we

have either t e N or \ #(£, y; ε)dy = 0. The last equality would imply
Jet

le{y fit, y) = ε} = 0 and so ί g T(ε), a contradiction. Secondly we prove
To(e)cT(s). Let ί g T(ε) then % : / ( £ , 2/) = ε} = 0 and hence l{y:g(t, y; e)Φ
0} = 0. For such t, [ g(t, y; ε)dy = 0 and thus t £ T0(ε).

iβt

Since Fubini's theorem implies that T0(ε) is measurable we have
proved the measurability of T(ε). Let Pt be a countable basis of open
sets in Rn. Denote Gt = G Π {Rλ x P4), /* the function / restricted to Git

8(tf x fi',^) is evidently the mapping S(t, x f;^) (i.e., S) restricted to
Gt and Γ,(e) = {t: 3ίc, [ί, aj] 6 G,, ε 6 S(ί, aj /ό 9f)} equals

( 3 ) Γ^ε) = {ί: 3α?, [ί, x]eGn(R1x Pt), ε e S(ί, »)} .

We proved that Γ^ε) are measurable. Choose a number d > 0. Let T υ(ε)
be a closed set Γίυ(ε) c Tt(e) and 1 ( ^ ( 6 ) - Γ|1 )(ε))< d2- ί"3; T|2)(ε) be an
open set Γt(ε) c Γίw(ε), JίΓf'ίe) - Γ ((e))< d 2 - M . Then the set Q4(e) =
Π2)(ε) - Γ{1}(6) is open, KQfc)) < d2~i~2 and t(ε) - Γt(ε) - Q,(ε) - Γίυ(ε)
is closed. Denote Q = \JίεQt(e). The set Q is open, l(Q) < d and sets
Γ*(ε) = r4(e) - Q = ft(ε) - Q are closed.

We shall prove that S is upper semi-continuous on D = G — (Q x ΛJ.
Let [ίp, α̂ p] be a sequence of points p = 1, 2, converging to [t0, xQ] and
[ ί ^ α J e D f o r p = 0, 1,2, . . . .

It is sufficient to prove that if ε e S(tP9 xp) then ε e S(ί0, «0). Let Pά

be a sequence of elements of the basis such that {x0} = Πi Pj Since
ε G S(ίp, a?p) and xp —> cc0 the relation (3) implies tp e Γy(ε) for sufficiently
great p. Since [tPf xp] e D we have ίp £ Q and ίp e Γ*(ε) for sufficiently
great p. Since Γ*(ε) are closed toe Γ*(ε) i.e., ί0^ Γ/ε) which means there
exists ys 6 Gίo Π Py, ε 6 S(ί0> yi). Due to {α?0} = Π Pj the sequence of points
ys converges to x0 and since S(ί0, 1/) is upper semi-continuous in 2/ (see
(ii)) we conclude ε e S(ί0, a?0)

The next step is to prove Theorem 3 for vector simple functions.

LEMMA 2. Let g7 = cέ?. If f is a measurable vector function
f:G —> Rm having only a finite number of values, then S = S(t, x f; rtf)
is SO.

PROOF. Denote by fif i = 1, ••-,«, the values of /. Obviously
S(t, x) c {ft: i = 1, ••-,«} for [t, x]eG for the same reason as previously.
Define real functions Fim.
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Fi(t,x) = l if f(t,x)=fif

Fi(t,x) = 0 if f{t,x)Φf.

We shall prove

(4) fteS(t,x) if and only if l g S(ί, x; F<;

The assumption /, g S(t, x) together with (ii) and with the fact that
S e R(f, ̂ ) (see Theorem 2) imply that there exists d > 0 such that
ft ί S(ί, i/) for 2/ e Z7(α5, d) and (iii) yields /' Φ ft for almost all y e U(x, d)
which means F*(t, y) = 0 for almost all y e U(x, d) and by (iii) again and
by the minimality of S(t, x; Fι\ r^) we conclude l g S(t, x; F*; <£>). The
proof of the converse implication is similar. The mappings Sζt X F*;^)
are SD due to Lemma 1 and the relation (4) yields that S is SD as well.

Further, we shall prove a lemma dealing with the dependence of
S(f) on /.

LEMMA 3. Let f, g be vector functions G —> Rm which are t-locally
essentially bounded and fulfil \\f(t, x) — g(ty x)\\ < d for all [t, x]eG.
Then S(t, x; /; <£f) c U(S(t, x; g; <&\ 2d) for all [t, x] e G.

PROOF. Denote h(t, x) = U(S(t, x; g\ ctf), d). This mapping fulfills (i)
to (iii) with respect to /, i.e., heR(f ^ ) . The statement of Lemma 3
follows from the definition of S(t, x; /; ̂ ) .

The next lemma states that the family of SD mappings is closed
with respect to the uniform convergence.

LEMMA 4. Let mappings h{s): G -» J < be SD for s = l,2, •••. //
h(9) converges uniformly to a mapping h\G-*<Ssζ (i.e., to every d>0

there exists s0 such that h{s)(t, x) c U(h(t, x), d) and h(t, x) c U(h{8)(t, x), d)

for every s ^ s0 and [t, x] G G ) , then the mapping h is SD as well.

PROOF. TO a given d > 0 and s there exists a measurable set T*d

such that l(TΪ) < d2~s and the mapping h(s) is upper semi-continuous on
G - (T8

d x Rn). Denote Td = \JS T'd then l(Td) < d and all mappings h{8)

are upper semi-continuous on G — (Td x Rn). Let a point [t, x] from
G — (Td x Rn) be given. Choose r > 0. Certainly there exists s such
that p(h{8)(τ, y), h(τ, y)) < r/3 for [τ, y]eG where |0 is the Hausdorff
distance of sets. Since h{s) is upper semi-continuous on the domain con-
sidered there exists q > 0 so that h{8){τ, y)aU(h{s\t, x\ r/3) for [τ, y]e
U([t, x], q)-(Tdx Rn). Finally, we have

Λ(τ, y) c ?7(fe(8)(τ, »), r/3) c C/(fe(8)(ί, a?), 2r/3) c U(h(t, x\ r)

for [τ,v]eU([t,x],q)-(TdxRn).



SCORZA-DRAGONI PROPERTY 315

Before formulating the last lemma we mention certain properties of
the iT-closure. The closure &(A) belongs to if if &(A) Φ 0. If A c B ,
then ί?(A)cl?(jB). If the ^-closure is continuous then to every d > 0
and to every bounded set A there exists r > 0 so that

(5)

LEMMA 5. Let a family ίf0 fulfill (a) to (c) and let the ^-closure be
continuous. If a mapping h:G —> J^J is SD, ίfcew the mapping h+(t, x) =
ξf(h(t, x)) is SD as well.

It is sufficient to prove that h+ is upper semi-continuous if h is
upper semi-continuous. Choose an arbitrary d > 0 and a point [t, x].
Due to (5) there exists r > 0 such that ξ?(U(h(t, x)), r)<zU(&(h(t, x)\ d)
and to this r there exists g > 0 such that h(τ, y) c U(h(t, x\ r) for
[τ, #] 6 ί7([£, α], q). These inclusions yield

g^Wτ, y)) c &{Ό{h{t, x\ r)) c U(ξ?(h(t, x)\ d)

for [τ, I/] e J7([ί, a?], q).

Now we return to the proof of Theorem 3. Let /, i? fulfill the as-
sumptions of Theorem 3. First we put g7 = ^ and prove that S(f;^)
is SD. Define /+(ί, a?) = f(ty x)(l + ||/(tf a?)!!)"1. We have | |/+(ί, a?)|| < 1
and from the ί-locally essential boundedness we obtain ||/+(£, y)\\ < 1 — δ
for almost all y e U(x, δ) and some δ > 0. This implies

(6) (KS(t,x;f+;&),0)<l for [ί,a?]eG.

/ + can be approximated by measurable functions f£ having a finite
number of values such that ||/+(ί, a?)|| < 1 and | |/+(ί, x) - fϊ(t, x)\\ < 1/w.
Lemma 2 states that S(/+, ̂ ) are SD. Since by Lemma 3 S(/+) uni-
formly converges to S(/+), Lemma 4 implies that S(/+) is SD. Evidently
S(t, x; f; r^) = {z(l - \\z \\)~\ z e S(t, x; /+; ^)} (see (6)). This transforma-
tion cannot affect the SD property. Due to Lemma 5 [3] we have
S(t, x;fj&) = ξ?S(t, x f; ^ ) and hence the application of Lemma 5
implies that S(ί, x f; g7) is SD as well.
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