1-1-1969

Scour at the base of spillway buckets.

D.L. Strelchuk
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Strelchuk, D.L., "Scour at the base of spillway buckets." (1969). Electronic Theses and Dissertations. 6840. https://scholar.uwindsor.ca/etd/6840

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

A Thesis
mbmitted to the faculty of Graduate studies through the Donartment of Civil Begheerimg in Partigl Pulfilment of the Requirements for the Decree of Fastor of Applied Soience at the Univeresty or vindsor

$$
b_{V}
$$

-D.E. Strelchuk

$$
\begin{gathered}
\text { Findar, Ontario } \\
1969
\end{gathered}
$$

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EC52776
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

> Appored by

298209

ADETMAOT

An investigation of local scour at the bese of flip buckets was coaducted using gravel as the bed material with a spilluay model having an ogee type weirs an 81 bucket radius and a flipmbucket angle of 45°. Data obtained from previous studies made with a rlip-bucket angle of 30° has also been incorporated.

Empirical equations are presented fox maximum depth of scour, internediate depth of scour along a radius vector ofigincting at the point of maximu scoux, xadius vector length at bed level every 30° and jet trajectory length.

The author wishes to express his sincere thanks to Dr. S.P. Chee. Associate Professor in Civil Ercineering; University of Windsor, for his generous assistance and guidance throughout this study.
ABSTRACT iij
ACKNONLEDGEMENTS j. V
TABLE OF CONTEMTS V
LIST OF FTGUBES vii.
LIST OF TABTES viji
NOMENCLATUPE 1 x
I TivTRODUCTTON 1
1.l. Use of flip buckets 1
3.2 Bucket ancle].
1.3 Jet action 2
1.4 Scoun fomation ?

1. 5 object of investigation 3
II APPARATUS AND PROCEDURE 4
2.1 Apparatus 4
2.2 Procedure 4
2.3 Experimental erroxs 5
IIT MAXTMOM DRPTH OF SCOUR 6
3.1 Fectors affecting the maximum depth of scour 6
3.2 Drop numbex 7
3.3 Reynolde number 7
3.4 Empirical equation for maximum depth of scoux 8
IV scoun hote conprguration 10
4.1 Jet Trajectory length 10
4.2 Radius vector lencth at bed level 13
4.3 Intemediate depth of scour 15
4.4 Typical soour hole 16
V DTscusston or pesutas 17
5.1 Time fon development of meximum soour condition 17
5.2 Maximum cepth of seoux 18
5.2 .1 Flip bucket ancle 18
5.2.2 No scour condition 78
5.2 .3 other equations for maximum depth of scour 20
5.3 Leneth of trajectory 21
5.4 Scour hole conficuration 21
5.5 Effect of Reynolds Number 21.
5.6 Applicetion of Results 22
5.7 Correlation Coefficients 23
APPRNDTX A. Experimental Apparatus. 24
APPEDDTX B. Scour Hole Contours. 28
APDendTX C. Scoun Hole Crossusections. 35
APPENDIX D. Graphs of Observed and Caloulated Values of Experimental Recults. 42
APPENDTX F. Theoretical Scour Hole Configurations. 53
APPMDTX P Theoretical soour Hole Cross-sections. 56
APPEDITX G. Corcelation Coefficients. 59
APFRNDTX E Tabulation of Fxperimental Results. 63
PIBITOGRAETY 74
vita Aucroris 76
Ficure Page
1 Spiltuays and mliy buclets 25
2 spillway in operation 25
3 Sectional view of expeximental apparatus 26
4 plan view or experinental apparetus 27
5 to 10 Bed contours of scour holes $29-34$
10 to 15 Scour hole crossmsections 36.41
16 Observed values versus calculated veluesor D_{T}4317 Observed values versus calculated valuesof $\mathrm{D}_{\mathrm{T}} / \mathrm{H}$44
18 Obsenved valuos versus caloulated velues of Am_{m} row other empitical equetions 45
19 to 25 Observod values versus caloulated values of RO, R30, R60, B90, R120, R150, R180 $46 . .49$
Observed values versus caloulated valuesof $D \operatorname{rox} \alpha=45^{\circ}$50
27
observed valuos versus calculated valuesof $D \tan \alpha=30^{\circ}$51
28
Obsenved values versus alouleted veluesor modol jet trajoctory loacth52
29
Theoretical soour hole contiguration for$\alpha=4.5^{\circ}$5430 Theoreticol scour hole configuration for$\alpha=30^{\circ}$55
31 Theoretioal seoun hole onoss-section $\alpha=4,5^{\circ}$ 57
32 Theoreticel soone hole crossusection $\alpha=30^{\circ}$ 58

ITGT OF TABTES

Table Pace1 Maximan depth of scour, sooured matexislremoved64
2 Meximum depth of scour no scour condtion 64
3 Waximun depth of scour for $\alpha=30^{\circ}$ 654 Maximun depth of scour caloulated by other.empiritcel formulac675 Data and celenlated velues of radius pectorsfor $\alpha=45^{\circ}$68
Data and calculated values of D for$\alpha=45$ degrees and $r / R=2 / 3$69Data for calculation of jet trajectoxy length72
11 Typical soour hole data ford $=45^{\circ}$ 73
12Typical scour hole data $\operatorname{for} \alpha=30^{\circ}$73

NOMETCYATURE

Q
a Discharge in cubic reet per second per root width of spillwey.

In Maximam depth of scour in it.
D Intemodiate depth of scour in ft.
d Nominal particle size of bed matertal in ft.
H Difference in elevation between upstream and tailwater level in ft.
dy Difference in elevetion between spillway lip and tailmater level in f.
\propto Flip bucket anglo in radians.
$V_{S} \quad V e l o c i t y$ ir feet per second at a section through the point of maximum scoux action.

Iy Total jet trajectory Iength in ft.

$B \quad$ Spillway width in ft.
R
Discharge in cubic feet per second.

Depth of tailwater in ft. Acceleration due to gravity in $\mathrm{ft} / \mathrm{sec}^{2}$. Density in $1 \mathrm{~b} \mathrm{sec}^{2} / \mathrm{ft}^{4}$. Dynanic viscosity in 1 b sec/ft ${ }^{2}$. Radius of the rlip bedeket in ft.
R_{6}. Tength of the radias vector at edegreesin ft.
Distance of ony point measpred along any radius vector outhards in it.

E Angie of jet entry into tailwatex with respect to the horizontal in degrees.

CHAPTER 1

TNTRODUCMIOM

1.1 Use of Plip Buokets

Trajectory on inipmbuket devices are used as onergy dissipators at the foot of open spiliways when tailuater levels in the stilling basin are insurficient for hydravic jump fomation. The bucket derlects the high velocity flows as a jet which dissipetes onergy in flight and lands a safe distance downstream where riverbed damage wll not endanger the spilumay structure. It is often used in high spilimays as it is more economical than a deep and expensive hydxaulic jumpotype stilling besin and where hydreulic characteristics of the downstream chanel are not stable enough for accurate predictions of tailwater depths in the stilline basin.
1.? Buclret Ancle

The angle of the bucket with respect to the horizontal affects the amount of energy dissipated in fijeht, the distance the jet will lend downstrean from the spilluay ond the maximum depth of scour in the riverbed. As the trajectory length jncreases the jet lands furtner downstream from the spillway thereby inoweastre energy dissipation throuch longer interaction of the jet 1 th the air. With a greatex exjt ongle
the jet entems the tallwater at a steepor ancle thereby Increasing the verticat relocity component and directine the scourine action deepar into the channal. The net efrect of a steeper cngle endry into the tallvater on the scour hole configuration is to increase the maximum depth of scour and to decrease the horizontal dimensions of the scour pit.

1. 3 Jet Action

After denlection from the trajectory bucket the jet falls freely through the aix on a path determined by the anele of the bucket, the velocity of flow at the point of exit and the effect of air resistance. Intemal turbulence, shearing action of the air sumounding the jet and surface tension are the factors determining the degree of enexgy dissipation in flight.

1.4 Seour Fomettion

When the jet enters the tailwater it has already been partially disjntegrated through interaction with the survounding air. The impact of the plunging jet however is still groat enough to sour the channel bottom. At the point of impact mith the bed material the turbulent eddies of the plunging jet are deflected horizontally domstrean creating dras forcos on the erodible matexiel groator than the resisting forces. The scoured material is transported domnstrean to a point where the weasting forces are greater then the drag

```
foxces and a scour hole is gxadually formed. As the soour
hole deepens the dogree of turbulence of the plunging jet
deoreases whtil a point of equilibrium js reached between
the resisting foree of the bed mateital and the drag foree
resulting in a dish shaped scour hole being formed.
1.5 Object or Investigation
The purpose of this study is to establish empirical formulae for the scour hour configuration which could enable one to predict the maximum depth of scour, the location of the scour hole and its contour pattern from the flow condition, dimensions and relative positions of spillway and basin, and bed material.
```


APPARATUS AND PROCEDURE

2.1 Apparatus

The model used consisted of a spillway having an ogeentype weir, an $8^{\prime \prime}$ bucket radius, a flipmbucket angle of 45° and a width of $16^{\prime \prime}$ with a scour basin made up of $3 / 4$ " gavel having a speciric gravity of 2.65. Manometers placed at the upstream and downstream onds of the basin and at the head tank were used to record water levels. Flows were recorded through the use of an electronic flow meter. The physical arrangement is shown in section and plan in figures 1 and 2 respectively.

2.2 Procedure

Two sets of observations were conducted within a flow range of 0.76 c.f.s to 2.30 c.f.s. In the first set the flow was varied from the lowest value which would cause a masurable amount of scour in the basin to the highest value, within model Iimjtations, to produce the maximm anount of scour. As the scour hole formed, the scoured meterial which was deposited directly downstrean from the scour hole was removed. At the end of tho hours the maximum depth of scour hes measured by means of a sounding rod. As the water drained from the basin. the elevation of the receding water level was monitored with the sounding rod; strings were placed around the scour hole
at 1^{n} or 2^{n} incervals to mark the scour hole contours.

In the second cot of observations the object was to create a no scour condition on to create a condition of complete enexgy dissipstion in the tailvatex with no soour hole formation. This was accomplished by fixing the tailwatex gate at a different elevation fox each observation and then varying the flow for a particular observation and recording the flow at which the scouring action ceused on initial displacement of the bed material.
2.3 Experimental Exrors

The dial graph of the eleotronic flow meter was graduated in divisions of 50 usGPM resulting in graph readings of an accuracy of about 10 USGPM. Fluctuating watex levels in the head tank and scour basin resulted in manometer readinge bejng taken to the nearest 1/8". The bed level xeadings, because of the size of the gravel and the inherent unevenoss of a composed bed could be considered accurate to the nearest $1 / 4.4$.

CHAPTER 3

MAXIMUM DEPTH OF SCOUR

2.1 Factors Affecting the Maximum Depth of Scour

The maximum depth of scour was measured from the tailwater level to the bottom of the scour pit in the set of observations where scour was allowed and from the tailwater level to the top of the gravel bed in the no scour condition set of experiments.

The significant variables affectine the maximum depth (D_{m})
of scour cre $q, H, V s, s, d, P, \mu$ and α where
$q=$ discharge in cubic feet per second per foot width of spillway
$H=$ difference in elevation between upstream and tailwater levels
$V_{S}=$ velocity in feet per second at a section through the point of maximum scour action
$g=$ force due to gravity
$\mathrm{d}=$ mean diameter of the bed material
$\rho=$ mass density of the fluid
$\mu=$ dynamic viscosity of the fluid
$\alpha=$ flip bucket angle in radians
The following relationship can be written:

$$
\begin{equation*}
f\left(D_{m}, q, H, V_{S}, g, d, \rho, \mu, \alpha\right)=0 \tag{3.1}
\end{equation*}
$$

Applioation of Buokingham's Theorem yields six dimensionless parameters.

$$
\begin{equation*}
f\left(\frac{D_{m}}{H}, \frac{D_{m}}{d} ; \frac{V_{s}^{2}}{g D_{m}} ; \frac{V_{s} D_{m}}{D_{m}}, \frac{P V_{S} D_{m}}{\mu}\right)=0 \tag{3.2}
\end{equation*}
$$

Combining dimensionless tems

$$
\begin{align*}
& \left(\frac{D_{m}}{H}\right)^{-1}\left(\frac{D_{n}}{d}\right)=\left(\frac{H}{d}\right) \tag{3.3}\\
& \left(\frac{V_{S} D_{m}}{V^{2}}\right)^{2}\left(\frac{V_{s}^{2}}{g D_{m}}\right)\left(\frac{D_{m}}{H}\right)^{3}=\left(\frac{q^{2}}{\mathrm{H}^{3}}\right) \tag{3.4}
\end{align*}
$$

The functional relationship can be written as

$$
\begin{equation*}
f\left(\frac{D_{m}}{H}, \frac{g^{2}}{G^{3}}, \frac{H}{d}, \alpha, \frac{P V_{s} S_{m}}{\mu}\right)=0 \tag{3.5}
\end{equation*}
$$

Rearranging

$$
\begin{equation*}
\frac{D_{m}}{H}=f\left(\frac{c^{2}}{\mathrm{gH}^{3}}, \frac{H}{d}, \alpha, \frac{P V_{S} D_{m}}{\mu}\right) \tag{3.6}
\end{equation*}
$$

3.2 Drop Number

The dinensionless term $\frac{q^{2}}{\mathrm{gH}^{3}}$ fomed by rultiplying the Froude number with two other parameters is analagous to the 'drop number developed for free overfall (straieht drop) spillmays (1).
3.3 Reynoles Number

The main disturbing force on each stone in the bed is the fom dras. The Reyriolds number can be used as a measure
of the fon dmag coefriotont. Boyond a value of the Reynolde muber of 1000 , based on the moan dianeter of the graven, the dreg coerfictent remetns constant (2). Pox the cancect reprounction of the dres coefresent in the nodel and the prototype, the Reynolds numbe then does not heve to be equal so lons as the flon is rully bubolont with the Reynolds No. geantry than 1000. The model Reynolds number at the end of cach observethon vanded ram 10,700 to 25.700 with an evenege value of 15,400, minch is well within the fulyy turbulent region. Since the value of the Beyrolds numer is rreater in the prototype fits errect is even less significant, and ean be elminated rom the functional relationohip of equation (3.6). The sighifioent dimensionless parameter: can now be watton as

$$
\begin{equation*}
\frac{D_{n}}{H}=f\left(\frac{q^{2}}{g H}, \frac{H}{d}, \alpha\right) \tag{3.7}
\end{equation*}
$$

3.4 Smoinios 1 Eqution for the Meximu Dopth of Soom

The runctional relationship of equation (3.7) can be represented in an empiricet equation of the form

$$
\begin{equation*}
\frac{D_{m}}{H}=k_{0}\left(\frac{q^{2}}{g^{1}}\right)^{k_{1}}\left(\frac{H}{d}\right)^{r_{2}}(\alpha)^{k_{3}} \tag{3.8}
\end{equation*}
$$

where K_{0}, K_{1}, K_{2} and K_{3} are empiricat constants detemined from expertmontal observations.

The results of schoklitsch (3) Indocate that a doubling
of unit discharge inoxeases the depth of soour ly approximatoly 50% and thet an increase in H of about six times would have to be afrected to orate the same increase in the depth or scour. Experimental obsexvetions pesented in Table no. 1 show that with a 45 degree angle mip.oncket a doubling in flow results in an approximately 50% increase in maximm depth of scour while a tripling of flow resulted in an appoximate increase in the maximum depth of scour of 80%.

Based on the foregolng, ond the previously stated ascumptions as a promise, the following non-dimensional equation was found:

$$
\begin{equation*}
\frac{D_{m}}{H}=3.695\left(\frac{q^{2}}{\varepsilon^{H}}\right)^{\cdot 30}\left(\frac{\mathrm{H}}{d}\right)^{\cdot 30}(\alpha)^{.36} \tag{3.9}
\end{equation*}
$$

Simplifying

$$
\begin{equation*}
D_{\mathrm{r}}=1.301 \frac{\mathrm{~g}^{.60} \mathrm{H}^{20} \alpha^{.36}}{\mathrm{~d}^{\cdot 10}} \tag{3.10}
\end{equation*}
$$

For $\alpha=30^{\circ}$

$$
\begin{equation*}
\mathrm{D}_{\mathrm{m}}=1.030 \frac{\mathrm{~g} \cdot 60_{\mathrm{H}} \cdot 20}{\mathrm{~d} \cdot 10} \tag{3.11}
\end{equation*}
$$

FOX $\alpha=45^{\circ}$.

$$
\begin{equation*}
\mathrm{D}_{\mathrm{m}}=1.193 \frac{\mathrm{~g} \cdot 60_{\mathrm{H}} \cdot 20}{\mathrm{~d} \cdot 10} \tag{3.12}
\end{equation*}
$$

A plot of calculated vorsu obsorvol valies for D_{m} and $\mathrm{D}_{\mathrm{m}} / \mathrm{H}$ are presented in Figures (16) and (17) Tespectively.

CBAPMer 4

4.7 Jet Trajectozy Sength

The length of jet trajectory If is the homizontal distence between the edge of the spillway and the point of maximum depth of scour: Neglecting the efrects of ajr xesistance it is assumed that when the jet leaves the spillway it acts as a freely felling kody in the air following a parabolic path having a constant howizontal velocity and a gravity acolerating vertioal velocity. When the jet envers the teilwater the assumption that the effects of the sumoundng fluid oxe negligible is no longer valid and the path of flow canot be assumed to be totally dependent on gravity. It is assumed then that the path of the submerged jet contimues on a tangent to the parabolic jet in ajr at the point of entry of the jet into the tallwater and also that the peth of the lower nappe of the jet intersects the maximum depth of scour.

The total leneth of tajectory, I_{y}, with an injtial velocity V_{o} is the sum of the howizontel distsnce the lover nappe of the jet travols up to the crossmover point of the axis of the lower nappe of the jet with the water surface, la, and the horizontal distance the submerged jet travela from the point or entry into the tailuater to the point of maximum dopth
of scour. $I_{\text {r }}$.
The initial voloelty of the jet. Vo, vas caloulated by applying Bemoulitis equation to the upstream tank reservoin and at the base of the flipmbucket, neglecting the velocity head in the tank and assuning that the head loss due to friction between the two sections was negligible.

Taking as the contre of coondinate axes the point of exit of the jet from the spillway lip, with the oxdinate postrive in the uprard dunection the equation for the trajectoxy of the lonex surface of the free falling nappe is

$$
\begin{equation*}
y=-\frac{8}{2 v_{0}^{2} \cos ^{2} \alpha} x^{2}+x \tan \alpha \tag{4,1}
\end{equation*}
$$

where x and y are coondinetes of any point on the lowex nappe.
At the point of entry of the jet with the water surface $x=I_{A}$ and $y=d_{T}$ where d_{T} is the vertical distance from the lip of the flip-bucket to the tailwater level. Substituting in equetion (4.1) and solving for L_{A},

$$
I_{A}=\frac{v_{0}^{2} \cos ^{2} \alpha}{8}\left[\tan \alpha+\sqrt{\tan ^{2} \alpha+\frac{2 \tan ^{2}}{V_{0}^{2} \cos \alpha}}\right]
$$

After the jet enters the tailwater, the horizontal distance fros the point of entry to the point of naximum depth of scour is.

$$
\begin{equation*}
I_{0}=-\frac{\operatorname{Dn}}{\tan \theta_{T}} \tag{4,3}
\end{equation*}
$$

where $\theta_{\text {p }}$ is the angle of the entry of the jet with rempect
to the horizontal. Taking the first derivative of y with respect to x in equation (4.J), at the point (4 , -dT),

$$
\begin{equation*}
\tan \theta_{x}=\frac{-\operatorname{ct}^{2}}{V_{0}^{2} \cos ^{2} \alpha}+\tan \alpha \tag{4,4}
\end{equation*}
$$

Subetituting in equation (4.3).

$$
\begin{equation*}
I_{\mathbb{N}}=\frac{D_{n}}{\frac{Q_{0}}{V_{0}{ }^{2} \cos ^{2} \alpha}-\tan \alpha} \tag{4,5}
\end{equation*}
$$

The total horizontal trajeetory lencth is then

$$
\begin{equation*}
L_{0}=I_{A}+I_{\mathrm{H}} \tag{4.6}
\end{equation*}
$$

where I_{A} and I_{W} are given by equations (4.2) and (4.3) respectively.

For a flipmbucket angle of 45° and a value of f of $32.2 \mathrm{ft} / \mathrm{sec}^{2}$ equations (4.2) and (4.3) reduce to

$$
\begin{equation*}
I_{A}=.0156 \mathrm{~V}_{0}^{2}\left[1+\sqrt{1+\frac{128.8 d_{\mathrm{T}}}{V_{0}^{2}}}\right] \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{0}=\frac{\mathrm{D}_{n} \mathrm{~V}_{0}^{2}}{64.4 \mathrm{I}_{\mathrm{A}}-\mathrm{VO}_{0}^{2}} \tag{4,8}
\end{equation*}
$$

A plot of observed values of trajectory length versus calculatod values is presented in pigure (28). It can be seen that fox all cases the observed values are smaller than the caloulated values. This is due to necriecting the effoct of aix resistence as a retarding factor in the jet trajectory length and the energy losses in the spillway bucket. The lowest value on the graph can be ignored since it represents
the smallect rlow that will oxit mrom the bueket as a jet and as a result the fxictional forces of the spillway have a disproportionate erroot on the theoretical exit velocity used in the trajectory length calculation on the assumption that the frictional rorces could be ignored. The remaining points indicate an observed trajectory length on about 95% the value of the calculated velue. For a 45° angle flip bucket the model length of jet trajectory can then be reprecented by

$$
\begin{equation*}
I_{j}=.95\left(I_{A}+I_{W}\right) \tag{4.9}
\end{equation*}
$$

where IA and In are caioulated using equations (4.7) and (4.8) .
4.2 Radius Vector Lengthe at Bed Level

Using the point of maximun depth of soour as origin and assuming the scour hole to be sympetrical about a reference line passing through the point of maximm depth of scour and parallel to the direction of flow empirical equations are denived for radius vector lengths at bed level at 30 degree intervals.

The significant variables that were assumed to arpect the radius vector lengths are represented in the followtre functional relationship.

$$
\begin{equation*}
R_{\theta}=r\left(B, D_{m} ; h, H_{i} d\right) \tag{4.30}
\end{equation*}
$$

Where $R_{0}=$ radus vector oxiginatinc from the maximum depth of scour θ decrees from the reference axis with the zoro degree xadus veotor pointing in the upstrean direction and meacured to the rim of the pit.

$$
B=\text { width of the spillway }
$$

$$
D_{\mathrm{m}}=\text { maximum depth of scour measured from the }
$$ tailvater elevation

$h=$ depth of taflwater
$d=$ mean dianeter of the bed material
Introducins cmpirical paraneters, a relationship of the following form may be written:

$$
\begin{equation*}
\frac{R_{s}}{B}=C\left(\frac{D_{m-n}}{h}\right)^{X}\left(\frac{X}{d}\right)^{Y} \tag{4.71}
\end{equation*}
$$

where C, x end y are empirical constants.
Based on the experimental results and the work of others (4,5), the following equetions for the spillway model having a 45° angle flip-bucket wore obtained:

$$
\begin{align*}
& R_{0}=0.85 \mathrm{~B}\left(\frac{I_{m-h}}{h}\right)^{0.37}\left(\frac{H}{d}\right)^{0.16} \tag{4.12}\\
& R_{30}=0.81 \mathrm{~B}\left(\frac{D_{r}-h}{h}\right)^{0.23}\left(\frac{H}{d}\right)^{0.26} \tag{4.13}\\
& R_{60}=0.71 \mathrm{~B}\left(\frac{D_{m}-h}{h}\right)^{0.31}\left(\frac{H}{d}\right)^{0.28} \tag{4.14}\\
& R_{90}=0.60 \mathrm{~B}\left(\frac{D \mathrm{D}-\mathrm{h}}{h}\right)^{0.65}\left(\frac{H}{d}\right)^{0.24} \tag{4.7.5}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{B}_{120}=0.97 \mathrm{~B}\left(\frac{\mathrm{Dm}_{\mathrm{m}}}{\mathrm{~h}}\right)^{093}\left(\frac{\mathrm{n}}{\mathrm{~d}}\right)^{.25} \tag{4.16}\\
& \mathrm{P}_{1} 50=1.25 \mathrm{~B}\left(\frac{\mathrm{D}-\mathrm{h}}{\mathrm{~h}}\right)^{01}\left(\frac{\mathrm{E}}{\mathrm{~d}}\right) .07 \tag{4,17}\\
& B_{180}=1.29 B\left(\frac{D_{x}-h}{h}\right)^{72}\left(\frac{H}{a}\right)^{.04} \tag{4.18}
\end{align*}
$$

A plot of calculated versus observed for the above are presented in Figures (19) to (25).

4.3 Intermediate Denths of Soonr

The intermediate depth of scour D, is the vertical distance measured from a point a distance r elong the radius vector P to the bottom of the scour pit below. The oricin of the coordnate axes is the intersection of a plane parallel to the scour bed level with a vertical line passing through the point of maxima depth of scour; the oxdinate with positive direction is taken downard, the abscissae are the directions of the radius vectors.

The functional relationship of signtricent variables can be written as

$$
\begin{equation*}
D=r\left(D_{m}, h, r, R_{\theta}\right) \tag{4.19}
\end{equation*}
$$

Assuming that the geonetric form of any scom hole profile emanating from the point of maximus depth of soow is a paraboia with verter at ($0,-\mathrm{D}_{\mathrm{r}}+\mathrm{h}$) the signtiont variables may be oxpressed as

$$
\begin{equation*}
D=\left(D_{n} n\right)\left(1-\frac{n^{2}}{R_{\theta}^{2}}\right) \tag{4.16}
\end{equation*}
$$

A plot of observed values of intermediate depth of scour versus caloulated velues by equation (4.16) fox observations of the 45° angle rlipmbucket ustas $x / R=1 / 3$ and $2 / 3$ and for obscrvations of the 30° ancle flipmbuctet (5) using $x / n=3 / 4$ and $x / A=3 / 4$ are shown in figures (26) to (27) respectively.
4.4 Typical Scour Doles

A theoretioal typical scour hole configuration for the
45 degree flipmbucket angle is prosented in pigure (22)
whexe q, H, h and d are given; D_{m} is calculated from equation (3.12); ir from equations (4.12) through (4.18) and D from equation (4.16).

Similarly a theoretical typieal scour hole consiguration for the 30 degree flip.bucket angle is presented in Figure (23) where q, H, h and d are given, D_{m} is calculated from equation (3.11), I from previously developed equations (13) and D from equation (4.16).

DTEUUSSTON OR RESUTTS

5.1 Time for Develoment of Meximum Seour Condtion

An important consideration for the development of maximum depth of scour is whether or rot the model has operated for a length or time supriciemt for its formation. Based on previous use of a similax model (5) a model run time of two hours was chosen.

The maximu depth of scour in a non-conesive bed material occurs. When the drag forces caused by the horizontal deflection of the jet by the bed is in equilibrinm with the resisting forces of the bed material. By inspection it was found that after a model ruming time of approximately one half hour the maximum depth of sconr was formed. Beyond this time the drag foxces were not great enough to transport the material out of the scour hole but were great enough to cause suspension and exratic movenent of bed material within the scour hole. At the point of equilibrim then, the dres forces are sufficient to keep some of the bed matexial in suspension but insufficient to transport them away from the scom pit. Any further increase in the marimun depth of scour at this point would be a result of erosion of the individuel particles or a reduction in perticle size dianeter caused by abreston of
the suspended matexie] whe the bed which would in offoct decrease the mosisting force of the particle to the point whexe the drag forees would be capeble of removing it from the scour pit.
5.2 Maximum Depth of Scour
5.2.1 Flio Bucket Ancle

By examining equations (3.11) and (3.12) it can be seen that the increase in the maximum depth of scour by increesing the flip bucket angle from 30° to 45° and by keeping q, H and 0 constant is approximately 16 percent. The increased depth is a result of the steeper angle of entry of the jet into the tailweter thereby inoreasine the vertioal component of the scouring action and causing the jet to dig deeper into the scour bed. 5.2.2 No Scour Condition

The results of the no scour condition obervations with the 45 degree angle flip bucket descabed in section 2.2 are given in Table 2 . In this case the maximum depth of scour at equilibrium is simply the tallwater depth. From Figure(18) where the moximum depth of scour for both cases is ombincd, the resulting plot indjeates thet for a given q, 1 and d the meximum depth of scour would be the same whether the elevation of the gravel bed was such that a scour hole formed, or whether
the grevol bod mas at an elovathon whowe no scour occureed. It would appear then that the maximum depth of scont is indepentent of the type of bed material. howevers this is not the case since in both the scons ond no soour condition, equiliortwa between the dras foxces and the resisting rorces of the bed material exists at the final point of contact of the plunging jet and the bed. Whe disstretton of the enorey of the get is caused by impact with the tollmater resulting in energy dissipating turbulent eddies and by impsot of the turbulent eddies with the bed matexial creating drag forces which act on the gravel bed with the resisting foree dependent on the partiole size and speciric gravity of the material. If a sand bed was substibuted for the gravel bed and the same q, H and d which resulted in a no scoux condition in the cravel bed were applied to the send bed, scour would form since the reststinc forees of the sand particias are not as areat as cravel. The scouring action would contimue until on equilibxium between the two opposing forces was attained. Thus the particle size of s non-cohosive bed material ss an important factor in the detemmation of the maximun depth of scour.
5.2.3 Other Eguations for the Maximum Depth of Scoux

Veronese - U.e.b.E (1), Whosha (6), and Schokistch.
(7) heve sugecsted the following equations for maximum depth of scour at equilibniun. The units are the sane as those of this paper valess otherwise noted.

$$
\begin{align*}
& \text { Veronese-USBR }: D_{m}=1.32 q^{0.54} \mathrm{H}^{0.225} \\
& \text { Whosla }: D_{\mathrm{m}}=\mathrm{K} \frac{\left(0.9 \mathrm{a}^{2 / 3}\right)}{\mathrm{FI/3}} \tag{5.2}
\end{align*}
$$

where $r=8 d^{1 / 2}$ is the Lacey silt factor and d is expressed in inches and K is an empinical coefficient with a known range of value from 1.5 to 2.1.

Schokitach $: \mathrm{D}_{\mathrm{m}}=\frac{3.25 \mathrm{a}^{0.57} \mathrm{H}^{0.5}}{\mathrm{amm}_{\mathrm{ma}}^{0.32}}$
The above equations were uced to calculate the maximum depth of scour using the deta of the observetions of the 45 degree flip bucket angle splliway the results are plotted in figure (18). The caloulated values are in all cases lower than the observed values. A possible explanetion is the omission of the flipmbuchet angle as a voriable in all thoe equations. As previously discussed the depth of scour vories with an increase in etipmbuket angle. Assuming this to be valid each of the above equations are true for a specific ancle of flip bioket wheh is less than 45°. Anothex interesting featuxe apparent in Figure (18) is the

```
sintlarity of the plota for each particular equatton.
```


5.3 Tencth of Trajectory

The molel jet trajectory lengta given by equation (4.9) Will probably not occur with prototype lencths because of the greatew effect of spay formation, air resistance, and the hicher velocity prototype jets experience. It has been sugeested that prototype trajectory lemsths are amporimately 5\% Iess thon model jet trajeotory longths. (3).

5.4 Sour Tole Confsuretion

Typiocl scour holes for the 30 and 45 derree angle flip buckets plotted from the empirical guations presented in Chapter 4 axe presented in Fignees (29) and (30) respectively. In both cases the point of maximum scour is dowstream fron the geometrical centre of the scom hole with the 45 degree ancle flin bucket scour hole closer to the center. This indjeates that the scour hole becones more cixcular as the flip.bucket angle increases.
5.5 Efreet or Reynozas maber

An attempt to detemine whether the basin Beynolds No. had any simificant effect on tho maximan scour bole depth had also been mede. The scom hole Reynolds No. is defined as $V_{S} R / V$, where the velocity (V_{S}) and the hydraulic radus (B) refen to the cross-section where maximum scom ocoured. These cross- sections with the corresponding longttudinal proniles ace given in figs (10) to (15).

Wo positime conalusion con be aram with reaurd to the influence this paraeter has on the Itriting soour hole depth since all model flows wore whin the fully twoulent rocion.
5.6 Amploution or pesplts

Whowins the range of spllitway flows and the composition of the downatream river bed the equothons presented could be used in prototype design to detexpinc the buoket lip clavetion for e no scour condition in the rivex bed based on the meximum depth of scour caused by the meximum design flow of the ppilumat and based on the comespondine telluater depth determined by dommorean chamel charscteristios. If the spilluay lip alevation was fixod the minimum taflwatex for a no sour condition coula be determinod.

It a no scour condition is not feesible then a pre-exenvater scour hole could be provided to accommodate the scourine action of the jet. The dimensions of the pit would be dependent on the jet trajectory lengths and soour hole comrimmations.

Rquation (3.9) ineludes all the aicniriost dimensiontess parametors and should have ceneral appliootion. An area of furthen study howeven could perhaps be the verificettion of the exponent for the mipmbucket ancle since only two were used in this study. Application of the equations for intermentate depth of scour and redina rector longths should be rept within the comesmondinc prototype flows vsed in the model study wth the prinoiple of superposition applied to detemine prototype scom hole configuration.

```
    Wultiple and individuel comrelation conficionts for eack
equation rresented in this study are etven in Appendix G.
```


APMENDTX A.

Experimentel Appamatus

$\ll 30^{\circ}$

$$
c x=30^{\circ}
$$

FIG. 1 splllways Q Plempuciete

FIG. 2 splllmay in openation

FIG. 3 sectional ven of expermental apparatus

Fig. 6 pan vew or mpamenta amparatub

APPGNDIX B.
Scour Hole Contoums

FIG. 5 DISTANCE FROM DOWNSTREAM EDGE OF FIP EUCRET. (FT.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDTX C.
Sour Hole Crossusections

FTH. 10 Thansverse e cross-section

Fig. 11

F16. 12

LONGTUDNAL E CROSS-GECTION

F16. 13

LONGITUDINAL \& CROSS-SECTION
1 spllimar

TRANSVERSE Q CROSS-SEGTION

FIG. 14

Fig. 15

APEPDDTK D.
Graphs ot Observed and Caloulated
Values of Experimentel Pesults

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIG. 19

c- LE3A N oad do sanTy agivmootvo

-a- - 1334 N one so s3mva a3vmomvo

FIG. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPTNDIX E.
Theoretion Scour Fole Conitguretions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADPEMOTX ${ }^{2}$.
Thooreticel scour Hole Crossuseotions

LONGTUDNAL G Crose-srghon

SPILLDAY

TheGRTMAL BCOUR HOLE COWmbunath an 30°
F16. 32

ADPEMDTX G.
Comelation Coerficients

$$
\begin{aligned}
& x=\text { CORRELATION COEPPICIENT } \\
& v=b_{0}\left(x_{1}\right)^{b 1}\left(x_{2}\right)^{b_{2}}\left(x_{3}\right)^{b} 3 \\
& A=\operatorname{IOG}_{e} Y-\left(\operatorname{IOG}_{e}^{Y}\right)_{A Y E} \\
& B=\log _{e} X_{1}-\left(\log _{e} X_{1}\right)_{A V E} \\
& C=\log _{e} X_{2}-\left(\operatorname{IOG}_{e^{X}}\right)_{A V E} \\
& D=\log _{e^{x}} x_{3}-\left(\operatorname{LOG}_{e^{x}}\right)_{A V E} \\
& \text { mo }=\text { multiple comelation coefficient }=\sqrt{\frac{b y A B+D_{2} \sum A C+b 3 \Sigma A D}{\sum A A}}
\end{aligned}
$$

ERUATION	V	$\mathrm{X}_{\text {I }}$	x_{2}	x_{3}	$r_{\text {me }}$	Mng Value of at SH Jevel of Significence
$\frac{5 m}{2}=3.70\left(\frac{q^{2}}{H^{3}}\right)^{.30}\left(\frac{\mathrm{~L}}{\mathrm{\alpha}}\right)^{.10}(\alpha)^{.36}$	$\frac{\mathrm{Dm}}{\mathrm{H}}$	$\frac{q^{2}}{s^{3}}$	$\frac{\mathrm{H}}{\mathrm{d}}$	α	0.946	0.445
$\left.\frac{30}{3}=0.8 \frac{\operatorname{man}}{n}\right) \cdot 31\left(\frac{\pi}{d}\right) \cdot 16$	$\frac{\text { Ro }}{8}$	$\frac{5 m-n}{n}$	$\frac{E}{3}$		0.818	0.697
$\frac{B 30}{B}=0.81 \cdot\left(\frac{D_{0}-h}{h}\right) \cdot 23\left(\frac{H}{a}\right) \cdot 16$	$\frac{230}{3}$	$\frac{D_{m}-h}{h}$	$\frac{1}{d}$		0.721	0.697
$\frac{860}{n}=0.71\left(\frac{m-h}{h}\right) \cdot 37\left(\frac{H}{0}\right) \cdot .18$	$\frac{180}{3}$	$\frac{D_{m}-\mathrm{h}}{\mathrm{h}}$	$\frac{3}{2}$		0.753	0.697
$\frac{890}{2}=0.60\left(\frac{0 m-h}{h}\right)^{6} \cdot 65\left(\frac{\mathrm{a}}{\mathrm{d}}\right) \cdot 24$	$\frac{900}{\mathrm{~B}}$	$\frac{n_{r a}-h}{n}$	$\frac{1}{d}$		0.821	0.697
$\frac{320}{3}=0.97\left(\frac{\mathrm{D}-\mathrm{h}}{\mathrm{h}}\right)^{.93}\left(\frac{\mathrm{E}}{\mathrm{d}}\right)^{.15}$	$\frac{R 20}{B}$	$\frac{D_{m-n}}{n}$	$\frac{\mathrm{E}}{\mathrm{C}}$		0.896	$0.68 ?$
$\frac{Q_{1} 50}{\mathrm{~B}}=7.25\left(\frac{\mathrm{D}-\mathrm{h}}{\mathrm{~h}}\right)^{\cdot 97}\left(\frac{\mathrm{~d}}{\mathrm{~d}}\right)^{007}$	$\frac{2750}{E}$	$\frac{D m-h}{h}$	$\frac{\mathrm{C}}{\mathrm{d}}$		0.990	0.697
$\frac{9180}{B}=1.29\left(\frac{\square}{n}\right)^{.72}\left(\frac{\mathrm{~d}}{\mathrm{~d}}\right)^{04}$	$\frac{5190}{8}$	$\frac{\text { Dm.h }}{\mathrm{h}}$	$\frac{\pi}{a}$		0.90?	.0.697

EQUETTON	RPMARKS	Y	X_{1}	X_{2}	rme	$\begin{aligned} & \text { Min. Value } \\ & \text { oi } x \text { at } \\ & 5 \% \text { Ievel of } \\ & \text { Sienificance } \end{aligned}$
$D=(D m-h)\left(1-\frac{r^{2}}{R_{\theta}^{2}}\right)$	$\begin{aligned} & \frac{\pi}{R_{\theta}}=\frac{7}{3} \\ & \alpha=45^{\circ} \end{aligned}$	D	$\mathrm{D}_{\mathrm{m}} \mathrm{h}$	$\frac{-2}{-\frac{x^{2}}{2}}$	0.978	0.378
$D=\left(D_{m}-1\right)\left(1-\frac{n^{2}}{R_{\theta}^{2}}\right)$	$\begin{aligned} \frac{n}{R_{0}} & =\frac{2}{3} \\ \alpha & =45^{\circ} \end{aligned}$	D	$\mathrm{Dm}_{\mathrm{m}} \mathrm{h}$	$\frac{4}{E_{0}^{2}}$	0.882	0.378
$n=\left(D_{m}-h\right)\left(1-\frac{a^{2}}{R_{e}{ }^{2}}\right)$	$\frac{r}{p_{\theta}}=\frac{1}{4}$ $\alpha=30^{\circ}$	D	$D_{m}-n$	$1-\frac{a^{2}}{R_{\theta}^{2}}$	0.759	0.218
$D=\left(D_{m}-h\right)\left(7-\frac{a^{2}}{p_{\theta}^{2}}\right)$	$\begin{aligned} & \frac{r}{r_{e}}=\frac{3}{4} \\ & \alpha=30^{\circ} \end{aligned}$	D	$D_{\mathrm{ma}} \mathrm{h}$	$\frac{a^{2}}{P^{2}}$	0.645	0.213
$D=\left(D_{m}-h^{\prime}\left(1-\frac{r^{2}}{D_{\theta}^{2}}\right)\right.$	$\begin{aligned} & \frac{2}{B_{\theta}} \frac{1}{3} \frac{2}{3} \\ & \alpha=45^{\circ} \end{aligned}$	D	Dm-h	$\frac{1-\frac{x^{2}}{B_{0}^{2}}}{}$	0.499	0.270
$D=\left(D_{n-h}\right)\left(-\frac{x^{2}}{n_{0}^{2}}\right)$	$\frac{x}{\alpha=30^{\circ}}$	D	$\mathrm{D}_{\mathrm{m}}-\mathrm{h}$	$-\frac{r^{2}}{R_{y}^{2}}$	0.780	0.156

ADREDOTX H. TaOutetion of Experimentel Resulth

 BED MATERTAT, $3 / 44$ GandeT

GQTTTMAY TJOMT : 766 ETOTMT RADTUS: 8n BUTE ETCBET ATGTE : 45°

BXDT. No.	$\begin{gathered} Q \\ \text { vocpm } \end{gathered}$	$\begin{gathered} 9 \\ \cos / \mathrm{t} t \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{Pe}_{\mathrm{C}} \end{gathered}$	hit:	$\begin{gathered} \text { DEPQ op scour, } \\ \mathrm{Tm}_{\mathrm{m}}(\mathrm{tt}) \end{gathered}$		$\mathrm{D}_{\mathrm{m}} / \mathrm{L}$	
					OBS.	CATC.	OQ9.	CATC.
1	365	0.61	2.92	1.21	7. 10	7.45	0.48	0.50
2	515	0.86	2.82	1.47	2.04	1.78	0.72	0.63
3	675	7.13	2.83	7.32	2.29	2.09	0.81	0.74
4	780	1.30	3.02	1.33	2.39	2.31	0.79	0.76
5	940	1.57	3.06	7. 37	2.48	2.59	0.81	0.85
6	7100	2.84	3.05	1. 4.4	2.54	2.85	0.83	0.93

ABIE NO. 2

TYPE : MO SCOUR ATTOWED
DED MATPRTAT : $3 / 4$ GQAVET.

SPITTAY WTDTH : 16"
DUCKET RADTUS : $8^{\prime \prime}$
RLTP BUCKET ANGTR : 45

$\begin{gathered} \text { EYPT } \\ \text { NO. } \end{gathered}$	$\begin{gathered} 0 \\ \operatorname{toc} \sin \end{gathered}$	$\begin{gathered} q \\ c s s / \hat{i} t \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { fte } \end{gathered}$	$\begin{gathered} h \\ i t \end{gathered}$	$\begin{gathered} \text { DEPTH OP SCOUR, } \\ D_{\mathrm{r}}\left(\mathrm{~m}_{\mathrm{s}}\right) \end{gathered}$		$\mathrm{D}_{\mathrm{m}} / \mathrm{H}$	
					OBS.	CATC.	O3,	ChTC.
7	405	$0.6 ?$	2.93	1.24	784	1.55	0.42	0.53
8	420	0.70	2.73	$1 \cdot 42$	3.42	1. 56	$0.5 ?$	0.57
9	400	0.82	2.45	1.73	1.73	2.68	0.77	0.68
20	500	0.93	2.20	2.04	2.04	7.78	0.93	0.83
11	810	1.35	7.96	2.37	2.37	2.17	7.21	2.17

```
\alpha=30}\mathrm{ ; DAPA RPOM THE RESUTTS OR PADTYAY (5)
    Dm
```

$\begin{gathered} \text { सxpT. } \\ \text { No. } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { in. } \end{gathered}$	$\begin{aligned} & \mathrm{B}_{\mathrm{B}} \\ & \text { in. } \end{aligned}$	BED Mate.. 2507 (CR)	$\begin{gathered} a \\ \text { UsGPN } \end{gathered}$	$\left\|\begin{array}{c} q \\ c x s / f t \end{array}\right\|$	$\begin{array}{r} \mathrm{H} \\ \mathrm{rt} \end{array}$	$\begin{gathered} h \\ \text { in. } \end{gathered}$	$\begin{aligned} & \text { Depth or } \\ & \text { Scoux } \\ & D_{m}(x t) \end{aligned}$		$\mathrm{D}_{\mathrm{m}} / \mathrm{H}$	
								OBS.	Catc.	OBS.	Cate.
$1 a$	24	12	1/4 $4^{\prime \prime}$	250	0.28	2.93	4.50	0.88	0.89	0.30	0.31
20	24	12	$7 / 4$.	360	0.40	2.96	4.50	1.02	1.17	0.34	0.38
32	24	12	1/4:	450	0.50	2.98	5.38	1.24	1.27	0.42	0.43
40	24	12	1/4:	650	0.73	2.97	6.38	2.54	1.58	0.52	0.53
$5 a$	24	12	1/4:	1050	1.18	2.83	9.50	2.19	2.09	0.77	0.74
63	24	12	3/4'	250	0.28	2.75	6.00	0.77	0.79	0.28	0.29
$7 a$	24.	12	3/4"	500	0.56	2.65	0.25	1.27	1.18	0.48	0.45
$8 a$	24	12	3/4"	750	0.84	2.42	12.25	1.61	1.48	0.67	0.67
98	24	12	3/4'	1000	1.13	2.92	8.00	2.01	1.82	0.69	0.62
10a	24	12	3/4"	1250	12.42	2.88	2.50	2.27	2.02	0.79	0.72
17 a	36	8	1/4	350	0.59	3.46	7.50	1.65	1.44	0.48	0.42
12 a	16	8	1/4"	500	0.85	3.10	9.38	2.00	1.89	0.59	0.56
13 a	16	8	$I / 4$,	750	1.27	3.32	12.00	2.23	2.25	0.67	0.68

Ha	16	8	1/43	1000	1.70	3.22	14.93	2.42	2.65	0.76	0.83
150	16	8	$3 / 43$	250	0.42	3.38	$5: 88$	0.86	2. 31	0.26	0.33
16a	16	8	$3 / 4$	500	0.85	3.25	9.25	1.86	1.68	0.59	0.53
17 a	76	8	3/4:	750	1.27	3.27	12.25	2.08	2.00	0.65	0.62
$18 a$	16	8	3/4:	1000	1.70	3.08	18.50	2.29	2.34	0.74	0.76
$19 a$	24	12	7/4:	450	0.51	2.98	14.00	7.17	1.27	0.39	0.4 .3
209	24	12	$3 / 4!$	7.90	0.21	2.90	8.25	0.69	0.75	0.24	0.26
210	24	12	$7 / 46$	265	0.30	2.93	10.50	0.88	0.92	0.30	0.31
22 a	24	72	3/4*	370	0.33	2.96	12.25	1.02	1.08	0.34	0.36
233	24	12	7/4,	650	0.73	2.97	17.38	7.45	1. 58	0.19	0.53
24 a	16	8	1/4:	350	0.59	3.45	7.75	1.65	1. 144	0.48	0.42
25 a	16	8	1/4:	210	0.33	3.48	5.88	7.06	1.02	0.30	0.29
260	16	8	$7 / 4^{3}$	500	0.85	3.40	9.38	2.00	1.77	0.59	0.52
$27{ }^{\circ}$	16	8	1/4:	750	1.28	3.33	12.00	2.23	2.26	$0.6 ?$	0.68
280	16	8	1/4:	1000	1.71	3.22	14.13	2.42	2.67	0.75	0.83

MAKTMUY DEPMH OF SCOUR CATCULATED PRON

$\alpha=45^{\circ}$
d. $=.0625^{\circ}$

VEROWESE $-453 R$
$D_{0}=1.32 q^{0.54} H^{0.225}$
mmosta
$\mathrm{D}_{\mathrm{m}}=\frac{\mathrm{K}\left(0.9 q^{2 / 3}\right)}{\mathrm{m}^{1 / 3}} ; f=8 \mathrm{a}_{\mathrm{in}} \mathrm{I}^{\prime 2}($ Tacey silt factor)
K(empinical coef.) assumed $=2.1$
SHODUTTSCH
$D=\frac{3.159^{0.57 \mathrm{~T}^{0.2}}}{a_{\mathrm{mm}}^{0.32}}$

DATA AWD CaTOULARD VADEB OB matue vRORORS $B=16: \quad$ BUCTET RADTUS $=8^{3} \quad \alpha=45^{\circ}$

$$
\begin{aligned}
& 0^{\circ}: \mathrm{R}_{0}=.849 \mathrm{~B}\left[\frac{\mathrm{D}_{\mathrm{mm}}}{\mathrm{~h}}\right]^{0.32}\left[\frac{\mathrm{~g}}{\mathrm{~d}}\right]^{0.16} \\
& 30^{\circ}: B_{30}=.806 \mathrm{E}\left[\frac{D_{m}-1}{\mathrm{~h}}\right]^{0.23}\left[\frac{\mathrm{I}}{\mathrm{~d}}\right]^{0.16} \\
& 60^{\circ}: R_{6}=.706 \mathrm{~B}\left[\frac{D_{n}-h}{h}\right]^{0.31}\left[\frac{\mathrm{H}}{\mathrm{~d}}{ }^{0.18}\right. \\
& 90^{\circ}: \mathrm{B}_{00}=.603 B\left[\frac{D_{m}}{h}\right] 0.65\left[\frac{H}{d}\right]^{0.24} \\
& 120 \% \mathrm{~B}_{120}=.966 \mathrm{~B}\left[\frac{\mathrm{Dr}}{\mathrm{~h}}\right]^{0.93}\left[\frac{\mathrm{H}}{\mathrm{~g}}\right] 0.15 \\
& 150^{\circ}: 11250=1.247 \mathrm{~B}\left[\frac{\mathrm{Dm} \cdot \mathrm{~h}}{\mathrm{n}}\right]^{0.91}\left[\frac{\mathrm{H}}{\mathrm{a}}\right] 0.07 \\
& 180^{\circ}: \mathrm{B} 980=1.287 \mathrm{~B}\left[\frac{\mathrm{Dra}-h}{\mathrm{~h}}\right] 0.72\left[\frac{1}{\mathrm{~d}}\right] .04
\end{aligned}
$$

OBBERVED AMD CADCUCATED VADES OR $\operatorname{D'POR} x / R=1 / 3$

$$
\alpha=45^{\circ} \quad B=16^{\prime \prime} \quad R_{B}=8^{n} \quad d=.065^{\circ}
$$

Expm。	OBSEPVED WATUES Of eds (ft.)								$\begin{aligned} & \mathrm{Dent} \\ & (\mathrm{fto}) \end{aligned}$
No.	0°	30°	60°	90°	120°	150°	180°	AVE.	
1	0.27	0.97	0.17	0.37	0.17	0.17	0.16	0.17	0.21
2	0.45	0.45	0.48	0.46	0.47	0.50	0.50	$0.4{ }^{4}$	0.28
3	0.85	0.83	0.75	0.67	0.58	0.74	0.79	0.74	0.68
4	0.93	0.98	0.94	0.79	0.79	0.87	0.90	0.88	0.87
5	1.04	1.03	1.01	0.91	0.78	0.92	1.00	0.96	1.08
6	1.02	2.03	0.93	0.84	0.78	0.97	2.04	0.94	1.26

TABIS NO. 2

$$
\alpha=45^{\circ} \quad B=16^{\circ} \quad B_{B}=8^{\prime} \quad a=.0625^{\circ}
$$

Exps.	OBSERVED VAIUES OR D D (0t.)								$\begin{aligned} & D_{c s l} \\ & \left(f t_{0}\right) \end{aligned}$
No.	0°	30°	60°	90°	120°	350°	180°	AVE.	
1	0.14	0.14	0.11	0.11	0.10	0.11	0.07	0.11	0.13
2	0.13	0.07	0.38	0.32	0.25	0.29	0.33	0.25	0.17
3	0.59	0.50	0.46	0.38	0.29	0.29	0.50	0.43	0.43
4	0.50	0.50	0.50	0.45	0.39	0.40	0.38	0.45	0.54
5	0.94	0.77	0.75	0.54	0.37	0.12	0.54	0.57	0.68
6	0.64	0.75	0.67	0.55	0.39	0.46	0.67	0.59	0.79

$$
\begin{aligned}
& D=\left(D_{m} n\right)\left(1 \frac{a^{2}}{R}\right) ; D_{n}=1.301 \cdot \frac{.60 U^{20} \alpha \cdot 36}{d \cdot 10} \\
& R=\operatorname{cB}\left(\frac{D r-h}{h}\right)\left(\frac{d}{d}\right)
\end{aligned}
$$

TABTE NO. 8

OBSERVED AND CALCULATED VALUES OF $' D$ ' FOR $\mathrm{F} / \mathrm{R}_{0}=1 / 4$

$$
\alpha=30^{\circ}
$$

$$
D_{m}=\left(D_{m}-h\right)\left(1-r^{2} R_{0}^{2}\right) \quad D_{n}=1.301 \frac{g^{.60_{H} \cdot 20 \alpha \cdot 36}}{d \cdot 10} \quad R_{\theta}=C B\left(\frac{D_{m} h}{h}\right)^{x}\left(\frac{H}{a}\right)^{y}
$$

EXP.	B	R_{B}	Bed	OBSERVED VALUES OF DINW (in.)								h	$\mathrm{D}_{\text {Ave }}$	DCAL
No	n.	in			30°	60	90°	120°	150°	180°	AVE.	IN.		
7 la	24	12	1/4"	9.38	10.38	10.63	10.38	10.38	10.63	10.63	10.34	4.50	0.49	
? 3	24	12	1/4"	9.50	11.50	11.50	11.50	11.50	11.00	13.00	11.21	4.50	0.56	0.70
3 a	24.	12	1/4"	12.88	12.38	13.38	13.88	13.88	12.88,	12.88	13.23	5.38	0.55	0.77
40.	24	12	1/4"	16.38	16.13	16.13	16.38	15.88	15.38	15.38	15.95	6.38	0.77	0.99
53	24	12	1/4"	2.5 .25	24.25	23.25	22.25	22.25	24.25	24.25	23.68	9.50	3.19	1.22
6	24.	12	3/4"	8.25	8.25	8.50	8.50	8.75	8.75	8.50	8.50	6.00	0.21	0.27
7 F	24	12	3/4"	12.50	12.25	12.	25	12.25	12.25	12.75	12.39	9.25	0.26	0.38
8 B	24	12	3/4"	17.25	17.25	17.2	17.25	17.25	17.25	18.25	17.39	12.25	0.43	0.43
9 a	24	12	$3 / 4{ }^{\prime}$	20.50	20.50	20.50	20.25	20.00	20.00	21.2	20.40	8.00	1.03	2.08
10a	24	12	3/4"	24.25	24.50	4.0	22.25	22.50	23.	25.25	23.25	9.50	1.15	1.21
$11 . a$	15	8	1/4"	16.25	16	16.75	16.25	16.25	16.7	16.75	16.54	7.50	0.76	0.68
12a	15	8	$1 / 4^{\prime \prime}$	21.38	20.88	19.88	19.38	18.88	18.88	17.88	19.58	9.38	0.85	1.04
13a	16	8	1/4"	24.00	24.00	23.00	22.75	22.25	22.50	23.00	23.07	12.00	0.92	1.18
14a	16	8	$1 / 4^{\prime \prime}$	26.63	26.63	26.13	. 13	24.13	25.63	26.38	25.67	14.13	0.96	1.38
15 a	16	8	3/4"	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	5.88	0.29	0.53
16a	16	8	$3 / 4 \prime$	19.25	18.75	19.25	19.25	18.75	18.25	17.50	18.00	9.25	0.73	0.85
17 a	16	8	3/4"	22.25	22.25	22.25	21.25	21.25	21.25	21.25	21.68	11.25	0.87	0.99
78a	7f	8	$3 / 4{ }^{\prime \prime}$	-26.50	26.50	26.50	25.50	24.50	25.50	26.00	25.86	14.50	0.95	1.06

OBSERVED AND CALCULATED VALUES OF ' D ' FOR $x / R_{\theta}=3 / 4$
$\alpha_{\alpha}=30^{\circ}$

$$
D=\left(D_{m}-h\right)\left(1-\frac{r^{2}}{R_{\theta}^{2}}\right) \quad D_{m}=1.301 \frac{q^{.60} H \cdot 20}{0 \cdot 10} \quad R_{\theta}=C B\left(\frac{D_{m}-h}{h}\right)^{x}\left(\frac{H}{d}\right)^{y}
$$

Dets mon catoutaquon ob ueq madmorony wropy
FTTE mareg Amots : 45°

TYXP.	ctict	$\begin{gathered} \mathrm{D}_{\mathrm{m}} \\ \mathrm{ft} \end{gathered}$	VO_{0} metaed.	$\begin{aligned} & d \mathrm{p} \\ & \mathrm{ft} \end{aligned}$	H_{A} ro.	$\begin{gathered} 14 \\ \mathrm{fe}_{0} \end{gathered}$	$\begin{gathered} I_{j} \\ p_{5}, \end{gathered}$	Sober rt.
1	0.61	1.40	8.34	1.97	3.42	0.65	4.07	3.22.
2	0.86	2.04	8.60	1.73	3.42	1.07	4.43	4.33
3	1. 33	2.28	8.69	1.87	3.56	1.11	4.69	4.51
4	1.30	2.39	8.90	1.84	3.64	1.19	4.83	4.61
5	1.57	2.48	8.96	1.82	3.72	1.25	4.99	5.00
6	1.84	2.54	9.20	7.76	3.85	1.32	5.17	5.00

Thprear soomb mose Deme mon $\alpha=45^{\circ}$
 $\operatorname{Dn}(0+0)=2.54 \mathrm{ta}$

		D-O"	D-2:	D-4 4	D=6"	D.8.8	De10"	D.12 ${ }^{3}$	1293
0	2.12	2.32	1.95	3.80	1.61	7.38	7.14	0.81	0.59
30	2.06	2.06	1.90	1.75	1. 57	2.3	2.21	0.78	0.58
60	1.00	1.90	3.75	1.62	1.44	1.24	1.03	0.72	0.53
90	1.97	1.97	1.72	1.59	1.42	7.22	1.01	0.71	0.50
120	1.97	1.91	1.76	2.62	1.45	1.24	1.03	0.73	0.53
150	1.82	1.82	1.67	1.55	1.38	1.98	0.98	0.69	0.51
180	1.78	1.78	1.64	1.51	3.35	2.16	0.96	0.68	0.50

TATES No. 12
TYPTCAT SCOUR HOLE DATA TOR $\alpha=30^{\circ}$

$D_{m}(\cos)=.2.26 \mathrm{ft}$

$\begin{gathered} \theta \\ \text { (deg.) } \end{gathered}$	$\begin{aligned} & n_{0} \\ & (\mathrm{cos}) \\ & (\mathrm{t} .) \end{aligned}$	CaICULATED VATHES OR ins (rt.)							
		D-0"	1-23	$D=4.3$	D=6"	D. $8^{\prime \prime}$	D-10:	D-12"	D-14"
0	1.88	1.88	1.75	1.62	1.4.4	1.30	7.09	0.86	0.51
30	1.87	1.81	1.68	1.56	1.42	1.25	7.05	0.83	0.49
60	1.67	7.61	1.50	1.38	1.26	2.11	0.93	0.74	0.43
90	1.59	2. 59	1.48	7.37	1.24	1.10	0.92	0.73	0.43
120	1.44	1.44	1.34	1.24	1.12	0.99	0.34	0.66	0.39
750	1.27	1.27	1.18	1.09	0.99	0.88	0.74	0.58	0.34
180	1.22	1.22	1.13	3.05	0.95	0.84	0.72	0.56	0.33

$D=(\operatorname{Dra})\left(\frac{1-2}{R_{0}^{2}}\right)$
$x=B_{0} \sqrt{\frac{D_{m}-h-D}{D_{m-h}}}$
1
 1961.

3- Rlevatonsta, B.A. Trajectomy Brovet Thpe Ererey Discijutores Amerion Society of Ctril Tominoers. Trication, Eipe Fine and Doter Diviston, Vol st, 7958.
 Plip Ducpets, The Rncthecrine Jommel, Volume 52/11, Novembex: 1969.
 Thests, University of Mindsom, Mindson, 1969.
6. Whosle, A.W. Pose, W. W, Mokonzie, TagTor, E, Desion of retrs on Pemmeable Pouspotsoms Publicetion No. 22, Contrel Bosta ot Tractation. India, Jme 1954.
7... Sohokitsoh. A. Erevention of Soone and Enerey Dicetpetton, Trenslated at tho Bureau of Reclamation, Denver, 1935.
8., IEwreen, Win. and Toch: A. A Genoraliad TodeI Study of Scont Arome Bradee Piexs and Abumenta. Prooedines, minesota Tntemetional Zydraniios Convention, geptember 1953.
9.. Ahmad, M. Mechonism of Erasion Eetor Muduautic Worke Proceedings, Mmacoto Totemetionel Mymentios Convontion: Septertber 1953.

10
11.
12.

13
15.. Charles.A.D. Streight Trow Spillwey gtilline Desin, Procecdincs of Ameriaen Boctety of chuth Enejnecre, Journal of Fydrentios Division, Vol 91. 1965.

16m Mhone, T.J. Petertra, A.J. Trayoved Tunmel-Spiplyay Whe Bucpets. Mranactions Americen Society of civil Enginoers, Volume 126, 1967.

VTA AmCTOQT.

1943	Tom on september 22, 1943. in whodsot
	Onterso. Cmand.
1962	High sehool matrioulation ran romedy
	Colleciete Tnstitute, Whosom, Ontario.
2967	Gradueted mrom the Umivenstty on Whosom
	With a Peonelot of Aprited Scionce(Cavil
	Encineerinc) and aceptted as a candidate
	Fon Master on Applied Setenoe at the
	Univesesty of lindson.

