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Abstract: Offshore pipelines are occasionally exposed to scouring processes; detrimental impacts
on their safety are inevitable. The process of scouring propagation around offshore pipelines is
naturally complex and is mainly due to currents and/or waves. There is a considerable demand
for the safe design of offshore pipelines exposed to scouring phenomena. Therefore, scouring
propagation patterns must be focused on. In the present research, machine learning (ML) models are
applied to achieve equations for the prediction of the scouring propagation rate around pipelines
due to currents. The approaching flow Froude number, the ratio of embedment depth to pipeline
diameter, the Shields parameter, and the current angle of attack to the pipeline were considered
the main dimensionless factors from the reliable literature. ML models were developed based on
various setting parameters and optimization strategies coming from evolutionary and classification
contents. Moreover, the explicit equations yielded from ML models were used to demonstrate how
the proposed approaches are in harmony with experimental observations. The performance of ML
models was assessed utilizing statistical benchmarks. The results revealed that the equations given
by ML models provided reliable and physically consistent predictions of scouring propagation rates
regarding their comparison with scouring tests.

Keywords: offshore pipeline; currents; scour propagation rate; regression analysis;
soft computing techniques

1. Introduction

Offshore pipeline structures are commonly employed to transport various fluids, such
as oil, gas, oil-gas mixtures, and water. In offshore projects, there is a need to consider many
engineering aspects, such as ecology, geo-hazards, and environmental loading [1]. Once
a submarine pipeline is constructed, several physical factors needing close attention are
introduced, such as the state of the seabed, seabed mobility, submarine landslides, waves,
and currents [2–4]. The seabed has two various states: it is either relatively smooth or
corrugated (or uneven) with high and low elevations. For an uneven seabed, the pipeline
is subjected to free spans when connecting two high levels, leaving the section between
these levels with unsupported points. When an unsupported section is extended, the
bending stress exerted onto it may increase. From another point of view, vibrations that
occur from current-related vortexes must be taken into consideration. Seabed leveling and
post-installation support are protective measures for unsupported pipeline spans [2–4]. A
further risk to pipelines is the seabed mobility, with sand waves, in particular, being a major
feature. Sand waves move with passing time. When a crest of the seabed bears a pipeline
during the construction of the project, this area may find itself in a trough later during the
operational lifespan of the offshore pipeline [2]. As the third physical factor, submarine
landslides occur when the sediment transport rate is high. Submarine landslides take place
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on steeper slopes. When the landslide process is intensified by displacement, offshore
pipelines might be exposed to severe bending, with possible consequent tensile failure [3].
Other mechanical factors are related to currents and waves. High-intensity currents and
waves have repercussions on the laying operations [4,5].

The above-mentioned physical factors require great attention during pipeline instal-
lation and operation because these factors can disturb the safety of the pipeline itself.
Underestimating these key elements might lead to scouring processes. A large number of
attempts have been made during the past three decades to understand the mechanical fac-
tors (e.g., free spans, seabed sediment mobility, geomorphology of the seabed, waves, and
currents) of scouring beneath seabed pipelines [6–9]. Overall, the scouring process below
pipelines has a three-dimensional flow structure in the field. Experimental observations
have demonstrated that free spans are the primary cause of the scouring phenomenon.
The length of free spans is controlled by various factors such as the flow conditions, soil
conditions, sinking of the pipeline at the span shoulders, and sagging of the pipeline in the
scour hole (e.g., [10–13]). Free spanning occurs in a suspended submarine pipeline segment
where there is no joint point between the offshore pipelines and the surface of the seabed
due to various causes, such as the scour of ocean currents, uneven surface of the seabed,
human-made dangerous activities, and residual/thermal stresses [14].

The 3D scouring propagation around offshore pipelines exposed to currents has
been limited to few studies—mainly through experimental investigations—during the last
decade. Firstly, Cheng et al. [6] studied the three-dimensional scour rate of propagation
along offshore pipelines after the scouring process was initiated. They found that some
experimental variables (e.g., embedment depth of the offshore pipeline, live-bed motion
state of seabed sediments due to currents, and flow incident angle) had meaningful impacts
on the scouring propagation velocities along the pipeline. They proposed a regression-
based formulation for the approximation of the scouring propagation rates. Later, Wu
and Chiew [7,8] carried out experimental investigations under clear-water conditions to
understand the three-dimensional mechanism of scouring propagation beneath pipelines of
various diameters. They emphasized that the rate of scouring propagation was controlled
by the Froude number, the Shields parameter, and the initial embedment depth of the
offshore pipeline. Cheng et al. [9] studied the scour rate propagation along offshore
pipelines for combined wave and current flow conditions. Finally, they presented an
empirical equation with a permissible level of precision to estimate the longitudinal rate of
scouring propagation.

From the above-mentioned investigations, it can be inferred that a deeper under-
standing of three-dimensional scouring rates would require further efforts to achieve more
comprehensive empirical models with more accurate performance than the current for-
mulas presented in the literature, which are generally obtained by regression analysis or
traditional techniques. In the case of current-induced scour, conventional methods based
on experimental observations at the laboratory scale have revealed that the main governing
variables are the geometric properties of the pipeline, the motion state of the seabed, and
the approaching flow state (e.g., [7–9]).

During recent years, various machine learning (ML) models have been utilized to pre-
dict three-dimensional scour rates at seabed pipelines with promising results. Firstly,
Najafzadeh and Saberi-Movahed [15] improved the group method of data handling
(GMDH) by gene-expression programming (GEP) to predict the scouring rate propagation
below offshore pipelines under wave conditions. They found that GMDH-GEP provided
more accurate results than nonlinear regression-based equations and artificial neural net-
works (ANNs). Similarly, Ehteram et al. [16] optimized the structure of an ANN with
the cooling body algorithm (CBA). They concluded that the ANN-CBA model provided
better performance for wave-induced scouring rates than simple ANNs. In a recent study,
Najafzadeh and Oliveto [17] presented new empirical equations based on four robust ML
models (i.e., multivariate adaptive regression splines (MARS), evolutionary polynomial
regression (EPR), model tree (MT), and gene-expression programming (GEP)) for the pre-
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diction of 3D scouring rates below pipelines exposed to regular waves. ML techniques,
especially those used in the latest research by Najafzadeh and Oliveto [17], rely on their
inherent advantages (e.g., reduction of complexity, fast learning process, and preparation
of physical patterns of observational variables) to provide effective performance.

The literature review reveals that there is a lack of using ML techniques to provide
physically consistent equations for the prediction of the scouring propagation rates beneath
offshore pipelines subjected to currents. Therefore, the outline of this study is articulated
in the following way: (i) experimental variables for feeding ML models are provided;
(ii) ML models are implemented while controlling the setting parameters of each ML model;
(iii) the ML models drive empirical equations; (iv) statistical analyses is performed to
evaluate the empirical equations given by ML models; and (v) the physical consistency of
ML models’ performance with experimental observations is controlled. A general overview
of the organization of this study is outlined in Figure 1.

Figure 1. Flow chart of the present research work.

2. Overview of Databases
2.1. Dimensional Analysis

Based on the experimental studies from the literature, it appears that the approach
flow intensity, the geometry of the offshore pipeline, the bed sediment mobility, and the
physical properties of seabed sediments play a key role in scouring rate of propagation due
to currents [6–8]. Specifically, the following function, (H0), which implies a relationship
between the three-dimensional scour process and the governing variables, is assumed to be

H0(VL, u∗, e, D, UC, d50, tan, α, ρ, ρs, µ, g) = 0 (1)

where VL is the scour rate along the pipeline, u∗ is the flow shear velocity at the seabed, e is
the embedment depth, D is the pipeline diameter, UC is the flow velocity due to the current,
d50 is the median sediment size, φ is the angle of repose for the bed sediment, α is the flow
incident angle to the pipeline, ρ is the mass density of water, ρs is the mass density of bed
sediment, µ is the dynamic viscosity of water, and g is the acceleration due to gravity [6–8].

As mentioned in Cheng et al. [6] and Wu and Chiew [7,8], the analysis of scouring
rates should be carried out considering effective dimensionless parameters. Furthermore,
they investigated the physical consistency of their approaches using the experimental
observations to corroborate the control of the selected variables on the scouring rate of
propagation. These analyses were performed with dimensionless variables, ameliorating
the scale effects related to the regression-based equations from laboratory observations.
In terms of the application of ML models, the use of non-dimensional parameters in the
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prediction of the rate of scouring propagation could enhance the ML models’ performance
compared to predictive models based on raw variables (e.g., Ehteram et al. [16]; Najafzadeh
and Oliveto [17]). Therefore, the present investigation applies the π-theorem to identify a
set of dimensionless parameters to be considered in ML models.

Among the raw variables in Equation (1), three variables (ρ, D, VL) were utilized as
repeating variables to detect nine dimensionless parameters through the Buckingham theorem:

H1(π1, π2, π3, π4, π5, π6, π7, π8, π9) = 0 (2)

where the above-mentioned parameters in Equation (2) can be specified as

π1 =
e
D

, π2 = α, π3 = φ, π4 =
ρs

ρ
, π5 =

gD
U2

C
, π6 =

VL
UC

, π7 =
ρUCD

µ
, π8 =

D
d50

, π9 =
VL
u∗

(3)

Before finalizing the dimensional analysis, some of the dimensionless parameters could
be converted to a more attractive form, as highlighted in previous studies (Cheng et al. [6];
Wu and Chiew [8]; Najafzadeh and Oliveto [17]). The first and second parameters in
Equation (3) were converted to 1–e/D and 1+sinα, respectively, in Cheng et al. [6]. Ac-
cording to Wu and Chiew [7], the fourth and fifth parameters in Equation (3) could be
converted to ρs/ρ–1 and the pipeline Froude number (FrP), respectively. Moreover, the
combination of dimensionless parameters in Equation (3) could be carried out in a way that
more meaningful parameters are brought out. Therefore, the dimensionless parameters in
Equation (3) were re-arranged as:

π′1 = 1− e
D

, π′2 = 1 + sin α, π′3 = tan φ, π′4 =
ρs

ρ
− 1, π′5 =

1√
π5

=
UC√

gD
(4)

π′8 =
(π6)

2·π8

π′4·(π9)
2·π5

=
u2
∗

g
(

ρs
ρ − 1

)
d50

(5)

π′6 = π8·
(
π′8
)0.5·π9·π′3 =

VLD tan φ√
g
(

ρs
ρ − 1

)
d3

50

(6)

Therefore, that the functional relationship (2) can be made explicit as

H2

V∗L =
VLD tan φ√
g
(

ρs
ρ − 1

)
d3

50

, 1− e
D

, FrP =
UC√

gD
, θC =

u∗√
g
(

ρs
ρ − 1

)
d50

, ReP =
ρUCD

µ
, 1 + sin α

 (7)

where VL* is the dimensionless scouring rate propagation along the offshore pipeline, θC is
the Shields parameter due to the current, and ReP is the pipeline’s Reynolds number.

2.2. Description of Experimental Data

In this study, the experimental observations were obtained from three reliable studies.
Wu and Chiew [7] performed 51 experimental investigations considering uniform

sand bed sediments with d50 = 0.56 mm and geometric standard deviation (σg) of 1.4. All
experimental studies were conducted in a glass-sided flume whose length, width, and
depth were 19 m, 1.6 m, and 0.45 m, respectively. The sediment recess section was 1.8 m
long and 0.15 m deep and was placed 14 m downstream from the flume inlet. A total of
8 PVC pipelines, with D from 22 to 116 mm, were used. All experiments were performed
under clear-water conditions and organized into four classes, each of which focused on
the investigation of the impact of one of the dimensionless parameters e/D, FrP, θC, and
the ratio of the water depth (y) on the pipeline diameter. For each class, the selected
dimensionless parameter was varied, whereas all the other dimensionless parameters
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remained unchanged. Scouring propagation rates were not observed in four experiments,
which will therefore be excluded in the proposed modeling by ML techniques.

Cheng et al. [6] carried out 81 experiments to study the scouring propagation rates in
a wave flume whose length, width, and depth were 50 m, 4 m, and 2.5 m, respectively. A
concrete sandpit, 4 m long, 4 m wide, and 0.25 m deep, was constructed in the test section.
A clear pipeline with a smooth surface, a diameter of 50 mm, and wall thickness of 8 mm
was tested. All experiments were conducted under live-bed conditions (θC = 0.046–0.104),
and the embedment depth e varied in the range from 0.1D to 0.5D. The d50 value and the
relative density of sediment grains (S = ρs/ρ) were 0.37 mm and 2.7, respectively. The
sediment angle of repose, φ, was kept constant and equal to 32◦, the angle of attack α ranged
from 0 to 45◦, and the dynamic viscosity of water, µ, was equal to 0.001 Pa·s. Among the
81 experiments, piping processes occurred in 2 experiments, and, additionally, propagation
scouring rates were not observed in 35 experiments. Therefore, 44 scouring tests were
considered in the proposed modeling by ML techniques. For the sake of completeness,
Cheng et al. [6] suggested the following relationship to estimate the scour propagation rate:

VLD tan φ√
g(S− 1)d3

50

= K
[
1− e

D
(1 + sin α)

]
θ5/3

C (8)

where K is a constant that depends on α values. Equation (8) relates to current conditions,
and it is the only one available in sthe literature.

Hansen et al. [18] carried out 4 scouring experiments with d50 = 0.20 mm and S = 2.65
under clear-water conditions. They considered 2 pipeline diameters (i.e., 20 and 50 mm),
and the approach flow depth, equal to 0.22 m, was kept constant during all experiments.

Ultimately, 95 experimental observations were obtained from Wu and Chiew [7]
(47 datasets), Cheng et al. [6] (44 datasets), and Hansen et al. [18] (4 datasets), which have
been considered to develop predictive models of the scour propagation rate in current
conditions. Table 1 provides the statistical characterization of the variables from the above-
mentioned datasets. To perform training and testing stages for the ML techniques, 75%
(71 datasets) and 25% (24 datasets) were selected randomly, respectively. As seen in Table 1,
the range of the Reynolds number ReP is indicative of fully-turbulent flows, and this would
imply that the effect of ReP on the prediction of VL* is negligible.

Table 1. Statistical characterization of variables for feeding ML techniques.

Dimensional Variables Minimum Maximum Average Standard Deviation Skewness

D (m) 0.020 0.116 0.04425 0.012 1.538
e (m) 0.0 0.025 0.00848 0.00643 1.168

d50 (m) 0.0002 0.00057 0.00055 0.0000719 −4.7055
u* (m/s) 0.0091 0.0314 0.02065 0.00624 0.2595

α (degree) 0 45 5.454 10.1027 1.8212
UC (m/s) 0.158 0.42 0.2817 0.07571 0.5154

y (m) 0.09 0.470 0.2992 0.156 0.1067
VL (m/s) 0.0000084 0.0056 0.00154 0.00122 1.2503

Dimensionless Parameters Minimum Maximum Average Standard Deviation Skewness

e/D 0 0.5 0.1782 0.1256 1.224
θC 0.0091 0.104 0.04527 0.03221 0.5974
FrP 0.225 0.6321 0.4354 0.0927 0.4613
ReP 5600 21,000 14,087.02 3917.98 0.40736
VL* 0.0000481 5.1082 0.9057 1.277 1.4825

Histograms for all the dimensionless parameters are illustrated in Figure 2a–e. These
histograms show the frequency distributions for the explored (independent) parameters
governing scouring processes, presenting succinct and beneficial details of the experimental
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datasets. Incidentally, the analysis of these histogram analyses could help researchers in
selecting unexplored ranges of investigation.

Figure 2. Frequency and cumulative relative frequency for the non-dimensional parameters consid-
ered in the present research: (a) flow attack angle α to the offshore pipeline; (b) ratio of the pipeline
embedded depth to pipeline diameter, e/D; (c) approaching flow Froude number to the offshore
pipeline, FrP; (d) Shields parameter due to current, θC; (e) dimensionless scouring propagation rate
around offshore pipeline along the longitudinal direction, VL*.

In Figure 2a, the α parameter had a rather fragmented distribution of the frequency,
with the highest fraction of the relative frequency (70%) for sinα = 0. As depicted in
Figure 2b, although the distribution of the e/D parameter is fully fragmented, the pattern
of the distribution is not symmetrical. Just 2 experiments were performed with e/D = 0.286,
whereas about 50% of the experimental observations were carried out with e/D = 0.143.
Moreover, Figure 2c shows that the approach flow Froude number, FrP, was not deeply
explored according to a high uniform distribution, and the end tail of the histogram reaches
a value of FrP equal to 0.636. Figure 2d,e also shows that, in the case of the Shields parameter
(θC) and the dimensionless scouring propagation rate (VL*), the distributions of the values
are not symmetrical with maximum values for the relative frequencies around 50% and
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55%, respectively. Additionally, most of the scouring tests were characterized by values of
θC and FrP approximately equal to 0.023 and 0.40, respectively. It is essential to mention
that all the scouring tests were carried out utilizing various bed sediments and both states
for the approach bed sediment mobility (i.e., live-bed and clear-water conditions).

3. Implementation of ML Models
3.1. Gene-Expression Programming

GEP is known as one of the most powerful ML models; it works based on evolutionary
algorithms (EAs). GEP utilizes a parse tree configuration to explore solutions, and it can
provide a predictive formulation to interpret input-output systems. In addition to this,
the overall formulation given by GEP includes a fair number of genetic operators [19,20].
Nevertheless, the GEP model employs a diagram of like-tree configurations with complexity,
and it benefits from the merits of mathematical relationships to express a genome. The GEP
model needs to assign some setting parameters, such as populations of individuals, number
of generations, number of chromosomes, mutation rate, and linking functions among genes,
to begin with. These factors play an important role in the goodness of the GEP performance
during the training stage. GeneXproTools software was used to implement the GEP model.
In the GEP performance, the validity of training and testing phases are controlled by the
fitness values. In this study, root-mean-square error (RMSE) was selected as a fitness
function to evaluate the GEP performance for each generation. Fitness values were scaled
to 1000 by 1000/(1 + RMSE). In the GEP model, genetic operators are generally used by four
strategies: optimal evolution (OE), constant fine-tuning (CFT), model fine-tuning (MFT),
and sub-set selection (SSS). In this study, four alternatives of the GEP performance were
considered. From the performances, the application of MFT (565.876) and OE (544.516)
strategies stood at the higher goodness values in the training models in comparison with
CFT (467.144) and SSS (536.205). Therefore, in the case of scouring problems below pipelines,
optimal evolution methodology had promising usability; this study used the OE strategy
as put forth in Najafzadeh and Oliveto [17]. The best value of the fitness function was
equal to 544.516 in the training stage; the corresponding generation number obtained was
1713. Since there are four input variables for the training GEP model, the four genes can
be considered the maximum number. There is no doubt that an increase in the number of
genes in the structure of the GEP model causes, overall, a more complicated relationship
(obtained by the GEP model). To reduce the complexity of the final equation, three genes
were first considered. Then, it was found that the performance of the GEP model with
three genes provided a better value of the fitness function than a GEP model developed
with four genes. Table 2 indicates the setting parameters of the GEP model utilized in the
optimal relationship for the prediction of the VL* parameter.

Equations (9)–(12), given by 4 alternatives (i.e., OE, SST, CFT, MFT) of the GEP model,
were, respectively, obtained as follows:

V∗L = (− sin α + 1.29145)·
(
θC − sin α + e

D
)5/3

+
[
9.3994·(2 + sin α)·θ1/3

C − 0.5·(1 + sin α + tanh4.3693)
]5/3

+
3θC− e

D−sin α
FrP

(9)

V∗L =
θ8

C +
(
1− e

D
)

2
+

2
[
tanhθC + θC + ln

(
1− e

D
)]

θC + FrP
− 78.3404·

(
sin α− 0.5248

2
− θC

)
·θC (10)

V∗L =
{

0.5·(−16.8294− θC − sin α)5/3 −
[
tanh(1 + sin α) + 1− e

D
]}1/3

+ tan−1(1.3579·θC)

· 39.2001+(1+sin α)·FrP
2

+ ln
{

min
[
tanhθC, max

(
θC, 1− e

D
)]
− e

D + sin α− 12.4093
} (11)
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V∗L =
{[

tan−1(1− e
D
)
− FrP + 1

1+sin α

]
· 15.2114+sin α

2 ·θ5/3
C

}
+
{[

1 + 11.129·
(
1− e

D
)
+ exp

(
2 + sin α− e

D
)]
·θC
}2

+ 1
−min

{
[2·(1 + sin α) + max(θC , 1 + sin α)], 9.5516·(1 + sin α)− tan−1 θC

} (12)

Table 2. Setting parameters of the proposed structure of GEP models.

Parameters Description of Parameters Setting of Parameters

P1 Function set +, −, ×, /, Power(x2), (1-x), Average(x1, x2), Tanh(x), 3Rt,
Ln, Min, Max

P2 Linking function Addition

P3 Mutation rate OE (0.003), CFT (0), MFT (0), SSS (0)

P4 Inversion rate OE (0.00546), CFT (0), MFT (0), SSS (0.0082)

P5 One-point and two-point recombination rates OE (0.00277), CFT (0), MFT (0), SSS (0.0028)

P6 Gene recombination rate OE (0.00277), CFT (0), MFT (0.0129), SSS (0.0028)

P7 Permutation OE (0.00546), CFT (0), MFT (0), SSS (0.0082)

P8 Maximum tree depth OE (4), CFT (3), MFT (5), SSS (4)

P9 Number of genes 3

P10 Number of chromosomes 30

P11 Number of generations OE (1713), CFT (961), MFT (2700), SSS (909)

P12 Best fitness value OE (544.516), CFT (467.144), MFT (565.876), SSS (536.205)

3.2. Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) are a globally-recognized ML model
which generates mathematical expressions by the development of linear regression [21].
The MARS model generally includes second-order spline regression. Formulas are created
by the cross-validation conception that can automatically control the nonlinearities of the
obtained equation and interactions among variables. To generate an equation based on
spline regression, the MARS model generally makes use of a number of basis functions
(BFs) with their related weighted coefficients [21]. Each BF is introduced by a variable and
a knot. MARS creates an expression during two phases: the forward and the backward
passes. In the forward pass, the MARS model starts with a model that consists of just
the intercept/bias term, which is the mean of the output parameter values. Then, the
MARS model repeatedly adds BFs in pairs to the second-order regression spline model.
At each step, it detects the pair of BFs that can result in the maximum reduction value in
sum-of-squares residual error. This process of adding BFs continues until the variation in
residual error is too small to continue or until the maximum number of BFs is met. With
regards to this research, the MARS technique approximates the scouring propagation rate
through the following equation:

ω(r) = T0 +
NBF

∑
j=1

Tj·BFj(e/D, θC, FrP, 1 + sin α) (13)

in which T0, Tj, BF, r, and NBF are the bias, the constant coefficients related to basis
functions, the basis function, the set of dimensionless parameters, and the number of basis
functions, respectively. The performance of the forward pass occasionally generates an
over-fitted model. To generate an expression with more efficient generalization potential,
the backward pass is performed to prune the initially-extended MARS expression. This
process deletes terms one by one, eliminating the lowest effective term at each stage until
it obtains the best sub-model. The performance of model subsets is evaluated using the
generalized cross-validation (GCV) criterion discussed in the literature [21].
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In the present research, the MARS technique was run by a computer code written in
MATLAB software. The MARS model was primitively created by 10 BFs and 23.5 effective
parameters. To reduce the complexity level of the initially developed MARS model, the
analysis of GCV was performed. In addition to this, the k-fold was equal to 10 such that the
MARS technique was performed 10 times. The forward and backward stages were carried
out for each k-fold value; additionally, the number of basis functions in the final MARS
model and the total effective number of parameters were obtained. The definition of the
10 performances of the MARS model is provided in Table 3, in which the results during the
forward and backward stages are shown. Hence, 15 BFs were obtained to predict the scour
propagation rate below offshore pipelines

V∗L = −231.99− 751.4·BF1 + 1212.7·BF2 + 5648.3·BF3 + 6503.5·BF4 − 13716·BF5 + 87.716
·BF6 − 4191.7·BF7 + 4261·BF8 − 4215.7·BF9 + 4210.5·BF10 − 72.507·BF11
+6658.5·BF12 − 902.35·BF13 + 774.61·BF14 − 777.01·BF15

(14)

in which the BF1 to BF15 formulations are presented in Table 3. All four input parameters
(FrP, θC, e/D, 1+sinα) had contributions in driving Equation (14) to estimate VL*, as can
be inferred from Table 4. The optimal value of GCV (0.5662) reduced the probability of
over-parametrization of the MARS expression. This means that the MARS expression
could efficiently detect input variables that have lower importance in the prediction of
the scouring propagation rate. All coefficients in Equation (14) were fitted by the particle
swarm optimization (PSO) algorithm, providing MSE = 0.2252 as the best results.

Table 3. Characterizations of MARS models during the forward and backward stages.

k-Fold Number of BFs in the Final Model Total Effective Number of Parameters Executive Time (s)

1 11 26 0.57
2 7 16 0.69
3 14 33.5 0.99
4 9 21 0.71
5 12 28.5 0.74
6 12 28.5 0.66
7 11 26 0.67
8 12 28.5 0.99
9 6 13.5 0.71
10 14 33.5 0.58

3.3. Evulotionary Polynomial Regression

EPR, as a robust data-driven models (DDMs), is developed by the multi-objective ge-
netic algorithm (MOGA) to be applied in four various ways: (i) data analysis from the input-
output records, (ii) data modeling for both static and dynamic systems,
(iii) symbolic expressions for mathematical models, and (iv) decision support for the model
selection [22–24]. Overall, EPR is an integrative model that simultaneously recruits the
efficacy of MOGA with numerical regression techniques for developing simple knowledge
extraction of mathematical expressions [25,26].

For the prediction of the scouring propagation rate, two types of mathematical
expressions, which had the ordinary structures y = bias + ∑a·X1·X2·f (X1 × X2) and
y = bias + ∑a·X1·X2·f (X1)·f (X2) were used to develop the EPR model. X is the vector
of the input variables, y is the approximated output, and a is the set of coefficients. In this
way, the following mathematical relationships were selected:

V∗L = O0 +
m
∑

j=1

{
Oj·(θC)

ES(j,1)·
(
1− e

D
)ES(j,2)·(1 + sin α)ES(j,3)·(FrP)

ES(j,4)

· f
[
(θC)

ES(j,5)·
(
1− e

D
)ES(j,6)·(1 + sin α)ES(j,7)·(FrP)

ES(j,8)
]} (15)
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V∗L = O0 +
m
∑

j=1
< Oj·(θC)

ES(j,1)·
(
1− e

D
)ES(j,2)·(1 + sin α)ES(j,3)·(FrP)

ES(j,4)

·
{

f
[
(θC)

ES(j,5)
]
· f
[(

1− e
D
)ES(j,6)

]
· f
[
(1 + sin α)ES(j,7)

]
· f
[
(FrP)

ES(j,8)
]}

>
(16)

Table 4. Coefficients and basis functions for MARS models in scour rate prediction.

Basis Functions Basis Functions

BF1 max (0, 0.1−e/D) BF9 max (0, FrP−0.34623)·max (0, 0.3−e/D)

BF2 max (0, FrP−0.34623) BF10 max (0, FrP−0.34623)·max (0, e/D−0.3)

BF3 max (0, FrP−0.34623)·max (0, 0.046−θC) BF11 max (0, FrP−0.47128)

BF4 max (0, θC−0.018)·max (0, 0.1−e/D) BF12 max (0, 0.47128−FrP)·max (0, θC−0.014)

BF5 max (0, FrP−0.34623)·max (0, 0.054−θC) BF13 max (0, θC−0.014)

BF6 max (0, 1−sinα)·max (0, θC−0.021) BF14 max (0, e/D−0.6)

BF7 max (0, 0.1−e/D)·max (0, FrP−0.52841) BF15 max (0, 0.6−e/D)

BF8 max (0, 0.1−e/D)·max (0, 0.52841−FrP) BF16 0

In the above Equations (15) and (16), O0 is the bias term, m is the maximum value
of the mathematical terms, Oj is a set of coefficients, f is a user-defined function, and the
ES function is a range of exponents explored by the EPR model. Previous investigations
demonstrated that the use of EPR expressions with natural logarithmic inner functions
had more promising efficacy in predicting the scouring propagation rates below offshore
pipelines exposed to regular waves compared to predictions obtained without inner func-
tion [17]. Therefore, six terms and logarithmic inner functions in Equations (15) and (16)
were considered for the EPR model. The number of generations was 4800. This issue was
automatically computed regarding many factors such as the number of input parameters,
the kind of inner function, and the number of dataset rows. Tables 5 and 6 indicate the ulti-
mate EPR expressions during training stages based on Equations (15) and (16), respectively.
According to Table 5, the first model (Model #1) had the least complexity in expression with
four logarithmic terms, whereas the MSE value (0.582) indicated the lowest accuracy in the
prediction of scouring propagation rates. Model #5 included 6 terms with 5 logarithmic
terms, providing the best results (MSE = 0.341) along with the most complicated expression.
It was inferred from Table 5 that an increase in the presence of the input variables in each
logarithm term could increase the precision level of approximation. For instance, the first
term of Model #5 included 4 input parameters (i.e., θC, 1−e/D, 1+sinα, FrP); from Model #1
to Model #5, the more complicated the mathematical expression, the higher the precision
level. Based on the expressions in Table 6, Model #5 had the highest level of accuracy
(MSE = 0.585) in the training phase, whereas Model #1 had the lowest accuracy with an
MSE of 0.747. Similarly, the complexity of terms and the number of terms played a key
role in improving the efficiency of the expression returned by Equation (16). For instance,
Model #2 (see Table 6) had one term with an MSE of 0.646, whereas Model #3 yielded more
accurate predictions (MSE = 0.620) with two algebraic terms. Table 6 indicates that the third
to fifth expressions (Model #3 to Model #5) had the same number of algebraic terms while
providing various performance levels in the prediction of scouring propagation rate due to
the existing various complexity levels in each expression. Generally, the EPR expressions
given in Table 5 had more complexity and a number of algebraic terms in comparison with
those presented in Table 6. Then, equations returned by EPR (based on Equation (15)) had
more promising results than equations given in Table 6.
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Table 5. Mathematical expressions developed by Equation (15) with logarithmic inner function.

Model No. Expression MSE

Model #1
V∗L = 1.2869 + 6.2646

1+sin α + 20.0234· ln
[
(FrP)

0.5
]
+ 2.4791· ln(θC)

+5.1071 (
1− e

D )
0.5

FrP

0.582

Model #2
V∗L = 78.14 + 6.3408

1+sin α + 20.0781· ln
[
(θC·FrP)

0.5
]
+ 6.6196

(
1− e

D
)
+ 33.5496 θ0.5

C
FrP

· ln
[

1
(FrP)

0.5

]
+ 84.4451· ln(θC)

0.460

Model #3

V∗L = 39.0219 + 0.12858· 1−
e
D

θ0.5
C
· ln(θC) +

26.1221
1+sin α · ln

[(
1

1+sin α

)0.5
]
+ 27.357

· ln
[(

FrP
1+sin α

)0.5
]
+ 12.566· 1− e

D
1+sin α · ln

(
1− e

D
)
+ 66.0515·θ0.5

C

· ln
[
θc·(FrP)

0.5
]
+ 54.7801· [θC ·(1+sin α)]0.5

FrP

0.449

Model #4

V∗L = 47.0887 + 0.2218· (1− e
D )·(1+sin α)

θ0.5
C

· ln
[
(θC)

0.5·FrP

]
+ 50.376· FrP

1+sin α

· ln
[(

1
1+sin α

)0.5
]
+ 30.8495· ln

[(
FrP

1+sin α

)0.5
]
+ 27.1979

· 1− e
D

1+sin α · ln
[(

1− e
D
)0.5
]
+ 80.6509·θ0.5

C · ln
[
θc·(FrP)

0.5
]

+64.6131· [θC ·(1+sin α)]0.5

FrP

0.437

Model #5

V∗L = 45.7795 + 0.21215· (1− e
D )·(1+sin α)

θ0.5
C

· ln
[
(1− e

D )
0.5·FrP

(1+sin α)0.5

]
+ 48.0925

· FrP
1+sin α · ln

[(
1

1+sin α

)0.5
]
+ 30.3275· ln

[(
FrP

1+sin α

)0.5
]

+27.0613· 1− e
D

1+sin α · ln
[(

1− e
D
)0.5
]
+ 78.6329·θ0.5

C

· ln
[
θc·(FrP)

0.5
]
+ 63.5902· [θC ·(1+sin α)]0.5

FrP

0.341

Table 6. Mathematical expressions developed by Equation (16) with logarithmic inner function.

Model No. Expression MSE

Model #1 V∗L = 168.4265 +
θC ·(1− e

D )
FrP ·(1+sin α)

· ln
[
(θC + 1)0.5

]
· ln
(
2− e

D
)

0.747

Model #2 V∗L = 127.334· θC ·(1− e
D )

FrP ·(1+sin α)
· ln[(θC+1)0.5]· ln(2− e

D )
ln(2+sin α)

0.646

Model #3
V∗L = 41.7624· θ0.5

C ·(1− e
D )

FrP ·(1+sin α)
· ln(θC+1)· ln(2− e

D )
ln(2+sin α)· ln(1+FrP)

+ 191.4399

· θC ·FrP
(1+sin α)

· ln(θC + 1)
0.620

Model #4
V∗L = 39.5542· θ0.5

C ·(1− e
D )

FrP ·(1+sin α)
· ln(θC+1)· ln(2− e

D )
ln(2+sin α)· ln(1+FrP)

+ 557.6596

· θC ·FrP ·(1− e
D )

(1+sin α)· ln(2+sin α)
· ln(1 + FrP)· ln(θC + 1)

0.596

Model #5
V∗L = 39.0458· θ0.5

C ·(1− e
D )

FrP ·(1+sin α)
· ln(θC+1)· ln(2− e

D )
ln(2+sin α)· ln(1+FrP)

+ 775.121

· θC ·FrP ·(1− e
D )

(1+sin α)
·

ln(θC+1)· ln
[
(2− e

D )
0.5
]
· ln(1+FrP)

ln(2+sin α)

0.585

3.4. M5 Model Tree

M5MT, as a newly-established system, is generally used to learn models that estimate
values. Similar to ML techniques based on the classification concepts, such as MARS and
classification and regression tree (CART) models, M5 is capable of creating tree-based
expressions; these regression trees provide real values at their leaves. The trees given by
M5 can provide multivariate linear expressions. The M5 version of MT efficiently solves
problems with high dimensionality. Compared with MARS and CART, M5MT can interpret
nonlinear systems with faster executive time performance. The main merit of M5MT over
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the CART model is that trees have a smaller size (in terms of leaves and nodes) and a
higher level of precision in the multi-task systems [27]. In M5MT, tree-like structures are
provided by the divide-and-conquer technique. M5 splits the search space of data points
into several subdivisions. Then, multilinear regression models are fitted on data points
in each subdivision. M5MT is implemented based on several steps such as tree structure
construction, error estimation, linear modeling, linear model simplification, pruning, and
smoothing [27–29].

In this study, Weka3.9 software was utilized to develop M5MT for estimating VL*
values around offshore pipelines. The following multilinear regression model is generally
utilized in developing M5MT:

V∗L = a0 + a1·θC + a2·
(

1− e
D

)
+ a3·(1 + sin α) + a4·FrP (17)

in which a0 is the bias term, and a1 to a4 are weighting coefficients that are computed by
the least-square technique.

This research used four alternatives of M5MT based on the usability of the pruning
and smoothing stages in a way that if the pruning (or smoothing) stage is considered, its
state is “True” (T); otherwise, it is called “False” (F). The impacts of pruning and smoothing
stages on the performance of M5MT were conceptually evaluated by RMSE values during
the training and testing stages. The first alternative, M5MT#1, is related to using the pruned
(T) and smoothed (T) M5MT with four rules, as seen in Table 7. The Shields parameter was
adjusted as a sole splitting parameter for constructing four rules. Table 7 indicates that all
the input parameters were used to provide multilinear regression equations related to their
rules. Table 7 demonstrates the results of M5MT for the unpruned (F) and smoothed (T)
phases. Similar to Table 7, the performance of M5MT#2 yielded four rules (see Table 8),
and, consequently, four multilinear regression relationships. As demonstrated in Table 8,
the first rule provided only a bias term (0.0512), and additionally, FrP was incorporated to
model a linear equation for the second rule. In the case of unpruned (F) and smoothed (T)
M5MT, a list of rules and relevant multilinear regression equations M5MT#3 were provided
in Table 9. As seen in Table 10, all the input parameters were incorporated into 29 driving
regression equations and search spaces. Regarding unpruned (F) and unsmoothed (F)
M5MT, 29 rules were obtained, and M5MT#4 consequently provided 29 bias terms without
incorporating the input parameters. Details of M5MT#4 performance are given in Table 11.

Table 7. List of M5MT#1 details in VL* estimates.

Rules of M5MT#1 Focusing on Pruning and Smoothing Phases

If θC ≤ 0.018:
| If θC ≤ 0.013:LM1
| If θC > 0.013:LM2
If θC > 0.018 :
| If θC ≤ 0.05:LM3
| If θC > 0.05:LM4

Multilinear Regression Equations

LM1 VL* = −2.0495 + 20.7493θC + 1.4622(1 − e/D) − 0.8277(1 + sinα) + 5.2496FrP

LM2 VL* = −2.1368 + 16.5994θC + 1.4622(1 − e/D) − 0.8277(1 + sinα) + 5.7554FrP

LM3 VL* = 0.062 + 18.2934θC + 3.8163(1 − e/D) − 2.4011(1 + sinα) − 0.3838FrP

LM4 VL* = −2.0857 + 24.1656θC + 5.3836(1 − e/D) − 3.3503(1 + sinα) + 4.4672FrP

Table 8. List of M5MT#2 details in VL* estimates.

Multilinear Regression Equations

LM1 VL* = 0.0512

LM2 VL* = −0.6047 + 2.5289FrP

LM3 VL* = 0.062 + 37.1095θC + 4.4068(1 − e/D) − 2.899(1 + sinα) − 10.5248FrP

LM4 VL* = −1.1712 + 45.4636θC + 7.2873(1 − e/D) − 4.6271(1 + sinα)
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Table 9. List of driven rules of M5MT#3 in VL* estimates.

If θC ≤ 0.018 :
| If θC ≤ 0.013 : LM1
| If θC > 0.013 :
| | If FrP ≤ 0.367 : LM2
| | If FrP > 0.367 :
| | | If θC ≤ 0.015 : LM3
| | | If θC > 0.015 : LM4
If θC > 0.018 :
| If θC ≤ 0.05 :
| | If FrP ≤ 0.361 :
| | | If 1 − e/D ≤ 0.89 :
| | | | If 1 − e/D ≤ 0.82 : LM5
| | | | If 1 − e/D > 0.82 : LM6
| | | If 1 − e/D > 0.89 :
| | | | If 1 − e/D ≤ 0.94 : LM7
| | | | If 1 − e/D > 0.94 : LM8
| | If FrP > 0.361 :
| | | If 1 + sinα ≤ 1.129 :
| | | | If θC ≤ 0.019 :
| | | | | If FrP ≤ 0.425 : LM9
| | | | | If FrP > 0.425 : LM10
| | | | If θC > 0.019 :
| | | | | If FrP ≤ 0.387 : LM11
| | | | | If FrP > 0.387 :
| | | | | | If 1 − e/D < = 0.7 : LM12
| | | | | | If 1 − e/D > 0.7 :
| | | | | | | If FrP ≤ 0.42 : LM13
| | | | | | | If FrP > 0.42 : LM14
| | | If 1 + sinα > 1.129 :
| | | | If 1 − e/D ≤ 0.85 : LM15
| | | | If 1 − e/D > 0.85 : LM16
| If θC > 0.05 :
| | If 1 + sinα ≤ 1.129 :
| | | If 1 − e/D ≤ 0.75 :
| | | | If θC ≤ 0.092 :
| | | | | If 1 − e/D ≤ 0.65 : LM17
| | | | | If 1 − e/D > 0.65 : LM18
| | | | If θC > 0.092 : LM19
| | | If 1 − e/D > 0.75 :
| | | | If 1 − e/D ≤ 0.95 :
| | | | | If θC ≤ 0.073 :
| | | | | | If θC ≤ 0.059 : LM20
| | | | | | If θC ≤ 0.059 : LM20
| | | | | | If θC > 0.059 : LM21
| | | | | If θC > 0.073 : LM22
| | | | If 1 − e/D > 0.95 : LM23
| | If 1 + sinα > 1.129 :
| | | If θC ≤ 0.092 :
| | | | If 1 − e/D ≤ 0.85 :
| | | | | If θC ≤ 0.073 : LM24
| | | | | If θC > 0.073 :
| | | | | | If 1 − e/D ≤ 0.75 : LM25
| | | | | | If 1 − e/D > 0.75 : LM26
| | | | If 1 − e/D > 0.85 : LM27
| | | If θC > 0.092 :
| | | | If 1 − e/D ≤ 0.75 : LM28
| | | | If 1 − e/D > 0.75 : LM29
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Table 10. List of multilinear regression models extracted from M5MT#3 rules.

Multilinear Regression Equations

LM1 VL* = −2.0495 + 20.7493θC + 1.4622(1 − e/D) − 0.8277(1 + sinα) + 5.2496FrP
LM2 VL* = −2.0955 + 16.5994θC + 1.46222(1 − e/D) − 0.8277(1 + sinα) + 5.629FrP
LM3 VL* = −2.0867 + 16.5994θC + 1.46222(1 − e/D) − 0.8277(1 + sinα) + 5.629FrP
LM4 VL* = −2.0876 + 16.5994θC + 1.46222(1 − e/D) − 0.8277(1 + sinα) + 5.629FrP
LM5 VL* = −1.5165 + 11.9305θC + 4.4349(1 − e/D) − 1.904(1 + sinα) + 1.4209FrP
LM6 VL* = −1.5153 + 11.9305θC + 4.4349(1 − e/D) − 1.904(1 + sinα) + 1.4209FrP
LM7 VL* = −1.3564 + 11.9305θC + 4.4349(1 − e/D) − 1.904(1 + sinα) + 1.4209FrP
LM8 VL* = −1.3597 + 37.1095θC + 4.4068(1 − e/D) − 1.904(1 + sinα) + 1.4209FrP
LM9 VL* = −0.9468 + 14.6674θC + 3.2431(1 − e/D) − 1.9373(1 + sinα) + 2.3725FrP
LM10 VL* = −0.9462 + 14.6674θC + 3.2431(1 − e/D) − 1.9373(1 + sinα) + 2.3725FrP
LM11 VL* = −1.0046 + 14.6674θC + 3.2431(1 − e/D) − 1.9373(1 + sinα) + 2.5936FrP
LM12 VL* = −0.9923 + 14.1337θC + 3.2539(1 − e/D) − 1.9373(1 + sinα) + 2.5434FrP
LM13 VL* = −0.9881 + 14.1337θC + 3.2505(1 − e/D) − 1.9373(1 + sinα) + 2.5434FrP
LM14 VL* = −0.9880 + 14.1337θC + 3.2505(1 − e/D) − 1.9373(1 + sinα) + 2.5434FrP
LM15 VL* = −0.7742 + 13.7781θC + 3.2258(1 − e/D) − 2.0772(1 + sinα) + 2.3725FrP
LM16 VL* = −0.7732 + 13.7781θC + 3.2258(1 − e/D) − 2.0772(1 + sinα) + 2.3725FrP
LM17 VL* = −3.6161 + 26.0093θC + 5.6375(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM18 VL* = −3.6169 + 26.0093θC + 5.6465(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM19 VL* = −3.6173 + 26.7266θC + 5.5808(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM20 VL* = −2.6839 + 21.7296θC + 4.8669(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM21 VL* = −2.6847 + 21.7296θC + 4.8669(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM22 VL* = −2.7195 + 22.4079θC + 4.8669(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM23 VL* = −2.6416 + 21.516θC + 4.8669(1 − e/D) − 2.1206(1 + sinα) + 4.4672FrP
LM24 VL* = −3.2052 + 24.0158θC + 4.6143(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP
LM25 VL* = −3.1911 + 23.9395θC + 4.6105(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP
LM26 VL* = −3.1909 + 23.9395θC + 4.6105(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP
LM27 VL* = −3.1238 + 23.2431θC + 4.6001(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP
LM28 VL* = −3.1293 + 21.0132θC + 4.9544(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP
LM29 VL* = −3.1079 + 21.0132θC + 4.9544(1 − e/D) − 2.0809(1 + sinα) + 4.4672FrP

Table 11. List of bias terms given by M5MT#4 in VL* estimates.

Equation VL* Equation VL*

LM1 0.0512 LM16 0.6642
LM2 0.2208 LM17 1.2584
LM3 0.4659 LM18 2.8566
LM4 0.3353 LM19 3.4517
LM5 0.2568 LM20 3.4984
LM6 0.5315 LM21 2.3073
LM7 2.6256 LM22 4.3984
LM8 1.8337 LM23 4.6448
LM9 0.4239 LM24 0.7799

LM10 0.6153 LM25 1.5781
LM11 0.8379 LM26 1.7987
LM12 0.5844 LM27 1.8874
LM13 1.1963 LM28 1.8927
LM14 1.3669 LM29 3.5284
LM15 0.5064 LM30 0

Generally, once M5MT was performed with ignorance of the pruning stage, the size of
the tree structure increased. Although this issue can occasionally improve the accuracy level
of predictions, overfitting can be imminent. For instance, in the performance of M5MT#3,
the pruning phase was excluded during the training stage, resulting in an RMSE = 0.846 for
the training stage and 0.554 for the testing stage. Additionally, in M5MT#4, simultaneous
exclusion of pruning and smoothing stages caused the overfitting and high growth of
the model tree. RMSE values for training and testing stages were equal to 0.846 and
0.554, respectively. M5MT#1 provided better predictions of the scouring propagation rate
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with an RMSE = 0.547 and 0.599 for training and testing, respectively, when compared
with M5MT#2 (RMSE = 0.6886 and 0.713). It is practically permissible for complicated
system analysis to select a typical alternative of M5MT in the presence of pruning and
smoothing phases. In this way, M5MT#1 was selected as the superior model to estimate
VL* in this study.

4. Discussion
4.1. Statistical Measures

To measure the efficacy of ML models’ performance for both the training and test-
ing stages in relation with the estimation of scouring propagation rates around offshore
pipelines, the index of agreement (IOA), RMSE, mean absolute error (MAE), and scatter
index (SI) have been utilized. These statistical measures are defined as:

IOA = 1−
∑N

i=1

(
V∗(i)L(Pre) −V∗(i)L(Obs)

)2√
∑N

i=1

(∣∣∣V∗(i)L(Pre) −V∗(i)L(Obs)

∣∣∣+ ∣∣∣V∗(i)L(Obs) −V∗L(Obs)

∣∣∣)2
(18)

RMSE =

√√√√∑N
i=1

(
V∗(i)L(Pre) −V∗(i)L(Obs)

)2

N
(19)

MAE =
∑N

i=1

∣∣∣V∗(i)L(Pre) −V∗(i)L(Obs)

∣∣∣
N

(20)

SI =

√
1
N ∑N

i=1

[(
V∗(i)L(Pre) −V∗L(Pre)

)
−
(

V∗(i)L(Obs) −V∗L(Obs)

)]2

V∗L(Obs)
(21)

where V∗L(Obs), V∗L(Pre), V∗L, and N are the observed, predicted, and average values of V∗L ,
respectively, and N is the number of experimental works. The most ideal value of IOA is
equal to 1, whereas the worst one is zero. In addition, the RMSE, MAE, and SI values are
introduced as error functions, varying from 0 to +∞.

4.2. Statistical Performance of ML Models

Table 12 demonstrates the performance of ML models in the estimation of scouring
propagation rates (VL*) in training (calibration) and testing (validation) stages. In the
training stage, as seen in Table 12, the MARS expression (Equation (14)) with an RSME
of 0.474 and MAE of 1.619 gave the most promising outperformance, followed by EPR
(RMSE = 0.557 and MAE = 2.754), GEP (RSME = 0.836 and MAE = 3.514), and M5MT
(RSME = 0.847 and MAE = 5.347). Additionally, values of IOA and SI proved the superiority
of the MARS model (IOA = 0.972 and SI = 0.322) over the EPR (IOA = 0.912 and SI = 0.378),
GEP (IOA = 0.914 and SI = 0.567), and M5MT (IOA = 0.962 and SI = 0.574) techniques.
According to IOA, RMSE, and SI, the models GEP and M5MT provided rather the same
performance in the prediction of VL* for the training stage. Statistical measures of testing
stages indicated that EPR (see Table 5 and Model#5) provided the most successful level
of performance (RMSE = 0.342 and MAE = 0.300) compared to MARS (RMSE = 0.379 and
MAE = 0.449), GEP (RMSE = 0.556 and MAE = 0.490), and M5MT (RMSE = 0.599 and
MAE = 0.922). Additionally, values of IOA and SI indicated that EPR expression with the
natural logarithmic inner function had the most remarkable potential of estimating VL* in
comparison with MARS (IOA = 0.969 and SI = 0.330), GEP (IOA = 0.935 and SI = 0.483),
and M5MT (IOA = 0.924 and SI = 0.507).
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Table 12. Statistical performances of the ML models considered in this study.

ML Models
Training Stage

IOA RMSE MAE SI

MARS 0.972 0.474 1.619 0.322
GEP 0.914 0.836 3.514 0.567
EPR 0.912 0.557 2.754 0.378

M5MT 0.962 0.847 5.347 0.574

ML Models
Testing Stage

IOA RMSE MAE SI

MARS 0.969 0.379 0.449 0.330
GEP 0.935 0.556 0.490 0.483
EPR 0.975 0.342 0.300 0.296

M5MT 0.924 0.599 0.922 0.507

Figure 3 illustrates the qualitative performance of ML techniques for both the training
and testing phases. Almost all data points of the training stage in Figure 3 were concen-
trated on the ±25% range of acceptable error. M5MT and GEP techniques significantly
indicated the underestimation of VL* for the observed values of 4.5 and 7, whereas mod-
erate overestimation has been attained by MARS and GEP techniques. Additionally, the
scattering of testing data points in Figure 3b illustrated that M5MT and GEP techniques
yielded moderate underpredictions and overpredictions for an observed VL* less than
2, whereas, for VL* = 2.5–5, almost all data points given by M5MT and GEP indicated
underpredictions in comparison with EPR and MARS models.

Figure 3. Performance of ML models for prediction of VL* in the (a) training and (b) testing stages.

4.3. Comparisons between ML Models and Related Works Regarding Complexity

In the present part of the investigation, the results of the ML models have been
compared with those obtained by previous investigations considering various issues of ML
models, such as the complexity of the general structure, the accuracy level, and the typical
usability of optimization models in improving ML models’ performance. In the case of the
convolutional structure of the ML models, EPR expression (see Table 5 and Model #5) had a
more complex mathematical structure, including six algebraic terms and natural logarithmic
inner function, compared with MARS expression (Equation (14)) and multilinear regression
equations by M5MT. Applying the present setting parameters in the development of the
EPR model along with MOGA performance was more successful in increasing the accuracy
level of the VL* prediction than M5MT, with its simpler expressions and low executive time
performance. Furthermore, Equation (14), given by MARS, included 15 sets of second-order
polynomials along with the performance of 10 forward and backward stages, providing
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more complex expressions and higher executive time performance than the multilinear
mathematical expressions developed by M5MT (see Table 7). In this case, the MARS
expression had a promising application compared to all four alternatives of the M5MT
models (including bias terms and linear expressions). In the GEP model, three typical inner
functions (i.e., Tanh, Exp, Atan) with three algebraic terms could not lead to higher complex
mathematical expressions than EPR expressions.

Since there is no related research work that has studied the application of ML models
in the estimation of scouring propagation rates due to currents, the present results were
only compared with previous investigations in terms of ML models’ complexity. All the
related works were tested on the scouring propagation data due to regular waves and
live-bed sediment conditions. Najafzadeh and Saberi-Movahed [15] utilized the GEP model
in the structure of the GMDH model to promisingly predict the scouring propagation rates
around offshore pipelines due to waves in comparison with GMDH and GEP techniques.
One of the main findings of the present study is that it is consistent with the results
obtained by Najafzadeh and Saberi-Movahed [15]. Moreover, an increase in the complexity
of ML models causes an increase in the precision level of GMDH (or other ML models
such as EPR and GEP models). For instance, Table 5 indicates that adding logarithmic
terms to the EPR expression led to more accurate results, increasing performance from
Model #1 with a MSE = 0.582 to Model #5 with a MSE = 0.341. In another related research
work, Ehteram et al. [16] used three optimization algorithms (i.e., CBA, WA, and PSO)
to improve an ANN structure for the estimation of the scouring propagation rates. All
three ANN models were less complex than the EPR expression obtainedby the present
study (see Table 5), and additionally, the ANN models were modeled only for wave
conditions that were different from the present study. The results of this study showed that
EPR, with its high degree of complexity, provided more accurate results than ANN-CBO
(MAE = 0.721), ANN-WA (MAE = 0.745) and ANN-PSO (MAE = 0.814). Nevertheless, these
ANN models have generally faster performance in predicting the scouring propagation
rates, but the potential of MOGA in the selection of algebraic terms and exponents of
variables (interactions among variables) would increase the accuracy level of ML models
in this case. In Najafzadeh and Oliveto’s [17] research, EPR expressions developed by the
natural logarithmic inner function provided higher complexity and accuracy than the GEP
model.

4.4. Effects of the Pipeline Embedment Depth

The variation of VL* values versus e/D ratios is illustrated in Figure 4. These physical
behaviors were studied in four levels of θC and α values, as seen in Figure 4a–d. For
θC = 0.018 and α = 0◦, Figure 4a indicates that an increase in e/D value leads to a decrease
in VL*. All the ML models follow the decreasing trend, consistent with observed values.
For instance, MARS demonstrated that VL* declined from 1.970 in e/D = 0.02 to 0.577 in
e/D = 0.08. Additionally, for the state of θC = 0.0091–0.061 and α = 0◦, Figure 4b illustrated
a downward trend between VL* values and e/D ratios. In Figure 4c, the variation of VL*
values versus e/D ratios was provided in different viewpoints. Generally, experimental
observations depicted a downward trend from VL* = 2.453 in e/D = 0.1 to VL* = 1.398 in
e/D = 0.3. Afterward, VL* variations remained rather constant in e/D = 0.4, then had a
decreasing trend up to e/D = 0.5. Figure 4c illustrated that all ML models follow the physical
behavior of VL* versus e/D given by experimental observations for e/D = 0.1–0.4, whereas
the M5MT and EPR models could not follow the downward variation of VL* values between
e/D = 0.4–0.5, indicating relatively significant overpredictions. Similar to that shown in
Figure 4c, MARS and EPR expressions could successfully simulate physical behaviors of VL*
versus e/D values in e/D = 0.1–0.2. As seen in Figure 4d, the M5MT and MARS models have
gone through upward trends at e/D = 0.3, illustrating overpredictions. The quantitative
results of ML models for different ranges of θC and α parameters are presented in Table 13.
As seen in Table 13, the MARS technique provided the most promising performance
(RMSE = 0.197 for θC = 0.081–0.104 and α = 15◦) for all ranges, except θC = 0.018 and α = 0◦,
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whereas M5MT indicated the lowest accuracy in the prediction of VL* for all ranges, except
θC = 0.046–0.104 and α = 30–45◦, in which GEP expression had the worst performance.

Figure 4. Cont.
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Figure 4. Variations of dimensionless VL* against various e/D values at (a) θC = 0.018 and α = 0◦,
(b) θC = 0.091–0.061 and α = 0◦, (c) θC = 0.081–0.104 and α = 15◦, and (d) θC = 0.046–0.104 and
α = 30–45◦.

Table 13. RMSE values for the ML models as the various dimensionless parameters vary.

ML Models

Variation of e/D

θC = 0.018 and α = 0◦ θC = 0.0091–0.061
and α = 0◦ θC = 0.081–0.104 and α = 15◦ θC = 0.046–0.104

and α = 30–45◦

MARS 0.431 0.933 0.197 0.331
GEP 0.315 1.514 0.323 0.910
EPR 0.481 1.100 0.682 0.398

M5MT 0.681 1.767 0.618 0.698

ML Models

Variation of θC

e/D = 0.1 and α = 0◦ e/D = 0.1–0.35
and α = 0◦ e/D = 0.1 and α = 15◦ e/D = 0.2 and α = 15◦

MARS 0.223 0.183 0.746 0.191
GEP 0.308 0.630 0.880 0.258
EPR 0.185 0.212 0.490 0.251

M5MT 0.681 0.573 0.690 0.349

ML Models
Variation of θC

e/D = 0.3 and α = 15◦ e/D = 0.4 and α = 15◦ e/D = 0.1 and α = 30◦ e/D = 0.2 and α = 30◦

MARS 0.165 0.286 0.542 0.439
GEP 0.248 0.462 0.532 1.075
EPR 0.368 0.347 0.278 0.639

M5MT 0.218 0.249 0.502 0.835

ML Models

Variation of FrP

θC = 0.0091–0.1045
and α = 0◦

θC = 0.046–0.104
and α = 15◦ θC = 0.046–0.104 and α = 30–45◦

MARS 0.173 0.235 0.359
GEP 1.063 0.376 0.993
EPR 0.356 0.872 0.412

M5MT 1.315 0.778 0.762

4.5. Effects of the Shields Parameter

Figure 5 demonstrates the variation of VL* values versus the Shields parameter θC. As
seen in Figure 5a, all ML models provided overall increasing trends for e/D = 0.1 and α = 0◦.
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In the case of e/D = 0.01–0.035 and α = 0◦, Figure 5b shows that all ML models detect
physical behaviors of VL* versus θC parameter in an upward way for θC = 0.021–0.054;
then, VL* decreases in θC = 0.064. Additionally, the M5MT and GEP models produced
remarkable underpredictions for θC = 0.054. Figure 5c depicts the variation of VL* values
versus θC for e/D = 0.1 and α = 15◦. The results of the ML models indicated that the
present variation had an increasing trend. As seen in Figure 5c, for θC = 0.104, ML models
exhibit a certain underprediction. Similar to Figure 5c, Figure 5d–f show an increasing
trend for e/D = 0.2–0.4 and α = 15◦. From Figure 5g,h, for e/D = 0.1–0.2 and α = 30◦,
ML models generally provided an increasing trend for the variation of VL* versus the
θC parameter. For θC = 0.104, all ML models underpredicted VL* for e/D = 0.1 and α = 30◦

(see Figure 5g) whereas GEP and M5MT had underpredictions of VL* for e/D = 0.2 and
α = 30◦ in Figure 5h. Overall, the predicted values of VL* given by ML models were in
good agreement with experimental observations. To allow quantitative comparisons of
the ML models’ performance in the four ranges of e/D and α, the results of the RMSE
are presented in Table 13. Table 13 indicates that EPR expression had the most suc-
cessful performance for e/D = 0.1 and α = 0◦ with an RMSE of 0.185, e/D = 0.1 and
α = 15◦ with an RMSE of 0.490, and e/D = 0.1 and α = 30◦ with an RMSE of 0.278. Ad-
ditionally, the MARS model had the best results for ranges e/D = 0.1–0.35 and α = 0◦

(RMSE = 0.183), e/D = 0.2 and α = 15◦ (RMSE = 0.191), e/D = 0.3 and α = 15◦ (RMSE = 0.165),
e/D = 0.2 and α = 30◦ (RMSE = 0.439). Moreover, Table 13 shows that GEP had the worst
performance for e/D = 0.2 and α = 30◦ (RMSE = 1.075), as well as in case of e/D = 0.1 and
α = 15◦, in which the GEP model still had the lowest level of accuracy (RMSE = 0.880).

Figure 5. Cont.
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Figure 5. Variations of dimensionless VL* against various θC for (a) e/D = 0.1 and α = 0◦,
(b) e/D = 0.1–0.35 and α = 0◦, (c) e/D = 0.1 and α = 15◦, (d) e/D = 0.2 and α = 15◦,
(e) e/D = 0.3 and α = 15◦, (f) e/D = 0.4 and α = 15◦, (g) e/D = 0.1 and α = 30◦, and (h) e/D = 0.2
and α = 30◦.

4.6. Effects of the Approach Flow Froude Number

Figure 6 shows the variations of VL* versus FrP for three ranges of θC and α. From
Figure 6a, the performance of the ML models was in good agreement with experimental
observations for FrP = 0.34, 0.47, and 0.5. Overall, the qualitative results of ML models
indicated that VL* variations had an increasing trend for FrP = 0.346–0.4; then, a downward
trend was obtained for FrP = 0.4–0.5. Besides, values of VL

* given by the ML techniques in-
creased at FrP = 0.63. As seen in Figure 6a, all the ML models, except MARS expression, had
relatively remarkable underprediction for FrP = 0.4, whereas M5MT and GEP techniques
overpredicted VL* values at FrP = 0.63. In Figure 6b, experimental observations indicated
that the variation of VL* values had a declining trend for FrP = 0.5–1.26, whereas EPR
and M5MT techniques overpredicted significantly compared to GEP and MARS expres-
sions. As illustrated in Figure 6c, MARS and EPR models indicated a downward trend for
FrP = 0.5–1.71, whereas GEP and M5MT overpredicted significantly. In regard to the quan-
titative performance of ML models, the MARS model had the most successful evaluation
in the prediction of VL* for all ranges θC = 0.0091–0.1045 and α = 0◦ (RMSE = 0.173), θC =
0.046–0.104 and α = 15◦ (RMSE = 0.235), and θC = 0.046–0.104 and α = 30–45◦ (RMSE = 0.359).
In contrast, M5MT, EPR, and GEP yielded the lowest level of accuracy in θC = 0.0091–0.1045
and
α = 0◦ (RMSE = 1.315), θC = 0.046–0.104 and α = 15◦ (RMSE = 0.872), and θC = 0.046–0.104
and α = 30–45◦ (RMSE = 0.993), respectively (Table 13).
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Figure 6. Variations of dimensionless VL* against FrP for (a) θC = 0.0091–0.1045 and α = 0◦,
(b) θC = 0.046–0.104 and α = 15◦, and (c) θC = 0.046–0.104 and α = 30–45◦.

5. Conclusions

In the present research, various ML models based on evolutionary computing and
classification concepts have been utilized to predict the scouring propagation rate around
offshore pipelines exposed to currents. Effective dimensionless parameters (i.e., 1 – e/D,
1 + sinα, θC, FrP) obtained from dimensional analysis of the scouring tests were directly
incorporated into the presented equations through the performance of ML models. The
main findings of this research can be summarized as follows.

ML models provided explicit formulas with promising performance for the estimation
of the scouring propagation rate. EPR expression included a mathematical structure
with the highest degree of nonlinearity, followed by Equation (14) (given by the second-
order polynomial MARS model) and the multilinear regression equation by M5MT. In
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the GEP model, a kind of inner function played a key role in increasing the precision
level of performance (Equation (9)) through an optimal evolutionary technique. The
predictive equations resulting from the ML models are somewhat complex and have several
fitting parameters, which are not so numerous when taking into account the geometrical
and hydraulic conditions (even including live-bed and clear-water approaching flows)
considered in this study. However, these equations have the considerable advantage of
fitting the experimental data with performances that are significantly higher than the
currently available literature formulas. Their structure is somewhat complex and inhibits
an immediate identification of the role performed by each governing parameter (though
a sensitivity analysis could be a replacement in this regard), but they could be easily
implemented in numerical codes. Moreover, according to Table 1, their ranges of application
are: 0 ≤ e/D ≤ 0.5, 0◦ ≤ α ≤ 45◦, 0.22 ≤ FrP ≤ 0.63, and 0.01 ≤ θC ≤ 0.10.

The ML models considered in this study definitely perform better than the current em-
pirical models. However, their performance differs from one model to another depending
on the structure/algorithm of the model itself. This study also remarks on these differences
(highlighting which model would perform better) in a physical context characterized by
a limited number of data (95 experimental observations) despite the complexity of the
phenomena. Statistical measures of ML models indicated that MARS could yield 15 BFs
(including linear and polynomial equations) and the best performance in the training states
whereas, for the testing stage, EPR expression with natural logarithmic functions resulted
in the most level of precision for the prediction of VL*.

Quantitative and qualitative representations for variations of VL* values versus e/D
were provided to obtain physical behaviors with variations in θC and α values. Generally,
MARS and GEP expressions simulated well the variations of VL* values versus e/D ratios
through a downward trend compared to EPR and M5MT techniques. These downward
variations were in good agreement with experimental variations for different levels of θC
and α (for instance, θC = 0.018 and α = 0◦; θC = 0.0091–0.061 and α = 0◦).

A parametric study of VL* variations versus θC values was carried out in various levels
of e/D and α. All ML models provided increasing trends for levels of e/D and α. Generally,
predictions of scouring propagation rates (given by ML models) were in good harmony
with experiments by Hansen et al. [18], Cheng et al. [6], and Wu and Chiew [7].

Driving physical variations of VL* values versus the pipeline Froude number (FrP)
values were conceptualized for three levels of θC and α values. Although MARS and EPR
expressions demonstrated a downward trend for some values of FrP, the performance
of the ML models generally could follow decreasing trends for θC = 0.0091–0.104 and
α = 0◦, θC = 0.046–0.104 and α = 15◦, and θC = 0.046–0.104 and α = 30–45◦, probably due to
live-bed conditions.

ML model-performed equations exhibited physical consistency with experimental
investigations, so they could result in reliable estimations of scouring propagation rates,
which are utilized to consider the practical design of offshore pipelines while focusing
on preventative measures of erosion and scouring. The analysis of data was carried out
considering dimensionless governing parameters of great impact in sediment transport
phenomena (e.g., the pipeline Froude number and the Shields parameter). This approach
allows the extension of the proposed predictive equations to the field because the exper-
imental data used in this study would appear free from scale effects. However, more
experimental observations would be useful and desirable, especially those looking at the
unexplored ranges highlighted in the histograms in Figure 2. The combined action of
current and waves would need more attention, as would the collection of field data, which
are not currently available to the authors’ knowledge.
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