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A B S T R A C T 

We present COSMOPOWER , a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration 

for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background 

(CMB) surv e ys. The emulators replace the computation of matter and CMB power spectra from Boltzmann codes; thus, they 

do not need to be re-trained for different choices of astrophysical nuisance parameters or redshift distributions. The matter 
power spectrum emulation error is less than 0 . 4 per cent in the wavenumber range k ∈ [10 

−5 , 10] Mpc −1 for redshift z ∈ [0, 
5]. COSMOPOWER emulates CMB temperature, polarization, and lensing potential power spectra in the 5- σ region of parameter 
space around the Planck best-fitting values with an error � 10 per cent of the expected shot noise for the forthcoming Simons 
Observ atory. COSMOPOWER is sho wcased on a joint cosmic shear and galaxy clustering analysis from the Kilo-Degree Survey, as 
well as on a Stage IV Euclid -like simulated cosmic shear analysis. For the CMB case, COSMOPOWER is tested on a Planck 2018 

CMB temperature and polarization analysis. The emulators al w ays reco v er the fiducial cosmological constraints with differences 
in the posteriors smaller than sampling noise, while providing a speed-up factor up to O (10 

4 ) to the complete inference pipeline. 
This acceleration allows posterior distributions to be reco v ered in just a few seconds, as we demonstrate in the Planck likelihood 

case. COSMOPOWER is written entirely in PYTHON , can be interfaced with all commonly used cosmological samplers, and is 
publicly available at: https:// github.com/alessiospuriomancini/ cosmopower. 

Key words: methods: data analysis – methods: statistical – cosmic background radiation – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

nalysis of the two-point statistics of cosmological fields is one of
he cornerstones of modern observational cosmology. For parameter 
nference pipelines involving two-point statistics (i.e. power spectra, 
r their derived real-space counterparts, correlation functions), the 
omputational bottleneck is running Boltzmann solvers like CAMB 

Lewis, Challinor & Lasenby 2000 ) or CLASS (Blas, Lesgourgues & 

ram 2011 ; Lesgourgues 2011 ) to compute theoretical power spectra 
or a given cosmology. However, cosmological power spectra are 
enerally smooth functions of their input cosmological parameters 
nd hence lend themselves well to emulation : finding compact, accu- 
ate, and fast-to-e v aluate surrogate functions that map cosmological 
arameters to the corresponding predicted power spectra. 
Emulation offers the promise of reducing the computational 

 v erhead of e v aluating cosmological po wer spectra by many orders
f magnitude, with negligible loss of accuracy in the final parameter 
nference. This surrogate modelling approach has recently seen nu- 

erous applications to the Bayesian solution of the inverse problem 

n different scientific fields, ranging from geophysical seismic waves 
Das et al. 2018 ; Piras et al. 2021 ; Spurio Mancini et al. 2021 ) to
 E-mail: a.spuriomancini@ucl.ac.uk 
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tellar and galaxy spectra (Czekala et al. 2015 ; Alsing et al. 2020 ),
rom chemical mechanisms (de Mijolla et al. 2019 ; Kasim et al.
021 ) to applied engineering (Buffington et al. 2020 ; Thiagarajan
t al. 2020 ). 

Emulation of cosmological power spectra is not a new idea 
ither. Early examples of emulators include CMBWARP (Jimenez 
t al. 2004 ) and PICO (Fendt & Wandelt 2007 ), both perform-
ng polynomial regression of power spectra (represented in some 
ompact basis). The matter power spectrum emulators built from 

he Coyote Universe simulations (Heitmann et al. 2009 , 2010 ,
013 ; Lawrence et al. 2010 , 2017 ) are based on Gaussian Process
GP) regression (Rasmussen & Williams 2005 ) and were extended 
y Ramachandra et al. ( 2021 ) to f ( R ) cosmologies. Recently, the
uclid Emulator was proposed as a surrogate model for the non-

inear matter power spectrum (Knabenhans et al. 2019 ; Euclid 
ollaboration 2021 ), Mootoovaloo et al. ( 2020 ) developed a GP
mulator of cosmic shear band po wers, while Mootoov aloo et al.
 2022 ) and Ho, Bird & Shelton ( 2021 ) used GPs to emulate
he matter power spectrum. Bird et al. ( 2019 ) and Rogers et al.
 2019 ) developed GP emulators for the Lyman- α forest flux power
pectrum. 

COSMONET (Auld et al. 2007 ; Auld, Bridges & Hobson 2008 )
s the first application of neural networks (NNs) to cosmological 
o wer spectra emulation, follo wed by Agarwal et al. ( 2012 ) and
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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garwal et al. ( 2014 ). More recently, Manrique-Yus & Sellentin
 2019 ) developed NN interpolators for angular power spectra of
arge-Scale Structure (LSS) observables, while Albers et al. ( 2019 )
sed NNs to accelerate parts of power spectra computations within
he Boltzmann code CLASS ; moreo v er, the BACCO project (Angulo
t al. 2021 ) recently included an NN interpolator for the linear matter
ower spectrum (Aric ̀o, Angulo & Zennaro 2021 ). Kern et al. ( 2017 ),
chmit & Pritchard ( 2017 ), and Bevins et al. ( 2021 ) developed NN
mulators for the 21-cm global signal or power spectrum. 

In this paper, we introduce a suite of neural cosmological power
pectrum emulators co v ering both Cosmic Microwav e Background
CMB) (temperature, polarization, and lensing) and (linear and non-
inear) matter power spectra. These emulators provide orders-of-

agnitude speed-up o v er direct Boltzmann solvers, while being
omfortably accurate for upcoming surv e ys such as the Simons
bservatory (Ade et al. 2019 ), 1 Euclid (Laureijs et al. 2011 ), 2 

he Vera Rubin Observatory (Ivezi ́c et al. 2019 ), 3 and the Nancy
race Roman Space Telescope (Spergel et al. 2015 ). 4 For LSS
bservables, we demonstrate the accuracy and acceleration provided
y our emulators on data from the Kilo-Degree Survey (KiDS) as
ell as on a simulated cosmic shear analysis of a Euclid -like surv e y.
or the CMB, we validate COSMOPOWER on a Planck 2018 CMB

emperature and polarization analysis. 
Our emulators are trained to provide accurate emulation of

osmological power spectra on a very wide range of cosmological
arameters, and they easily allow for different configurations of
nput and derived cosmological parameters. In addition, they are
ully differentiable, which makes them amenable to gradient-based
nference, and can be run on graphics processing units (GPUs) to
ain further acceleration. 

The structure of this paper is as follows. In Section 2, we introduce
he NN emulation framework tailored to power spectrum emulation.
pplication to the matter power spectrum emulation is presented in
ection 3, including validation on the KiDS and Euclid -like analyses.
pplication to the CMB case is presented in Section 4, including
alidation on the Planck analysis. We summarize the properties of
OSMOPOWER and conclude in Section 5. 

 E MULATING  C O S M O L O G I C A L  POWER  

PECTRA  

e consider two methods for power spectra emulation. 

(i) The first one is a direct mapping between cosmological
arameters and power spectra by means of an NN, schematically
epresented in the left-hand panel of Fig. 1 (see e.g. Bishop 2006 for
n introduction to NNs; here, we follow a similar notation to Alsing
t al. 2020 ). An NN is a set of stacked layers, each composed of
ultiple nodes; we label each of the n nodes with index i . To each

f them, a weight W i and bias parameter b i are associated, whose
inear combination is passed through a non-linear acti v ation function
see Appendix A1 for details on the acti v ation function employed in
his work); we denote the ensemble of weights and biases as w . The
on-linear function parametrized by w maps the input cosmological
arameters θ to the (log-)power spectra P λ = P λ( θ ; w ), where λ
s either the wavenumber k for the matter power spectrum or the
ultipole � in the CMB case. The spectra used for training the deep
 ht tps://simonsobservat or y.or g/
 https:// www.euclid-ec.org/ 
 ht tps://www.lsst .org/
 https:// roman.gsfc.nasa.gov/ 
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NRAS 511, 1771–1788 (2022) 
earning emulators are pre-processed by calculating their logarithm,
ollowed by standardization of the logarithmic features, i.e. dividing
ach logarithmic feature by its standard deviation after subtracting its
ean. Taking the logarithm of the spectra reduces the dynamic range

n the training data and ensures that minimizing the mean-square-
rror loss optimizes for fractional (rather than absolute) accuracy on
he emulated power spectrum. Standardization ensures more rapid
raining convergence (Wan 2019 ). 

(ii) In the second method, we train an NN to learn the mapping
etween cosmological parameters and principal components of the
ower spectra, as shown in the right-hand panel of Fig. 1 . Principal
omponent analysis (PCA) is a linear dimensionality reduction
echnique, which performs a singular value decomposition of the
nput signal and retains the N PCA components with the highest
ariance. We perform a PCA decomposition of the spectra in our
raining data set, which produces a set of basis functions q λ, i , with i
 1, . . . , N PCA . In other words, we assume that we can decompose

he spectra as: 

 λ( θ ; w ) = 

N PCA ∑ 

i= 1 

αi ( θ ; w ) q λ,i , (1) 

here the coefficients αi in the new basis q λ, i are the principal
omponents. We train an NN to output estimates ˆ αi of the principal
omponents αi , given cosmological parameters θ as input. Similar
o the power spectra components in the direct NN case, the PCA
omponents are also standardized. 

e report the implementation details of the NNs and PCA in
ppendix A, including details on the training procedure. We tested
oth emulation approaches on the cosmological power spectra of
nterest and found the former to be in general more accurate. Thus, we
ecided to use it for all power spectra with the exception of the cross
emperature–polarization ( C 

TE 
� ) and lensing potential ( C 

φφ
� ) CMB

ower spectrum, which were emulated using the second method.
he use of the PCA decomposition is indeed particularly convenient
hen, as in the CMB TE spectrum case, it is not possible to take the

ogarithm of the training power spectra due to some ne gativ e values.
e also observed a better performance of the emulator for the φφ

pectrum when applying the PCA compression first; we argue that
his is due to the smaller values of the logarithmic spectra, which
ange from −6 to −20 and might therefore cause numerical issues if
ed directly into the NN. 

One of the key advantages of COSMOPOWER is that the emulators
re trained on very broad parameter ranges, which we report in
able 1 . The choice of such large parameter ranges is moti v ated by

he desire to provide a tool that is as general as possible (see Section 5
or further comments on this point). 

A common problem in existing emulators is that they are trained
o provide good performance on a fixed choice of cosmological
arametrization, while Boltzmann solvers maintain the flexibility
o choose among different input parametrizations. In addition,
oltzmann solvers allow for derived parameters to be computed
 posteriori, so that one can explore degeneracies between different
arameters without restrictions. For example, one cannot directly
ample in both ln10 10 A s and σ 8 , as these two parameters are related;
hoosing to sample one or the other may in fact even have some
ffect on the posterior distribution (see e.g. Joachimi et al. 2021 ).
he common strategy when performing cosmological inference is to
hoose one of these parameters for sampling, and let the Boltzmann
olver compute the corresponding other one at each point in the
osterior chain. In COSMOPOWER, this is also possible without re-
raining emulators from scratch. As we show in Section 3 and

https://simonsobservatory.org/
https://www.euclid-ec.org/
https://www.lsst.org/
https://roman.gsfc.nasa.gov/


COSMOPOWER 1773 

Figure 1. Schematic of the neural network emulation implemented in COSMOPOWER . A neural network is trained to learn the mapping between cosmological 
parameters and (a) power spectra and (b) coefficients in a principal component analysis of the power spectra. 

Table 1. Ranges of validity of our emulators. The uniform prior 
distributions that we use at inference time to test our emulators share the 
same ranges. The LSS and CMB ranges are also the prior ranges assumed 
by the KiDS-1000 and Planck 2018 analysis, respectiv ely. P arameters 
denoted as fixed in the LSS or CMB column are not considered as inputs 
to the neural networks that emulate the rele v ant po wer spectra, since the 
power spectra dependence on those parameters is negligible. 

Parameter LSS emulator range CMB emulator range 

ω b [0.01875, 0.02625] [0.005, 0.04] 
ω cdm 

[0.05, 0.255] [0.001, 0.99] 
h [0.64, 0.82] [0.2, 1.0] 
τ reio fixed [0.01, 0.8] 
n s [0.84, 1.1] [0.7, 1.3] 
ln10 10 A s [1.61, 3.91] [1.61, 5] 
c min [2, 4] Fixed 
η0 [0.5, 1] Fixed 
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ppendix A3 for the case of ln10 10 A s and σ 8 , one can choose to
ample the former or the latter and obtain the other one with a GP. We
efer the reader to Appendix A3 for details on the implementation of
uch a GP (see also Mootoovaloo et al. 2020 for a similar application
f GPs to obtain derived values of σ 8 ). 

 LARGE-SCALE  STRUCTURE  

.1 Theory 

ere, we briefly summarize the theory underlying two-point statistics 
nalyses of LSS surv e ys, following a notation similar to that of Asgari
t al. ( 2021 ), Heymans et al. ( 2021 ), and Joachimi et al. ( 2021 ). A flat
 CDM model is assumed throughout the paper. Extensions of our 

mulators to beyond- � CDM cosmologies will be explored in future 
ork (see Section 5 for details). 
LSS analyses target the shear and clustering signal of the observed 

alaxies, including the shear-clustering cross-correlation, in what is 
ypically referred to as ‘3x2pt’ analysis (Joachimi & Bridle 2010 ). 
ngular power spectra of shear and clustering statistics can be 
 xpressed as inte grals of the matter power spectrum P δδ( k , z) along
he line of sight, weighted by kernel functions: 

 

ab 
ij ( � ) = 

∫ χH 

0 
d χ

W 

a 
i ( χ ) W 

b 
j ( χ ) 

χ2 
P δδ

(
� + 1 / 2 

χ
, z 

)
, (2) 

here the indices { a, b } can be assigned the labels { γ , I, n } ,
enoting contributions from cosmic shear, galaxy intrinsic alignment, 
nd galaxy positions, respectively. The integral in equation (2) is 
erformed along the line of sight up to the Hubble radius χH =
 / H 0 , with c the speed of light and H 0 the Hubble constant. χ
enotes the comoving distance, which is a function of the redshift
 (a dependence implicitly assumed in equation [2] for ease of
otation). The Limber projection (Kaiser 1992 ; LoVerde & Afshordi 
008 ) connects the wavenumber k and redshift z at which the matter
ower spectrum P δδ( k , z) is evaluated in that integral, so that given a
ultipole � and a redshift z (corresponding to a comoving distance
), the matter power spectrum is evaluated at wavenumber k = ( � +
/2)/ χ ( z). We note that, while we will restrict ourselves to Limber-
pproximated spectra in this paper, the emulation framework in 
OSMOPOWER can be equally applied to accelerate the computation 
f non-Limber projected spectra, which we plan to investigate in 
uture work (see Section 5 for a discussion). 

The weighting functions W can be written as 

 

γ

i ( χ ) = 

3 H 

2 
0 �m 

2 c 2 
χ

a 

∫ χH 

χ

d χ ′ n i ( χ ′ ) 
χ ′ − χ

χ ′ , (3) 

 

I 
i ( χ ) = −A IA 

(
1 + z 

1 + z pivot 

)ηIA C 1 ρcr �m 

D( χ ) 
n i ( χ ) , (4) 

 

n 
i ( χ ) = b i n i ( χ ) , (5) 

here �m 

is the total matter density parameter, a is the scale
actor, n i ( χ ) denotes the redshift distribution for redshift bin i ,
 ( χ ) is the linear growth factor, ρcr is the critical density, C 1 is
 constant, z pivot is an arbitrary redshift set to 0.3, while A IA and
IA are two free parameters, allowing for a scaling in amplitude and
edshift, respectively, of the intrinsic alignment contribution. The 
inear galaxy bias coefficients b i are also left free to vary in the
nference pipeline. 

The observed angular two-point statistics of galaxy ellipticities ε
or tomographic redshift bins i and j , as a function of the angular
ultipole � , can be written as 
MNRAS 511, 1771–1788 (2022) 

art/stac064_f1.eps
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Figure 2. Matter power spectrum emulation accuracy for (a) the linear power spectrum and (b) the non-linear correction, as measured on the ∼2 · 10 4 spectra 
of the testing set for our emulators. Dark r ed , r ed , and salmon areas enclose the 68, 95, and 99 percentiles of the fractional absolute emulator error, respectively, 
as a function of wavenumber k . By construction, the redshift z is an input parameter for the emulators. Therefore, these percentile curves are computed with 
spectra e v aluated at redshifts z ∈ [0, 5], i.e. spanning the whole range of v alidity of our emulators. 
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εε
ij ( � ) = C 

γ γ

ij ( � ) + C 

γ I 
ij ( � ) + C 

I γ
ij ( � ) + C 

II 
ij ( � ) , (6) 

.e. as a sum of a pure cosmic shear contribution and contaminants
esulting from the intrinsic alignment of galaxies, which also affects
he angular power spectrum of the cross-correlation between galaxy
llipticities ε and positions n (usually referred to as ‘g alaxy–g alaxy
ensing’): 

 

n ε
ij ( � ) = C 

n γ
ij ( � ) + C 

n I 
ij ( � ) , (7) 

hile the galaxy clustering power spectrum C 

nn 
ij ( � ) is not affected by

ntrinsic alignments and, assuming no magnification bias (Duncan
t al. 2013 ; von Wietersheim-Kramsta et al. 2021 ), can be explicitly
ritten as 

 

nn 
ij ( � ) = b i b j 

∫ χH 

0 
d χ

n i ( χ ) n j ( χ ) 

χ2 
P δδ

(
� + 1 / 2 

χ
, z 

)
. (8) 

wo-point statistics measured by LSS surv e ys are typically linear
ransformations of the theoretical power spectra given by equa-
ions (6)–(8), such as band-power estimates (Schneider, van Waer-
eke & Mellier 2002 ; van Uitert et al. 2018 ). We refer the reader
o Asgari et al. ( 2021 ) for a re vie w of dif ferent measured two-point
tatistics. 

.2 Emulating the matter power spectrum 

quation (2) clearly indicates that the prediction of the matter power
pectrum P ( k , z) is central in the computation of the two-point statis-
ics of cosmic shear, g alaxy–g alaxy lensing and galaxy clustering.
oltzmann codes can perform practically exact computations (up

o numerical accuracy) of the matter power spectrum predicted by
he linear theory of gravitational instability, which we denote as
 

L 
δδ( k, z). As non-linearities become more important, linear theory
reaks down. We will write the full, non-linear spectrum as the
roduct of the linear one P 

L 
δδ( k, z) and a non-linear correction, which

e label P 

NL −CORR 
δδ ( k, z): 

 δδ( k, z) = P 

L 
δδ( k, z) P 

NL −CORR 
δδ ( k, z) . (9) 

Non-linear corrections become important at small scales, corre-
ponding to large wavenumbers k . Their modelling as a function
f cosmological parameters is uncertain and further complicated
NRAS 511, 1771–1788 (2022) 
y baryonic effects, whose impact on the non-linear matter power
pectrum induces important, yet not fully understood modifications
o the non-linear power on small scales (see e.g. Chisari et al. 2019 ,
or a re vie w). In recent years, the HMCODE software developed
y Mead et al. ( 2015 ), Mead et al. ( 2016 ), and Mead et al.
 2021 ) has found widespread use in LSS analyses, as a way to
redict the non-linear power spectrum while taking into account
aryonic effects. HMCODE is a modified halo model, which includes
aryonic contributions as opposed to, for example, the fitting function
ALOFIT (Smith et al. 2003 ; Bird, Viel & Haehnelt 2012 ; Takahashi

t al. 2012 ). In this work, we consider the latest version of the
MCODE software (Mead et al. 2021 ). We focus on two of its free
arameters, c min and η0 , denoting the minimum halo concentration
nd the halo bloating, respectively. We train one emulator for the
inear power spectrum P 

L 
δδ( k, z) and one for the non-linear correction

 

NL −CORR 
δδ ( k, z). We also experimented emulating directly the full
ower spectrum but noticed increased performance when separating
he linear contribution from the non-linear correction. We observe
hat this split helps the emulator isolate and learn more efficiently
he effect of the non-linear parameters c min and η0 . For both linear
nd non-linear contribution, we emulate the power spectrum at 420
 values in the range [10 −5 , 10] Mpc −1 . The redshift z is varied o v er
he range [0, 5] and treated as an additional input parameter for the
mulator. We use ∼1.8 · 10 5 spectra for our training set and leave
2 · 10 4 spectra for our testing set. We verified that this fraction of

arameter samples randomly selected for testing purposes from the
raining set still represents a homogeneous and uniformly distributed
ample for each parameter. 

The left- and right-hand panels of Fig. 2 report the emulation ac-
uracy on the testing set for the linear power spectrum and non-linear
orrection, respectively. We use percentile plots to show the statistical
ehaviour of the emulator accuracy throughout the testing set, as a
unction of the wav enumber k . F or the linear power, 99 per cent
f the testing power spectra are emulated with differences smaller
han 0.1 per cent of their real value across the entire wavenumber
ange considered. For the non-linear correction, 99 per cent of the
pectra are emulated with less than 0.4 per cent error. As expected, the
ercentage difference in the non-linear correction is typically about
n order of magnitude larger than the linear one, thus dominating
he total error. We can see how the error on the non-linear correction

art/stac064_f2.eps
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Table 2. Prior ranges for the 3x2pt analysis of the KiDS- 
450 and GAMA surv e ys. Prior distributions are all taken 
to be uniform across these ranges. For the cosmological 
parameters and the baryonic feedback parameter c min , 
the prior range corresponds to the range of validity of our 
emulators (cf. Table 1 ). 

Parameter Prior range 

ω b [0.01875, 0.02625] 
ω cdm 

[0.05, 0.255] 
h [0.64, 0.82] 
n s [0.84, 1.1] 
ln10 10 A s [1.61, 3.91] 
c min [2, 4] 
A IA [ −6, 6] 
b z 1 [0.1, 5] 
b z 2 [0.1, 5] 
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ncreases for k � 1 Mpc −1 , i.e. on highly non-linear scales. This was
xpected, as numerical computations performed by Boltzmann codes 
t these scales are more uncertain in the first place. One way to ensure
ncreased numerical stability in these computations is to ask for a 

aximum k value k max at which non-linearities are computed that 
s well abo v e the actual maximum k at which the power spectrum
s required. In our analysis, we set k max = 100 Mpc −1 , while we use
nly the matter power spectrum up to k = 10 Mpc −1 . 
These accuracy plots already show excellent performance of the 

mulators in obtaining high-fidelity predictions for the matter power 
pectrum. Ho we ver, a full inference analysis is required to thoroughly
est our emulators. As further discussed in Section 5, we remark here
hat this is the only way to completely test the validity of an emulation
pproach such as the one developed in COSMOPOWER . Crucially, 
ifferent accuracy emulation levels are required for different types of 
nalyses for which the emulators are being developed. COSMOPOWER 

s a tool designed to be adequate for Stage IV surv e ys: as such, we
eed to test the performance of COSMOPOWER on a simulated Stage 
V inference pipeline. This is what we show in Section 3.4 with the
imulated analysis of a Euclid -like surv e y. 

Before showing those results, we present in Section 3.3 an appli- 
ation to a Stage III analysis, namely a joint weak lensing and galaxy
lustering analysis from 450 deg 2 of the KiDS survey. We refer the
eader to Appendix B for another, more recent Stage III application, 
amely a cosmic shear analysis of 1000 deg 2 from the KiDS survey.
he goal of showing these Stage III results is to demonstrate that
hile COSMOPOWER is explicitly designed to aid inference analyses 

rom Stage IV surv e ys, it can clearly benefit those already ongoing
rom Stage III experiments too. In the latter, COSMOPOWER can 
ndeed provide contours in a matter of a few minutes without any
raphic processing unit acceleration (see Section 5 for a discussion 
n this point). In addition, in showing results for Stage III analyses,
e would like to emphasize the ‘train-once-use-repeatedly’ nature 
f COSMOPOWER . Our emulators are designed to be trained only 
nce, so that the end users do not need to re-train any of the models,
s long as the emulators are employed assuming the cosmological 
odel and range indicated in Table 1 . F or e xample, in the KiDS and
uclid -like analyses shown in Sections 3.3 and 3.4, the emulators for

he linear power spectrum and non-linear correction are the same for
oth analyses. 

.3 Validation on the KiDS-450 + GAMA 3x2pt likelihood 

an Uitert et al. ( 2018 ) performed a 3x2pt analysis of power spectra
rom 450 deg 2 of the KiDS surv e y (KiDS-450) with o v erlapping
alaxy clustering spectroscopic measurements from the Galaxy And 
ass Assembly surv e y (GAMA, Driv er et al. 2009 , 2011 ; Liske et al.

015 ). Here, we repeat their analysis using an inference pipeline 
ntirely embedded within the cosmological sampler MONTEPYTHON 

Brinckmann & Lesgourgues 2019 ). This pipeline is an adaptation 
o � CDM of the likelihood developed in Spurio Mancini et al.
 2019 ) 5 for the same surv e y configuration but for a Horndeski gravity
cenario. In Spurio Mancini et al. ( 2019 ) that likelihood, run in
 CDM, was already shown to provide excellent agreement with the 
ducial pipeline developed by van Uitert et al. ( 2018 ) for the sampler
OSMOMC . In addition to the data vector, the redshift distributions
nd analytical covariance matrix are also exactly the same as those 
sed in van Uitert et al. ( 2018 ) and Spurio Mancini et al. ( 2019 ). 
 Available at https:// github.com/alessiospuriomancini/ KiDSHorndeski 

w  

a  

f

The modelling of the power spectra for each cosmological probe 
ollows the same prescription as in van Uitert et al. ( 2018 ) and
purio Mancini et al. ( 2019 ) and described in equations (6)–(8). In
articular, we consider one intrinsic alignment amplitude A IA , we 
et ηIA = 0, and we include one linear galaxy bias coefficient b z i 
or each of the two spectroscopic bins of the GAMA surv e y. The
rior ranges are reported in Table 2 . They are the same ones used in
an Uitert et al. ( 2018 ) and Spurio Mancini et al. ( 2019 ), except for
hose cosmological parameters ( ω cdm 

, ω b , n s ), whose prior range was
estricted in the more recent KiDS-1000 analysis (Asgari et al. 2021 ;
eymans et al. 2021 ; Joachimi et al. 2021 ). As explained in Joachimi

t al. ( 2021 ), the KiDS collaboration decided to restrict those prior
anges in their analyses to make sure that the parameters are more
hysically moti v ated; we adhere to this choice. For the cosmological
arameters in Table 2 and the baryonic feedback parameter c min , the
rior ranges coincide with the range of validity of our emulators
cf. Table 1 ). The halo bloating parameter η0 is fixed to η0 =
.98 − 0.12 c min , as implemented in CLASS following Mead et al.
 2015 ). 

The recent KiDS-1000 analyses sample the cosmological pa- 
ameter S 8 = σ8 

√ 

�m 

/ 0 . 3 , instead of ln10 10 A s used in van Uitert
t al. ( 2018 ) and other past KiDS analyses (Hildebrandt et al. 2016 ;
 ̈ohlinger et al. 2017 ; Hildebrandt et al. 2020 ). Here, we stick to the

hoice of ln10 10 A s as in van Uitert et al. ( 2018 ) for a more direct
omparison. In Appendix B, instead, we show results for KiDS- 
000 with S 8 among the sampled parameters. In all cases, we al w ays
how plots for all of ln10 10 A s , σ 8 , and S 8 : the parameters that have
ot been used directly in sampling have been obtained as derived
arameters with a post-processing GP, as explained in Section 2 and
ppendix A3. 
Fig. 3 shows the comparison between contour plots obtained 

ourcing power spectra from CLASS and those obtained running 
OSMOPOWER to replace the Boltzmann code. In both analyses, 
e sample the posterior distribution with the MULTINEST algorithm 

Feroz, Hobson & Bridges 2009 ), as implemented in the PYTHON 

rapper PYMULTINEST (Buchner et al. 2014 ). We run the pipelines
ith parallelization across 16 Intel Xeon E5640 cores. The posteriors 
ith our emulator are obtained in under 3 min, compared with the
2.5 h required when using CLASS . This produces a speed-up factor

f approximately 50. 
We also compare the values of the log-evidence log Z obtained 

ith MULTINEST in the two runs and find log Z = −73 . 77 ± 0 . 19
nd log Z = −73 . 79 ± 0 . 19 for the run sourcing power spectra
rom CLASS and COSMOPOWER , respectively. The good agreement 
MNRAS 511, 1771–1788 (2022) 
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Figure 3. Contours for the 3x2pt analysis of the KiDS-450 and GAMA surv e ys. In red contours obtained with CLASS , in blue those obtained with COSMOPOWER . 
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etween these evidence values is another, arguably stronger indicator
f the accuracy of our emulators. In order to get an accurate estimate
f this quantity, one needs indeed accurate values of the posterior
istribution across the whole prior range, while for parameter
stimation, it may be sufficient to get accurate estimates around
he peak of the distribution. 

We also applied COSMOPOWER to a more recent KiDS analysis,
amely that considering cosmic shear band powers from 1000 deg 2 of
he surv e y, as presented in Asgari et al. ( 2021 ). We use this analysis
s another test case for the performance of our emulator, finding
imilar speed-up factors provided by replacing the Boltzmann code
LASS with COSMOPOWER . We refer the reader to Appendix B for
etails and plots for this analysis. 
NRAS 511, 1771–1788 (2022) 
.4 Validation on the Euclid-like cosmic shear likelihood 

e re-use the same emulator employed in Section 3.3 to perform a
ull inference analysis of a simulated cosmic shear surv e y for a typical
tage IV Euclid -like configuration. The prior ranges are reported in
able 3 . For the cosmological and baryonic feedback parameters,

hey correspond to the validity ranges of our emulators, reported in
able 1 . The fiducial values of the parameters used to calculate the
ock data vector are also reported in Table 3 . 10 tomographic bins

re equipopolated with galaxies following a distribution (Smail et al.
995 ; Joachimi & Bridle 2010 ; Laureijs et al. 2011 ): 

 ( z) ∝ z 2 exp {−( z/z 0 ) 
3 / 2 } (10) 

art/stac064_f3.eps
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Table 3. Prior ranges and fiducial values of the cosmological pa- 
rameters for the simulated Euclid -like cosmic shear analysis. Prior 
distributions are all taken to be uniform across these ranges, except for 
the redshift mean shifts D z i , which have a Gaussian prior with mean 0 
and standard deviation 10 −4 . For the cosmological parameters and the 
baryonic feedback parameters c min , η0 , the prior range corresponds 
to the range of validity of our emulators (cf. Table 1 ). 

Parameter Prior range Fiducial value 

ω b [0.01875, 0.02625] 0.02242 
ω cdm 

[0.05, 0.255] 0.11933 
h [0.64, 0.82] 0.6766 
n s [0.84, 1.1] 0.9665 
ln10 10 A s [1.61, 3.91] 3.047 
c min [2, 4] 2.6 
η0 [0.5, 1] 0.7 
A IA [ −6, 6] 0.8 
ηIA [ −6, 6] 0 
D z i , i = 1 . . . 10 N (0 , 10 −4 ) 0 

w  

G  

c  

a

(  

P

s
l
o
c
l  

f  

l

4

4
p

T  

p  

t
C

p
p  

L
c
t
a
S
s  

t
n  

c

i  

w  

m  

c  

a

C  

a
 

r
O  

p

w

σ

σ

f  

n  

2

s
s
a  

t  

t  

9  

 

e  

a
l  

t  

a
C

4

A  

r  

v  

m  

W
2
w  

o
f  

a

t
M
c

6 https://github.com/simonsobs/so noise models 
7 https://github.com/heather pr ince/planck- lite- py . Note that a similar pure 
PYTHON implementation is available in the cosmological sampler 
COBAYA , https:// github.com/CobayaSampler/cobaya/ blob/master/ cobaya/lik 
elihoods/base classes/planck pliklite.py 
8 https:// github.com/justinalsing/ affine 
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ith z 0 = 0.64. For the covariance matrix, we use a simple analytical
aussian computation following Tutusaus et al. ( 2020 ), with a sky

o v erage f sky = 0.3, a galaxy number density n = 30 arcmin −2 and
n ellipticity dispersion σ ε = 0.3. 

We implement the likelihood in the cosmological sampler COBAYA 

Torrado & Lewis 2019 ; Torrado & Lewis 2021 ) and use the
OLYCHORD algorithm (Handley, Hobson & Lasenby 2015a , b ) to 
ample the posterior distribution. We run the pipelines with paral- 
elization across 48 Intel Xeon E5640 cores and obtain a speed-up 
f approximately 50. Fig. 4 shows the excellent agreement between 
ontours obtained with CLASS and COSMOPOWER . The log-evidence 
og Z = −45 . 92 ± 0 . 33 computed for the run with spectra sourced
rom CLASS also compares fa v ourably with that of the emulator run,
og Z = −45 . 99 ± 0 . 34. 

 COSMIC  M I C ROWAV E  BAC K G RO U N D  

.1 Emulating CMB temperature, polarization, and lensing 
ower spectra 

he three main probes in the analysis of the CMB are the temperature
ower spectrum ( C 

TT 
� ), the polarization power spectrum ( C 

EE 
� ), and

he temperature–polarization cross power spectrum ( C 

TE 
� ). We use 

AMB to produce the training set, which consists of ∼5 · 10 5 

ower spectra for each probe, with their associated parameters. The 
arameters are sampled from the range indicated in Table 1 using
atin Hypercube Sampling. We verified that the specific method 
hosen for sampling parameter space is comparatively less important 
han the number of training points. We obtained essentially the same 
ccuracy results in our analysis using alternatives to Latin Hypercube 
ampling such as Orthogonal Sampling (Owen 1992 ) or even a 
imple uniform sampling for each parameter. This is due to the fact
hat differences between different sampling schemes tend to become 
egligible as the number of parameters becomes large, as it is in our
ase. 

To emulate the CMB spectra, we consider both methods described 
n Section 2. We use the direct NN mapping for C 

TT 
� and C 

EE 
� , while

e found that the C 

TE 
� emulation is better performed by the second

ethod, i.e. PCA compression followed by an NN, due to its zero-
rossing values. To show the flexibility of our approach, we also train
 PCA plus NN emulator on the lensing potential power spectrum 
 

φφ
� ; note, ho we ver, that this probe is not included in the likelihood
nalysis performed in the next section. 

The accuracy of the emulators o v er the � range is measured with
espect to the instrumental noise given by the upcoming Simons 
bservatory (Ade et al. 2019 ) combined with cosmic variance. In
articular, we calculate the emulation error as: ∣∣∣C 

{ TT , EE , TE ,φφ} 
�, emulated − C 

{ TT , EE , TE ,φφ} 
�, true 

∣∣∣
σ

{ TT , EE , TE ,φφ} 
�, CMB 

, (11) 

here 

{ TT , EE ,φφ} 
�, CMB = 

√ 

2 

f sky (2 � + 1) 

(
C 

{ TT , EE ,φφ} 
�, true + N 

{ TT , EE ,φφ} 
� 

)
, (12) 

TE 
�, CMB = 

√ 

1 

f sky (2 � + 1) 

×
√ 

C 

TE 
�, true C 

TE 
�, true + 

(
C 

TT 
�, true + N 

TT 
� 

) (
C 

EE 
�, true + N 

EE 
� 

)
, 

(13) 

 sky = 0.4, and N 

{ TT , EE , TE ,φφ} 
� refers to the Simons Observatory goal

oise curves due to instrumental and atmospheric effects (Ade et al.
019 ). 6 

We validate our emulators using two sets containing ∼2 · 10 4 

pectra each. The first one corresponds to cosmological parameters 
ampled from a restricted range, corresponding to 5 σ intervals 
round the best-fitting values from Planck (Aghanim et al. 2020 );
he results are reported in Fig. 5 for all probes. As one can see,
he distribution of the quantiles is very tight, and almost al w ays
9 per cent of the spectra are within less than 0.1 σ CMB at all � values.
The second set of spectra corresponds to the same range the

mulators were trained on, i.e. the intervals in Table 1 ; the results
re reported in Appendix C. Unsurprisingly, the errors are slightly 
arger, reaching 0.2 σ CMB ; ho we ver, in the next section, we show that
his level of accuracy for spectra emulation is sufficient to provide
ccurate and unbiased inference of cosmological parameters in a 
MB analysis. 

.2 Validation on the Planck 2018 likelihood 

fter assessing the accuracy of our emulators by looking at the
esiduals of their predictions on the testing set, we performed the final
alidation check by using the emulators to speed up parameter esti-
ation in a Planck CMB inference pipeline (Aghanim et al. 2020 ).
e considered the pure PYTHON implementation of the PLANCK 

018 PLIK-LITE likelihood available from Prince & Dunkley ( 2019 ), 7 

hich is pre-marginalized o v er a series of nuisance parameters. The
nly remaining calibration parameter is a multiplicative correction 
actor A Planck . The prior ranges for all of the parameters varied in the
nalysis are reported in Table 4 . 

To further showcase the strength of COSMOPOWER to draw from 

he posterior distribution, we use a parallelized af fine-inv ariant 
arkov Chain Monte Carlo sampler, 8 that is a parallel, GPU- 

ompatible TENSORFLOW implementation of a variant of the algo- 
MNRAS 511, 1771–1788 (2022) 
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Figure 4. Contours for a simulated cosmic shear analysis of a Euclid -like Stage IV surv e ys. In red contours obtained with CLASS , in blue those obtained with 
COSMOPOWER . 
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ithm underlying the EMCEE sampler (F oreman-Macke y et al. 2013 ),
ased on Goodman & Weare ( 2010 ). This sampler fully exploits the
eural emulators by allowing large batches of likelihood calls to be
erformed in parallel. Using a single GeForce GTX 1080 GPU, we
NRAS 511, 1771–1788 (2022) 
an obtain the full contours in ∼10 s, while the contours using CLASS

nd EMCEE take a total wall-clock time of ∼1.2 · 10 5 s using 80 CPU
ores, for a final speed-up of O(10 4 ). Moreo v er, we train a single GP,
s described in Section 2, to derive constraints on 100 θS as well in

art/stac064_f4.eps
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Figure 5. CMB power spectra emulation accuracy on the 5 σ range test set for (a) the temperature power spectrum, (b) the polarization power spectrum, (c) the 
temperature–polarization cross power spectrum, and (d) the lensing potential power spectrum. The emulation error is defined with respect to both instrumental 
and statistical noise and is defined in equations (11)–(13). Dark r ed , r ed , and salmon areas enclose the 68, 95, and 99 percentiles of the test set. Details of the 
neural models are reported in Appendix A1. 

Table 4. Prior ranges for the Planck analysis. Prior distribu- 
tions are all taken to be uniform across these ranges, except 
for the nuisance parameter A Planck , which has a Gaussian prior 
with mean 1 and standard deviation 0.0025. The ranges on the 
cosmological parameters correspond to the ranges of validity 
of our emulators (cf. Table 1 ). 

Parameter Prior range 

ω b [0.005, 0.04] 
ω cdm 

[0.001, 0.99] 
h [0.2, 1.0] 
τ reio [0.01, 0.8] 
n s [0.7, 1.3] 
ln10 10 A s [1.61, 5] 
A Planck N (1 , 0 . 0025) 
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he same fashion of the σ 8 contours obtained in Section 3. We show
he posterior contours in Fig. 6 . 

To obtain log-evidence estimates, we re-run both likelihoods 
ith MULTINEST and find log Z = −313 . 72 ± 0 . 15 and log Z =
313 . 79 ± 0 . 15 for the run with CLASS and COSMOPOWER , respec-

ively. 

 C O N C L U S I O N S  

e presented COSMOPOWER , a suite of cosmological power spectra 
mulators developed to accelerate by orders of magnitude parameter 
stimation from LSS and CMB surv e ys. COSMOPOWER emulates 
atter and CMB power spectra computed by Boltzmann codes such 

s CAMB and CLASS . Sourcing power spectra from Boltzmann codes
s the computational bottleneck for two-point statistics analyses of 
osmological fields; COSMOPOWER bypasses this step, providing 
rders of magnitude acceleration to the inference pipeline. Power 
MNRAS 511, 1771–1788 (2022) 

art/stac064_f5.eps


1780 A. Spurio Mancini et al. 

Figure 6. Planck 2018 3x2pt analysis considering C 

TT 
� , C 

EE 
� and C 

TE 
� . The red contours are obtained in ∼1.2 · 10 5 s on 80 CPU cores using CLASS , while the 

blue contours take roughly 10 s on a single GPU using our neural emulators. Note that the constraints on 100 θS are derived from the rest of the samples using a 
GP. 
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pectra emulation is performed using an NN to parametrize the
apping between cosmological parameters and power spectra or

heir PCA coefficients. 
In this paper, we presented emulators for the linear and non-linear
atter power spectrum, as well as for the CMB temperature, polar-

zation, and lensing power spectrum. We showcased the performance
f COSMOPOWER with applications to Stage III and simulated Stage
V surv e ys, including: a 3x2pt and cosmic shear analysis of the
iDS, a mock Euclid -like cosmic shear analysis and a Planck 2018

oint temperature and polarization analysis. In all of these cases, the
ower spectra emulators provided unbiased cosmological inference
t a fraction of the time required by the same pipelines run with
ower spectra sourced from Boltzmann solvers. In the following,
e summarize the main properties of COSMOPOWER , compare its
erformance with that of other emulators, and discuss some of its
lanned future extensions. 
NRAS 511, 1771–1788 (2022) 
.1 Key properties of COSMOPOWER 

he following key properties of COSMOPOWER make it an invaluable
ool for application to future Stage IV analyses. 

(i) Speed-up . First and foremost, the use of COSMOPOWER to
eplace Boltzmann codes in likelihood e v aluations provides an
mpressive speed-up factor. In the applications considered in this
aper, COSMOPOWER provided an acceleration factor up to O (10 4 )
ith respect to standard analyses with Boltzmann codes. These
umbers refer to the full inference pipeline; if we restrict to timing
 single power spectrum e v aluation, the speed-up increases even
urther up to O (10 5 ), respectively. These numbers are expected
o increase as we extend COSMOPOWER to cosmologies beyond
he flat � CDM model, which was assumed throughout this pa-
er. In this sense, the acceleration quoted in this analysis is to
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COSMOPOWER 1781 

b
C

m
s
T
t
a  

e  

p
l
t
t
t  

r  

o  

l
t
2
I
T
w
i
p
a
T
h
p
W
i
o  

d
p
i  

d
b  

i
G
a
e
L  

t

t
T
c
f
(  

F
M
t  

p

o  

o  

c
i  

9

m
e

p
a  

a
b
T  

i
o
f  

F  

C  

o
C  

W  

p
m
B
b

 

m  

i  

T  

u
e
a
s  

e
f  

e  

s

m
p
a  

c  

n  

p  

a
t  

d
d  

t
w  

i
e
c
a  

t
d  

p  

i
s
p  

f  

t
m  

E  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/1771/6505144 by guest on 29 Septem
ber 2023
e regarded as a lower bound for the speed-up achievable with 
OSMOPOWER . 
(ii) GPU acceleration . Our emulators are based on NNs imple- 
ented in TENSORFLOW . As such, they benefit from an additional 

peed-up when run on GPUs or tensor processing units (TPU). 9 

he speed-up calculated for the full inference pipeline differs from 

he one computed for a single power spectrum evaluation because 
 single likelihood e v aluation is slo wer than a po wer spectrum
 v aluation: computing the projected angular spectra of the LSS
robes, or binning the CMB spectra as performed in the Planck 
ikelihood, requires a series of numerical operations. These parts of 
he likelihood e v aluation are computationally intensive regardless of 
he method employed to source power spectra. This is particularly 
rue for Stage IV LSS surv e ys, which will have a high number of
edshift bins and hence will require the computation of a high number
f bin cross-correlations (cf. equation 2). These e xpensiv e loops in the
ikelihood e v aluation can be massi vely accelerated by implementing 
he likelihood in TENSORFLOW or JAX (Frostig, Johnson & Leary 
018 ) and running the inference pipeline on GPUs. 
n this paper, we showed how running COSMOPOWER in a pure 
ENSORFLOW -based version of the Planck likelihood, embedded 
ithin a framework for cosmological inference also implemented 

n TENSORFLOW , provided contours in ∼10 s. Running an inference 
ipeline with the Planck likelihood is a notoriously computation- 
lly intensive task: this example of speed-up achieved with a 
ENSORFLOW -based likelihood and power spectra clearly shows 
ow beneficial the combination of highly optimized software for 
ower spectra emulation and Bayesian posterior sampling can be. 
e advocate for moving towards implementations of cosmological 

nference software in TENSORFLOW or JAX to fully exploit the power 
f highly optimized software that can be run on GPU and is auto-
ifferentiable. The reason for this is the high number of nuisance 
arameters that is expected to be required to model the observables, 
n addition to the large size of the data v ector. P articularly, if one
esires to make use of the unprecedented amount of data provided 
y these surv e ys to inv estigate be yond- � CDM cosmologies, the
mplementation of cosmological inference frameworks leveraging 
PU acceleration is of the utmost importance. COSMOPOWER aims 

t providing such a framework, incorporating not only trained 
mulators but also template TENSORFLOW -based likelihoods for 
SS and CMB surv e ys that can be easily adapted for application

o different surv e ys. 
(iii) Full differentiability . COSMOPOWER provides emulators for 

he power spectra that are based on NNs and implemented in 
ENSORFLOW (Abadi et al. 2015 ). Thus, these emulators are by 
onstruction fully differentiable, a feature that makes them ideal 
or gradient-based inference, such as Hamiltonian Monte Carlo 
Hajian 2007 ). If desired, they can also be used for instantaneous
isher matrix computation and linear data compression with, e.g. the 
OPED algorithm (Heavens, Jimenez & Lahav 2000 ), leveraging 

he possibility of calculating deri v ati ves with respect to the input
arameters by auto-differentiation. 
(iv) Accuracy . The procedure followed to validate the accuracy 

f our emulators guarantees that they can be safely used for analyses
f Stage IV surv e ys. Crucially, we v erified this statement not only by
hecking the residuals between emulated and real power spectra 
n the testing set but also by validating our emulators with full
 Both freely available on Google Colab at: http://colab.research.google.co 
/. In the COSMOPOWER GitHub repository, we provide JUPYTER notebook 

xamples to run COSMOPOWER on Colab GPU. 

i
c
b

v

osterior inference analyses from state-of-the-art surv e ys, as well 
s from simulated Stage IV surv e ys. In carrying out this comparison
t the contours level, we performed an additional validity check 
etween COSMOPOWER and the Boltzmann codes CAMB and CLASS . 
o train our models, we used power spectra generated with CAMB ;

nstead, when comparing the COSMOPOWER contours against those 
btained from a traditional inference pipeline sourcing power spectra 
rom a Boltzmann code, we used CLASS for the latter. As shown in
igs 3 , 4, and 6 , contours obtained with the emulators (trained on
AMB ) were al w ays found in excellent agreement with the contours
btained from the inference pipelines sourcing power spectra from 

LASS , including in the simulated Stage IV Euclid -like configuration.
e also verified that replacing CLASS with CAMB in the inference

ipelines provides contours with a similar level of agreement: this 
eans that the difference between COSMOPOWER predictions and 
oltzmann-computed power spectra is not bigger than the differences 
etween power spectra computed with different Boltzmann codes. 

(v) Parameter range . The parameter range o v er which our
odels are trained is very large, covering the full Planck prior range

n the CMB case and the full KiDS-1000 prior range in the LSS case.
he combination of high accuracy and wide validity range allows the
ser of COSMOPOWER to safely replace Boltzmann codes with our 
mulators when computing power spectra, even for those practical 
pplications where high accuracy over broad prior ranges is crucial, 
uch as posterior predicti ve cross-v alidation. The accuracy of our
mulators even in extreme regions of the parameter space considered 
or their training is confirmed by the good agreement between log-
 vidence v alues obtained in the likelihood runs with po wer spectra
ourced from CLASS and COSMOPOWER . 

(vi) Flexibility . By construction, COSMOPOWER emulates cos- 
ological power spectra taking in input only those cosmological 

arameters that are part of the mapping between input cosmologies 
nd output power spectra. This means that, for example, in the LSS
ase, the key emulated quantity is the matter power spectrum and
ot the cosmic shear, g alaxy–g alaxy lensing, or galaxy clustering-
rojected power spectra. The rationale behind this choice is that the
ngular spectra of cosmological probes are quantities derived from 

he matter power spectrum by integrating it over a kernel, which
epends on the redshift distributions. In addition, contaminant terms 
ue to, e.g. intrinsic alignments are also obtained by integration of
he matter power spectrum and modulated by nuisance parameters, 
hich are not part of the cosmological model. By a v oiding to

nclude those additional parameters in the target mapping for the 
mulator, COSMOPOWER acquires a unique flexibility that makes it 
ompletely independent of astrophysical nuisance parameters, such 
s intrinsic alignment and galaxy bias parameters, that do not modify
he matter power spectrum prediction. This means that our emulators 
o not need to be trained for different choices of these astrophysical
arameters. In particular, no re-training is required if one wishes to
mplement different prescriptions for the modelling of contaminants 
uch as intrinsic alignments, e.g. by inserting additional nuisance 
arameters, as long as those parameters do not modify the prediction
or the matter power spectrum. A similar argument is applicable to
he modelling of redshift distributions, which will likely require even 

ore nuisance parameters than the mean shifts used in our simulated
uclid -like analysis (see e.g. Hasan et al. 2021 ). As an additional
onus, emulating the 3D matter power spectrum will allow us to
nvestigate in future work the use of COSMOPOWER for emulating 
osmological power spectra beyond the Limber approximation (see 
elow). 
(vii) Linear and non-linear power spectra . COSMOPOWER pro- 

ides emulators for both linear power spectra and non-linear cor- 
MNRAS 511, 1771–1788 (2022) 
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ection factor. For the latter, the HMCODE prescription is currently
mplemented in the emulator. The HALOFIT model (which HMCODE

s based on) is also available to the user. The separation between
inear power spectrum and non-linear correction factor is particularly
seful as it allows us to integrate in COSMOPOWER additional models
or non-linearities as they become available. On the linear level,
odified Boltzmann codes for be yond- � CDM models e xist (for

xample HICLASS for Horndeski models; Zumalac ́arregui et al. 2017 )
hat provide linear predictions for the matter power spectrum in these
xtended cosmologies. As we extend COSMOPOWER to these models,
e can add new emulators for linear power spectra trained on these
odified Boltzmann codes. 
(viii) ‘Train-once-use-r epeatedly’ appr oach and interface

ith cosmological samplers . While we provide all the tools nec-
ssary to repeat the training if desired, we stress that this operation
as already been performed and does not need to be repeated, as long
s the emulators are employed assuming the cosmological model and
ange indicated in Table 1 . In addition, COSMOPOWER can be called
rom all commonly used cosmological samplers. In this paper, for
xample, we used COSMOPOWER within the cosmological samplers

ONTEPYTHON and COBAYA . The user of COSMOPOWER simply
eeds to write a likelihood for the LSS or CMB surv e y considered
nd replace the call to the Boltzmann code, necessary to obtain the
atter or CMB power spectra, with a call to COSMOPOWER . 
(ix) Deri v ed parameters . Emulators developed in the literature

sually provide a fixed parametrization to emulate from. For exam-
le, if an emulator is trained using ln10 10 A s , it is not possible to get
 prediction for a corresponding value of σ 8 or S 8 . COSMOPOWER

rovides emulators trained on different combinations of parameters.
 or e xample, the 3x2pt KiDS-450 + GAMA analysis was performed
ith an emulator trained on ln10 10 A s as input parameter, while the
iDS-1000 analysis used σ 8 in input. In addition, COSMOPOWER

lso allows the user to post-process a sampled chain to obtain
ery ef ficiently deri ved parameters that were not originally sampled.
oreo v er, we pro vide GPs to obtain derived parameters that were not

sed as input to the emulators. The accuracy of these GPs was tested
ot only on a test set but also against the actual contours obtained
ith the Boltzmann codes. 

.2 Comparison with previous work 

ere, we compare our emulators to other existing approaches to
ower spectra emulation. We start by noticing that COSMOPOWER

rovides an emulation framework for both LSS and CMB. To
ur knowledge, this is a unique feature, only partially shared by
ICO and COSMONET (both, ho we ver, emulating matter transfer
unctions rather than power spectra). These two packages are not
ctively maintained nor trained with the same accuracy or across
he same parameter ranges, which limits their applicability to Stage
V analyses. As far as the matter power spectrum is concerned,
he methods closest to ours in terms of emulation are the one
mplemented in Aric ̀o et al. ( 2021 ), even though limited to the linear
ower spectrum, and Agarwal et al. ( 2012 ), limited to HALOFIT non-
inearities. 

We note that applying the emulator to a complete inference
nalysis from a simulated Stage IV surv e y, as done in our paper,
s a necessary step to ensure that the newly developed tool can
e safely applied in practical analyses. On the contrary, checking
esiduals in the testing set between predicted and real spectra is not
 sufficient accuracy test. While an emulator may be performing
ith, e.g. sub-percent accuracy at the level of residuals, this may

till not be enough to retrieve unbiased cosmological contours,
NRAS 511, 1771–1788 (2022) 
s we verified firsthand while testing COSMOPOWER . This is due
o the fact that the accuracy threshold for the emulation can be
efined only by the specific application for which these emulators are
esigned. In other words, it is the inference pipeline that dictates the
ccuracy threshold to be met by the emulator. In general, parameter
stimation in Bayesian inference pipelines requires a certain level
f accuracy in the observables computed, which in the specific case
f cosmological two-point statistics analyses reflects into certain
ccuracy requirements in the power spectra computed by Boltzmann
odes. Hence, we argue that the principled approach to validate an
mulator accuracy is to compare its performance within an inference
ipeline for a target experiment, which in our case is a Stage IV
urv e y configuration. Note that, while testing COSMOPOWER , we
xperienced firsthand that emulators performing greatly on Stage
II experiments failed in producing equally correct contours on a
imulated Stage IV surv e y. 

GP-based emulators such as the ones used in Mootoovaloo et al.
 2020 ), Mootoovaloo et al. ( 2022 ), Ramachandra et al. ( 2021 ), and
o et al. ( 2021 ) require fewer training samples than an NN emulation

ramew ork lik e COSMOPOWER ; however, GPs also provide reduced
peed-ups compared to NNs. On the other hand, GPs also provide
 way to propagate the uncertainty in their prediction to the final
osterior distribution, whereas simple NNs like those implemented
n this version of COSMOPOWER lack this feature. In future versions
f COSMOPOWER , we will investigate the use of Bayesian Neural
etworks or ensemble NN predictions for this purpose. 
Mootoovaloo et al. ( 2020 ) developed GP emulators of cosmic

hear band powers for the KiDS-450 surv e y, with the option of
ompressing the band powers into MOPED coefficients and learning
hose coefficients with the GP instead of the band powers themselves.
imilarly, Manrique-Yus & Sellentin ( 2019 ) developed NN emula-

ors of the 3x2pt angular power spectra. Both of these approaches
re constrained by the choice of the redshift distributions specific
o the surv e y, which enters the e xpression of the angular power
pectra. In addition, the method of Mootoovaloo et al. ( 2020 ) also
elies heavily on the choice of nuisance parameters used to model
he power spectra; these parameters need to be ‘learnt’ by their
P. COSMOPOWER is free from any of these restrictions: targeting

mulation of the matter power spectra, our emulators are completely
exible to be used for any redshift distribution and choice of nuisance
arameters. While the speed-up obtained by emulating the matter
ower spectrum may be smaller than that obtained from emulating
he angular power spectra of the different probes, we believe that this
omputational o v erhead can be a v oided by rewriting the likelihood
f interest in TENSORFLOW and running it on a GPU together with
he emulators. 

Finally, Albers et al. ( 2019 ) implemented an interesting NN-
ased acceleration of source functions in the calculation of CMB
ower spectra within the Boltzmann code CLASS . Emulating source
unctions provides great flexibility in the pipeline, as for example
t allows one to compute higher-order correlators and non-linear
ransfer functions without retraining. On the other hand, emulation
f full power spectra performed in COSMOPOWER provides greater
peed-ups and is better suited for implementation of full inference
ipelines on GPUs. 

.3 Future work 

OSMOPOWER is an open-source package provided to the cosmolog-
cal community as a tool to accelerate intensive computations within
ayesian inference pipelines of LSS and CMB surv e ys. In this paper,
e considered the emulation of power spectra, which represents the
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ottleneck for two-point statistics analyses of cosmological fields. 
o we ver, this paper also marks the starting point of a longer-term
roject, with the goal of extending the COSMOPOWER framework to 
ccelerate the forward modelling of multiple cosmological observ- 
bles with machine learning. 

(i) Higher-order statistics, systematics, and beyond-Limber 
pectra . We plan to train emulators for higher-order statistics such as
he bispectrum. Not only does the bispectrum contain complementary 
osmological information to the power spectrum (see e.g. Pyne & 

oachimi 2021 ) but it is also required to calculate (computationally 
 xpensiv e) corrections to the power spectrum as those arising from
ropping the reduced shear approximation (Deshpande et al. 2020 ). 
n addition, multiple observational systematics in cosmic shear 
nalyses (see e.g. Euclid Collaboration 2020 ) can be modelled 
ith machine learning techniques and their effect on cosmological 
arameter estimation can thus be properly accounted for. Finally, 
or LSS a key advantage within our emulator is given by targeting
he matter power spectrum, as opposed to the angular power spectra 
f the cosmological probes. This choice will allow us to investigate 
fficient computation of non-Limber projected quantities in future 
ork. 
(ii) Beyond- � CDM cosmologies . As already mentioned abo v e, 

e plan to extend COSMOPOWER to models beyond the flat � CDM
ne considered in this paper. For example, emulation of power 
pectra in non-flat cosmologies is of the utmost importance, since 
heir calculation by Boltzmann codes is computationally intensive 
see e.g. Handley 2021 ). More generally, power spectra computed 
n alternative cosmologies are considerably more demanding to 
ompute for Boltzmann codes than in � CDM. Instead, we expect 
N architectures similar to the ones considered in this paper to 
e equally accurate for emulating beyond- � CDM spectra (while 
ossibly requiring larger training sets). Consequently, the e v aluation 
ime of these beyond- � CDM emulators will remain essentially the 
ame as those reported in this paper. This will produce an even greater
peed-up factor o v er Boltzmann codes. Some of these e xtensions to
 CDM are already being developed and will be presented in a future

ublication (Spurio Mancini & Pourtsidou 2021 ). 
(iii) A fully differentiable cosmology library . In the longer 

erm, COSMOPOWER will be extended to provide a completely 
ifferentiable library for cosmological computations. This will also 
nclude much simpler functions to emulate, such as cosmological 
istances. As we mo v e towards the era of Stage IV surv e ys, the
tatistical challenges in analysing those data sets will certainly 
equire increased sophistications in the Bayesian inference engines 
v ailable. Dif ferentiability is key in unlocking the possibility of
fficient gradient-based inference, a promising avenue to tackle the 
hallenge represented by the high-dimensional parameter spaces 
haracterizing the analyses of Stage IV surv e ys. Therefore, endowing 
he cosmological community with a fully differentiable forward 
odel of multiple observables is a task of paramount importance, 
hich we aim to accomplish with COSMOPOWER . 
(iv) Interpretable machine lear ning . Alternativ e methods for 

ompression and emulation of cosmological quantities, such as 
utoencoders and symbolic regression (Udrescu et al. 2020 ), will 
e explored within COSMOPOWER , with the goal of maximizing the 
omputational efficiency and interpretability of the machine learning 
rame work de veloped. 

COSMOPOWER is a tool that allows for principled, non-inv asi ve 
pplication of machine learning within a rigorous Bayesian frame- 
ork for uncertainty quantification. We are confident that emulation 

echniques like those presented here will greatly enhance the scien- 
ific return from Bayesian inference analyses of upcoming Stage IV 

urv e ys. 
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PPENDI X  A :  EMULATI ON  DETA I LS  

1 Neural network 

 neural network (NN) consists of a sequence of layers connecting
ome input to some output, in this case cosmological parameters to
ower spectra (or their principal components). As depicted in Fig. 1 ,
ach layer performs a linear combination of the previous layer and
pplies a non-linear function to increase the e xpressiv eness of the
odel. Following Alsing et al. ( 2020 ), we choose the following

cti v ation function for all hidden layers in our NNs 

 ( x ) = ( γ + (1 + e −β�x ) −1 � (1 − γ )) � x , (A1) 

here β and γ are optimized together with the rest of the network
arameters, and � indicates the element-wise product. The acti v ation
unction in equation (A1) can be seen as a stack of scalar acti v ation
unctions for each node j with independent hyperparameters β j and
j . We experimented with other, more traditional acti v ation functions

uch as the hyperbolic tangent (tanh) or Rectified Linear Unit (ReLU)
Agarap 2018 ) and we al w ays found them to perform slightly worse
han our custom function in terms of accuracy. 

In the CMB case, the output layer is made of 2507 nodes, i.e.
ne for each multipole � from � min = 2 to � max = 2508 included.
hen building the training and testing set, we make sure to ask

he Boltzmann code for an explicit calculation of the CMB power
pectrum at each one of the multipoles in the range, as this reduces the
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mount of interpolation performed internally by the Boltzmann code 
nd, in turn, increases the accuracy of the COSMOPOWER emulation. 
or the matter power spectrum, the output layer is made of 420
odes, corresponding to the sampled k -modes: these are chosen 
uch that the baryon acoustic oscillations features are more densely 
ampled in an analogous fashion to what is performed internally by 
LASS and CAMB , albeit in this case with a cosmology-independent 
ampling. 

Our NNs al w ays use four hidden layers of 512 neurons each for
oth CMB and LSS; each neuron is associated to a weight and a
ias, as described in Section 2 and Fig. 1 . We did not perform a fully
 xhaustiv e optimization of hyperparameters of the NNs such as the
umber of hidden layers or neurons. In our experiments, we typically 
ound that an architecture with at least three hidden layers of a few
undred neurons each was needed to achieve high-accuracy results, 
ith a four-layer configuration being even more performing. It is 
ossible that equally, if not more accurate results may be achieved 
ith a smaller architecture, albeit with more training samples. 
o we ver, handling such large data sets may be a computationally
on-trivial challenge, particularly in terms of memory requirements. 
The network’s parameters are optimized using Adam (Kingma & 

a 2014 ) with default parameters, and the loss function to minimize
s chosen to be the mean-square-error between the emulated and the 
rue power spectra. We keep apart 20 per cent of the training set for
alidation purposes. The learning rate is initially set to 1 · 10 −2 and
hen decreased by a factor of 10 each time the validation loss does
ot decrease for 20 epochs, where each epoch corresponds to feeding 
he whole training set into the network; the final learning rate is 1 ·
0 −6 . The batch size is changed accordingly, starting from 1 · 10 3 ,
hen 1 · 10 4 , up to 5 · 10 4 . 

2 Principal component analysis 

e compared the performance of the direct NN mapping with an 
lternative emulation method where the spectra are first compressed 
o their principal components, following SPECULATOR (Alsing et al. 
020 ), which we refer to for the full details. Note that this is necessary
or the C 

TE 
� case, as due to the dynamic range of these spectra, it is

ot possible to consider its logarithmic features; moreo v er, we found
he performance of this second emulator superior o v er the direct NN

apping when emulating C 

φφ
� . 

We keep 512 and 64 principal components for C 

TE 
� and C 

φφ
� ,

espectively; the NN is then trained in the same way as described in
ppendix A1. To obtain a power spectrum, we map the cosmological 
arameters to the predicted principal components and then use the 
earnt change of base to map the principal components into the 
redicted power spectrum. 

3 Gaussian Process 

e use a Gaussian Process (GP) to obtain derived cosmological 
arameter constraints from given samples of the posterior distribution 
f the other parameters. When obtaining a derived parameter θder , we 
ssume that there exists a mapping θder = f ( θ ), where θ indicates
he parameters the emulator was trained on, and model f ( θ ) as a GP.
ollowing Spurio Mancini et al. ( 2021 ), we assume that the function
 ( θ ) follows a normal distribution with zero mean and a parametric
ovariance matrix, usually referred to as kernel K( θ , θ ′ ; ψ ), with θ
nd θ ′ indicating two points in parameter space, and ψ representing 
he trainable hyperparameters. 

We choose the automatic rele v ance disco v ery 3/2 Mat ́e rn kernel
Neal 1996 ; Rasmussen & Williams 2005 ), which is expressed as 

 ARD −Mat ́e rn −3 / 2 ( θ, θ ′ ; ψ ) = α2 (1 + 

√ 

3 r ) exp ( −
√ 

3 r ) , (A2) 

here 

 = 

√ √ √ √ 

n ∑ 

j= 1 

( θj − θ ′ 
j ) 2 

σ 2 
j 

, (A3) 

 is the length of the vector θ (in this case the number of cosmological
arameters), and the hyperparameters ψ = { α, σ } are the signal
tandard deviation α and a characteristic scale σ j for each input 
arameter j = 1, . . . , n . We use the software GPY 

10 to train the GP,
.e. to optimize the hyperparameters of the kernel, using the tuples
 θ , θder ) from the Boltzmann solver CAMB as training data. 

PPENDI X  B:  VA LI DATI ON  O N  T H E  K I D S - 1 0 0 0  

I K E L I H O O D  

e include an application of COSMOPOWER to a recent cosmic shear
and power analysis of the KiDS surv e y, co v ering ∼1000 de g 2 

KiDS-1000, Asgari et al. 2021 ). For this analysis, we need to train
 matter power spectrum emulator for a model with one massive
eutrino with mass m ν = 0.06 eV/ c 2 . We report in Fig. B1 the
ame accuracy plots shown in Fig. 2 for a massless neutrino model.
imilar levels of accuracy of the linear power spectrum and non-

inear correction are achieved. In future extensions of COSMOPOWER , 
e will integrate emulation over the neutrino mass as an additional
arameter. Note also that in this analysis, following Asgari et al.
 2021 ), we sample in S 8 rather than in ln10 10 A s . 

The uniform prior ranges assumed for this analysis are the same
sed in Asgari et al. ( 2021 ) and they are reported in Table B1 .
ollowing Asgari et al. ( 2021 ), we include one z-shift for each of the
ve redshift bins, D z i , for i = 1, . . . , 5; for these shift parameters, we
et a correlated Gaussian prior. We refer to Asgari et al. ( 2021 )
nd Joachimi et al. ( 2021 ) for further details, in particular, on
he redshift distributions and covariance matrix modelling. We run 
he inference pipeline 11 within the cosmological sampler MON- 
EPYTHON . In Fig. B2 , we show the excellent agreement between
ontours obtained with CLASS and COSMOPOWER , with the latter 
roviding a speed-up factor of approximately 50. Values of the log-
vidence are also in good agreement: log Z = −81 . 45 ± 0 . 14 and
MNRAS 511, 1771–1788 (2022) 
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Figure B1. Same as Fig. 2 but for a cosmological model with one massive neutrino with mass m ν = 0.06 eV/ c 2 . 

Table B1. Prior ranges for the KiDS-1000 cosmic shear band 
power analysis. Prior distributions are all taken to be uniform 

across these ranges, except for the z-shifts D z i , which are 
sampled from a correlated Gaussian prior with mean μ and 
covariance C (see Asgari et al. 2021 for details on their values). 
Note that in this case, we sample S 8 instead of ln10 10 A s . As 
explained in the main text, our emulators are trained on different 
choices of this sampling parameter, and one can al w ays reco v er 
the parameter that is not directly sampled in a post-processing 
step, using Gaussian Process regression. 

Parameter Prior range 

ω b [0.01875, 0.02625] 
ω cdm 

[0.05, 0.255] 
h [0.64, 0.82] 
n s [0.84, 1.1] 
S 8 [0.1, 1.3] 
c min [2, 4] 
A IA [ −6, 6] 
D z i N ( μ, C ) 
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og Z = −81 . 40 ± 0 . 14 for the run with CLASS and COSMOPOWER ,
espectively. 
NRAS 511, 1771–1788 (2022) 

art/stac064_fB1.eps


COSMOPOWER 1787 

Figure B2. Contours for the KiDS-1000 cosmic shear band power analysis. In red contours obtained with CLASS , in blue those obtained with COSMOPOWER . 
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PPENDIX  C :  RESULTS  F O R  C M B  POWER  

PECTRUM  E M U L ATO R  O N  L A R G E R  R A N G E  

n Fig. C1, we report the emulation accuracy of our CMB emulators
pplied to the test set sampled with cosmological parameters in the 
ange of Table 1 . The performance reaches no more than 0.2 σ CMB as
efined in equations (11)–(13), which we verified corresponds to an 
dequate accuracy for Stage IV surveys, as we showed in the main
ody. 
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(a) (b)

(c) (d)

Figure C1. CMB power spectra emulation accuracy on the test set sampled from the range indicated in Table 1 for (a) the temperature power spectrum, (b) 
the polarization power spectrum, (c) the temperature–polarization cross power spectrum, and (d) the lensing potential power spectrum. The emulation error is 
defined with respect to both instrumental and statistical noise and is defined in equations (11)–(13). Dark r ed , r ed , and salmon areas enclose the 68, 95, and 99 
percentiles of the test set. Details of the neural models are reported in Appendix A1. 
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