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ABSTRACT

We present the N-body simulation techniques in EXP. EXP uses empirically-chosen basis
functions to expand the potential field of an ensemble of particles. Unlike other basis function
expansions, the derived basis functions are adapted to an input mass distribution, enabling
accurate expansion of highly non-spherical objects, such as galactic discs. We measure the
force accuracy in three models, one based on a spherical or aspherical halo, one based on
an exponential disc, and one based on a bar-based disc model. We find that EXP is as accu-
rate as a direct-summation or tree-based calculation, and in some ways is better, while being
considerably less computationally intensive. We discuss optimising the computation of the
basis function representation. We also detail numerical improvements for performing orbit
integrations, including timesteps.
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1 INTRODUCTION

The N-body technique of simulating dynamical systems computes
the forces at the location of each of IV particles in a simulation from
the other N — 1 particles. Generally speaking, the forces are then
applied to each particle, advancing the system forward in time, and
the process of computing the forces is repeated. Unfortunately for
those seeking to model Milky Way-like galaxies, the wide range of
spatial scales (from sub-pc to hundreds of kpcs), and the wide range
of temporal scales (from years to Gyrs) makes the computational
requirements for computing the forces by the direct interaction of
particles presently infeasible. Therefore, one seeks different, expe-
dient techniques to compute the potential fields and calculate the
forces on each individual particle.

One such technique is the basis-function expansion (BFE)
technique, where one uses appropriately chosen biorthogonal ba-
sis functions that solve the Poisson equation using separable az-
imuthal harmonics, m. One may then inexpensively obtain the
forces at any point in space as follows. A biorthogonal system is
a pair of indexed families of functional vectors in some topologi-
cal functional vector space such that the inner product of the pair
is the Kronecker delta. The BFE method constructs a biorthog-
onal system {#,(x),d,(x)} such that V3¢, = 4nGd, and
[ dx ¢u(x)dy(x) = 47Gd,., where ., is the Kronecker delta
and the individual functions are denoted by Greek letters. Consider
the density of some target distribution, p(x). Approximations for
the density and potential fields when using M total basis functions
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(denoted by *) are

M

P = audu() 1)
p=1

and

3 M

(x) = Z audpu(x) )
p=1

where the amplitudes of the coefficients, a,,, of each of the y func-
tions are given by

ay = /dxp(x)qﬁu(x). 3)

In the case of an N-body simulation, let the density of our
particle distribution of /N points with individual masses m; be de-
scribed by

N
p(x) = Z mid (x — xi), )

making the coefficients that approximate the potential

1 &
Gy = N Z‘i’u(xl) (5)
i=1

We will hereafter denote quantities computed with an ensemble of
discrete particles using .

Generally, any technique making use of these properties is
called a BFE method (Clutton-Brock 1972, 1973; Kalnajs 1976;
Hernquist & Weinberg 1992; Earn 1996; Weinberg 1999). BFE
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methods have many features that make them ideal for studying
disturbances to equilibrium stellar discs and dark matter halos (or
other spherical systems). For simulations using BFE methods, har-
monic function analysis decomposes a distribution into linearly-
summable functions that resemble expected evolutionary scenarios
in disc galaxy evolution.

The N-body code EXP has been discussed elsewhere in piece-
meal chunks (Weinberg 1999; Weinberg & Katz 2002; Holley-
Bockelmann et al. 2005; Weinberg & Katz 2007a,b; Choi et al.
2007, 2009; Petersen et al. 2016b). We collect and update the vari-
ous algorithms that are now part of EXP in this paper. In this work,
we describe the primary technique unique to EXP: adaptive bases
constructed to reproduce equilibria with one or at most several ba-
sis functions. This yields a rapid convergence in the expansion se-
ries. We have recently used EXP to study bar formation in a stellar
halo embedded in the dark matter halo (Petersen et al. 2019, 2021),
but the techniques are generically applicable. By combining multi-
ple bases for different scales and geometries, we can decompose a
galaxy model based on the geometry and symmetry of the differ-
ent components. In the dark matter halo and stellar disc case, this
corresponds to two separate sets of basis functions, one for each
component. Both the halo and disc use three-dimensional orthog-
onal functions to represent the potential. The basis functions then
enable a quick and straightforward reconstruction of the potential
at any time in the simulation, for any arbitrary combination of par-
ticles. Tracking the amplitudes of the basis functions through time
is the primary investigative tool used when analysing basis func-
tion expansion simulations. The amplitudes efficiently summarise
the degree and nature of asymmetries in the potential.

In the next section, we describe how to select the basis func-
tions for a given mass distribution (Section 2). We describe the the-
ory that underpins the basis selection (Section 2.1) and describe
the two relevant examples for a halo-disc system: a spherical ex-
pansion (Section 3.1) and a cylindrical expansion (Section 3.2). In
Section 3, we also test the accuracy of the BFE forces for the case
of a spherical and aspherical halo, an exponential disc, and a bar
model. We then turn to evolving the phase space in time in Sec-
tion 4, including integration, coefficient calculation, and timesteps.
We summarise in Section 5.

2 BASIS FUNCTION EXPANSION

The first step in constructing a BFE simulation is to select the ba-
sis with which the forces on each particle will be computed. We
detail the procedure for conditioning the basis in Section 2.1, in-
cluding the derivation of new orthogonal bases that best represent a
specified input density distribution, such as an axisymmetric disc.
As described in equations (1)-(5), the BFE method computes
the gravitational potential by projecting particles onto a set of
biorthogonal basis functions that satisfy the Poisson equation. The
Poisson equation is separable in any conic coordinate system. Each
equation in the separation has a Sturm-Louiville (SL) form. The SL
equation describes many physical systems, and may be written as:

£ @] = @) = xwtute) ©

where A is a constant, and w(x) > 0 is a weighting function. The
function u(z) is the unknown function and p(z), ¢(z), and w(x)
are parameter functions. The eigenfunctions u,, of the SL equation
form a complete basis set with eigenvalues A, where the formally
infinite series in v may be truncated (Courant & Hilbert 1989). If
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Figure 1. Eigenfunction amplitude as a function of radius for an example
spherical basis. We show the first 20 eigenfunctions, from low (dark colour)
to high (light colour).

one writes the Poisson equation for Cartesian coordinates in the
form of equation (6), then p(z) = 1,¢(z) = 0,w(z) = 1, and the
solution is sines and cosines. For the Poisson equation in spherical
coordinates, the solution is spherical harmonics for the angular co-
ordinates and Bessel’s equation for the radial equation. However,
by changing the weighting function w(z), one may derive an infi-
nite number of radial bases. EXP exploits this flexibility to select a
weighting function w(x) such that the unperturbed potential may
be represented by a single term (see Section 3.1). We refer to this as
adaptive basis conditioning. Because one designs the lowest-order
term to match the initial profile, we are able to accurately represent
the potential on chosen scales using only a small number of higher-
order terms. Provided that the structure still resembles the initial
model, even after some evolution one may represent the potential
to high spatial accuracy.

2.1 Adaptive basis conditioning

Let the contribution of some particle at position x to the BFE
coefficients for some fiducial basis be given by the vector ¢ =
(¢1(x), p2(%), - . ., pn(x)) where ¢, are the basis functions. De-
note the ensemble average over the particle distribution by (-). For
example, (c) is the expected BFE coefficient vector, normalised by
mass. For a convergent expansion, the elements of (c¢) will decrease
to zero with p. If the basis is not optimal for the target distribution,
it may converge slowly. However, one may find a new basis that
converges more quickly to the desired density by assuming the ex-
istence of some unitary transformation U to a new basisb = U - c.
That is, the columns of U are new orthogonal functions (vectors)
with UT - U = 1. Each member of the function space spanned by
our initial biorthogonal basis is a solution of the Poisson equation.
The linearity of the Poisson equation implies that the new func-
tions represented by the unitary transformation are also a solution.
Completeness of the new basis may be argued similarly. The basis
transformed by U is an equivalent basis. The derivation of such an
optimal transformation is closely related to mean integrated square
error (MISE) extremisation under truncation. In this section, we
derive the transformation to this new basis.

© 0000 RAS, MNRAS 000, 000-000
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Figure 2. An example of different potential basis terms ¢,, for the disc, as a slice at azimuth ¢ = 0 in radius—vertical space. These modes are all found in a
disc basis realisation, but may or may not be present in an individual realisation depending upon the radial truncation order nmax-.

We posit the existence of a truncated basis of arbitrarily lower
rank to represent the content of (c). Our truncated basis takes the
form ¢ = U-b where b = (b1, ba, ..., bar,0,0,...) with M < n
enforcing the truncation.! Summed over all particles, the mean-
squared error for the truncation relative to the original representa-
tion is

E(M) = {(c = &)") = (") — 2(c- &) + (&). ™

The first term in the last equality of equation (7) is independent
of M, but the second and third terms are not. We may rewrite the
second term as

(c-&)=(c-U -b)=(U"-b-U"-b) = (b-b) = (b°). (8)

By a similar computation, the third term (&) = (b). We can then
rewrite equation (7) as

E(M) = (c®) — (b*). ©)

This last equation implies that £(M) will have a minimum when
(b%) is maximised, subject to the orthogonality constraint. We can
write this requirement as the maximum of the function

F(M)=((U-¢)*) = Tr[L- (UTU-1)]

where L = diag{\1, ..., A} is the diagonal matrix of Lagrange
multipliers and 1 is the identity matrix. The extremum of F (M) is
the solution to

_OFWM) o
0—7aU =2U-(c®c)—-2L-U

where ® denotes the vector outer product. Equation (11) is the ma-
trix equation

10)

an

D-U=U-L 12)
where D = (c ® c). The elements of D are
D, = (du(x) v (x)). 13)

L Intuitively, it may be helpful to think of a M < n with n larger than any
practically computatable value. However, the arguments here do not require
this ordering.
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We may estimate D,,,, for a sample IV particles with mass m as

N
m
D = 37 PIEACHENCHE (14)
=1
In the infinite particle limit, the ensemble average becomes
1
DW=M/fm®%®@®. (15)

The mass normalisation does not affect the solution and may be dis-
carded in practice. One may either condition on the particle distri-
bution (equation 14) or, in the infinite particle limit, using analytic
functions (equation 15).

The matrix D,, describes which terms, a,, contribute the
most to the gravitational energy. The orthonormal basis that diag-
onalises D has the target density as its lowest-order basis function.
Because D is symmetric and positive definite, all the eigenvalues
are positive. The term with the largest eigenvalue describes the ma-
jority of the correlated contribution, and so on for the second largest
eigenvalue, etc. EXP performs this diagonalisation using singular
value decomposition (SVD) and the singular matrices (now mutual
transposes owing to symmetry) describe a rotation of the original
basis into the uncorrelated basis.

The desired unitary transformation that best represents the
gravitational field with M < n follows from the singular value
decomposition of D (equation 12). The eigenfunction correspond-
ing to the largest singular value in D describes a new basis func-
tion with the largest contribution to the gravitational energy, the
next eigenfunction/eigenvalue pair describes the next largest con-
tribution, and so on for each successive eigenfunction/eigenvalue.
Each basis function is uncorrelated with the others by construction.
The new basis functions optimally approximate the true distribution
from the spherical-harmonic expansion in the original basis in the
sense that the largest amount of gravitational field energy is con-
tained in the smallest number of terms; the SVD solution provides
the linear solution with minimum length (Strang 2006). One might
call this optimal in the least-squares sense (Weinberg 1996). The
new coefficient vector is related to the original coefficient vector
by the orthogonal transformation defined by the singular vectors
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Figure 3. Amplitude of the disc basis functions as a function of radius in
scale lengths for four azimuthal (m) orders, when z = 0 (in-plane) and
azimuth ¢ = 0. The first 12 radial (n) orders are shown.

of the SVD. Since the transformation and the Poisson equation are
linear, the new eigenfunctions are also biorthogonal.

We call the process of performing the singular value decom-
position of D to derive the empirical orthogonal functions that best
describe the target density distribution adaptive basis conditioning.
In our first example, the spherical basis representing the halo, we
may use a direct solution of the SL equation. In the second exam-
ple, the cylindrical basis, we use an existing spherical basis and
construct D to define a new orthogonal linear combination of basis
functions that best matches a stellar disc. In this case, the resulting
unitary transformation provides a representation of the disc basis
based on the input spherical basis. This conditions the original ba-
sis to vary only in the vicinity of non-negligible disc density (see
section 3.2 for details). For accuracy, the required number of spher-
ical basis terms is large. However, the transformation only needs to
be performed once, and the resulting disc basis functions may be
tabulated for further use.

2.2 Example 1: A Spherical Basis

A relatively straightforward example of an adaptive basis is a
spherically-symmetric density profile, such as an NFW halo pro-
file. For an expansion in spherical harmonics, the Poisson equa-
tion separates into angular and radial equations. The solution to
the angular equations are spherical harmonics. For the radial equa-
tion, following the notation of equation (6), we choose a weighting
function w(r) o< po(r)®o(r) as described in Weinberg (1999),
where po (1), ®o(r) is the unperturbed model. Substituting ®(r) =
@y (r)u(r) into the Poisson equation, it immediately follows that
the functions in equation (6), with x = r, become:

p(r) = r’®;(r), (16)

Radial Order, n

q(r) = [I(l + 1)@o(r) — VE\I’O(T)TQ} Do (r), amn
and
w(r) = —4rGr®o(r)po(r). (18)

Equation (6) then yields a series of eigenfunctions u, (r) with po-
tentials ¢, o< Po(r)un(r). Each eigenfunction u, then corre-
sponds to a solution of equation (6). Examples of eigenfunctions u,,
are shown in Figure 1. The lowest-order eigenfunction with A = 1
is u1(r) = 1 by construction. Each successive u, (r) with n > 1
has an additional radial node. The prefactor ®(r) ensures that the
basis resembles the target model. The radial boundary conditions
are straightforward to apply at the origin and at infinity. See Wein-
berg (1999) for more details. In spherical coordinates (7, 8, ¢), the
general index y is the triple (I, m, n), where [ and m are standard
spherical harmonic angular indices and n is the radial index. Re-
placing u,, — u!™ then specifies the eigenfunction per each set of
angular coordinates (I, m). Each ¢, term in the total halo potential
is then given by ¢, (x) — ¢ (x) = Do (r)ul™ (1) Yim (6, ¢).

The angular structure is set by a combination of the radial po-
tential functions, as tabulated from the eigenfunctions of the SL
equation, and spherical harmonics. The angular basis functions for
each spherical harmonic? are chosen as the first n eigenfunctions
sorted by decreasing eigenvalue of the matrix U (see egs. 14, 15).
The coefficients for each eigenfunction in r and cos @ have co-
sine and sine components that correspond to the analogous Fourier
terms. The sine and cosine terms of each azimuthal order give the
phase angle of the harmonic and can be used, for example, to cal-
culate the pattern speed in an evolving system.

2.3 Example 2: A Cylindrical Basis

To represent a disc, we want a basis whose vertical dimension
matches that of the input density. Although one can construct a
cylindrical disc basis from the eigenfunctions of the Laplacian as
in the spherical case (e.g. Earn 1996), the boundary conditions
in cylindrical coordinates (R, ¢, z) make the basis hard to im-
plement. To circumvent this complexity, our method starts with a
three-dimensional spherical basis with a high harmonic order, e.g.
linitial, Minitial < 64, and defines a unitary vector-space transfor-
mation to a new basis that best represents the target disc density
using a lower number of harmonic orders, e.g. mana = {6, 8,12},
where the choice of mana) is dictated by the problem at hand.

The three dimensional functions in spherical coordinates
(r, 0, ¢) that represent the target disc density are then transformed
to cylindrical coordinates (R, ¢, z). The spherical basis functions
are all proportional to cos(me) or sin(me) so the cylindrical co-
ordinates of the result disc functions have the same dependence.
Therefore, we can tabulate their dependence uniquely in meridional
cylindrical coordinates (R, z) for each cosine or sine term. Then,
each density element p(R, ¢, z) d*x contributes

1 m 3
to the expansion coefficient a,,, or
1 m
0 = g [ Wi (8.0)p(R. 6.2 0)

2 In practice, the radial basis functions are the same for each [ order, in-
dependent of m, reducing the number of eigenfunctions that must be tabu-
lated.
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and

N

a = lim_ ﬁ 2; it (1) Yim (03, 7). @n
i=

The second equation shows the Monte Carlo approximation for N

particles where °, m; = [ p(R, ¢, 2)d*z.

We construct the matrix D (eqn. 14) given the density
p(R, ¢, z) from the initial high harmonic order basis. The elements
are products of Y;,,u!™ and Yl/mui:/m integrated over density. The
eigenfunctions of the matrix U for the spherical-harmonic decom-
position restricted to a particular azimuthal harmonic m yield ba-
sis functions defined on the meridional plane (R, z). We select the
Nmax Most significant meridional eigenfunctions. Each of these ba-
sis functions vary both radially and vertically. Because they are
conditioned by a three-dimensional disc density, the lowest order
functions look like the disc density. As the index of the meridional
basis function increases, the length scale of both radial and vertical
variations decreases. The symmetry of the original basis and the
target density ensures that the basis functions have both even and
odd parity with respect to the midplane.

We condition the initial disc basis functions on the analytic
disc density. The resulting lowest-order potential density pair will
be close to the analytic profile (eqns. 20 and 21). For typical parti-
cle numbers N in simulations, using the analytic disc density acts to
reduce small-scale discreteness noise as compared to conditioning
the basis function on the realised positions of the particles (Wein-
berg 1998). We choose a spherical profile based on the deprojected
disc density.

Examples in (R, z) are shown in Figure 2. Figure 3 shows the
in-plane (z = 0) behaviour of the meridional plane basis func-
tions (n orders) as a function of radius, for each harmonic sub-
space (m orders). We show the four azimuthal harmonics that are
most relevant for the evolution of a disc simulation, m = 0,1, 2,4,
from top to bottom in the panels. For each harmonic, the lowest-
order meridional index, n = 1, has no nodes except at R = 0.
The number of nodes increases with order n. The nodes are inter-
leaved for increasing meridional order. The increasing number of
nodes means that the smallest meridional node always decreases
in radius as the number of nodes increases. The spacing of nodes
gives an approximate value for the adaptive force scale length of
the simulation. For example, the highest order m = 0 merid-
ional function (n = 12) has a zero at R = 0.2Rg4, or 600 pc in
a MW-like galaxy. Additionally, the meridional indices are inter-
leaved between harmonic orders, such that Rfrstnode,m=2,n=1 ~
% (Rﬁrstnode,mzl,nzl + Rﬁrstnode,m:l,n:2)- In practice, we se-
lect nmax to provide sensitivity to spatial scales of approximately
100 pc. Note that the node spacing is not the same as spatial resolu-
tion in a standard particle code: the choice of order that determines
the variational scale is not the same as spatial resolution in this
method. For example, even though the highest n would only im-
ply a spatial variation with a scale of 100 pc, the basis resolves the
analytic density down to 10 pc. Furthermore, the choice of a max-
imum meridional index removes or filters high spatial frequencies
that result from particle noise.

3 VALIDATION

We now measure the accuracy of the expansions by comparing the
expanded forces to a high-accuracy force estimate. We do so for
the spherical (Section 3.1) and cylindrical (Section 3.2) bases by
realising test distributions of particles. We also briefly discuss the
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significance of the coefficients (Section 3.3), deferring a detailed
study to future work. We summarise the findings in Section 3.4.

3.1 Spherical Expansions

In a spherical model, the lowest-order function is defined to match
the density and potential of the input spherical system. To evaluate
the accuracy, we compare the expanded forces to true forces:

Fr., expanded (T) —FR, analytic(T)
Ar(r) = [Pt ) o)
Fy, expanded (") = Fo, analytic(7)|
Ag r — | 0, expanded N y (23)
( ) \/FTZ, analytic+F92, analytic+F£, analytic(r)
A¢(T) _ |F¢, expanded (1) —Fg, analytic(r)| (24)

2 2 2 :
\/F'r, analytic+F9, analytic+F¢, analytic(r)

where F. is the three-dimensional radial force, Fp is the polar
force, F is the azimuthal force, and the subscripts ‘expanded’ and
‘analytic’ refer to the BFE forces and the exact forces, respectively.
We normalise the polar and azimuthal forces by the total force to
avoid zeros in the polar and azimuthal force that result from sym-
metries in the test density configurations.

To put our BFE force errors in context, we also compute the
same relative force errors for the tree-code gravity of GADGET-
2 (Springel 2005). The relative forces are computed using equa-
tions (22)-(24), replacing the expanded forces with tree-gravity
forces. As is always done for these types of gravity solvers, we
soften the gravity and we choose a cubic spline kernel (Monaghan
& Lattanzio 1985; Hernquist & Katz 1989), with a softening length
of h = 0.0011Ryi;. As discussed in Springel (2005), the cubic
spline has a potential equivalent to a point mass at zero lag as a
Plummer softening when the kernel width h = 2.8¢, where € is
the standard Plummer softening length. We choose our softening
length h by downscaling the softening length in the simulations of
D’Onghia & Aguerri (2019) to match our particle number. We ver-
ified that this choice of softening length is near the minimum force
error for softened gravity by testing values of h a factor of two
larger and smaller, finding that the median force errors increase
in either direction. For GADGET-2, we input the softening length
€ = 0.0004Ryir.

Partitioning the particles into bins, we compute the mean, p =
(A{R,..4}), and the variance, 0> = o(A(g . 4})°, in each bin.
To measure 0(A g . 4})°, we compute the difference between the
16th and 84th percentile relative force values in each bin, to capture
2/3 of the distribution and to trim outliers. For the rest of the work,
we report the root variance, o.

3.1.1 An NFW model

As a first example, we generate basis functions for a idealised
halo that resembles the expected Milky Way parameters. First, we
specify a spherically-symmetric Navarro-Frank-White (NFW) dark
matter halo radial profile (Navarro et al. 1997):
3

LQ (25)
(r+7re)(r+rs)

where pp is a normalisation set by the chosen mass, rs =
0.083Ryir is the scale radius, Ryiy = 1 is the virial radius, and
r. = 0.0002R.i, is a radius that sets the size of the core, i.e.
where the density px(r) becomes constant with radius. While
the pure NFW halo has r. = 0, we choose a small value to
avoid the formal divergence when r. = 0 and r — 0. We

pn(r) =
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(I,n) pa, (%] pa,(r <0.01Ryie) [%]  pag [%]  pay(r <O0.01Ryir) [%]  pa, (%] pa,(r < 0.01Ryi) [%]
0,1) 1.2e-2 1.3e-2 4.5e-7 3.8e-7 3.2e-7 2.9e-7
(6,24) 6.4e-2 8.0e-1 4.9e-4 3.5e-2 3.5e-4 3.5e-2
GADGET-2 2.4e-1 2.63 2.2e-3 3.9e-2 1.6e-3 3.0e-2
Table 1. Overall force accuracy measures for different force realisations in the near-ideal NFW case.
also include an error function at > 2R.i, to give a finite mass: (OO i e I B e e e e e e e
Phalo,trunc (T) = phalo(’r) I:% - % (erf [(T - rtrunc)/wtrunc])] B ;~ a :
where rtrune = 2Ryir and Wirune = 0.3 Ryir. We realise the par- > B ) ]
ticle locations by Eddi i i i i = A dashed: ideal
y ington inversion (Binney & Tremaine 2008). i
We refer to this model as the ‘near-ideal’ case. : = B solid: realised ]
We derive the corresponding empirical orthogonal basis func- oL 2 - . 7
tions, as in Section 3.1. We compute coefficients for the particle =g [ ideal NFW .
representation by solving equation (5) using the derived basis func- 3 o r<=0.006 .
tions. A typical simulation uses harmonics lmax = 6 and radial - - g=0.85 7
order nmax < 24, where the choice of nmax 1S set by the problem - .
at hand. For the purposes of testing the basis accuracy, we retain - —2F .
nmax = 24. We then use the coefficients to calculate the forces and 8 € E b E
compare with the analytic (exact) solutions. S v 1 ~ dashed: gadget-2 =
As expected, the lowest order function (I,n) = (0,1) is a Ml - solid: EXP 1
near-perfect representation of the forces. As the distribution is ini- 8= - ’ .
. . . . . © (0] o -
tially spherical, we expect that the inclusion of any additional func- © a o
tions will decrease the overall accuracy. However, the additional o -
terms must be included to resolve the subsequent evolution of the o 3 -1F
system. Therefore, while we report the mean of the force accuracy, = b n
1, the root variance of the force accuracy, o, may be the more -2
interesting quantity as it measures the ‘noise’ in the expansion. 4D E
Noise from discreteness maybe be physical (e.g. from subhaloes) v GC) 1E
and aphysical (e.g. on scales without a natural cause). o v -
The vast majority of particles experience minimal force bias o] 8 E
from noisy coefficients, as evidenced by a measure of the force bias T~ OF
for all particles, shown in Table 1 for the idealised single-term case = 8 -
and the typical (I = 6,n = 24) combination. Even for particles =1 1F
inside of a disc radius, r < 0.01 Ryi,, we find that the overall force 8’ -% ™
bias and variance are small. For our canonical (I,n) = (6,24) - > . -

choice, the typical force errors for particles are less than 1%.
In the next section, we turn to cases where the represented
distribution does not perfectly match the basis.

3.1.2 Non-ideal NFW models

After characterising the nearly pure spherical NFW model, we test
the accuracy of the empirical expansion on two non-ideal NFW
test cases. In the first, we test the recovery of forces in an ide-
alised cored halo particle distribution. The central profile of dark
matter halos is still a matter of considerable debate, both in terms
of structure formation as well as evolutionary processes that may
form cored profiles from cusps. Our procedure to test the ability of
our BFE method to represent such an evolution from a cusp profile
to a cored profile is as follows. We first realise a new halo with the
same parameters as in Section 3.1.1, except with 7. = 0.006 Ryi..
We then expand the forces using the basis derived in Section 3.1.1
using the r. = 0.0002 Ry, basis. In this case, the forces remain an-
alytic, so we may again compute pa,,aq,A, and oa, Ay, We
find, as expected, that the (I,n) = (0, 1) function is no longer a
near-perfect representation of the force. Given the structure of the
test, we know that the monopole terms should be able to reproduce
the cored distribution.

-4 -3 -2 -1 0
logio radius (virial)

Figure 4. Measurement of the logarithm of mean force accuracy (panel
b) and the logarithm of the root variance of force accuracy (panel c) as a
function of the logarithm of the radius for the three profiles discussed in
the text (coded by colour, with spherically-averaged profiles shown in panel
a). In panels b and c, we show the forces computed using GADGET-2 with
corresponding colour dashed lines for reference.

Unlike in the idealised case, the accuracy of the forces first
increases for [ = 0,n > 1, with a minimum in the overall force
error at [ = 0,n = 10, roughly in agreement with the node spac-
ing required to resolve the core based on visual inspection of the
functions. Using the principal results of Table 1 as a comparison,
we find that the overall force errors remain largely unchanged for
I =6,n =24 ua, = 6.5 x 1072%, pa, (r < 0.01R.i;) =
7.8 x 1072%. As expected for a spherical distribution, the force
error in the angular coordinates remains unchanged. We take this
as evidence that the evolution of purely spherical core formation
would be well-resolved using EXP.

The asphericity of dark matter halos is also still a matter of
debate, although it is reasonable to assume that dark matter halos
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in nature are not perfectly spherical. As a second example of a non-
ideal model, we test the force accuracy in an oblate spherical distri-
bution. In practice, we use the base model from Section 3.1.1 and
make the substitution r — /R? 4 ¢222. When ¢ = 1, the halo
is spherical. Making ¢ smaller results in successively more oblate
halos. In the general case of aspherical halos, we can no longer
use analytic forces. We, therefore, turn to a high-order multipole
expansion. The analytic forces are computed by a high-precision
multipole expansion and subsequent analytic differentiation by ex-
panding the disc density with a high number of radial and elevation
integration knots. In equations (22)—(24) the ‘analytic’ forces are
now computed from the multipole expansion. We test three oblate
halos: ¢ = 0.95,0.9,0.85.

Again comparing to the principal results of Table 1, we find
that the overall force errors only increase modestly, even for the
most extreme ¢ = 0.85 case computed at | = 6,n = 24: pa, =
8.99 x 1072%, pa, (1 < 0.01Ryi) = 9.5 x 1072%. In this test,
the true polar force error is now non-zero, and we find a corre-
sponding modest increase in the force error: pa, = 2.1 X 1073%,
pa, (r < 0.01Ryi) = 4.6 x 1072%. The true azimuthal force is
still zero, and we find that the errors are unchanged.

As an example of the characteristic accuracy and root vari-
ance curves, Figure 4 shows pa,. (panel b) and oa,. (panel c) as
a function of radius for the three different models discussed: near-
ideal NFW (the subject of section 3.1.1), the cored NFW, and the
oblate NFW. The realised (ideal) spherical-average densities for
each model are shown as solid (dashed) curves in panel a. We com-
pare the EXP (solid curves in panels b and c) with the GADGET-
2 forces (dashed curves in panels b and c). In general, we find
that EXP exhibits smaller force errors (mean force accuracy, up-
per panels), and significantly smaller root variance (force accuracy
variance, lower panels), when compared to GADGET-2 forces com-
puted for the same particle distribution.

While Figure 4 draws considerable attention to the centre of
the galaxy — which is important — we stress that the majority of the
particles are in the outer, high-accuracy regions of EXP-calculated
forces. Further, the inner regions of the realised particle distribution
are not smooth (panel a of Figure 4, motivating the use of alternate
sampling techniques, see Section 3.1.3), such that the force inac-
curacy is dominated by discreteness in the particle realisation. The
small exception to the high-accuracy forces in the outer halo is the
force accuracy at log(r) > —1. For the oblate halo, owing to the
mismatch of the outer profiles, the EXP-calculated forces are unable
to achieve the same force accuracy as for the other cases, where the
outer profiles match the basis.

In both the cored and oblate halo tests, we find that the vari-
ance curves remain largely unchanged, and as such the noise in the
BFE force realisation is significantly smaller than that in a tree-
gravity realisation (an order of magnitude in the halo, on average).
While it is beyond the scope of this paper, a future comparison of
differences in evolution resulting from aphysical noise would be a
fruitful project.

3.1.3  Multimass halos and accuracy

Interesting dynamics often takes place at the centre of the dark mat-
ter halo. Unfortunately, owing to finite sampling of the halo, the
centre is often under-sampled. One scheme to improve the sam-
pling in the inner halo is the multimass scheme: the number den-
sity of dark matter particles may be biased towards smaller radii by
adjusting the per particle mass.

As described in Petersen et al. (2021), one creates two dis-
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tribution functions as a function of energy E: one that corre-
sponds to the true desired mass (or density) distribution func-
tion (the mass distribution function, fmass) and one that corre-
sponds to the desired number density (the number distribution
function, fnumber). Particles are realised from frumber With uni-
form mass Mupumber With the mass for each particle rescaled such
that Mmass = Mnumber fmass(E)/ foumber (E). The particles then
match the mass distribution of the true desired distribution func-
tion with the number density of frumber- A typical choice for the
target number density profile is a simple power-law distribution,
Nhalo X 7%, where a € [2, 3]. For example, in Petersen et al.
(2021), we chose o = 2.5, resulting in a factor of 100 increase in
particles in the inner halo r < 0.05Ryiy.

However, the multimass scheme changes the bias in the es-
timate of the coefficients for the lowest-order function. The [ =
n = 0 spherical basis function derived using the Sturm-Louiville
method only matches the potential estimate exactly for the equal
mass particle case, where the measure used to derive the basis,
d3xp, is proportional to the particle mass. Empirically, the coef-
ficient bias varies with the number distribution for a fixed mass
distribution. Thus, we are left with an optimisation problem that
balances the desire for force accuracy against the desire for a finely-
sampled phase space in dynamical regions of interest. Selecting
the optimal multimass weighting depends on the problem at hand.
One has to be careful about the bias and some experimentation and
bias calibration needs to be part of any multimass simulation strat-
egy. For example, we find that for the configuration used in Pe-
tersen et al. (2021), the mean force error for the (I = 0,n = 1)
term increases to pa, = 6.0 x 1072%, but the addition of extra
terms somewhat mitigates this bias. For [ = 6,n = 24, we find
pa, = 7.6 x 1072%.

3.2 Cylindrical Expansions

While the lowest-order function in an initially spherical model is
a near-exact match to the density and potential, the truncation of
the series and conversion to meridional space may result in devi-
ations from the true density and potential functions for cylindrical
expansions. We validate the cylindrical basis by comparing the ex-
panded forces to analytic forces. As above for the non-spherical
cases, the analytic forces are computed by a high-precision multi-
pole expansion and subsequent analytic differentiation by expand-
ing the disc density using a high number of radial and elevation
integration knots. We then compute the relative difference for the
forces at the position of each particle:

FR, expanded (R:2) = FR, analytic (R,
Br(Rz) = e L g
_ ‘Fz, expanded (£,2) = F2  anal tic(R:Z>|
Ax(R,2) - - F. analytic (R:2) - @7
A¢(R, Z) _ ‘F¢, expanded (R,2)—Fg, analytic(Rﬁz>| (28)

) 2 2 :
\/FR, analytic T F%, analyticTF5, analytic (F:2)

where F'r is the cylindrical radial force, F is the vertical force,
F is the azimuthal force, and the subscripts ‘expanded’ and ‘an-
alytic’ refer to the BFE forces and the multipole expansion forces,
respectively. We normalise the azimuthal force by the total force to
avoid zeros in the azimuthal force that result from symmetries in
the test density configurations. We test two configurations: a pure
exponential disc and a model designed to approximate the density
distribution of an evolved disc that includes a bar. In both tests, we
use the same particle realisation to compute the forces so that the
results may be compared independent of realisation noise.



8  Petersen, Weinberg, & Katz

As in the spherical case, we compare with the tree-code grav-
ity of GADGET-2 (Springel 2005). We additionally compute the
relative force errors for direct-summation gravity. For the direct-
summation gravity, we use a ring-algorithm (Makino 2002) imple-
mented in the EXP framework. We again choose a cubic spline ker-
nel® with a softening length of & = 0.000952Ryir = 0.0952R,.
The relative forces are computed using equations (26)—(28), replac-
ing the expanded forces with the direct-summation and tree-gravity
forces. As discussed above, for GADGET-2, we input the softening
length € = 0.00034 Ryir = 0.034R,.

3.2.1 Exponential Disc Test

Our exponential disc is parameterised as an exponential in radius
and an isothermal sech? distribution in the vertical dimension:

Mgy

= mefr/l?‘dsecﬁ (2/20) 29)

Pd (T’, Z )
where M is the disc mass, R4 is the disc scale length, and zo is the
disc scale height, which is constant across the disc. For this exper-
iment, we test a zo/ R4 = 1/10 scale height to scale length ratio.
We first test the same exponential disc model used to condition the
basis.

In Figure 5, we show the median and variance of the absolute
value radial force error for binned particles using the three grav-
ity solvers. We have scaled the force errors by a 100 to show the
results as percentages. We take advantage of the axisymmetry of
the disc and bin the relative force errors in the meridional plane.
The left column shows the results for the BFE, using the parame-
ters taken from the simulation presented in Petersen et al. (2021):
Mmax = 6, Nmax = 12. The centre column (panels b and e) shows
the results for the direct summation solver, and the right column
(panels c and f) shows the results for GADGET-2.

For the BFE, we find that Ag(R, z) < 4% everywhere, with
the largest errors at R < 0.2Rg4 for the basis function expansion
with nmax = 12. However, the places with the largest radial force
errors do not contain many particles, and the median force errors
for all particles in the initial disc distribution are Ar = 0.52%. For
both direct-summation and GADGET-2, the largest force errors oc-
cur near the disk plane, which has the highest particle density. The
median radial force errors are 1.02% and 1.50% for direct summa-
tion and GADGET-2, respectively. Additionally, the errors from the
quadrupole-order multipole used to compute long-range forces in
GADGET-2 are apparent in panel ¢, when compared to panel b.

The vertical force errors in EXP, shown in panel a of Fig-
ure 6 are modestly worse than the radial force errors, but in ex-
pected ways: the force accuracy declines in the plane at larger radii,
where the vertical forces are small. Once again, the regions with
the largest force errors are not populated by many particles, and the
median z force error A, = 2.2%. Direct summation generally has
larger radial and z force errors than EXP within a couple of disk
scale lengths but EXP has larger z force errors at larger radii. The
corresponding median vertical force errors for direct summation
and GADGET-2 are 5.1% and 6%, respectively.

In an axisymmetric system, the BFE excels at minimising spu-
rious forces in azimuth, as seen in panel a of Figure 7. Owing to the
softening kernel and local particle fluctuations, both direct summa-
tion and GADGET-2 show large non-zero azimuthal forces. When

3 Using the Plummer softening kernel has little impact on Fz or Fy, but
changes the distribution of the F, errors appreciably.

normalised by the total force, the fractional azimuthal force is
0.44%, 1.02%, and 4.4% for BFE, direct summation, and GADGET-
2, respectively. The particularly poor GADGET-2 forces appear to
be a consequence of the tree construction, as the pattern in the force
errors corresponds with the pattern in the radial force errors.

The variance at each point in the meriodional plane, shown in
the lower panels of Figures 5-7, demonstrates the minimal and sta-
ble noise properties of EXP. One can see that the regions of largest
force error in EXP have very small variance while for the direct-
summation and tree gravity solvers the places with the largest force
errors also have the largest variance. These are also the places that
are most populated by disk particles. The basis function expansion,
EXP, has a stable pattern that will introduce a constant bias rather
than a changing noise pattern, as in direct-summation or tree grav-
ity, i.e. since the systematic force errors from the truncated series
of basis functions are time-independent, they have a minor effect
on secular evolution. The BFE will still be affected by fluctuations,
but the systematic bias from the particular basis truncation has a
time-independent component.

We have verified that the truncation errors in A(g . 4} (R, 2)
tend to zero as nmax increases. One may improve the vertical force
resolution specifically by constructing a basis with higher linitial,
which increases the angular resolution and may create functions
that more closely resemble the outer disc. However, as the vertical
force is small at larger radii, we do not believe this affects typi-
cal simulations (e.g. Petersen et al. 2019, 2021). We have tested
the evolution using bases realised with higher linitia1 and find no
appreciable differences.

3.2.2  Bar-and-disc model test

Discs often develop strong non-axisymmetric features such as spi-
ral arms and bars. To test forces in a non-axisymmetric disc, we
design a model that resembles the late-time configuration of the
cusp simulation from Petersen et al. (2021) to test the basis forces.
We show the model in Figure 8. The model consists of two compo-
nents: a Ferrers-like bar and an evacuated exponential disc.

We consider a bar profile with the Ferrers ellipsoid form given
by a generalised formula that is a softened power law in elliptical
coordinate m,

Pbar model — pc(l + mu)u (30)

where we define m as above and we choose 1 = 2 and v = —4.
Although the density in equation (30) formally has infinite extent,
the density is steep and the profile quickly converges to its asymp-
totic value. We use the same axes as in the Ferrers bar test above.
While this model does not result in analytic forces, it is a better nu-
merical test of the force accuracy than a traditional Ferrers bar. We
show the density of the bar itself in the left-most panel of Figure 8.

We also require an exponential disc model to complete the
test density model. We modify the axisymmetric disc to remove
the particles that are now a part of the bar. To do so, we parame-
terise the disc with the initial exponential disc and then ‘evacuate’
the central region using an inverted exponential disc (the negative
of eq. 29) with the same mass as the bar and scale height as the
initial disc. We tie the scale length of the disc to the bar and choose
R inverted = a/3, a value which results in a relatively small radial
mass rearrangement when combined with the bar model. We show
the evacuated exponential disc in the middle panel of Figure 8, and
the total model in the right panel of Figure 8.

We generate a realisation for the disc and bar model through
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Figure 5. Median (panels a,b,c) and root variance (panels d,e,f) of the absolute value of the relative radial force errors in the meridional plane for an N = 106
exponential disc model using three gravity solvers, as labelled. Black curves show contours of constant density.

rejection sampling. Using the projected surface density of the re-
alised particles, we find the Fourier-measured strength of the bar,
Az /Ao = 0.122, which is typical for the bars found in Petersen
et al. (2021).

For each particle in the bar-and-disc model, we compute the
relative force accuracy (eqns. 26-28) for the BFE-computed forces
using the same basis as for the disc model, the direct-summation
forces, and GADGET-2-computed forces. In Figures 9-11, we show
the force errors as in Figures 5-7. Owing to the non-axisymmetric
structure of the bar-and-disc model, we now bin the relative force
errors in x — y space, selecting particles in a vertical slice. For
the radial and azimuthal forces, we select all particles that satisfy
|z| < 0.5z. For the vertical forces, we select all particles that
satisfy 0.520 < z < 1.5%0.

The results are much the same as in the exponential disc case,
with modestly increased errors. The median radial force errors for
the three potential solvers are 1.4%, 1.9%, and 3.0% for the BFE,
direct summation, and GADGET-2 cases. The median vertical er-
rors are 4.5%, 5.5%, and 7.4%, and the median azimuthal errors are
1.0%, 1.8%, and 1.9% for the solvers (in the same order). The BFE
force approximation results in a distinct spatially-coherent low-
level bias pattern resulting from the basis truncation, but has rel-
atively little variance. The direct-summation and GADGET-2 forces
feature both bias and significant variance resulting from the soften-
ing.

While the bias pattern is most apparent by eye in the BFE me-
dian panels (panel a), an edge will produce features in any gravity
solver: in BFE, it is ringing by truncation (analogous to the Gibbs
phenomenon), in direct and tree-based gravity, is is bias from over-
smoothing. Thus, while the BFE shows a clear, low-level ringing as
a result of the bar edges, direct summation and tree-based gravity
both show error features related to the bar geometry. The effect is
best understood as a kernel mismatch between the basis functions
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in the case of BFE, and the smoothing kernel in the case of direct
summation and GADGET-2.

We summarise the results of these force error tests in Fig-
ure 12, where we show the entire normalised probability distri-
bution of force errors in each dimension, for both the initial disc
(upper row) and bar-and-disc model (lower row). We summarise
the overall force error by marking the median with a star. For both
models studied here, an exponential disc with and without a bar,
BFE has a lower median relative force error when compared to
direct-summation or GADGET-2. The reasons are straightforward;
the BFE is able to accurately determine forces in high density re-
gions with little variance. The spatial regions with the largest bias
are those with the fewest particles, i.e. where the basis has the least
support, which in turn affects a relatively small number of particles.
In contrast both the direct and the tree method have their largest er-
rors and force variance in regions that contain many particles.

3.3 Coefficient significance

The high-order basis functions in EXP contain information about
small spatial scales and require a large number of particles to com-
pute accurate coefficients”. For a fixed number of particles N, there
will be some maximum order beyond which the coefficients are
noise dominated (low coefficient significance). We now briefly out-
line our procedure for determining coefficient significance.

The particle distribution itself correlates the error in the var-
ious coefficients, so an analysis of a coefficient covariance matrix
cov(a) is necessary to determine independent degrees of freedom.

4 Recall that the coefficient amplitude for a particular eigenfunction Uy
corresponding to the potential function ¢, may be written as a, =
[ dx p(x) ¢, (x) (cf. equation 3).
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Figure 7. The same as Figure 5 but showing the relative ¢ force errors. The force errors are now relative to the total forces.

The covariance of the potential basis functions ¢, and ¢, is given dent degree of freedom using a bootstrap resampling technique as
by follows. We partition the NV particles into J = /N partitions with
J particles each, and compute the coefficients for each basis func-
cov(a)u, = /dxp(x)¢u (x)dv(x) — apaw. @31 tion in each partition, a,,;, where j = 1,..., J. We then construct
a covariance matrix for each azimuthal order for the set of J co-
In EXP, we compute the signal-to-noise ratio, .S, for each indepen- efficients. We use a singular value decomposition to compute the
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Figure 8. Model for the bar-and-disc system, where the panels show the bar model, the evacuated disc model, and the total model (from left to right).
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Figure 9. Mean (panels a,b,c) and root variance (panels d,e,f) of the absolute the value of the relative radial force errors for an N = 108 bar-and-disc model
using the three gravity solvers as labelled, in the z — y plane, for particles |z| < 0.5z¢. Black curves show contours of constant density.

eigenfunctions and eigenvalues of this covariance matrix. Trans-
forming the original coefficients to the new basis implied by the
eigenfunctions yields a new set of rotated coefficients a, (where
we use - to denote quantities in the rotated space). The eigenvalues
of the covariance matrix, l;u, are an estimate of the variance in the
projected coefficients uncorrelated by the original basis. We then

define S, = &u/\/a/J.

In practice, the covariance matrix is diagonally dominated.
This implies that the eigenfunctions of our covariance matrices
smooth the original coefficients about the diagonal. Thus, one may
also make a fair estimate of the signal-to-noise ratio in the unro-
tated coefficient a, using S,. Empirical tests using this bootstrap
resampling technique on the simulation outputs of Petersen et al.
(2021) suggest that the noise floor in both a spherical (halo) and
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cylindrical (disc) component are reached at approximately S,, = 4.
Specifically, we estimate the signal-to-noise floor by examining the
run of @, ; for high j and recording the value of S where a,, is
no longer coherent in time, but fluctuates in a white noise fashion.
In the simulations presented in Petersen et al. (2021), at most the
highest two (four) radial orders fall below the estimated noise floor
in the cylindrical (spherical) basis for long stretches of time in their
simulations. Additionally, in the spherical basis, some higher-order
angular terms exhibit low significance. Petersen et al. (2021) did
not truncate their basis owing to the small number of obviously
low-significance terms.

However, the generic presence of low-significance terms nat-
urally suggests that implementing a ‘coefficient smoothing’ algo-
rithm would reduce both the bias and variance in the force compu-
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Figure 11. The same as Figure 9 but showing the relative ¢ force errors. The force errors are now relative to the total forces.

tation by reducing or eliminating the contribution from noise dom-
inated coefficients (Weinberg 1996). As an example, consider the
idealised spherical NFW test from Section 3.1.1. Figure 13 shows
B{An,Ag,As} and oA, A, Agyasa function of radius for different
combinations of max, Pmax to show the changing force accuracy
as more terms are included. As the basis is designed to resemble

the equilibrium profile, the lowest-order term is a high-precision
match the forces. When further terms are added, the force accu-
racy slowly becomes worse and the variance slowly increases. In
the case of this equilibrium model, where the lowest-order basis
term nearly perfectly describes the system, it is evident that the op-
timal smoothing would reduce the contribution to the forces from
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the other terms. However, the terms are needed to resolve later evo-
Iution in the system. For the present application, we find that even
with the addition of noise from low-significance coefficients, the
forces are still (on average) significantly more accurate, with less
force variance, than the comparable GADGET-2 computation.

As a test, we perform the method above to rotate the coeffi-
cients and compute the signal-to-noise for the NFW model in Sec-
tion 3.1.1. We use a simple trimming procedure (eliminating all
coefficients below a specified signal-to-noise threshold) and scan
through signal-to-noise cuts from 1 to 10. We find a minimum at
a signal-to-noise of 5, where we improve the overall radial force
accuracy in the model from 6.4e-2% to 4.5e-2%, with compara-
ble improvements at all radii. For the angular components of the
forces, we find force accuracy improvements of greater than an
order of magnitude: the azimuthal force accuracy improves from
4.9e-4% to 4.4e-5%, and the polar forces improves from 3.5e-4%
accuracy to 2.2e-5% accuracy. One may reasonably expect with a
more advanced smoothing algorithm in place, the typical accuracy
and variance may be improved by an order of magnitude or more.

3.4 Force accuracy summary

The force accuracy tests presented here illustrate the features of the
approximations inherent in BFE, direct-summation, and tree grav-
ity N-body techniques. In particular, we learned:

(i) BFE provides an accurate representation of the potential and
force for distributions that evolve only moderately from their initial
conditions. In particular, BFE should perform well for the quiescent
evolution of disc galaxies, including core formation or the forma-
tion of a strong bar.

(i1) For galaxy disks, including those with strong bars, BFE has
the lowest median relative force errors followed by direct sum-
mation. Tree-based gravity (GADGET-2) performs modestly worse
than direct summation. In the dark matter halo, BFE has consis-
tently smaller median relative force errors.

(iii) Direct-summation and tree (GADGET-2) gravity is less ac-
curate in higher-density regions owing to gravitational softening.
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BFE force accuracy is independent of the local density except in
low-density regions where the potential is poorly constrained.

(iv) Sharp changes in density are difficult for all the gravity
solvers to represent. In the case of BFE, this results in bias pat-
terns that resemble the underlying functions; in the case of direct-
summation and tree gravity, a sharp density change results in over-
smoothing and the edge being poorly determined.

(v) To evaluate force accuracy, one cannot compare a BFE to
direct-summation forces owing to the different biases and variance
patterns in the solvers. The only fair force comparison is to com-
pare both BFE and direct-summation forces to a true force. Here
we used either analytic expressions and/or a high-order multipole
expansions to compute accurate forces.

Our results immediately prompt the question of whether mod-
estly biased, but low noise forces are better for resolving secular
evolution as compared to small bias, higher noise forces. Unfortu-
nately, a full study of the bias-variance tradeoff in different poten-
tial solvers is beyond the scope of this work, but remains an open
question in high-resolution dynamics.

4 EVOLUTION

With the computed basis or bases in hand, we may then proceed
to evolve the dynamical system in time. EXP uses a symplectic
leapfrog integrator following a ‘kick-drift-kick’ scheme (Quinn
etal. 1997). One can show through direct computation of the Taylor
series expansion of the Hamiltonian that the phase-space accuracy
in leapfrog integration after a single timestep is O(h®) (Yoshida
1990). For computational purposes, the leapfrog integrator is an in-
expensive integrator that requires only one evaluation of the poten-
tial per timestep, and no storage of previous timesteps, making the
algorithm computationally economical. Leapfrog is also time re-
versible. Time-reversibility is a constraint on the phase-space flow
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Figure 13. Measurement of the logarithm of mean force accuracy (upper panels) and logarithm of the root variance of force accuracy (lower panels) as a
function of the logarithm of the radius for various (I, n) combinations (coded by colour). From left to right, the columns are radial, polar, and azimuthal forces.
We show the forces computed using GADGET-2 as a grey dashed line for reference.

that, like symplecticity, suppresses numerical dissipation, since dis-
sipation is not a time-reversible phenomenon®.

4.1 Timesteps

The choice of timesteps in an N-body simulation has been dis-
cussed extensively in the literature (see, e.g., Dehnen 2017), with
the principal goal of avoiding artificial energy dissipation and con-
serving angular momentum. To this end, we have extensively tested
the timesteps in EXP and developed criteria that meet the required
conservation precision.

EXP requires an input master timestep, which is the largest
timestep a particle may be evolved for at a given step. In general, we
choose timesteps so there are at least 100 steps over an orbital pe-
riod (Weinberg & Katz 2007a). Specifically, we compute three time
scales for each particle, at each timestep, choosing the timestep that
gives the most stringent value:

(i) The force time scale: |v|/|a| where v is the velocity and a is
the acceleration.

(ii) The work time scale: ®/|v - a| where @ is the gravitational
potential, chosen to be 0 at large distances from the centre of the
particle distribution.

(iii) The escape time scale: \/®/a - a.

Each of the timesteps may be tuned with a dedicated prefactor, €, to
reach the desired number of steps in an orbital period, r. Typically,
this results in values of € ~ 0.01. One may also disable an indi-
vidual timestep criteria in practice by specifying a large prefactor.
The timestep criteria are heuristics that ensure an individual par-
ticle achieves the desired precision in conservation of energy and
momentum.

Particles at different phase-space locations in the simulation
require significantly different timesteps. Therefore, we employ a

5 See the discussion in Springel (2005) regarding individual particle
timesteps and symplecticity, but see also Hernandez (2019) for a cautionary
note in specific cases.

multistep scheme (sometimes referred to as ‘block-step’) based on
a binary timestep tree to efficiently spend computational resources
on particles that require smaller timesteps to achieve our required
accuracy. A binary timestep tree can dramatically increase through-
put, especially for the generic fully parallelized implementation in
EXP. We begin by partitioning phase space p ways such that each
partition contains n; particles that require a timestep 6t = 277h
where h is the master time step and j = O, ..., p. Since the total
cost of a time step is proportional to the number of force evalua-
tions, the speed up factor is

P P
S = an/Zn]Q—j.
j=0 j=0

We select the master timestep h and the number of levels (some-
times referred to as ‘rungs’) p to spread out the particles among the
levels. The optimal value of p depends on the range of frequencies
in the simulation. For example, for an ¢ = 15 NFW dark-matter
profile with N = 107 particles, we find that p = 7 and S =~ 30.

(32)

4.2 Coefficient interpolation

The inclusion of multiple timesteps requires an additional scheme
to correctly compute forces when only a fraction of the particles
are advanced. Forces in the BFE algorithm depend on the expan-
sion coefficients and the leap frog algorithm requires a linear in-
terpolation of these coefficients to maintain second-order error ac-
curacy per step. This interpolation and the bookkeeping required
for successive bisection of the time interval is straightforward. We
checked the accuracy of this algorithm by comparing it to direct
orbit integration methods.

We refer to the set of coefficients that correspond to the contri-
bution of particles at each individual multistep levels as the coeffi-
cient tableau. When computing the total coefficients at a particular
multistep level, the offset of the velocity update at the half step in
the kick-drift-kick leapfrog scheme allows the coefficient contri-
bution at the lower inactive levels to be linearly interpolated. The
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error in the contribution from the interpolation is the same order as
that for leap frog itself.

Each particle is assigned a time step level, indexed as j =
0,...,p, based on the timestep criteria in the previous section. For
each level with index j, the coefficient tableau is defined as the par-
ticles’ contributions restricted to that level. We define an indicator

f = 1 if particle 7 is in level j, and zero otherwise. With this def-
inition, the coefficient tableau for each function u at each level j
becomes

N
@t +a/2") = 3 mil 6y (a) (33)
i=1

where g € [0,1,...,2P — 1] are the substeps. For particles at level
Jj, each time substep is h/27. We get the full coefficient by summing
over j:

au(t) = Z al (t). (34)

To advance particles, we use the following procedure. For
each sub-step g (of 27 total substeps), where particles at level 0 > j
satisfy ¢ = 1:

(i) Define the fraction of the full step h: f = ¢/2P.

(ii) For all levels o > j, compute the coefficient tableau aj, (¢ +
qa/2%).

(iii) Compute the preceding step, g— = [g/2P~°]/2°, and the
following step, g+ = [q/2P~°]/2°, where |-] and [-] are the floor
and ceiling functions, respectively.

(iv) For all levels o < j (i.e. (j = 0), interpolate the coefficient
tableau using the preceding and following fractional steps:

ay (t + hg)[f — -] + au(t + hg+)lg+ — f]

ao(t+hf) = P

(35)

(v) Advance all particles using the interpolated coefficients.

(vi) Compute the new timestep for all particles and assign them
to timestep levels. If a particle has changed levels, subtract the pre-
vious contribution from its former level and add its updated contri-
bution to its new level.

For example, let us consider only two levels in total, i.e. p = 1.
Particles at level 7 = 0 have time step h, the master timestep. Ap-
plying the kick and drift steps from the kick-drift-kick algorithm
brings the positions of level O particles to the next timestep. This
allows us to evaluate dz (t), but to perform the final kick step, we
also need the contribution from the j = 1 particles: a,(t + h) =
@l (t+h)+a, (t+h). The second term requires advancing the par-
ticles at higher levels, i.e. smaller timesteps. Now consider the level
1 particles. The first substep brings the positions of level 1 particles
tot+h/2. Toevaluate a, (t+h/2) = ab(t+h/2)+a,(t+h/2),
a,,(t + h/2) can be evaluated from the current positions, but we
also need @) (t+h/2). Attime t+ h/2, we have ¢ = 1. For o = 0,
we find g— = 0 and g+ = 1. Thus, using the linear interpola-

~0 ~0
tion formula (eq 35): a3 (t + h/2) = M This allows
us to compute the next kick and drift, bringing all particles to the
time ¢ + h that allows the evaluation of the final kick for all par-
ticles. The error in the force (acceleration) interpolation is O(h).
Propagating this error through the algorithm contributes to an er-
ror in the trajectory proportional h* |X[3] |. This is the same order as
the leapfrog integrator itself so there is no need for a higher-order
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interpolation. A higher order symplectic integrator would require
high-order interpolations.

5 SUMMARY AND CONCLUSION

There are a number of reasons to use EXP to study galactic dynam-
ics. First, it is efficient. The computational effort with BFE tech-
niques scales as @ o N, rather than O oc N for direct techniques
or O x Nlog(N) for tree-based techniques. The computational
efficiency means that studies can push to higher /N when compared
to other techniques. Owing to these computational considerations,
in practice direct summation is not viable for most problems to-
day. Additionally, because BFE does not require repeated domain
decompositions to maintain efficiency, the code is easily ported to
operate on graphical processing units (GPUs).

Second, while EXP requires a careful construction of the ba-
sis used during integration, once the basis is specified, the variance
in forces at a given location in the model is low (see Sections 3.1
and 3.2). Thus, EXP is well-suited to study long-term secular evo-
lution and subtle dynamical processes. For example, to study the
subtle dynamical process of secular evolution in galaxy disks, like
bar formation and evolution, one requires a gravity solver that is
both accurate and low noise or the dynamical details can be com-
promised; orbits could switch families for numerical rather than for
physical reasons, among other possible problems. Given the tests
presented above, we feel that our EXP code is well suited for the
study of bars, for example in Petersen et al. (2019) and Petersen
et al. (2021). In contrast, tree-based codes have larger force errors
and force error variances.

Third, EXP enables after-the-fact studies such as in Petersen
et al. (2021). It is straightforward to extract a representation of the
potential at every position in the model, which one may then use for
detailed integration experiments. The BFE representation allows
for isolation of different evolutionary modes, and so in a bar-like
model, one may choose to rotate only the even modes, and further
avoid components of the potential that are not related to the bar.

The primary disadvantage of EXP is that a BFE code is not
fully adaptive, and thus cannot integrate arbitrary systems. For ex-
ample, one should probably not use a BFE code like EXP if one
wants to study small self-gravitating regions or complex geometries
such as major mergers. In such situations a tree gravity code would
probably be best. The obvious bias pattern resulting from the basis
in both the exponential disc and bar-and-disc case is also a BFE
artefact that one must carefully study to ensure that the evolution
is not appreciably changed (e.g. using coefficient significance anal-
ysis). No N-body gravity solver is a panacea, and one should en-
deavour to understand the advantages and limitations of any solver.

The n-body solver EXP has been used to great effect in the lit-
erature to uncover subtle dynamical effects (e.g. Weinberg & Katz
2002; Holley-Bockelmann et al. 2005; Weinberg & Katz 2007a,b;
Choi et al. 2007, 2009; Petersen et al. 2016b,a, 2019, 2021). The
EXP code is being prepared for a public release with an accompa-
nying user manual describing the software design. We expect the
highly accurate adaptive basis techniques in this work to not only
continue producing valuable /N-body models, but to also comple-
ment analytic work in dynamics as well as observational data stud-
ies.
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