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Abstract
Background: Protein structure prediction methods provide accurate results when a homologous
protein is predicted, while poorer predictions are obtained in the absence of homologous
templates. However, some protein chains that share twilight-zone pairwise identity can form
similar folds and thus determining structural similarity without the sequence similarity would be
desirable for the structure prediction. The folding type of a protein or its domain is defined as the
structural class. Current structural class prediction methods that predict the four structural classes
defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair
of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction
accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the
prediction.

Results: SCPRED uses a support vector machine classifier that takes several custom-designed
features as its input to predict the structural classes. Based on extensive design that considers over
2300 index-, composition- and physicochemical properties-based features along with features
based on the predicted secondary structure and content, the classifier's input includes 8 features
based on information extracted from the secondary structure predicted with PSI-PRED and one
feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in
which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3%
accuracy when predicting the four SCOP-defined structural classes, which is superior when
compared with over a dozen recent competing methods that are based on support vector machine,
logistic regression, and ensemble of classifiers predictors.

Conclusion: The SCPRED can accurately find similar structures for sequences that share low
identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED
is attributed to the design of the features, which are capable of separating the structural classes in
spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be
successfully used as a post-processing filter to improve performance of modern fold classification
methods.
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Background
Protein structures are predicted to provide answers to key
questions related to protein function, regulation, and
interactions [1,2]. The solved structures are increasingly
useful for structure modeling/prediction for unsolved
protein sequences that have a closely related (similar)
sequence with a known structure [3,4]. Homology mode-
ling, one of the most successful paradigms used to predict
the structure, is based on the assumption that similar
sequences share similar folding patterns [5,6]. Sequence
alignment which allows for finding similar sequences
among the known structures [7,8] usually does not per-
form well when no sequences with high identity are avail-
able. At the same time, structurally similar proteins that
share low sequence identity with the sequences used for
prediction can be found based on coarse grained classifi-
cations such as those provided in Structural Classification
of Proteins (SCOP) database [9,10]. This database imple-
ments a hierarchy of relations between known protein
and protein domain structures, in which the first level is
known as the structural class. Prediction of structural
classes is based on identifying folding patterns based on
thousands of already categorized proteins and using these
patterns for millions of proteins with unknown structures
but known amino acid (AA) sequences. There are four
major structural classes: all-α, all-β, α/β, and α+β. The all-
α and all-β classes represent structures that consist of
mainly α-helices and β-strands, respectively. The α/β and
α+β classes contain both α-helices and β-strands which
are mainly interspersed and segregated, respectively [9].
SCOP also defines three additional classes, i.e., multi-
domain, membrane and cell surface, and small proteins,
as well as four supplementary categories, i.e., coiled coil,
designed, and low resolution proteins and peptides. The
proposed method targets the four main classes due to two
factors: (1) about 90% of SCOP entries belong to the four
classes, and most of the existing structural class prediction
methods also target these classes [11]. At the same time,
the growing number of proteins that are categorized into
the other classes motivates development of the corre-
sponding predictive methodologies. We note that the
CATH (Class, Architecture, Topology and Homologous
superfamily) database [12] defines three main structural

classes: mainly-α, mainly-β, and mixed (the fourth class
includes irregular proteins that are composed mostly of
coils), which approximately correspond to the all-α, all-β,
and combination of the α/β and α+β classes in SCOP. We
address the SCOP based classification, as it further subdi-
vides the mixed proteins and since most of the existing
structural class prediction methods are also based on this
definition of the structural classes. Currently, the struc-
tural classes in SCOP are assigned manually based on the
known structures, while in the past several automated
assignment methods were proposed. They include a
method proposed by Chou [13] and another by Eisen-
haber and colleagues [14], see Table 1. We note that the
first assignment method requires knowledge of structure
(to distinguish between parallel and antiparallel sheets)
and the second one is based purely on the content of the
two secondary structures and merges α/β and α+β classes
into a mixed class. At the same time, the assignment per-
formed in the SCOP database is more complex and gov-
erned by different rules for the α/β and α+β classes. The
classification of protein structures in SCOP is performed
manually by experts and is based on evolutionary rela-
tionships and on the principles that govern their three-
dimensional structure [9]. The structural classes are
defined based on grouping of the assigned folds, which in
turn are categorized based on similarities in spatial
arrangement of the protein structure. The folds are
assigned to the classes on the basis of the secondary struc-
tures, in terms of both their content and spatial arrange-
ment, of which they are composed. In case of all-α and all-
β classes they include folds composed mostly of α-helices
and β-sheets, respectively. The α+β class includes folds in
which α-helices and β-strands that are largely inter-
spersed, while the in case of α/β class which are segregated
[9]. Therefore, the assignment into the latter two classes
requires the knowledge of the spatial arrangement of the
α-helices and β-strands. Since this manual procedure can-
not be directly traced using the input sequence or even its
corresponding secondary sequence, a variety of methods
that predict the structural class based on the protein
sequence were developed to facilitate automated, high-
throughput assignment. We note that the manual assign-
ment of structural classes in SCOP does not use the fea-

Table 1: Rules for assignment of structural classes based on the content of the corresponding secondary structures.

reference structural class α-helix amount β-strand amount additional constrains

[13] all-α ≥ 40% ≤ 5%
all-β ≤ 5% ≥ 40%
α+β ≥ 15% ≥ 15% more than 60% antiparallel β-sheets
α/β ≥ 15% ≥ 15% more than 60% parallel β-sheets

[14] all-α > 15% < 10%
all-β < 15% > 10%

mixed > 15% > 10%
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tures or model applied in the proposed method, as the
SCOP assignment is based on spatial arrangement of sec-
ondary structure segments, while our method is based on
the flat secondary structure sequence.

Prediction of the structural classes is performed in two
steps: 1) the AA sequences are transformed into a fixed-
length feature vectors; 2) the feature vectors are fed into a
classification algorithm to generate a prediction outcome.
Numerous in-silico structural class prediction methods
were developed. Majority of them use relatively simple
features such as composition vector, auto-correlation
functions based on non-bonded residue energy, polypep-
tide composition, pseudo AA composition [15] and com-
plexity measure factor [13,16-25]. Several recent methods
use more advanced feature vectors that either combine
physicochemical properties and sequence composition,
or optimize a selected type of the features [26-29]. Predic-
tions are performed using a wide range of classification
algorithms such as fuzzy clustering [30], neural network
[31], Bayesian classification [32], rough sets [33], compo-
nent-coupled [18-20], information discrepancy [22-24],
logistic regression [26-29], decision tree [23,34], and sup-
port vector machine [27,34-36]. In recent works complex
classification models such as ensembles [27], bagging
[34], and boosting [22,37] were explored. Unfortunately,
some of these methods were tested on small datasets,
often with relatively high sequence identity, which
resulted in high prediction accuracy [26]. A recent review
by Chou provides further details and motivation for
development of structural class prediction methods [11].
A feasible alternative for above methods is to use the pre-
dicted secondary structure, which can be obtained with
accuracy of over 80% for highly similar sequences [38], to
assign the corresponding structural classes, e.g., by using
one of the abovementioned assignment methods. The
main drawback is that in this case the prediction would
concern only the all-α, all-β and mixed (which combines
α/β and α+β classes) classes.

Development of high quality prediction methods for
sequences that are characterized by low identity with
sequence used to the prediction continues to be a chal-
lenging task. Majority of current secondary structure pre-
diction methods use sequence alignment that requires at
least ~30% identity between the query sequence and
sequence(s) used to predict its structure [39]. More than
95% of protein chains characterized by a lower, 20–25%,
pairwise identity, also referred as the twilight-zone simi-
larity, have different structures [40], which substantially
reduces accuracy of the corresponding predictions. For
instance, recent research shows that the accuracy of the
secondary structure prediction methods trained and
tested on protein set in which any pair of sequences shares
twilight-zone similarity drops to 65–68% [41]. Similarly,

although structural class prediction accuracies for datasets
in which training and test sequences share high pairwise
sequence identity reach over 90%, they drop to 57–63%
when training and testing is performed using datasets in
which any pair of sequences has twilight-zone similarity
[26,29,32]. At the same time, about 40% of sequences for
which the tertiary structure was deposited to Protein Data
Bank (PDB) in 2005 share twilight-zone pairwise similar-
ity with any sequence deposited in the PDB before 2005
[29], which motivates development of the prediction
methods for these challenging sequences. Most impor-
tantly, pairs of sequences with low identity can share sim-
ilar folding patterns or overall structure [42,43] and can
be used to predict tertiary structure [44]. Research also
shows that finding similar folding patterns among the
proteins characterized by low sequence identity is benefi-
cial for reconstruction of the tertiary structure [45,46].

Large number of proteins chains that are of interest to the
biologists (which are being deposited to PDB) and that
share twilight-zone pairwise identity with the chains for
which the structure is known, and the potential structural
similarities between these protein sequences that can be
exploited to build more accurate structure prediction
methods serve as our motivation. One solution to
improve predictions for sequences that share twilight-
zone pairwise identity with sequences used to perform
predictions is to use a large library of reference functional
sequence motifs to build a feature vector that can provide
higher accuracy. Such method that uses 7785 features was
proposed in [47]. Our goal is to introduce a novel in-silico
method that uses a compact and intuitive feature vector to
provide accurate prediction of the structural classes for the
sequences that have twilight-zone pairwise identity with
the sequences used to perform predictions, which in turn
could be used to find structurally similar protein that
share low sequence similarity.

The proposed method, named SCPRED, uses a custom-
designed feature vector that includes 9 features and a sup-
port vector machine classifier to generate predictions. Our
method is based on the fact that the structural classes are
defined based on the secondary structure, although we
note that the assignment in SCOP is based on the spatial
arrangement of the secondary structure, while our method
uses only the secondary structure sequence. We use the
secondary structure predicted from the protein sequence
by the PSI-PRED [48,49] to develop a novel set of success-
ful features that allow accurately classifying all four struc-
tural classes. These features together with a
comprehensive set of features used in prior research are
used to carefully design, by using feature selection, a com-
pact and well performing feature vector. We also demon-
strate that SCPRED can be applied to improve
performance of other related prediction methods. Our
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tests show that coupling of the proposed method as a
post-processing filter with state-of-the-art fold classifica-
tion methods such as PFP [50] and PFRES [51] improves
their performance.

Results and discussion
The experimental evaluation was performed using 10-fold
cross validation and jackknife tests to avoid overfitting
and assure statistical validity of the results [17,26,52]. The
tests were performed on the 25PDB dataset, which
includes 1673 sequences which share twilight-zone pair-
wise similarity, i.e., any pairs of sequence in this set shares
twilight-zone similarity. We also use another low-identity
dataset, FC699, to evaluate value added of using
SCPRED's predictions to improve accuracy of protein fold
predictions performed with PFP and PFRES methods. The
reported results include the overall accuracy (the number
of correct predictions divided by the total number of test
sequences), accuracy for each structural class (number of
correct predictions for a given class divided by the number
of sequences from this class), Matthews's correlation coef-
ficient (MCC) for each structural class, and generalized
squared correlation (GC2). The MCC values range
between -1 and 1, where 0 represents random correlation,
and bigger positive (negative) values indicate better
(lower) prediction quality for a given class. Since MCC
works only for binary classification, we also reported GC2,
which is based on χ2 statistics. The GC2 values range
between 0 and 1, where 0 corresponds to the worst classi-
fication (no correct predictions) and 1 corresponds to per-
fect classification. MCC and GC2 are described in [53].

We note that current secondary structure prediction meth-
ods achieve the average accuracy close to 80%, e.g., EVA
server reports that PSI-PRED provides the average accuracy
of 77.9% for 224 proteins (tested between Apr 2001 and
Sept 2005) [54]. Since the average accuracy of PSI-PRED
predictions was 77.9% and 77.5% for the 25PDB and
FC699 datasets, respectively, we believe that the presented
results provide a reliable estimate of the future perform-
ance of the proposed method.

Comparison with structural class prediction methods
The SCPRED was comprehensively compared with over a
dozen of competing structural class methods which use
various feature vectors and classifiers. The comparison
includes three groups of modern methods:

- methods that apply optimized feature vectors [26-28],

- advanced multi-classifier methods including boosting
[23], ensembles [27], and bagging [34],

- methods that use the best performing SVM [36] and
information discrepancy based classifiers [22,24].

Classification results for the competing methods and the
SCPRED are compared in Table 2. The SCPRED, which
uses only 9 features, obtained 80% accuracy for both out-
of-sample tests. The second best method, which was also
designed using 25PDB dataset (in which training and test
sequence share twilight-zone identity) [29], obtained
63% accuracy. The remaining, competing methods obtain
accuracies that range between 35% and 60%. The rela-
tively low accuracies obtained by the competing methods
are due to using a challenging 25PDB dataset [29]. We
note that some of these methods [22-24,26,32,34] were
originally testes on datasets characterized by higher
sequence similarity, which resulted in higher reported
accuracies. The methods that reach 60% accuracy are
based on a custom-designed feature vectors that includes
sequence composition and physicochemical properties
[27]. We observe that the usage of simple, composition-
based features results in lower accuracy. The results also
show that the SVM and logistic regression classifiers per-
form well on this challenging problem.

The most accurate predictions are obtained for the all-α
class (nearly 92% accuracy), while the best results for the
all-β and α/β classes are 81% and 75%, respectively. 70%
accuracy is obtained for the α+β class. Similar trend is
observed for all tested methods although the correspond-
ing accuracies are lower. The main reason for good per-
formance for the all-α class is that these sequences are α-
helix rich and the helical structures are the easiest to pre-
dict, i.e., a helix consists of a single segment and is charac-
terized by a repetitive structure.

Table 2 also shows prediction results where the same SVM
classifier as in the proposed SCPRED method is applied,
but only using the features based on the secondary struc-
ture predicted with PSI-PRED ("SVM (Gaussian kernel);
PSI-PRED based (13)" rows in Table 2). In this case, the
input vector for SVM includes 13 features. We observe that
SCPRED that uses features based on sequence and second-
ary structure is characterized by a smaller feature set and
slightly higher prediction accuracy, i.e., the improvement
equals 0.4%. The differences are small, and they clearly
indicate that the primary source of the information that
assures the accurate predictions is the secondary structure
predicted with PSI-PRED.

We also performed an experiment where only the 8 PSI-
PRED based features from the sequence representation
used by SCPRED were used for the prediction ("SVM
(Gaussian kernel); custom (8 PSI-PRED based)" rows in
Table 2). In this case, the prediction accuracy deteriorated
by less than 1% when compared with SCPRED, which
again confirms that predicted secondary structure pro-
vides the bulk of useful information for the proposed pre-
diction method. The main difference concerns α+β class
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where SCPRED obtains better results due to the use of the
CVL---G feature (see Analysis of the Proposed Feature Vec-
tor section for more details).

The results show that the proposed feature vector results
in significantly improved ability of the classifier to sepa-
rate structural classes and that SCPRED method provides

better predictions when compared with modern, compet-
ing methods.

Comparison with predictions based on secondary structure 
predicted with PSI-PRED
Since the SCPRED's predictions use the predicted second-
ary structure, we also compared our method with the
assignment methods that are based on the secondary
structure. We note that the assignment method by Chou
[13] requires knowledge of the tertiary structure to differ-
entiate between α/β and α+β classes, and the method by
Eisenhaber and colleagues [14] combines these two
classes into mixed class. Therefore, the assignment was
performed assuming only three structural classes: the all-
α, all-β and mixed class (α/β and α+β classes combined).
The two assignment methods were applied with the PSI-
PRED predicted secondary structure, which is also used to
compute features of the proposed SCPRED method. The
corresponding predictions on the 25PDB dataset are com-

Table 2: Experimental comparison between SCPRED and competing structural class prediction methods.

Test type Algorithm Feature vector (# features) Reference Accuracy MCC GC2

all-α all-β α/β α+β overall all-α all-β α/β α+β

Jackknife SVM (Gaussian kernel) CV (20) [36] 68.6 59.6 59.8 28.6 53.9 0.52 0.42 0.43 0.15 0.17
LogicBoost with decision tree CV (20) [23] 56.9 51.5 45.4 30.2 46.0 0.41 0.32 0.32 0.06 0.10
Bagging with random tree CV (20) [34] 58.7 47.0 35.5 24.7 41.8 0.33 0.26 0.22 0.06 0.06
LogitBoost with decision stump CV (20) 62.8 52.6 50.0 32.4 49.4 0.49 0.35 0.34 0.11 0.13
SVM (3rd order polyn. kernel) CV (20) 61.2 53.5 57.2 27.7 49.5 0.46 0.35 0.39 0.11 0.13
Multinomial logistic regression custom dipeptides (16) [28] 56.2 44.5 41.3 18.8 40.2 0.23 0.20 0.31 0.06 0.05
Information discrepancy1 dipeptides (400) [22, 24] 59.6 54.2 47.1 23.5 47.0 0.46 0.40 0.24 0.04 0.12
Information discrepancy1 tripeptides (8000) 45.8 48.5 51.7 32.5 44.7 0.39 0.39 0.25 0.06 0.11
Multinomial logistic regression custom (34) [27] 71.1 65.3 66.5 37.3 60.0 0.61 0.51 0.51 0.22 0.25
SVM with RBF kernel custom (34) 69.7 62.1 67.1 39.3 59.5 0.60 0.50 0.53 0.21 0.25
StackingC ensemble custom (34) 74.6 67.9 70.2 32.4 61.3 0.62 0.53 0.55 0.22 0.26
Multinomial logistic regression custom (66) [26] 69.1 61.6 60.1 38.3 57.1 0.56 0.44 0.48 0.21 0.21
SVM (1st order polyn. kernel) autocorrelation (30) 50.1 49.4 28.8 29.5 34.2 0.16 0.16 0.05 0.05 0.02
SVM (1st order polyn. kernel) custom (58) [29] 77.4 66.4 61.3 45.4 62.7 0.65 0.54 0.55 0.27 0.28
Linear logistic regression custom (58) 75.2 67.5 62.1 44.0 62.2 0.63 0.54 0.54 0.27 0.27
SVM (Gaussian kernel) PSI-PRED based (13) this paper 92.6 79.8 74.9 69.0 79.3 0.87 0.79 0.68 0.55 0.55
SVM (Gaussian kernel) custom (8 PSI-PRED based) this paper 92.6 80.6 73.4 68.5 79.1 0.87 0.79 0.67 0.54 0.54
SCPRED custom (9) this paper 92.6 80.1 74.0 71.0 79.7 0.87 0.79 0.69 0.57 0.55

10-fold cross 
validation

SVM (Gaussian kernel) CV (20) [36] 67.9 59.1 58.1 27.7 53.0 0.51 0.42 0.41 0.14 0.16

LogicBoost with decision tree CV (20) [23] 51.9 53.7 46.5 32.4 46.1 0.38 0.37 0.31 0.07 0.10
Bagging with random tree CV (20) [34] 53.5 51.0 37.6 22.0 41.2 0.28 0.30 0.22 0.04 0.06
LogitBoost with decision stump CV (20) 63.2 53.5 50.9 32.4 50.0 0.48 0.36 0.36 0.12 0.14
SVM (3rd order polyn. kernel) CV (20) 61.4 54.0 55.2 27.4 49.2 0.46 0.35 0.37 0.10 0.13
Multinomial logistic regression custom dipeptides (16) [28] 56.9 44.2 42.2 17.7 40.2 0.24 0.20 0.32 0.04 0.06
Multinomial logistic regression custom (34) [27] 69.9 65.3 66.5 38.4 60.0 0.60 0.52 0.51 0.23 0.25
SVM with RBF kernel custom (34) 70.2 61.6 67.6 39.6 59.8 0.60 0.49 0.53 0.22 0.25
StackingC ensemble custom (34) 73.4 67.3 69.1 29.8 59.9 0.59 0.52 0.54 0.18 0.25
Multinomial logistic regression custom (66) [26] 69.1 60.5 59.5 38.1 56.7 0.56 0.44 0.48 0.20 0.21
SVM (1st order polyn. kernel) autocorrelation (30) 52.4 49.7 0.3 30.4 35.1 0.18 0.16 0.05 0.06 0.02
SVM (1st order polyn. kernel) custom (58) [29] 77.7 66.8 60.7 45.4 62.8 0.64 0.54 0.54 0.28 0.28
Linear logistic regression custom (58) 74.7 66.4 62.7 45.8 62.4 0.63 0.54 0.54 0.27 0.28
SVM (Gaussian kernel) PSI-PRED based (13) this paper 93.2 79.5 75.7 69.4 79.7 0.87 0.79 0.70 0.55 0.55
SVM (Gaussian kernel) custom (8 PSI-PRED based) this paper 92.5 80.4 73.7 68.0 79.0 0.87 0.79 0.67 0.54 0.54
SCPRED custom (9) this paper 92.8 80.6 74.3 71.4 80.1 0.87 0.79 0.70 0.57 0.56

1This method was not originally tested using 10-fold cross validation and thus we also did not report these results

Table 3: Experimental comparison between SCPRED and 
structural class assignment methods based on the secondary 
structure predicted with PSI-PRED.

Prediction/assignment method Accuracy

all-α all-β mixed overall

[13] 78.8 30.2 66.7 60.3
[14] 91.6 73.1 86.8 84.5
SCPRED (10-fold cross validation) 92.8 80.6 89.2 87.9
SCPRED (jackknife) 92.6 80.1 88.9 87.6
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pared in Table 3. Since the assignment methods only use
the predicted secondary structure, i.e., there is no model
to train, they do not require out-of-sample testing.

The results show that the SCPRED provides more accurate
predictions, i.e., 15.5% error rate of the more accurate
assignment proposed by Eisenhaber and colleagues was
reduced by 3.4/15.5 = 21% in case of using SCPRED. This
corresponds to 260 incorrect predictions for the auto-
mated assignment, while SCPRED made only 203 mis-
takes. At the same time, SCPRED is capable of predicting
α/β and α+β classes while the automated assignment
combines these two classes together.

Analysis of the proposed feature vector
The proposed vector uses 8 features based on the second-
ary structure predicted with PSI-PRED, and one based on
collocation of Leucine and Glycine (see Materials and
Methods for details). Each feature was further analyzed to
focus our discussion on the most significant features. We
performed prediction on 25PDB dataset using each fea-
ture individually and using all but one feature at the time,
see Table 4. The removal of individual features results in
prediction accuracies that are relatively similar to the accu-
racy when using all 9 features. The corresponding degra-
dation of the accuracy ranges between 0.5% (when
excluding PSIPRED-CMVH

1 feature) and 1.4% (when
excluding PSIPRED-NAvgSegE feature) showing that the

remaining features still provide good quality predictions.
The results obtained when using individual features show
that PSIPRED-NCountH8 and PSIPRED-CVE features pro-
vide the highest overall accuracy and are among the top
two features with respect to prediction of all-β and α+β,
and all-α and α/β classes, respectively. They also describe
different secondary structures and as such are comple-
mentary to each other.

Figure 1 shows scatter plots in which x-axis corresponds to
PSIPRED-CVE and y-axis shows PSIPRED-NCountH8. The
Figure shows that the values of the two features form rela-
tively compact clusters for each of the structural classes.
These clusters are also characterized by a small degree of
spatial overlap, and thus the classifier can achieve good
separation between all four structural classes. In other
words, certain characteristics of the secondary structure
that is predicted with PSI-PRED, which include composi-
tion, the count of secondary structure segments, and aver-
age/maximal size of the segments, provide information
that differentiates between structural classes. For example,
most proteins in all-α class include low number of resi-
dues that form β-strands (low value of PSIPRED-CVE) and
high number of α-helix segments that are built of at least
8 AAs (high value of PSIPRED-NCountH8).

We also analyzed the CVL---G feature, which counts the
number of occurrences of the LxxxG motif, where x is any

Table 4: Comparison of accuracy when predicting the structural classes using all features, each feature individually, and when 
excluding one features at the time.

Features Accuracy when predicting with one feature

all-α all-β α/β α+β overall

All features included 92.8 80.6 74.3 71.4 80.1

using only one feature PSIPRED-NCountH6 89.6 58.7 32.9 46.7 58.4
PSIPRED-NCountH

8 81.9 78.3 53.8 58.7 69.0
PSIPRED-CMVH

1 76.3 74.5 55.8 48.8 64.3
PSIPRED-NAvgSegH 49.9 83.3 0.0 47.8 47.9
PSIPRED-NCountE5 85.8 59.1 50.9 47.4 61.4
PSIPRED-CVE 88.9 71.3 60.7 51.0 68.4
PSIPRED-MaxSegE 83.1 48.8 0.0 67.1 52.6
PSIPRED-NAvgSegE 79.2 33.9 3.2 42.4 41.8
CVL---G 73.8 0.0 54.3 7.7 32.8

excluding the listed feature PSIPRED-NCountH6 92.1 79.5 71.7 70.8 78.9
PSIPRED-NCountH8 93.0 79.5 73.1 70.3 79.3
PSIPRED-CMVH

1 92.5 80.8 72.5 71.0 79.6
PSIPRED-NAvgSegH 92.5 81.0 71.4 68.7 78.8
PSIPRED-NCountE5 90.7 80.1 73.4 71.4 79.3
PSIPRED-CVE 91.9 80.6 72.5 71.4 79.5
PSIPRED-MaxSegE 92.8 79.7 73.1 69.8 79.2
PSIPRED-NAvgSegE 92.3 80.6 71.1 69.2 78.7
CVL---G 92.8 80.6 73.4 68.9 79.3

Bold font shows the top two highest accuracies when using individual features, and features selected for further analysis.
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AA. We found that higher number of these motifs in the
sequences correlates with the α/β class. The corresponding
minimal count of LxxxG motifs (count of all sequences
that have at least that many motifs and belong to α/β
class/count of all sequences that have at least that many
motifs) in 25PDB dataset follows: 0 (346/1673), 1 (291/
970), 2 (188/445), 3 (114/199), 4 (53/86), 5 (23/34),
and 6 and higher (11/14). This shows that if a given
sequence contains at least 5 LxxxG motifs, there is at least
68% probability that it belongs to α/β class. To show
whether this motif is significant with respect to the struc-
tural class classification, we compute the expected
number of motifs that are characterized by the same prop-
erties, i.e., they occur at least 5 times in at least 34 proteins
and the corresponding probability of the most frequent
class associated with that motif equals at least 68%, given
that the structural classes are randomized. After randomly

scrambling the class labels 10 times (we use the same pro-
portion of class labels as in the original dataset), the
expected value equals zero, and the average (over the 10
runs) highest probability obtained for such motifs equals
42.4. Given that the original class labels are used, two
motifs that satisfy the above conditions are found, LxxxG
and AxxL (with probability of 69% for α/β class), while
their corresponding average (over the 10 runs) probabili-
ties for the scrambled class labels equal 33.8 and 32.1,
respectively. We note that although other, similar motifs
(such as AxxL) that allow to differentiate between struc-
tural classes could be found (and were considered by our
method), only LxxxG motif was found to be complemen-
tary to the remaining 8 features. A recent study that dis-
cusses other motifs that could be successfully used to
address prediction of structural classes can be found in
[29]. Analysis of the structures formed by the LxxxG motif

Scatter plots of PSIPRED-CVE (x-axis) and PSIPRED-NCountH8 (y-axis) featuresFigure 1
Scatter plots of PSIPRED-CVE (x-axis) and PSIPRED-NCountH

8 (y-axis) features. Top-left plot corresponds to 
sequences belonging to all-α class, top-right for all-β class, bottom-left for α/β, and bottom-right got α+β class.
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reveals that many of them form either terminal end of an
α-helix or a β-strand that folds into a parallel β-sheet. The
two proteins that include the highest number of these
motifs are (1) 1ofda2 domain that includes 9 motifs (6
form terminal end of an α-helix, 1 forms a parallel β-sheet
and 2 form coils), and (2) 1r66 protein that includes 8
motifs (3 form terminal end of an α-helix, 2 form a paral-
lel β-sheet and 3 form coils. This motif could serve as a sig-
nature for some proteins that belong to the α/β class.

Application to fold classification
The SCPRED was coupled, as a post-processing filter, with
two modern fold classification methods: PFP [50] and
PFRES [51]. Fold classification aims at prediction of a fold
for a given protein sequence, where multiple fold types are
defined for each structural class. This means that each pre-
dicted fold can be automatically assigned to a correspond-
ing structural class. Among the 27 folds predicted by PFP
and PFRES, 6 (globin-like, cytochrome c, DNA/RNA-
binding 3-helical bundle, four-helical up-and-down bun-
dle, 4-helical cytokines, and EF Hand-like) belong to the
all-α class, 9 (immunoglobulin-like beta-sandwich,
cupredoxin-like, viral coat and capsid proteins, concanav-
alin A-like lectins/glucanases, SH3-like barrel, OB-fold,
beta-Trefoil, trypsin-like serine proteases, and lipocalins)
to the all-β class, 9 (TIM beta/alpha-barrel, FAD/NAD (P)-
binding domain, flavodoxin-like, NAD (P)-binding Ross-
mann-fold domains, P-loop containing nucleoside tri-
phosphate hydrolases, thioredoxin fold, ribonuclease H-
like motif, alpha/beta-Hydrolases, and periplasmic bind-
ing protein-like I) to the α/β class, and 2 (beta-Grasp and
Ferredoxin-like) to α+β class. The remaining fold con-
cerns small proteins and thus was removed from our tests.
The post processing was based on removing all predic-
tions for which SCPRED and a given fold classification
method predicted different structural classes, i.e., the pre-
dicted fold belonged to a different structural class than the

class predicted with SCPRED. This approach is motivated
by a hypothesis that if both methods provide consistent
predictions (at the level of the structural classes) than the
confidence in the fold prediction should be higher than in
the case when the two methods provide different predic-
tions. The accuracies of SCPRED, both fold classification
methods and the coupled methods for the FC699 dataset
(which was originally used to test both PFP and PRES),
the sequences in FC699 that were kept (the same struc-
tural classes were predicted), and the removed sequences
(different classes were predicted) are shown in Table 5.

SCPRED obtains 87.5% accuracy on this dataset with
sequences sharing pairwise twilight-zone similarity,
which confirms high quality of our method. The PFRES
and PFP method predict structural class with 92.1% and
65.8% accuracy, respectively. Although PFRES obtains
higher accuracy than SCPRED, this method is more com-
plex (uses 36 features and an ensemble classifier) and its
predictions are complementary to the predictions of the
SCPRED. Namely, the post-processing with SCPRED
improved the structural class prediction accuracy by 4.6%
and the fold classification accuracy by 3.1% as a trade-off
for removing only 13.4% of the predictions. The structural
class/fold prediction accuracy of the coupled method
equals 68.6% and 96.7%, respectively. The removed
sequences were characterized by much lower prediction
quality, i.e., 45.7% for fold and 62.8% for the class predic-
tions. When comparing the accuracies of the PFRES fold
predictions before and after post-processing using predic-
tions of SCPRED, the accuracies for 7 fold types were
improved (the biggest 33.8% improvement was obtained
for ferredoxin-like fold, and the second biggest, 8.6%, for
SH3-like barrel fold), for 6 fold types they deteriorated
(the biggest 19% loss was observed for ribonuclease H-
like motif fold, and the second biggest, 16.3%, for FAD/

Table 5: Comparisons of accuracies obtained by PFRES, PFP and coupled PFRES+SCPRED and PFP+SCPRED methods on FC699 
dataset.

Entire FC699 dataset Only kept sequences Only removed sequences

PFRES SCPRED PFRES + SCPRED Coverage (% kept)

fold class class fold class fold class
65.6 92.1 87.5 68.6 96.7 45.7 62.8 86.6%

PFP SCPRED PFP + SCPRED Coverage (% kept)

fold class class fold class fold class
30.9 65.8 87.5 47.3 97.0 3.8 14.1 62.4%

The "Entire FC699 dataset" column shows accuracies for PFRES, SCPRED and PFP methods for class/fold prediction on the FC699 dataset. The 
"Only kept sequences" column show accuracies obtained by the PFRES and PFP methods for sequences for which SCPRED predicted the same 
structural class as PFRES and PFP, respectively. The "Only removed sequences" column show accuracies obtained by the PFRES and PFP methods 
for sequences for which SCPRED predicted different structural class when compared with predictions of PFRES and PFP, respectively. The 
"Coverage" column shows the percentage of sequences for which the SCPRED and PFRES/PFP predicted the same structural class.
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NAD (P)-binding domain fold), and for the remaining 13
fold typed the accuracies did not change.

The improvements for the PFP method were more sub-
stantial. Post processing improved the fold prediction
accuracy by 16.4% and the class prediction accuracy by
9.5% while removing 37.6% of predictions. The removed
sequences were characterized by poorer predictions, i.e.,
3.8% and 14.1% accuracies. Coupling of PFP with
SCPRED as the post-processor resulted in improvements
for 17 folds (the largest improvements of 66.6% and 46%
were obtained for 4-helical cytokines and ferredoxin-like
folds, respectively), deterioration of prediction accuracy
for 1 fold (the loss of accuracy by 4% was observed for
FAD/NAD (P)-binding domain fold), and accuracies for 8
folds did not change, when compared with accuracies
obtained with standalone PFP.

The 5 folds for which post-processing with SCPRED
improved accuracies in case of both PFP and PFRES
include DNA/RNA-binding 3-helical bundle, immu-
noglobulin-like beta-sandwich, viral coat and capsid pro-
teins, TIM beta/alpha-barrel, and ferredoxin-like, while
the only fold that suffered consistent looses was FAD/
NAD (P)-binding domain. In a nutshell, our tests show
that coupling of the SCPRED with modern fold predictors
provides improved accuracy and allows for removing
poorer performing predictions.

Conclusion
Prediction of structural classes for the "twilight-zone
sequences", i.e., sequences that share twilight-zone simi-
larity with sequences used for prediction, not only allows
learning the overall folding type for a given protein
sequence, but also helps in finding proteins that form
similar folds in spite of low sequence similarity. There-
fore, a high quality structural class predictor would be
beneficial for in-silico prediction of tertiary structure of
proteins with low sequence identity with respect to
sequence used for prediction. To this end, we introduced
the SCPRED method for prediction of structural classes
from the "twilight-zone sequences". Our method provides
predictions using SVM classifier and a compact feature
vector to represent the input sequences. The features uti-
lize information about secondary structure predicted with
PSI-PRED and the protein sequence. Based on a compre-
hensive empirical comparison with other prediction
methods on a set of over 1600 domains that share twi-
light-zone sequence similarity, the SCPRED is shown to
obtain 80% accuracy, while the accuracies of other meth-
ods range between 35% and 63%. The main contribution
of this paper is the new feature vector which was shown to
uncover several relations between the predicted secondary
structure and certain sequence motifs, and the structural
classes. We show that the main source of the information

that allows for successful predictions of structural classes
is the secondary structure predicted with PSI-PRED. We
also demonstrate that the proposed method can be suc-
cessfully coupled with state-of-the-art fold classification
methods to improve their accuracy. The empirical results
show that although the proposed methods obtains favo-
rable overall accuracy, the predictions for the mixed (α+β
and α/β) classes are of lower quality when compared with
the predictions for all-α and all-β classes. Therefore, inves-
tigations into improving predictions for the mixed classes
would constitute an interesting subject for future work.
One of such attempts could be implemented through
designing of a classifier that better balances accuracies
between all classes as a trade-of for lower overall accuracy.

Methods
Datasets
The SCPRED was tested on a large benchmark dataset, in
which any pair of sequences shares twilight-zone similar-
ity. This means that any test sequence shares twilight-zone
identity with any sequence in the training set used to gen-
erate the proposed classification model. The dataset,
referred to as 25PDB, was selected using 25% PDBSELECT
list [56], which includes proteins from PDB that were
scanned with high resolution, and with low, on average
about 25%, identity. The dataset was originally published
in [26] and was used to benchmark two structural class
prediction methods [27,29]. It contains 1673 proteins
and domains, which include 443 all-α, 443 all-β, 346 α/
β, and 441 α+β sequences.

A second dataset was used to verify whether the predicted
structural classes can be used to perform post-processing
of the results generated by two modern fold classification
methods, PFP and PFRES. This dataset was originally
introduced in [51] and includes sequences that belong to
the 27 protein folds (as defined in SCOP) and that were
deposited into PDB between 2002 and 2004. These
sequences were filtered by CD-HIT [57] at 40% sequence
identity. Next, the remaining sequences were aligned with
the sequences from the 25PDB dataset and the sequences
that were used to train PFP and PFRES methods using
Smith-Waterman algorithm [58]. Only sequences that
have less than 35% sequence identity with any sequence
in 25PDB dataset and the two training sets were selected.
We also removed proteins that belong to the "small pro-
tein" fold since they do not belong to any particular struc-
tural class, and they can be accurately classified based on
the length of the underlying sequence. The final dataset,
named FC699, includes 699 sequences that share low
40% identity with each other and 35% identity with
sequences used to train SCPRED, PFP, and PFRES meth-
ods.
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Feature vector
The feature vector was derived from a comprehensive list
of feature sets that were used for prediction of protein
structural class, secondary structure content, function,
family, structural flexibility, and solvent accessibility
[23,26-29,33,59-72].

Sequence length denoted by N.

Index-based features

- The average isoelectric point , where pIi is

the pH at which a given amino acid type has a zero net
charge; see Table 6 for pIi values.

- Auto-correlation functions  where a

denotes an AA index. Two hydrophobicity indices, i.e., the
Fauchere-Pliska's (FH) with n = 1,2,..,10 [73] and the
Eisenberg's (EH) [74] with n = 1,2,..,6, the relative side-
chain mass (M) [65] with n = 1,2,..,6, and the hydropathy
(Hp) index [75] with n = 1,2..,9, were used, see Table 6.

- Cumulative auto-correlation functions

- Sum of hydrophobicities  where a = {FH,

EH}.

- Average of hydrophobicities  where a =

{FH, EH}.

- Sum of 3-running average of hydrophobicities

AA composition-based features
- Composition vector CVi defined as the composition per-
centage of ith AA in the sequence; see Table 6 for the AA
index assignment.

- First and second order composition moment vector

 where nij represents the jth position of

the ith AA and k = 1,2 is the order of the CMV. For k = 0
CMV reduces to CV.

- Count of collocated AA pairs CVAAiAAj, CVAAi-AAj, CVAAi--

AAj, CVAAi---AAj, CVAAi----AAj where i and j denote two AAs and
"-" denotes a gap. AAiAAj denotes dipeptides, AAi-AAj,
denotes two AAs separated by a single gap, and AAi--AAj,
AAi---AAj, and AAi----AAj denote two AAs separated by 2, 3
and 4 gaps, respectively. There are 400 pairs for each gap
size.

Property group-based features
- R groups RGi where i = 1,2,...,5, i = 1 corresponds to non-
polar aliphatic AAs (AVLIMG), i = 2 to polar uncharged
AAs (SPTCNQ), i = 3 to positively charged AAs (KHR), i =
4 to negative AAs (DE), and i = 5 to aromatic AAs (FYW).

- Electronic groups EGi where i = 1,2,...,5, i = 1 corresponds
to electron donor AAs (DEPA), i = 2 to weak electron
donor AAs (LIV), i = 3 to electron acceptor AAs (KNR), i =
4 to weak electron acceptor AAs (FYMTQ), and i = 5 to
neutral AAs (GHWS).
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Table 6: The values of AA indices that include average isoelectric 
point pI, Fauchere-Pliska's (FH) and the Eisenberg's (EH) 
hydrophobicity indices, and relative side-chain mass (M) and 
hydropathy (Hp) indices.

Name Code Index Physicochemical index

pI FH EH Hp M

Alanine A 1 6.01 0.42 0.62 1.8 0.115
Cysteine C 2 5.07 1.34 0.29 2.5 0.777
Aspartate D 3 2.77 -1.05 -0.9 -3.5 0.446
Glutamate E 4 3.22 -0.87 -0.74 -3.5 0.446

Phenylalanine F 5 5.48 2.44 1.19 2.8 0.36
Glycine G 6 5.97 0 0.48 -0.4 0.55
Histidine H 7 7.59 0.18 -0.4 -3.2 0.55
Isoleucine I 8 6.02 2.46 1.38 4.5 0.00076

Lysine K 9 9.74 -1.35 -1.5 -3.9 0.63
Leucine L 10 5.98 2.32 1.06 3.8 0.13

Methionine M 11 5.47 1.68 0.64 1.9 0.13
Asparagine N 12 5.41 -0.82 -0.78 -3.5 0.48

Proline P 13 6.48 0.98 0.12 -1.6 0.577
Glutamine Q 14 5.65 -0.3 -0.85 -3.5 0.7
Arginine R 15 10.76 -1.37 -2.53 -4.5 0.323
Serine S 16 5.68 -0.05 -0.18 -0.8 0.238

Threonine T 17 5.87 0.35 -0.05 -0.7 0.346
Valine V 18 5.97 1.66 1.08 4.2 1

Tryptophan W 19 5.89 3.07 0.81 -0.9 0.82
Tyrosine Y 20 5.67 1.31 0.26 -1.3 0.33
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- Chemical groups CGi, which are defined based on com-
position of chemical group that constitute the side chains
where i = 1,2,...,10 corresponds to C, CAROM, CH, CH2,
CH2RING, CH3, CHAROM, CO, NH, OH side chain
groups, respectively.

- Exchange groups XGi where i = 1(HRK), 2(DENQ), 3(C),
4(STPAG), 5(MILV), 6(FYW), are supported by statistical
studies and cluster AAs based on point mutation that rep-
resent conservative replacements through revolution.

- Hydrophobicity group HGi where i = 1,2 includes
hydrophilic AAs (KHRDESTNQ), and hydrophobic AAs
(VLIMAFPWYCG).

- Other groups OGi where i = 1,2,...,7 are defined based on
molecular weights, i.e. tiny (AG), small (AGST) and bulky
(FHWYR) AAs, and other groupings such as polar
(DEKHRNTQSYW), aromatic (FHWY), charged
(DEKHRVLI), and polar uncharged AAs (NQ).

- The composition percentage of each group was com-
puted.

Predicted secondary structure content
- contentHf and contentEf where H corresponds to helix con-
tent, E corresponds to strand content and f denotes a pre-
diction method were computed. The content quantifies
the amount of residues in the sequence that assume heli-
cal and strand conformation. Based on [29], methods by
Lin and Pan (LP) [65] and by Zhang and colleagues (Z)
[76] were used to compute the content values using 10-
fold cross validation on the 25PDB dataset.

Predicted secondary structure-based features
The SCPRED is the first structural class prediction method
that uses the predicted secondary structure. We decided to
use the PSI-PRED method [48,49] because it was recently
shown to provide superior accuracy when compared with
other state-of-the-art secondary structure prediction meth-
ods [41,77], and the YASPIN method which provides
favorable accuracy for prediction of β-strands [41].
Although the secondary structure content reflects infor-
mation about the secondary structure of the entire
sequence, it does not provide information concerning
individual secondary structure segments. Size (length) of
secondary structure segments is one of the deciding fac-
tors when it comes to the assignment of the structural
classes. We assert that in spite of the overall lower predic-
tion accuracy when predicting sequences that share twi-
light-zone similarity with sequences used to perform
prediction, the predicted secondary structure preserves
enough information about the secondary structure seg-
ments to characterize the structural class. Our features do
not use information about location of the segments in the

sequence, because it might be of poor quality given the
low sequence identity between our targets. Instead, we
designed features that count the number of occurrences of
distinct helix, strand and coil segments, and their average
and maximal length. The 3-state predictions computed
using the two prediction methods were used to generate
the following features:

- Composition vector CVi for i = {H, E, C} and where H
denotes α-helix, E denotes β-strand, and C denotes coil.
CVH and CVE are equivalent to the secondary structure
content.

-  for i = {H, E, C} and k = 1,2,...,5.

- Normalized count of segments that include at least k res-
idues

� for coil segments  for k =

2,3,...0

� for α-helix segments  for k =

3,4,...20

� for β-strand segments  for k =

2,3,...20

where countC, E, H
j denotes number of coil, β-strand, α-

helix segments of length j, and totali denotes total number
of all segments belonging to ith secondary structure. The
smallest α-helix segment is assumed to include at least 3
residues. The count of coil segments is normalized by the
total number of all segment, while the counts of β-strand
and α-helix segments are normalized by the total number
of β-strand and α-helix segments. These differences in the
normalizations accommodate for the all-α and all-β
classes that may not include any β-strand and α-helix seg-
ments, respectively.

- Length of the longest segment MaxSegi for i = {H, E, C}

- Normalized length of the longest segment NMaxSegi =
MaxSegi/N for i = {H, E, C}

- Average length of the segment AvgSegi for i = {H, E, C}
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- Normalized average length of the segment NAvgSegi =
AvgSegi/N for i = {H, E, C}

Feature selection
The above features were processed by a feature selection
method to obtain the input feature vector. The goal was to
reduce the dimensionality and potentially improve the
prediction accuracy when compared to using all features
together. The selection was performed in two steps: (1) an
automated feature selection method was applied to select
a subset of the most promising features, and (2) the
remaining features were processed manually to select the
final subset of features. Since features selected in the first
step may be correlated with each other or redundant, the
second step aims at removing the overlapping features
and selecting the minimal subset that still guarantees the
same level of classification performance as the subset
selected in the first step. Similarly to [29], the first step was
implemented using a Correlation-based Feature Subset
Selection method (CFSS) [78]. CFSS evaluates a given sub-
set of features, which is found using best-first search based
on hill-climbing with backtracking, by considering the
individual predictive ability of each feature along with the
degree of redundancy between them. Both steps were per-
formed using 10-fold cross validation on the 25PDB data-
set to avoid overfitting.

During the first step, only the features that were found sig-
nificant by the CFSS in at least 5 folds were selected, see
Table 7. In the second step, we attempted to remove each
remaining feature and accepted such deletion if the corre-
sponding accuracy of the structural class prediction (using
10 fold cross-validation on the 25PDB dataset with the
SVM classifier as described in section "Classification Algo-

rithm") was not lower then the accuracy when all 53 fea-
tures selected in step 1 were used. The largest portion of
the final set of selected features was computed from the
secondary structure predicted with the PSI-PRED, namely,
8 out of 9 (see Table 7). They include four features that
were computed based on α-helix segments: PSIPRED-
NCountH6, PSIPRED-NCountH8, PSIPRED-CMVH

1,
PSIPRED-NAvgSegH, and another four that were based on
β-strand segments: PSIPRED-CVE, PSIPRED-NCountE5,
PSIPRED-MaxSegE, and PSIPRED-NAvgSegE. The remain-
ing attribute is based on count of a collocated CVL---G pair,
which is consistent with our prior results [29]. Table 7
shows that step 1 of our feature selection resulted in
improved prediction accuracy, while step 2 provided fur-
ther reduction in the dimensionality while preserving the
accuracy.

To demonstrate the importance of the features computed
from the predicted secondary structure, and especially
those based on predictions coming from PSI-PRED, we
performed the same feature selection but when consider-
ing only 86 features from the PSI-PRED predicted second-
ary structure. After step 1, 28 features were selected and
the corresponding 10 fold cross-validation accuracy on
25PDB dataset was 79.9%. After step 2, we further reduced
the number of features to 13 with the corresponding accu-
racy of 79.7%.

Classification algorithm
We use support vector machine (SVM) classifier [79] that
was previously applied for structural class prediction
[27,34-36]. Given a training set of data point pairs (xi, ci),
i = 1, 2, ... n, where xi denotes the feature vector, ci = {-1,
1} denotes binary class label, n is the number of training

Table 7: Summary of the feature selection results.

Feature set # features

all after step 1 after step 2

Length 1 0 0
Index-based 50 5 0
CV and CMV 60 2 0
CV for collocated AAs 2000 4 1
Property group-based 35 1 0
Predicted secondary structure content 4 2 0
Predicted secondary structure-based with PSI-PRED 86 27 8

with YASPIN 86 12 0

Total # of features 2322 53 9

10 fold cross validation accuracy for prediction on 25PDB dataset 73.2% 80.2% 80.1%

The "feature set" columns defines categories of the considered features, the "all" column shows the total number of features in a given category, 
while the "after step 1" and "after step 2" columns show the corresponding number of features from a given category that were selected in the step 
1 and step 2 of the feature selection procedure, respectively.
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data points, finding the optimal SVM is achieved by solv-
ing:

where w is a vector perpendicular to wx-b = 0 hyperplane
that separates the two classes, C is a user defined complex-
ity constant, ξi are slack variables that measure the degree
of misclassification of xi for a given hyperplane, b is an off-
set that defines the size of a margin that separates the two
classes, and z = φ(x) where k(x, x') = φ(x)·φ(x') is a user
defined kernel function.

The SVM classifier was trained using Platt's sequential
minimal optimization algorithm [80] that was further
optimized by Keerthi and colleagues [81]. The structural
class prediction that includes multiple classes is solved
using pairwise binary classification, namely, a separate
classifier is build for each pair of classes. Two popular
families of kernel functions including polynomials and
radial basis functions (RBF) were used. The kernel func-
tion selection and parameterization as well as selection of
the complexity constant value were performed based on
10-fold cross validation on the 25PDB dataset using 53
features selected in step 1 of the feature selection proce-
dure. The final classifier uses C = 2 and the RBF kernel

The classification algorithms used to develop and com-
pare the proposed method were implemented in Weka
[82]. We note that computation of the SVM model using
the 25PDB dataset encoded using the selected 9 features
takes less than 2 seconds on a desktop computer equipped
with Pentium processor at 2.8GHz.

Availability & requirements
The prediction model and datasets can be freely accessed
at http://biomine.ece.ualberta.ca/SCPRED/SCPRED.htm
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