
SCR: A Practical Approach to

Building a High Assurance COMSEC System�

To be presented at ACSAC '99, Phoenix, AZ, December 6-10, 1999

James Kirby, Jr. Myla Archer Constance Heitmeyer
Code 5546, Naval Research Laboratory, Washington, DC 20375

fkirby, archer, heitmeyerg@itd.nrl.navy.mil

Abstract

To date, the tabular-based SCR (Software Cost Re-
duction) method has been applied mostly to the devel-
opment of embedded control systems. This paper de-
scribes the successful application of the SCR method,
including the SCR* toolset, to a di�erent class of sys-
tem, a COMSEC (Communications Security) device
called CD that must correctly manage encrypted com-
munications. The paper summarizes how the tools in
SCR* were used to validate and to debug the SCR spec-
i�cation and to demonstrate that the speci�cation sat-
is�es a set of critical security properties. The devel-
opment of the CD speci�cation involved many tools in
SCR*: a speci�cation editor, a consistency checker, a
simulator, the TAME interface to the theorem prover
PVS, and various other analysis tools. Our experience
provides evidence that use of the SCR* toolset to de-
velop high-quality requirements speci�cations of moder-
ately complex COMSEC systems is both practical and
low-cost.

1 Introduction
COMSEC (Communications Security) devices, de-

vices which manage encrypted communications, are
vital to the correct operation of U.S. military sys-
tems. CD, the COMSEC device of interest in this
paper, is designed to provide cryptographic processing
for a U.S. Navy radio receiver. In addition to generat-
ing keystreams compatible with another cryptographic
device and supporting multiple channels and multiple
cryptographic algorithms, CD downloads associated al-
gorithms and keys into working storage, assigns them
to designated communication channels, maintains the
association between an algorithm and its keys, and
clears algorithms and keys from memory. CD, based
on a technology called PEIP (Programmable, Embed-
dable INFOSEC Product) for implementing COMSEC
devices in software as well as hardware, presents a
new challenge in the development of COMSEC devices.
While a solid base of experience exists for implement-
ing trustworthy COMSEC devices in hardware, imple-

�This work is funded by ONR. For related work, see
http://www.chacs.itd.nrl.navy.mil/SCR.

menting COMSEC devices in software is rare.

During the last decade, numerous formal methods,
many with automated support, have been proposed for
developing high assurance software systems. Because
studies (e.g., [6]) show that errors, such as security
property violations, that are introduced early in system
development are both the most common and the most
expensive to �x, the goal of many formal methods is
to discover and eliminate
aws during the early stages
of system development. While mechanically supported
formal methods hold great promise for identifying er-
rors early, the exceptional user expertise and e�ort usu-
ally required to apply them present a major barrier to
their use in the development of practical systems.

The SCR (Software Cost Reduction) method [15,
11] is a formal method which o�ers a user-friendly tab-
ular notation for specifying system requirements, and
a set of tools called SCR* for detecting, often auto-
matically,
aws in the requirements speci�cation. Al-
though originally designed to specify the requirements
of safety-critical control systems, SCR can also be used
to specify the required behavior of other systems, such
as COMSEC systems. To make SCR* useful to prac-
titioners, the tools are designed to be as automatic as
possible and to complement and support one another.
Included among the tools in SCR* are an automated
consistency checker, a simulator, and various veri�ca-
tion tools.

To provide a high degree of assurance in the correct-
ness of CD's speci�cation, we have applied the SCR
method, including the SCR* tools [12, 13, 11]. Our
results suggest that applying the SCR method in the
development of COMSEC devices of moderate size and
complexity is practical, e�ective, and low-cost. In ap-
proximately one person-month, we were able to repre-
sent a signi�cant subset of a prose requirements doc-
ument for CD in the the SCR notation and to estab-
lish that the SCR speci�cation satis�es a set of se-
curity properties. The product of this e�ort is a high-
quality requirements speci�cation in whose correctness
we have a high degree of con�dence. This requirements
speci�cation can guide both the development of the
source code and the development of test sets for eval-

1

uating the conformance of the source code with the
system requirements.

The paper is organized as follows. It �rst introduces
the SCR method and the SCR* toolset in Section 2,
and then describes in Section 3 how the tools were ap-
plied to CD. Section 4 discusses the results of apply-
ing SCR* to the CD speci�cation. Finally, section 5
discusses related work, and Section 6 presents our con-
clusions.

2 The SCR Method and Tools
The SCR method is a formal method designed to

specify and analyze the requirements of safety-critical
control systems. Since its introduction in 1978, the
SCR requirements method has been applied success-
fully to a wide range of critical systems, including
avionics systems, space systems, telephone networks,
and control systems for nuclear power plants. See,
e.g., [15, 23, 8, 7, 22, 19].

An SCR requirements speci�cation describes both
the system environment, which is nondeterministic,
and the required system behavior, which is usually
deterministic [12, 14]. Quantities in the environment
that the system monitors and controls are represented
by monitored and controlled variables. SCR speci�-
cations also use two types of auxiliary variables: mode
classes (whose values are calledmodes) and terms, both
of which often capture historical information. In the
SCR model, the system environment nondeterministi-
cally produces a sequence of input events, where an in-
put event is a change in some monitored quantity. The
system is represented as a state machine (i.e., automa-
ton) whose current state is determined by the values
of the state variables, where a state variable is either
a monitored or controlled variable, a mode class, or
a term. Executions of the system begin in some ini-
tial state, after which the system responds to each in-
put event in turn by changing state and by producing
zero or more output events, where an output event is a
change in a controlled quantity. The system behavior
is assumed to be synchronous: the system completely
processes one input event before the next input event
is processed.

An SCR speci�cation de�nes the transitions of a
system using of a set of tables. Each table describes
the value of a given state variable in the new state.
Each dependent variable, i.e., each controlled variable,
term, and mode class, has a corresponding table. Two
constructs used in the tables are conditions and events.
A condition is a predicate on system states. An event
occurs when the value of any variable changes. The
notation \@T(c) WHEN d" denotes a conditioned event
de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evaluated
in the \old" state, and the primed condition c0 is eval-
uated in the \new" state. Informally, this denotes the
event \predicate c becomes true in the new state when
predicate d holds in the old state". The table for a
mode class is a mode transition table, which maps a
source mode and an event to a destination mode. The
table for any term or controlled variable is either an
event table, which maps conditioned events to values
of the variable in the next state, or a condition table,
which maps conditions on the next state to values of
the variable in the next state.

In addition to tables, an SCR speci�cation contains
dictionaries of types, variable declarations, constant
declarations, environmental assumptions, and speci�-
cation assertions. The speci�cation assertion dictio-
nary records required system properties, e.g., security
properties. Our experience with practical systems is
that most system properties can be represented as ei-
ther state invariants or transition invariants, where a
state invariant is a property that holds in every reach-
able state and a transition invariant is a property that
holds in every reachable prestate/poststate pair (i.e.,
reachable transition).

The SCR* toolset [12, 13, 11] is a set of software
tools developed by NRL to provide mechanized sup-
port for the SCR method. The tools include a speci�-
cation editor for creating and modifying both an opera-
tional requirements speci�cation (i.e., a state-machine
representation of the required behavior) and a set of
properties, such as safety and security properties; a
dependency graph browser to display the dependencies
among the variables in the speci�cation; an automated
consistency checker to expose missing cases, unwanted
nondeterminism, and other application-independent
errors [12]; a simulator to allow users to validate the
speci�cation; an interface to the model checker Spin
[16] to detect violations of critical application prop-
erties; and an invariant generator [18] that computes
state invariants from an SCR speci�cation. To provide
formal underpinnings for the tools and for the anal-
ysis techniques the tools implement, a formal model
de�nes the semantics of SCR requirements speci�ca-
tions [14, 12].

Several additional tools have been recently inte-
grated with SCR* by automatically translating the
internal representation of an SCR speci�cation into
the input languages of the tools. These tools in-
clude TAME (Timed Automata Modeling Environ-
ment) [1, 2], an interface to the theorem prover PVS
[25] for proving properties of automata models, a va-
lidity checker [4] which uses an integrated set of deci-
sion procedures to automatically check whether a given

2

property is a state or transition invariant of an SCR
speci�cation, and a test set generator [9] that automat-
ically generates test sets from an SCR speci�cation.

3 Applying SCR* to CD
This section describes the translation of a subset of

the prose speci�cation provided by the CD developers
into an SCR speci�cation and the results of applying
the SCR* tools to the SCR speci�cation. The tools and
analysis techniques that were applied include the con-
sistency checker, simulator, invariant generator, Spin,
TAME, and the validity checker. This section also de-
scribes our plan to use the SCR* testing tool to auto-
matically construct test sets from the SCR speci�ca-
tion of CD.

3.1 From Prose to SCR Requirements

To develop the SCR speci�cation, we studied the
CD Systems Requirement Document (SRD) provided
by the CD project manager, focusing on the constraints
it imposed on the required system behavior and repre-
senting those constraints using SCR constructs. The
CD SRD, a traditional 2167A-style document, was suf-
�ciently precise and complete about key and algorithm
management, modes of operation, and security require-
ments relating to power, tampering, and zeroizing for
us to capture the required behavior in the SCR speci-
�cation of CD. We obtained security properties by ex-
amining the SCR speci�cation and surmising the goals
of the required behavior and by interpreting descrip-
tions of functions in the CD SRD as security require-
ments. The CD project manager has reviewed the
set of security properties that we formulated and con-
�rmed that, except for one, they are reasonable se-
curity properties of CD. The exception, according to
the project manager, was a property whose hypothesis
(backup power is over voltage), would never be satis-
�ed.

Our SCR speci�cation describes the part of CD's be-
havior (as described in the SRD) that is consistent with
the SCR model of black-box requirements. In SCR,
the CD behavior is described in terms of inputs (the
status of primary and backup power, data provided by
the host, and positions of switches), outputs (indicator
lights and status messages), and modes. In addition,
our speci�cation describes some memory management
behavior that goes beyond SCR's usual modeling of
black-box requirements. Usually, in SCR, memory is
considered to be internal to the black box, and thus
invisible from the outside, but we treat it as externally
visible by de�ning controlled variables that represent
the memory locations in which the CD software can
store algorithms and keys. This memory management
behavior models the rules in the CD SRD for loading
algorithms and keys, associating them with channels,

and clearing them from memory. There is (intention-
ally) not enough information in the CD SRD to specify
the rules for cryptographic synchronization and gener-
ating keystreams. As a result, our SCR speci�cation
omits some required behavior that would be relevant
and useful to reason about.

The CD SRD assumes that an unlimited number of
algorithms and keys can be distributed among an un-
speci�ed number of storage locations and an unspec-
i�ed number of channels. In the SCR speci�cation,
we assume that there are two key banks, each with
two key storage locations; at most 1,000 di�erent al-
gorithms and 1,000 di�erent keys; and two channels.
The SCR CD speci�cation has one more mode than
described in the CD SRD: we add an O� mode so that
the system is always in exactly one mode.

Figure 1. Full dependency graph for SCR CD.

Our SCR speci�cation contains 39 variables|17
monitored variables, one mode class, two terms, and
19 controlled variables. Figure 1 shows the variable
dependency graph for the complete SCR speci�cation
of CD. Variables are represented as boxes, and an ar-
row from one variable to a second variable indicates
that the value of the �rst variable in the new state
depends on the value of the second variable in either
the current state or the new state. The heavy lines
are backarrows; the number of backarrows re
ects the
complexity of the dependencies among the variables,
which is also re
ected in the complexities of the tables.
Although this graph has cycles, the SCR* consistency
checker was used to assure that there were no circu-
lar dependencies among the \new-state" variables (see
Section 3.2).

Most of the e�ort spent in building the SCR speci�-
cation of CD took place as a background activity over
a nine-month period. The initial build of the speci�ca-

3

tion required approximately one person-week. About
one additional person-week was needed to re�ne and
complete the speci�cation, with frequent use of the
consistency checker (see Section 3.2).

3.2 Applying the Consistency Checker

The consistency checker uses static analysis tech-
niques to expose syntax and type errors, variable name
discrepancies, unwanted nondeterminism (called dis-
jointness errors), missing cases (called coverage er-
rors), and circular de�nitions (i.e., cycles in the de-
pendencies among new-state variables). The checks
are fully automatic and thus require no user input
or guidance. When an error is detected, the consis-
tency checker facilitates error correction by providing
detailed feedback. For some types of errors (e.g., dis-
jointness and coverage errors), the checker, in addition
to describing the error, will highlight where in the spec-
i�cation the error occurs, and display a transition or
state that demonstrates the error.

The consistency checker may be used at any stage in
the development of a speci�cation. All checks, except
those for missing cases and nondeterminism, execute
in a few seconds and are typically invoked many times
during an editing session. In developing the CD spec-
i�cation, we frequently used the less expensive consis-
tency checks as \sanity" checks. Since applying the
more expensive checks for missing cases and nondeter-
minism to the entire CD speci�cation usually requires
between �ve and nine minutes, we invoked these checks
less frequently.
iii

Error Message from Tool SCR* Highlights Diagnosisiii
‘‘smOperation Mode Transition Table: Name of mode Events in table
Cycle Detection ERROR: Cycle #1: class in mode for smOperation
Table smOperation uses mode class transition table introduce a cycle in
smOperation in the Name field; Function the new state variable
is smOperation Mode Transition Table’’ dependenciesiiic

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Figure 2. Consistency checker feedback.

Figure 2 gives an example of an error message gen-
erated by the consistency checker during our develop-
ment of the SCR speci�cation of CD. The �rst column
gives the error message displayed by the tool. The sec-
ond and third columns describe the part of the spec-
i�cation that is highlighted at user request and our
diagnosis of the error. In this example, the error is
a circular de�nition, i.e., a cycle among the new state
dependencies. This cycle occurred on our �rst attempt
to describe CD's mode transitions in cases where the
prose requirements described entry into a mode as ulti-
mately resulting in exit from that mode to some other
mode.

3.3 Simulating the CD Speci�cation

In contrast to other tools in SCR*, which are for
veri�cation, the simulator is a tool for validation. The

purpose of veri�cation is to prove that the speci�ca-
tion satis�es selected system properties, such as state
and transition invariants; the purpose of validation is
to con�rm that the speci�cation captures the opera-
tional system behavior intended by the customer. The
simulator permits application experts to validate the
behavior de�ned by the speci�cation before the system
is built. They can do so by running scenarios through
the simulator rather than by reading the detailed SCR
speci�cation.

A scenario is a sequence of input events, each of
which assigns a new value to one of the monitored vari-
ables. For each input event in the sequence, the sim-
ulator updates the values of the dependent variables
before processing the next input event. In addition to
presenting the current state of the execution, the simu-
lator can present a history of the execution and report
when a scenario violates speci�ed properties.

The simulator's standard generic interface presents
the current state of an execution in terms of the current
values of the state variables, i.e., the monitored vari-
ables, mode classes, terms, and controlled variables. A
disadvantage of the generic interface is that it presents
an abstract description of the system state that appli-
cation experts �nd unnatural. To overcome this prob-
lem, the simulator supports the rapid construction of
graphical front-ends customized for particular appli-
cations. Each application-speci�c front-end contains
graphical representations of switches, indicator lights,
dials, and other entities in the human-computer inter-
face that, in contrast to the generic interface, clearly
and directly communicate information about the sys-
tem behavior to the user.

We found an application-speci�c front-end for CD
useful in interacting with the CD project manager. Af-
ter viewing a simulation of CD using the CD-speci�c
front-end (built in less than a day), the CD project
manager provided us with useful feedback on the SCR
speci�cation of the CD. Thus, evaluation of the CD
speci�cation through this front-end to the simulator
allowed a very e�ective use of a very scarce commod-
ity, the project manager's time.

3.4 Automatic Invariant Generation

The SCR* invariant generator is based on an algo-
rithm for constructing state invariants from the func-
tions de�ning the dependent variables. Consider a de-
pendent variable v, de�ned by a mode transition table
or an event table, which takes values in a �nite set
fa1; a2; : : : ; ang. The algorithm examines the condi-
tions that can cause the value of variable v to change
and generates for each ai an invariant of the form

(v = ai)) Ci;

4

where Ci is a predicate de�ned in terms of variables
on which v depends. When v can take values in a
very large (even in�nite) set, the hypotheses v = ai are
replaced by predicates de�ning a �nite partition on the
range of v; for example, when v has a numeric value,
each predicate will de�ne an interval. The appropriate
intervals can often be computed automatically from
the speci�cation by identifying the values with which
v is compared.

The automatic invariant generator currently pro-
vided in SCR* partially implements the algorithm
for generating invariants from a mode transition ta-
ble. The full algorithm, which we currently execute
by hand, includes methods for generating invariants
from event tables and condition tables and a strength-
ened method for mode transition tables; it will ulti-
mately be implemented in SCR*. Figure 3 lists the
nontrivial invariants that were generated automatically
from the mode transition table for the CD mode class
smOperation.

ii
No. Description Generated Invariantii
1 In Idle mode, the system smOperation = sIdle

is healthy and backup power ⇒ mHealthyBackground AND
is not overvoltage mBackupPower =/ overvoltageii

2 In Standby mode, smOperation = sStandby
backup power is neither ⇒ mBackupPower =/ undervoltage AND
undervoltage nor unavailable mBackupPower =/ unavailableii

3 In Traffic Processing mode, smOperation = sTrafficProcessing
the system is healthy and ⇒ mHealthyBackground AND
backup power is not overvoltage mBackupPower =/ overvoltageii

4 In Configuration mode, smOperation = sConfiguration
the system is healthy and ⇒ mHealthyBackground AND
backup power is not overvoltage mBackupPower =/ overvoltageiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 3. Nontrivial invariants generated au­
tomatically for the mode class smOperation.

Although the invariants generated from the speci�-
cation are not the strongest possible invariants, they
are often su�cient to establish interesting safety prop-
erties [18]. While applying the full invariant genera-
tion algorithm to CD did not provide results su�cient
by themselves to establish the security properties we
wished to verify, the generated invariants did play an
extremely useful role: they provided every auxiliary
lemma we needed to complete the proofs of all valid se-
curity properties that we investigated. Although there
is no guarantee that this will always happen, that it
did happen for CD suggests that applying invariant
generation is a useful �rst step in verifying a set of
properties, particularly since, once the full algorithm
is implemented in SCR*, invariant generation will be
fully automatic.

Three of the seven properties that we analyzed could
not be proven automatically with either TAME or the
SCR* validity checker (see Sections 3.6 and 3.7). To
prove these properties, a total of �ve auxiliary invari-

ants were needed. Of these �ve invariants, which are
listed in Figure 4, invariants 1A, 2A, and 3A can be
derived from invariants generated by the implemented
algorithm. For example, invariant 1A is implied by
invariant 4 in Figure 3, one of the invariants gener-
ated automatically from the mode transition table for
smOperation. Invariant 4A follows immediately from
additional invariants which were generated by hand us-
ing the strengthened algorithm for mode transition ta-
bles. The contrapositive of invariant 5A is generated
by applying the algorithm by hand to the event table
de�ning the integer-valued variable cKeyBank1Key1.

iii
No. Description Auxiliary Invariantiii
1A In Configuration mode, backup smOperation = sConfiguration

power is not overvoltage ⇒ mBackupPower =/ overvoltageiii
2A In Idle mode, backup smOperation = sIdle

power is not overvoltage ⇒ mBackupPower =/ overvoltageiii
3A In Traffic Processing mode, backup smOperation = sTrafficProcessing

power is not overvoltage ⇒ mBackupPower =/ overvoltageiii
4A If primary power is unavailable, mPrimaryPower = unavailable

then CD is in Standby, Alarm, ⇒ (smOperation = sStandby
or Off mode or smOperation = sAlarm

or smOperation = sOff)iii
5A If CD is in Off mode, smOperation = sOff

then key 1 in keybank 1 is 0 ⇒ cKeyBank1Key1 = 0iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 4. Auxiliary invariants needed for CD.

3.5 Model Checking Properties

When, as in SCR, a software speci�cation describes
a �nite-state automaton, one can model check its prop-
erties. Model checking performs an exhaustive search
of the state space of the automaton. If the num-
ber of state variables is large, and particularly if|as
is common in software speci�cations|the individual
variables take values in a large (even in�nite) set, the
state space can become so large that direct exhaus-
tive search of the entire space is di�cult or impossible.
This problem, referred to as the state explosion prob-
lem, can often be alleviated by abstraction.

For SCR*, we have developed automatable abstrac-
tion methods that reduce the state space either by
eliminating variables irrelevant to a property (variable
restriction) or by reducing the range of variable val-
ues (variable abstraction) [5, 11]. When, as often hap-
pens, even abstraction does not allow the state space to
be searched exhaustively, a partial search of the state
space can often �nd states that violate a speci�ed prop-
erty. In addition to �nding property violations, most
model checkers produce counterexamples in the form
of scenarios (i.e., execution sequences) that lead to the
bad state. Below, we refer to counterexample scenarios
simply as counterexamples.

Since model checking is largely automatic, using a
model checker to check the validity of a property before
trying to establish the property with a theorem prover

5

is often a useful screening strategy. If Spin �nds a
violation, it produces a counterexample, thus saving
the e�ort needed to generate a counterexample from
a dead-end in a proof. In checking security properties
for CD, we followed this strategy.

iii
No. Description Propertyiii
1 If CD is tampered with, then @T(mTamper)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iii
2 When the zeroize switch is activated, @T(mZeroizeSwitch = on)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iii
3 No key can be stored in location 1 cKeyBank1Key1 =/ 0

of keybank 1 before an algorithm ⇒ cAlgStoreSegment1 =/ 0
has been loaded into the first location
of algorithm storage segment 1iii

4 If backup power has an undervoltage @T(mBackupPower = undervoltage)
when primary power is unavailable, WHEN mPrimaryPower = unavailable
the CD enters either Alarm mode or ⇒ smOperation′ = sAlarm
Off mode OR smOperation′ = sOffiii

5 If backup power is overvoltage mBackupPower = overvoltage
then the CD is in Initialization, ⇒ smOperation = sInitialization
Standby, Alarm, or Off mode OR smOperation = sStandby

OR smOperation = sAlarm
OR smOperation = sOffiii

6 If primary power has an overvoltage @T(mPrimaryPower) = overvoltage
then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiii
7 If primary power has an undervoltage @T(mPrimaryPower) = undervoltage

then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 5. Sample true properties for SCR CD.

Figure 5 lists seven security properties that the
SCR speci�cation of CD satis�es. Before we tried
to prove any CD security property with TAME (see
Section 3.6), we �rst used the Spin model checker to
search for violations of the property. For each property,
we used SCR* to automatically extract an abstrac-
tion from the CD speci�cation and the property, us-
ing the variable restriction method described in [5, 11]
to remove all variables irrelevant to the validity of the
property. Then, by hand, we applied the variable ab-
straction method described in [11]. By limiting the
range of values that certain variables can assume, this
method usually produces a smaller abstraction. In our
CD study, the abstractions for di�erent properties var-
ied very little. A typical abstraction contained 28 vari-
ables, a reduction of 28% from the 39 variables in the
complete SCR speci�cation.

Using Spin, we discovered a few property violations.
In each case, closer examination of the property showed
that the formulation of the property was incorrect. As
one would expect, model checking was unable to �nd
any violations of the properties subsequently veri�ed
by theorem proving. Because the model checker ran
out of memory before the analysis was complete, we
were unable to search the complete state space of any of
the abstract speci�cations and therefore to verify any
of the properties listed in Figure 5. The importance

of the theorem proving phase was demonstrated when
we were able to use theorem proving both to prove
that certain properties were invariants and to establish
that one property for which Spin was unable to �nd a
violation is not an invariant (see below).

3.6 Checking Properties with TAME

The tool TAME provides an interface to PVS for
proving properties of automata models. TAME's goal
is to reduce the human e�ort required in using PVS
to specify these automata models and to prove state
invariant properties for the models. TAME was orig-
inally designed to specify and reason about Lynch-
Vaandrager (LV) timed automata [21] but has been
adapted to I/O automata [20] and the automata model
underlying SCR (see [2]). TAME provides more than
twenty specialized strategies that implement proof
steps mimicking the high-level proof steps typically
used by humans in proving invariant properties. Ex-
perience has shown that for automata models whose
state variables have simple types (such as numerical,
boolean, or enumerated types), nearly all state invari-
ants can be proved using the TAME steps exclusively.

We have integrated TAME into SCR* by develop-
ing an automatic SCR-to-TAME translator and special
TAME strategies for the automatic analysis of proper-
ties of SCR automata [2]. For many SCR automata|
in particular, those not involving timing constraints
or other complexities such as tolerances for controlled
quantities|a single TAME strategy can automatically
prove many state invariants.

As stated in Section 2, most invariant properties
of interest for an SCR automaton are either state in-
variants (one-state properties) or transition invariants
(two-state properties). State invariants are typically
proved by induction, with a base case for the initial
states and an action case for each kind of input event.
Although induction can be used in proving transition
invariants, it is seldom appropriate, since the transi-
tions possible from any given state seldom have any
connection to the transitions possible from one of its
successor states. Rather, transition invariants are nor-
mally proved by reasoning directly about the transition
relation of the SCR automaton.

In TAME, the strategy SCR INDUCT PROOF per-
forms the standard parts of an induction proof for a
state invariant, and SCR DIRECT PROOF does the
same for a transition invariant. A universal invari-
ant proof strategy identi�es the invariant as either a
one-state or two-state property and then applies either
SCR INDUCT PROOF or SCR DIRECT PROOF as
appropriate.

Properties 1, 2, and 3 in Figure 5 took a few days
to prove because the initial TAME representation of

6

CD combined with the initial versions of the strategies
SCR INDUCT PROOF and SCR DIRECT PROOF
led to unmanageably large data structures in the PVS
prover. These problems led us to improve both our
translation scheme and our proof strategies. After
these improvements were made, we were able to prove
properties 5, 6, and 7 in Figure 5 in less than an hour.
The proof of property 4 took longer|about 2 days|
because we needed to discover and to prove two lay-
ers of auxiliary invariants. This time would have been
greatly reduced if the full invariant generation algo-
rithm (see Section 3.4) had been automated.

When TAME's universal invariant strategy fails to
complete the proof of an invariant, two possibilities
exist: either the invariant is false, or additional invari-
ants are needed in the proof. Associated with every
proof \dead-end" is a problem transition. For one-
state properties, this is the transition of the action case
in the induction proof in which the dead-end appears.
For two-state properties, this is the transition from the
given state via some enabled automaton action to the
successor state; the strategy SCR DIRECT PROOF
produces only dead-ends in which the action is known,
and hence for deterministic SCR speci�cations, the
successor state (in terms of the given state) is known.
TAME provides an analysis strategy to display the de-
tails of any problem transition. Once these details are
understood, the user can determine whether the transi-
tion is reachable|in which case, the property is false|
or whether it is unreachable, either because it would
violate some transition invariant, or because one or the
other of the states in the transition violates some state
invariant.

Applying abstraction to a speci�cation is less impor-
tant in theorem proving than in model checking. Since
a theorem prover can reason about abstract values, re-
ducing the range of a variable using variable abstrac-
tion results in little or no improvement in the num-
ber of cases the theorem prover must consider. How-
ever, variable restriction can reduce both the number of
cases and the complexity of reasoning about state tran-
sitions. Therefore, prior to analyzing a property with
TAME, we applied variable restriction to the speci�-
cation. Because the resulting abstractions for the indi-
vidual properties were very similar, we used the same
abstraction for all.

Applying the TAME strategies to the seven prop-
erties in Figure 5 resulted in the automatic proof of
four of the properties. For two of the remaining prop-
erties, we proposed an auxiliary invariant, which was
proved automatically and then applied to complete
the proof. Property 1 in Figure 5 is an example of a
property requiring a single auxiliary invariant, invari-

ant 5A in Figure 4, in its proof. Examination of the
event table for the variable cKeyBank1Key1, in Fig-
ure 6 shows why the auxiliary invariant is needed:1

when CD is in mode sOff, the event @T(mTamper) does
not change the value of cKeyBank1Key1. Invariant 5A,
which states that cKeyBank1Key1 is 0 in mode sOff,
clearly covers this case.

Figure 6. Event table for cKeyBank1Key1

In the case of the third remaining property, we sug-
gested an auxiliary invariant that completed the proof.
However, applying the automatic proof strategy to the
auxiliary invariant resulted in several dead-ends, and
we therefore proposed three additional auxiliary invari-
ants. These three new invariants were then proved au-
tomatically using the universal invariant strategy. As
noted in Section 3.4, each of the needed auxiliary in-
variants was subsumed or implied by invariants that ei-
ther were, or could be, generated automatically. Thus,
once the invariant generator is extended and commu-
nication between the invariant generator and TAME
is possible, the class of invariants that can be proved
automatically using TAME will be extended.

Figure 7 shows a proposed eighth property that
does not hold in the CD speci�cation. Although Spin

iii
Description Propertyiii

If CD is in Alarm mode, then smOperation = sAlarm
key 1 in keybank 1 is 0 ⇒ cKeyBank1Key1 = 0iiicc

c
c
c

cc
c
c
c

cc
c
c
c

Figure 7. A false property for SCR CD.

1Some of the conditions and events have been abbreviated
using ellipsis.

7

was unable to produce a counterexample for this prop-
erty, TAME's analysis of the property found 14 prob-
lem transitions. Some intelligent exploration using the
SCR* simulator produced a scenario that leads to one
of these transitions, thus demonstrating that the prop-
erty does not hold in the SCR speci�cation. Detailed
examination of the feedback from TAME shows that
no obvious invariants forbid the other problem transi-
tions, so it is likely that they also correspond to coun-
terexamples.

3.7 Applying the Validity Checker

The SCR* validity checker VC [4] checks the valid-
ity of �rst-order one-state or two-state properties di-
rectly by using an initial term-rewriting phase followed
by application of a decision procedure that uses BDDs
(binary decision diagrams) to evaluate propositional
formulae and a constraint solver to reduce simple in-
teger arithmetic formulae (Presburger formulae). The
variable ordering used in the BDDs is particularly ef-
�cient for SCR speci�cations. VC can also perform
an induction proof of a property by �rst applying a
preprocessor to generate the appropriate base and in-
duction cases and then applying the direct method to
the generated cases. An automatic translation of SCR
speci�cations into input for VC has been built.

VC has been applied to many of the same exam-
ples to which TAME has been applied, including the
CD properties (after abstraction, as with TAME). The
run time required by VC to analyze the CD properties
was about half the time required by TAME. For the
false property in Figure 7, VC produced a single prob-
lem transition, a special case of one of the 14 problem
transitions reported by TAME. This is the same prob-
lem transition for which we used the simulator to �nd
a counterexample. Thus, VC, like TAME, can be used
in demonstrating that a property is invalid.

Unlike TAME, VC cannot be used to prove proper-
ties interactively. Therefore, the CD properties whose
proofs required auxiliary invariants were checked af-
ter �rst including all necessary auxiliary invariants
as assumptions, rather than by interactively invok-
ing an analog of TAME's strategy for applying an in-
variant lemma. Mechanically checking the validity of
complex properties (such as properties involving non-
linear numerical constraints or numerical constraints
over real numbers, or properties whose proofs require
types of higher-order reasoning other than induction
over reachable states) requires a general-purpose theo-
rem prover, such as PVS through TAME. However, VC
can provide an e�cient �rst screening for invariance
for any property of an automaton that involves only
propositional logic, simple integer constraints, and uni-
versal quanti�cation over states or state pairs.

3.8 Generating Test Sets

Applying the formal techniques described above
produces very high-quality requirements speci�cations.
Although such high-quality requirements speci�ca-
tions are valuable, the ultimate objective of the soft-
ware development process is to produce high-quality
software|software that satis�es its requirements. To
weed out errors introduced by the implementation and
to convince customers that the system performance is
acceptable, the software needs to be tested. An enor-
mous problem, however, is that software testing, espe-
cially of secure systems, is extremely costly and time-
consuming. It has been estimated that current testing
methods consume between 40% and 70% of the soft-
ware development e�ort [3].

The high-quality speci�cation produced by the SCR
method can play a valuable role in software testing. We
have developed an automated technique [9] that con-
structs a suite of test sets from an SCR requirements
speci�cation. Each test set is a sequence of system in-
puts in which each input is coupled with the required
system outputs. To ensure that the test sets \cover"
the set of all possible system behaviors, our technique
organizes all possible system executions (i.e., traces)
into equivalence classes and builds one or more test
sets for each class. These test sets can then be used
to automatically evaluate the implemented software.
By reducing the human e�ort needed to build and to
run the test sets, such an approach can reduce both
the enormous cost and the signi�cant time and human
e�ort associated with current testing methods.

With our technique, a model checker's ability to pro-
duce counterexamples is used to construct the test sets.
The requirements speci�cation is used both to gener-
ate a valid sequence of inputs and as an oracle that
determines the outputs the system is required to gen-
erate from a given system input. To obtain a valid
sequence of inputs, the input sequence is constrained
to satisfy the environmental assumptions in the SCR
requirements speci�cation.

We have built a prototype tool in Java that auto-
matically translates an SCR speci�cation into the lan-
guage of either of two model checkers, executes the
model checker to build the test sets, analyzes its out-
puts, and �nally produces a �le containing the gener-
ated test sets. Our prototype tool has been applied
to a number of speci�cations, including a sizable com-
ponent of a contractor-speci�ed weapons system [11].
Given the tool's early success in constructing test sets
e�ciently, we expect that applying the tool to the CD
speci�cation should be equally successful. The CD
project manager has expressed interest in using test
sets generated by our tool to test the CD software.

8

4 Discussion

The Complexity of CD. Our SCR speci�cation of
CD re
ects the application's signi�cant complexity and
moderate size. As noted in Section 3.1, the SCR spec-
i�cation has 39 variables, and the relationships among
these variables is complex. In any state after the ini-
tial state, the monitored variable mHostCommand can
take one of 17 values, and therefore, in any state of
the CD, there are 16 possible input events involving
changes in this variable. In addition, there are 17 other
input variables. As a result, the mode transition table
is large, involving 55 events to de�ne 25 mode transi-
tions, and many event tables in the speci�cation are
also large: the average number of events per table is 8,
with the largest table containing 16 events.

Time and e�ort required. Despite the complexity
of CD, the total time taken in this study to develop
and analyze the SCR CD speci�cation was only one
person-month.2 Formalizing the speci�cation of CD
in SCR, including the use of the analysis tools to per-
form sanity checks, took only two person-weeks, and
even the most complex consistency checks ran in min-
utes. The graphical front-end for simulation of CD was
constructed in one day. Improvements to formulation
of the properties based on feedback from the model
checker took only a few days. TAME and the validity
checker underwent signi�cant improvement during our
analysis of the SCR speci�cation of CD, and as a re-
sult, analyzing a property with these tools now takes
at most a few minutes, and sometimes only a few sec-
onds. The most labor-intensive part of the analysis
of a property is analyzing proof dead-ends to deter-
mine their cause and their resolution. As noted above,
we plan to fully implement the invariant generation
algorithm. This extension of SCR* should reduce sig-
ni�cantly the problem of discovering useful auxiliary
invariants.

The practicality of SCR. For our SCR speci�cation
of CD, we analyzed eight security properties. For each
property, we were able to de�nitively answer the ques-
tion, \Does the operational speci�cation satisfy this
property?" When the answer was \No," we provided a
counterexample illustrating the failure. Although the
full set of security properties for CD (to which we do
not have access) numbers in the hundreds, our success
with the properties we considered and the relatively
short time required support the proposition that SCR
and the analysis techniques supported in SCR* pro-
vide a practical, low-cost approach to providing high
assurance. Typical concerns expressed by practitioners

2Additional time was needed to make improvements in some
of the SCR* techniques. These improvements were suggested by
our experience with CD.

regarding the practicality of formal methods are ad-
dressed in more detail in our discussion in [17] of the
lessons we learned from our application of the SCR*
tools to CD.

5 Related Work

RSML (Requirements State Machine Language) [10]
is another requirements method in which, as in SCR,
a system is speci�ed as a state machine. RSML has
been successfully applied to �nding errors in the speci-
�cation of a complex avionics system: the Tra�c alert
and Collision Avoidance System II (TCAS II). Like
SCR speci�cations, RSML speci�cations include a set
of tables and may be checked for consistency and for
(a version of) completeness. SCR and RSML also have
important di�erences. First, RSML has a Statecharts-
style interface through which it explicitly supports
speci�cation features, such as hierarchical states and
local variables, not explicitly supported in SCR (al-
though similar e�ects can be obtained with SCR). Fur-
ther, the AND/OR tables in RSML specify details of
transitions, while SCR tables specify how dependent
state variables are updated. Because a state machine
has many more transitions than state variables, an
RSML speci�cation of a system contains many more
tables than an SCR speci�cation of the same system.
Finally, automated support for the analysis of RSML
speci�cation properties beyond consistency and com-
pleteness is not yet extensive.

Reference [24] describes an earlier application of
SCR to the development of another COMSEC device,
the External COMSEC Adaptor (ECA). The develop-
ment, from modeling the device through implement-
ing and verifying its design, was done using the high-
level SCR method, but not the SCR* toolset. The
operational requirements were speci�ed using SCR ta-
bles, and the critical requirements model|the desired
properties|was speci�ed using the CSP (Communi-
cating Sequential Processes) language. In this e�ort,
both formal and informal transitions between stages
were used, with some automated support for the formal
transitions from another mechanized theorem prover.

6 Conclusion

SCR o�ers a practical, low-cost approach to build-
ing a high assurance COMSEC device. Before imple-
mentation and design, the SCR* toolset can be used
to build and analyze, often automatically, a mathe-
matically precise requirements speci�cation. Opera-
tional personnel can use the SCR* simulator to val-
idate the behavior of the speci�ed system. Further,
model checking often can be used to identify security
properties which the operational speci�cation violates,
and theorem proving can be used to verify the correct-

9

ness of security properties and suggest possible prop-
erty violations. When analyses have established su�-
cient con�dence in the requirements speci�cation, the
system can be built to satisfy that speci�cation. A
planned extension to SCR*, a tool to generate Java
code from speci�cations, will help with this phase of
development. Once the source code is available, test
sets automatically generated from the operational re-
quirements speci�cation by the test set generator can
be used to test the system implementation.

Acknowledgements

We thank Stan Chincheck and Tom Sasala for pro-
viding us with their prose speci�cation of CD. We also
thank Stan, Tom, and Bruce Labaw for many helpful
discussions. Our colleague Ralph Je�ords executed by
hand those parts of the invariant generation algorithm
that are not yet mechanized. Our colleague Ramesh
Bharadwaj and Steven Sims applied the SCR* validity
checker to the CD properties, and Ramesh Bharad-
waj discovered a counterexample corresponding to the
problem transition found by this tool for the false prop-
erty described above. Stuart Faulk, Ralph Je�ords,
and Ramesh Bharadwaj gave us helpful comments on
early versions of this paper.

References
[1] M. Archer and C. Heitmeyer. Mechanical veri�cation of

timed automata: A case study. In Proc. 1996 IEEE
Real-Time Technology and Applications Symp. (RTAS'96),
pages 192{203. IEEE Computer Society Press, 1996.

[2] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS in-
terface to simplify proofs for automata models. In Proc.
User Interfaces for Theorem Provers 1998 (UITP '98),
Eindhoven, Netherlands, July 1998.

[3] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, 1983.

[4] R. Bharadwaj and S. Sims. Salsa: Combining decision pro-
cedures for fully automatic veri�cation. Draft.

[5] R. Bharadwaj and C. Heitmeyer. Model checking complete
requirements speci�cations using abstraction. Automated
Software Engineering, 6(1), January 1999.

[6] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cli�s, NJ, 1981.

[7] S. Easterbrook and J. Callahan. Formal methods for veri�-
cation and validation of partial speci�cations: A case study.
Journal of Systems and Software, 1997.

[8] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby. The
CoRE method for real-time requirements. IEEE Software,
9(5):22{33, September 1992.

[9] A. Gargantini and C. Heitmeyer. Automatic generation of
tests from requirements speci�cations. In Proc. ACM 7th
Eur. Software Eng. Conf. and 7th ACM SIGSOFT Symp.
on the Foundations of Software Eng. (ESEC/FSE99),
Toulouse, FR, September 1999.

[10] M. P. E. Heimdahl and N. G. Leveson. Completeness
and consistency in hierarchical state-based requirements.
IEEE Transactions on Software Engineering, 22(6):363{
377, June 1996.

[11] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11):927{948, November 1998.

[12] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Auto-
mated consistency checking of requirements speci�cations.
ACM Transactions on Software Engineering and Method-
ology, 5(3):231{261, April{June 1996.

[13] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for for-
mal speci�cation, veri�cation, and validation of require-
ments. In Proc. 12th Annual Conf. on Computer Assurance
(COMPASS '97), Gaithersburg, MD, June 1997.

[14] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Tools for
analyzing SCR-style requirements speci�cations: A formal
foundation. 1999. Draft.

[15] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallan-
der. Software requirements for the A-7E aircraft. Technical
Report 3876, Naval Research Lab., Wash., DC, 1978.

[16] G. J. Holzmann. Design and Validation of Computer Pro-
tocols. Prentice-Hall, 1991.

[17] J. Kirby, M. Archer, and C. Heitmeyer. Applying formal
methods to an information security device: An experience
report. In Proc. 4th IEEE International Symposium on
High Assurance Systems Engineering (HASE '99). IEEE
Computer Society Press, November 1999.

[18] R. Je�ords and C. Heitmeyer. Automatic generation of
state invariants from requirements speci�cations. In Proc.
6th International Symposium on the Foundations of Soft-
ware Engineering (FSE-6), Orlando, FL, November 1998.

[19] R. R. Lutz and H.-Y. Shaw. Applying the SCR* require-
ments toolset to DS-1 fault protection. Technical Report
JPL-D15198, Jet Propulsion Laboratory, Pasadena, CA,
December 1997.

[20] N. Lynch and M. Tuttle. An introduction to Input/Output
automata. CWI-Quarterly, 2(3):219{246, September 1989.
Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands.

[21] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations { Part II: Timing-based systems. Information and
Computation, 128(1):1{25, July 1996.

[22] S. Miller. Specifying the mode logic of a
ight guidance sys-
tem in CoRE and SCR. In Proc. 2nd Workshop on Formal
Methods in Software Practice (FMSP'98), 1998.

[23] D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment
of safety-critical software in nuclear power plants. Nuclear
Safety, 32(2):189{198, April{June 1991.

[24] C. N. Payne, A. P. Moore, and D. M. Mihelcic. An expe-
rience modeling critical requirements. In Proc. COMPASS
'94, pages 245{256, Gaithersburg, MD, June 1994. IEEE
Press.

[25] N. Shankar, S. Owre, and J. Rushby. The PVS proof
checker: A reference manual. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, 1993.

10

