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Abstract

Single-cell RNA-seq data contain a large proportion of zeros for expressed genes. Such dropout events present a

fundamental challenge for various types of data analyses. Here, we describe the SCRABBLE algorithm to address

this problem. SCRABBLE leverages bulk data as a constraint and reduces unwanted bias towards expressed genes

during imputation. Using both simulation and several types of experimental data, we demonstrate that SCRABBLE

outperforms the existing methods in recovering dropout events, capturing true distribution of gene expression

across cells, and preserving gene-gene relationship and cell-cell relationship in the data.
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Background

Single-cell RNA sequencing (scRNA-seq) has revolution-

ized cell biology, enabling studies of heterogeneity and

transcriptome dynamics of complex tissues at single-cell

resolution. However, a major limitation of scRNA-seq

data is the low capturing and sequencing efficiency af-

fecting each cell, resulting in a large proportion of

expressed genes with zeros or low read counts, which is

known as the “dropout” phenomenon. Such dropout

events lead to bias in downstream analysis, such as clus-

tering, classification, differential expression analysis, and

pseudo-time analysis. To address this critical challenge,

two types of approaches have been developed. One ap-

proach adopts analysis strategies that take dropout into

consideration. For instance, ZINB-WaVE generates

weights for genes and cells using a zero-inflated negative

binomial model which in turn is used to detect differen-

tial expression [1]. Lun et al. used a

pool-and-deconvolute approach to deal with dropout

events for accurate normalization of scRNA-seq data [2].

The second approach is direct imputation of scRNA-seq

data. Among these methods, MAGIC imputes dropout

events by data diffusion based on a Markov transition

matrix that defines a kernel distance measure among

cells [3]. scImpute [4] first computes dropout probability

using a two-component mixture model. It then uses a

LASSO model to impute dropout values. Similarly,

SAVER [5] also uses a linear regression to impute the

missing data. But, it differs from the scImpute by using a

Bayesian model to compute the probability of dropout

events. DrImpute [6] first conducts consensus clustering

of cells followed by imputation by the average value of

similar cells. VIPER uses a non-negative sparse regres-

sion model to progressively infer local neighborhood

cells for imputation [7].

All imputation methods above recover dropout values

using scRNA-seq only. Here, we describe the SCRAB-

BLE algorithm for imputing scRNA-seq data by using

bulk RNA-seq as a constraint. SCRABBLE only requires

consistent cell population between single-cell and bulk

data. The bulk data represent the unfractionated com-

posite mixture of all cell types without sorting them into

individual types. For many scRNA-seq data, there are

usually existing bulk data on the same cell/tissue. And it

is becoming increasingly common to collect matched

bulk data when a new scRNA-seq experiment is per-

formed. Bulk RNA-seq data allows SCRABBLE to

achieve a more accurate estimate of the gene expression

distributions across cells than using single-cell data

alone. SCRABBLE is based on the framework of matrix

regularization that does not impose an assumption of

specific statistical distributions for gene expression levels

and dropout probabilities. It also does not force the
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imputation of genes that are not affected by dropout

events.

Results
SCRABBLE is based on the mathematical framework of

matrix regularization [8]. It imputes dropout data by op-

timizing an objective function that consists of three

terms (Fig. 1). The first term ensures that imputed

values for genes with non-zero expression remain as

close to their original values as possible, thus minimizing

unwanted bias towards expressed genes. The second

term ensures the rank of the imputed data matrix to be

as small as possible. The rationale is that we only expect

a limited number of distinct cell types in a given tissue

sample. The third term operates on the bulk RNA-seq

data. It ensures consistency between the average gene

expression of the aggregated imputed data and the aver-

age gene expression of the bulk RNA-seq data. We de-

veloped a convex optimization algorithm to minimize

the objective function (see the “Methods” section). The

existence of an optimal solution is guaranteed mathem-

atically [8].

We first evaluated the performance of SCRABBLE

using simulated data where the ground truth is known.

We used two simulation strategies. Strategy 1 is based

on the Splatter method and generates completely syn-

thetic data (Fig. 2a, Additional file 1: Figure S1). Splatter

captures many features observed in the scRNA-seq data,

including zero-inflation, gene-wise dispersion, and differ-

ing sequencing depths between cells [9]. Strategy 2 uses

down-sampled real bulk RNA-seq dataset [10] (Fig. 3a,

Additional file 1: Figure S3). Here, we introduced drop-

out events using an exponential function to control

dropout rate (parameter λ) and a Bernoulli process to

introduce dropout events at the corresponding dropout

rate [4, 11] (see the “Methods” section). Using the 2

strategies, we simulated data with dropout rates corre-

sponding to 60 to 87% zeros in the data. Moreover, to

evaluate the robustness of imputation methods, at a

given dropout rate, we simulated 100 data sets. It is well

known that real RNA-seq data tend to have a character-

istic property of inverse relationship between mean and

variance [12]. We confirmed that our simulated data also

contains this property using the mean-variance plot

(Additional file 1: Figures S1 and S3).

To evaluate the performance of each method, we define

the imputation error as the L2 norm of the difference be-

tween the imputed and the true data matrices. Using both

types of simulated data across a range of dropout rates, we

found that SCRABBLE outperforms four state-of-the-art

methods (DrImpute, scImpute, MAGIC, and VIPER)

(Figs. 2d–f and 3e–h). More importantly, the performance

gain is observed across the full spectrum of gene expres-

sion levels (Figs. 2c and 3d, Additional file 1: Figures S2,

S4-S6). All other methods led to imputed values that were

significantly lower than the true values for > 88% (Fig. 2c)

and > 40% (Fig. 3d) of the genes. In contrast, SCRABBLE

led to imputed values that were significantly higher than

the true values for 1% (Fig. 2c) and 2% (Fig. 3d) of the

genes. The imputed data by SCRABBLE also captures the

data substructure (i.e., clusters) better as embedded in the

true data (Figs. 2b and 3c, Additional file 1: Figures S2,

S4-S6).

Besides simulating dropout events, we also used a real

scRNA-seq dataset [13] (and matched bulk RNA-seq

[14]) for mouse embryonic stem cells (J1 line) where

dropout events are identified by comparing the data gen-

erated using the Drop-Seq [15] and the SCRB-Seq [16]

Fig. 1 Schematic overview of the SCRABBLE algorithm. The objective function is shown on the top. It has three terms. The first term represents

the difference between the raw scRNA-seq data matrix and its projection of the optimizing matrix. The projection of the optimizing matrix has

the same profile of zeros as that of the raw scRNA-seq data. The second term is the rank of the optimizing matrix. The third term represents the

difference between the bulk RNA-seq data and the aggregated scRNA-seq data across cells. Here, the bulk data represent the composite mix of

all cell types without sorting them into individual types
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protocols. At the same sequencing depth, the former

protocol has a higher dropout rate [13]. We identified

56 genes that have zero expression in at least 29% of the

cells in the Drop-Seq data but non-zero expression levels

in all cells in the SCRB-Seq data. We therefore used the

expression levels of these 56 genes in the SCRB-Seq data

as the gold standard and imputed the Drop-Seq data.

We found that SCRABBLE achieves the best perform-

ance among all methods in terms of matching the distri-

bution of gene expression between the imputed and

gold-standard data (Fig. 4b, Additional file 2: Figure S7).

The similarity between distributions is measured using

the Kolmogorov-Smirnov test statistic. Like the perform-

ance using simulated data, the performance gain by

SCRABBLE is observed across the full range of gene ex-

pression levels (Additional file 2: Figure S8). Figure 4a

shows raw and imputed expression levels of two represen-

tative genes, Tmem208 and Naa25 (the rest of the genes

are shown in Additional file 2: Figure S7). We observed

the same performance gain by SCRABBLE in another set

of 17 genes with dropout events in at least 39% of the cells

(i.e., higher dropout rate, Additional file 2: Figure S9).

A

B

C

D E F

Fig. 2 Performance evaluation using synthetic data. a A representative imputation result using simulated data containing 1000 cells and 800

genes. The data was simulated using the Splatter method [9]. The dropout rate is 83%. b t-SNE plots of the representative imputation results. c

MA plots of the representative imputation results. d–f Imputation errors for data with different percentages of zeros in the data (71%, 83%, and

87%). The imputation error is defined as the L2 norm of the difference between the imputed data matrix and the true data matrix. Each boxplot

represents the result from 100 simulated datasets. P values are based on Student’s t test

Peng et al. Genome Biology           (2019) 20:88 Page 3 of 12



We further assess the performance of SCRABBLE

using single-molecule RNA fluorescence in situ

hybridization (smRNA FISH) data and scRNA-seq data

measured on the same cell type, mouse embryonic stem

cell line, E14 [17, 18]. We compared the distributions of

the imputed expression and smRNA FISH measure-

ments for the same set of 12 genes across single cells.

Overall, the distributions of expression values imputed

by SCRABBLE have the highest agreement with the

smRNA FISH data (Fig. 4d), suggesting best perform-

ance by SCRABBLE. Figure 4c shows raw and imputed

expression levels of two representative genes, Esrrb and

Tbp (the rest of the genes are shown in Additional file 2:

Figure S10).

A

B

C

D

E F G H

Fig. 3 Performance evaluation using down-sampled bulk RNA-seq data. a Schematic overview of the simulation strategy. Starting from the bulk

RNA-seq data matrix consisting of three types of cells, T1 cells, T2 cells, and T3 cells, the data matrix X1 is obtained by resampling of raw data

from the different type cells separately. Then, each element (xij) in the data matrix is perturbed by the normal distribution N(0, 5V) (V is the vector

of standard deviation of genes across replicates in the bulk RNA-seq data), and the true data set X2 is generated. Finally, dropout events are

introduced in X2 using an exponential function, resulting in the dropout data set X3. b A representative imputation result using simulated data.

The dropout rate is 72%. c t-SNE plots of the representative imputation results. d MA plots of the representative imputation results. Imputation

errors for data with 60% (e), 65% (f), 72% (g), and 77% (h) dropout rates. Each boxplot represents the result from 100 simulated datasets. P values

are based on Student’s t test
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A major application of scRNA-seq is to better under-

stand the gene-gene and cell-cell relationships in a com-

plex tissue. Thus, a good imputation method should

preserve the data structure that reflects the true

gene-gene and cell-cell relationships. We computed the

gene-gene and cell-cell correlation matrices using the

data simulated using strategy 2. Using Pearson correl-

ation, we then determined the similarity between the

correlation matrices based on true data and dropout/im-

puted data. Data imputed by SCRABBLE gave rise to a

significantly higher correlation to the true cell-cell corre-

lations than those imputed by the other four methods

(Fig. 5b). Figure 5a shows a set of representative cell-cell

correlation matrices based on true, dropout, and im-

puted data. As can be seen, SCRABBLE does the best

job in capturing the true cell-cell correlation patterns

among the four methods. MAGIC reports a large

number of high correlations. However, most of those are

false positives judging by the true cell-cell correlation

matrix. This is because MAGIC tends to impute counts

that are not affected by dropout and thus tends to flatten

the data distribution towards the sample mean. Histograms

of the correlation values are shown in Additional file 2:

Figure S11. We note that all imputation methods tend to

distort the true data distribution as suggested by the

inflated correlations based on the imputed data

(Additional file 2: Figure S11). Nevertheless, the higher

agreement of cell-cell correlations using true data and

SCRABBLE imputed data is observed using the data simu-

lated with both strategies and across a range of dropout

rates (Additional file 2: Figures S12 and S13).

For the gene-gene relationship, among the entire set of

5000 genes, data imputed by SCRABBLE results in the

highest agreement with the gene-gene correlation

A B

C D

Fig. 4 SCRABBLE-imputed gene expression distribution has a better match with gold standards. a Gene expression distributions of two

representative genes in true (SCRB-Seq), dropout (Drop-Seq), and imputed data. b Boxplots of the agreement of gene expression distribution

between true data (SCRB-Seq) and imputed data using Drop-Seq data as input to the methods. Agreement between the two distributions is

measured using the Kolmogorov-Smirnov (KS) test statistic. A set of 56 genes in mouse ES cells is examined. c Gene expression distributions of

two representative genes in smRNA FISH data and imputed data. d Boxplots of the agreement of gene expression distribution between smRNA

FISH data and imputed data. P values are based on Student’s t test
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pattern based on the true data (Fig. 5c, d). This higher

agreement of gene-gene correlations is observed using

the data simulated with both strategies and across a

range of dropout rates (Additional file 2: Figures S14

and S15). Histograms of the correlation values are

shown in Additional file 2: Figure S16.

The imputation procedure could inadvertently distort

the clustering result. To evaluate this issue, we next

computed the cell-cell and gene-gene correlations using

cells/genes stratified based on their cluster membership

(for cell-cell correlation) and on whether they are

marker genes of a cluster (for gene-gene correlation).

For cell-cell correlation, we computed the within- and

between-cluster correlations across cells. For gene-gene

correlation, we computed the correlations among

marker genes and among marker and non-marker genes

for a given cluster. For both cell-cell and gene-gene cor-

relations, the distance between the two correlation dis-

tributions was quantified using the Kolmogorov-Smirnov

(KS) statistic. Finally, the distortion of the clustering re-

sult is measured by comparing the KS statistic based on

true data and imputed data. For both cell-cell

(Additional file 2: Figures S17 and S18) and gene-gene

(Additional file 2: Figures S19 and S20) correlations,

SCRABBLE gives the smallest distortion compared to

the other methods. The same performance gain is

observed using the data simulated with strategy 1

(Additional file 2: Figures S21 and S22).

Another way to evaluate the preservation of gene-gene

relationship in the sample is by using pathway

A B

C D

Fig. 5 SCRABBLE better preserves the true cell-cell and gene-gene relationships in the data. a Representative cell-cell correlation matrices using

true, dropout, and imputed data. The dropout rate is 72%. Values are Pearson correlation coefficients. b Pearson correlation between the cell-cell

correlation matrices based on true and dropout/imputed data. Boxplots represent 100 sets of simulated data. P values are based on Student’s t

test. c Representative gene-gene correlation matrices using true, dropout, and imputed data. d Pearson correlation between the gene-gene

correlation matrices based on true and dropout/imputed data
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annotations because genes in the same pathway tend to

have correlated expression. We applied SCRABBLE to

matched the scRNA-seq and bulk RNA-seq data for

seven cell types [19], H1 and H9 (human embryonic

stem cell lines), human foreskin fibroblast (HFF), defini-

tive endoderm cells (DEC), endothelial cells (EC),

trophoblast (TB)-like cells, and neuronal progenitor cells

(NPC). We defined a pathway gene correlation score

(PGCS) which measures the increase in the expression

correlation among the pathway genes compared to a set

of randomly selected genes of the same size. We then

computed the difference in PGCS (ΔPGCS) between the

imputed data and un-imputed data. For a better imput-

ation method, we expect to see a larger ΔPGCS value.

Using pathway annotations from three databases, In-

genuity Pathway Analysis (IPA) [20], Kyoto Encyclopedia

of Genes and Genomes (KEGG) [21], and REACTOME

[22], we found SCRABBLE consistently produces larger

ΔPGCS values compared to the other four methods

(Fig. 6, Additional file 2: Figures S23-S25) in all cell types

examined, suggesting data imputed by SCRABBLE better

preserves the gene-gene relationship information in the

data.

To demonstrate that SCRABBLE can improve the

downstream analysis, we applied it to the matched

scRNA-seq [23] and bulk RNA-seq [24] of 8 mouse tis-

sues, including fetal brain (4369 cells), fetal liver (2699

cells), kidney (4673 cells), liver (4685 cells), lung (6940

cells), placenta (4346 cells), small intestine (6684 cells),

and spleen (1970 cells). Using both raw and imputed

scRNA-seq data, multiple cell types (as determined by

signature gene expression) can be detected using K-nearest

neighbor clustering (Fig. 7a, Additional file 2: Figures

S26-S32). This result further demonstrates that SCRABBLE

can capture cell heterogeneity in complex tissues although

it uses average gene expression values of the bulk data. To

evaluate the clustering quality using either raw or imputed

data, we used the Dunn index which computes the ratio of

minimal inter-cluster distance versus maximal intra-cluster

distance. A higher Dunn index indicates a better separation

among clusters. We found that the use of imputed data by

SCRABBLE results in improved clustering quality as com-

pared to clustering without imputation and with imputed

data by the other four methods (Fig. 7b, Additional file 2:

Figures S26-S32).

SCRABBLE has three parameters (i.e., α, β, and γ). To

evaluate the robustness of SCRABBLE over parameter

setting, we varied the values of the three parameters by

0.1-, 0.5-, 2-, and 10-folds and performed imputation

using data simulated using strategy 1 with the dropout

rate of 83%. We found that the median percentage

change in imputed data before and after changing the

parameter is less than 5% for both α and β and less than

15% for γ (Additional file 2: Figure S33), suggesting

SCRABBLE is very robust with regard to parameter set-

ting. The sets of SCRABBLE parameters used in this

study are provided in Additional file 3: Table S2. We also

benchmarked the running time of SCRABBLE. The

higher imputation accuracy of SCRABBLE comes with a

price of slower running time. For dataset containing

fewer than 2000 cells, SCRABBLE has a better or com-

parable speed as that of VIPER (Additional file 2: Figure

S34). As the dataset size exceeds 5000 cells, SCRABBLE

is twice as slow as VIPER, mostly due to the computa-

tionally expensive process of iterative single value

decomposition.

A B C

Fig. 6 Pairwise expression correlation among pathway genes is improved using imputed data. A pathway gene correlation score (PGCS)

measures the increase in expression correlation among pathway genes compared to a set of randomly selected genes of the same size. ΔPGCS is

the difference in PGCS between imputed data and un-imputed data. For each data set (dropout or imputed data), a ΔPGCS value is computed

for each pathway. Boxplot represents ΔPGCS values for 186 pathways in the IPA database. P value is based on Student’s t test. a Human h1 ES

cells data (H1). b Human trophoblast (TB)-like cells data. c Human foreskin fibroblast cells (HFF)
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Discussion

SCRABBLE addresses several deficiencies of existing

methods. First, several methods impute dropout events by

using cell-cell distance, as quantified by either Euclidean

distance or kernel distance. Such distance measures may

not reflect the true relationship among cells. SCRABBLE

relies on the framework of matrix regularization which

does not use cell-cell distance measure. Second, SCRAB-

BLE borrows information from bulk RNA-seq data to im-

pute dropout data in order to reduce unwanted bias

during imputation. Finally, since we transform the math-

ematical model of SCRABBLE to a convex optimization

problem, the existence of the optimal solution is guaran-

teed mathematically. Our comprehensive analysis using

both simulated and real experimental data suggests that

SCRABBLE achieves significant improvement in terms of

recovering dropout events and preserving cell-cell and

gene-gene relationships in the samples. As an example of

SCRABBLE’s utility to facilitate downstream analysis, we

show that using SCRABBLE-imputed data leads to a bet-

ter clustering quality and helps identify different cell types

in complex tissues.

One caveat about our method is the use of average

values of bulk RNA-seq data. It may reduce the ability of

the method to capture biological heterogeneity in the

data. However, we believe the advantage of using bulk

data outweighs the disadvantage. Additionally, the other

two terms of our model, projection and low rank, enable

SCRABBLE to detect heterogeneity and covariation.

As other types of single-cell omics data become

more abundant, such as single-cell DNA methylation

and ATAC data, our method provides a general

framework for imputing and integrating these data for

new discoveries.

Conclusions
Here, we describe the SCRABBLE algorithm and soft-

ware package. SCRABBLE imputes single-cell RNA-seq

data by using bulk RNA-seq data both as a constraint

and as prior information. We show leveraging informa-

tion in bulk RNA-seq data significantly improves the

quality of imputed data. With SCRABBLE, existing or

newly generated bulk RNA-seq data can be used to in-

crease the utility of single-cell RNA-seq data.

A

B

Fig. 7 SCRABBLE improves the clustering analysis. a Clustering results using un-imputed and imputed data by various methods. scRNA-seq data

was clustered using K-nearest neighbor clustering and visualized using t-SNE. The number of clusters (K) was based on the ones provided by the

authors. Cell type of each cluster was identified based on marker genes provided by the authors. b Quantification of cluster quality using the

Dunn index
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Methods
The mathematical model of SCRABBLE

The input to SCRABBLE includes the scRNA-seq and

bulk RNA-seq data on consistent cells/tissues. A matrix,

X0, represents expression values from scRNA-seq data

with columns representing m genes and rows represent-

ing n cells. A vector, D, represents the average expres-

sion levels of all genes in the bulk RNA-seq data across

N samples.

The output matrix X∧ of SCRABBLE is the imputed

matrix with the same dimensions as the input matrix X0.

The algorithm is based on the following mathematical

model:

X
∧

¼ argmin
X ≥0

1

2
PΩ Xð Þ−X0k k2F þ αRank Xð Þ þ β aX−Dk k22

� �

ð1Þ

where PΩ(·) is the projection operator that forces xij to

be zeros (xij is the element at the ith row and the jth col-

umn of the matrix X and (i, j) ∉Ω); otherwise, the value

of xij is kept as it is. Ω is determined by X0 and (i, j) ∈Ω

if x0ij≠0, where x0ij is the element at the ith row and the

jth column of the matrix X0. Rank(X) is the rank of the

matrix X. a is a row vector with the size 1 by n and each

element in a is 1
n
. α and β are the parameters of the

mathematical model. α is the weight for the rank of the

imputed data matrix. Large α results in reduced hetero-

geneity across the cells. β is the weight for the agree-

ment between the aggregated scRNA-seq and bulk

RNA-seq data. β is proportional to α and the size of the

imputed data matrix.

Iterative optimization of the objective function during

imputation

Since the objective function in Eq. (1) is not convex due

to the rank function, the relaxed form of the objective

function is employed to compute the optimal solution as

follows.

X
∧

¼ argmin
X ≥0

1

2
PΩ Xð Þ−X0k k2F þ α Xj jj j� þ β aX−Dk k22

� �

ð2Þ

where ||∙||∗ is the nuclear norm, which is the convex en-

velope of the rank function. We use the following three

steps to calculate X∧.

Step 1: Convert the original optimization problem into

a convex optimization problem with a linear constraint

by introducing the auxiliary variable Y.

ðX;∧ Y
∧

Þ ¼ argmin
1

2
PΩ Xð Þ−X0k k2F þ α Yj jj j� þ β aX−Dk k22 þ χX ≥0

� �

ð3Þ

such that X − Y = 0.

where χX ≥ 0 is the characteristic function which takes

the value of 0 if X ≥ 0 and ∞ otherwise.

Step 2: Convert the constrained optimization problem

to the unconstrained optimization problem using the

augmented Lagrangian method and solve the uncon-

strained optimization problem using the alternating dir-

ection method of multipliers (ADMM) [25].

X;
∧

Y
∧

� �

¼ argmin
X ≥0

�

1

2
PΩ Xð Þ−X0k k2F þ α Yj jj j� þ β aX−Dk k22 þ χX ≥0

þ < Λ;X−Y>F þ
γ

2
X−Yj jj j2F

�

ð4Þ

The ADMM iteration scheme can be written as

follows:

Xkþ1 ¼ argminð
1

2
‖PΩðXÞ−X0‖

2
F þ β‖aX−D‖22

þ χX ≥0þ < Λ
k
;X−Y k

>F þ
γ

2
jjX−Y k jj

2

FÞ

ð5Þ

Y kþ1 ¼ argmin α Yj jj j�þ < Λ
k
;Xkþ1

−Y>F þ
γ

2
Xkþ1

−Y
�

�

�

�

�

�

�

�

2

F

� �

ð6Þ

Λ
kþ1 ¼ Λ

k þ γ Xkþ1
−Y kþ1

� �

ð7Þ

We take the derivative with respect to X to obtain the

iteration scheme of Eq. (5).

PΩ Xð Þ−X0ð Þ þ βaT aX−Dð Þ þ Λ
k þ γ X−Y k

� �

¼ 0

PΩ Xð Þ þ βaTaþ γI
� �

X ¼ γY k þ βaTDþ X0−Λ
k

Let βaTa + γI =W and βaTD + X0 = T

PΩ Xð Þ þWX ¼ γY k þ T−Λk ð8Þ

Then, we rewrite Eq. (6) as:

Y kþ1 ¼ argmin α Yk k�þ < Λ
k
;Xkþ1

−Y>F þ
γ

2
Xkþ1

−Y
	

	

	

	

2

F

¼ argmin
α

γ
Yk k�þ <

Λ
k

γ
;Xkþ1

−Y>F þ
1

2
Xkþ1

−Y
	

	

	

	

2

F
þ
1

2

Λ
k

γ

	

	

	

	

	

	

	

	

2

F

¼ argmin
α

γ
Yk k� þ

1

2

Λ
k

γ
þ Xkþ1

−Y

	

	

	

	

	

	

	

	

2

F

ð9Þ

Step 3: Based on Eqs. (7), (8), and (9), we could get the

following iteration schemes.
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Y kþ1 ¼ SVT
Xkþ1 þ Λ

k

γ
;
α

γ

� �

Λ
kþ1 ¼ Λ

k þ γ Xkþ1
−Y kþ1

� �

ð11Þ

where Eqs. (10) and (11) are the iteration schemes for

Eqs. (5) and (6), represents the singular value threshold-

ing algorithm [26] defined for any matrix Z and τ > 0 as

follows:

SVT Z; τð Þ ¼ U diag σ i−τð Þf gVT

Here, Z =U diag({σi}1 ≤ i ≤ r)V
T is the singular value de-

composition of Z, and σis are the positive singular

values. Λk, Xk, and Yk are the kth iteration matrix of Λ,

X, and Y, respectively. In addition, xij, ykij , Λ
k
ij, wij, and tij

are the elements at the ith row and jth column in the

matrices X, Yk, Λk, W, and T, respectively. The conver-

gence of ADMM for convex optimization problems has

been extensively studied in the literature [25, 27]. Since

the objective function in (2) is convex and non-negative,

the problem has at least one global solution. This global

structure of the objective function in Eq. (2) allows the

above algorithm to converge more quickly compared to

other evolutionary algorithms [28]. The penalty param-

eter γ plays an important role in solving the objective

function in Eq. (9) using the singular value thresholding

algorithm combined with the parameter α. Overall, α, β,

and γ are the three necessary parameters of SCRABBLE.

Generation of simulated data

We simulated the scRNA-seq data consisting of three

cell types using the Bioconductor package Splatter (ver-

sion 1.4.3) [9]. We used the splatSimulateGroup func-

tion to generate the simulation data with 1000 cells and

800 genes. Three clusters were embedded in each simu-

lated dataset. The size of each cluster was controlled by

the parameter “group.prob” to be 0.2, 0.35, and 0.45.

The parameter controlling the probability that a gene is

differentially expressed in each group was set equal to

0.045. The location parameter and the scale factor par-

ameter of randomly generating multiplication factors

from a log-normal distribution were set to be 0.1 and

0.4, respectively. Dropout midpoints (parameter “dro-

pout_mid” in Splatter) were used to control the dropout

rates in the simulated data. For instance, dropout mid-

points of 4, 5, and 5.5 correspond to 71%, 83%, and 87%

dropout rates in the simulated data, respectively. The

corresponding bulk RNA-seq data were the mean values

of genes in the true scRNA-seq data. The dropout

RNA-seq and bulk RNA-seq data matrices are the inputs

of the imputation methods. To determine the perform-

ance stability of the methods, we generated 100 datasets

for each dropout midpoints.

Generation of simulated data using bulk RNA-seq data

We used the bulk RNA-seq dataset of mouse hair folli-

cles from [10]. In total, the dataset contains 20 different

combinations of anatomic sites and developmental time

points. We used the following procedures to generate

the simulated datasets (Fig. 3a): (1) we randomly se-

lected 8 out of the 20 conditions; (2) for each condition,

we generated 100 resampled datasets. The means and

standard deviations of genes were calculated for each

condition based on the 100 resampled datasets; (3) 100

new datasets were generated based on the mean and the

standard deviation of each gene; (4) in order to reduce

the computation cost, we randomly selected 5000 genes

from 20,721 genes in the above data matrices. The final

data matrix represents 800 cells and 5000 genes; and (5)

we made the dropout rate of each gene in each cell fol-

lowing an exponential function e−λ∙mean expression2 [4, 11],

where λ determines the dropout rate of scRNA-seq data.

Zero values are introduced into the simulated data for

each gene in each cell based on the Bernoulli distribu-

tion defined by the corresponding dropout rate. The cor-

responding bulk RNA-seq data are the mean values of

genes in the scRNA-seq data without dropouts. To de-

termine the performance stability of the methods, we

generated 100 datasets for each dropout rate.

Running of other imputation methods

We benchmarked DrImpute, scImpute MAGIC, and

VIPER packages in this manuscript. For DrImpute (ver-

sion 1.0), we used the following default parameter set-

tings described in the Quick Start section of the user

manual: ks = 10:15, dists = c(“spearman,” “pearson”), fast

= FALSE, dropout.probability.threshold = 0, n.dropout =

10,000, n.background = 10,000, and mc.cores = 1. For

scImpute (version 0.0.9), we used the following default

parameter setting described in the Quick Start section of

the user manual: labeled = FALSE, drop_thre = 0.5, and

Kcluster = 1 in all analysis. For MAGIC (version 1.3.0

implemented in Python), we used the following default

parameter setting, k = 10, a = 15, t = “auto”, n_pca = 100,

knn_dist = “euclidean”, n_jobs = 1, and random_state =
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none. For VIPER (version 0.1.1), we used the following

parameter setting: num = 5000, percentage.cutoff = 0.1,

minbool = FALSE, and alpha = 1.
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