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Abstract

Geometric verification with RANSAC has become a cru-

cial step for many local feature based matching applica-

tions. Therefore, the details of its implementation are di-

rectly relevant for an application’s run-time and the qual-

ity of the estimated results. In this paper, we propose

a RANSAC extension that is several orders of magnitude

faster than standard RANSAC and as fast as and more ro-

bust to degenerate configurations than PROSAC, the cur-

rently fastest RANSAC extension from the literature. In ad-

dition, our proposed method is simple to implement and

does not require parameter tuning. Its main component is

a spatial consistency check that results in a reduced cor-

respondence set with a significantly increased inlier ra-

tio, leading to faster convergence of the remaining esti-

mation steps. In addition, we experimentally demonstrate

that RANSAC can operate entirely on the reduced set not

only for sampling, but also for its consensus step, leading

to additional speed-ups. The resulting approach is widely

applicable and can be readily combined with other exten-

sions from the literature. We quantitatively evaluate our

approach’s robustness on a variety of challenging datasets

and compare its performance to the state-of-the-art.

1. Introduction

Local feature based matching has become the domi-

nant paradigm for Structure-from-Motion [20, 22], wide-

baseline stereo [4], and large-scale image retrieval [21].

Those applications build upon a standard pipeline consist-

ing of steps for extracting local features (e.g. SIFT [15])

from both images, matching them to find correspondences,

and applying some form of geometric verification to find

correspondence sets that are inliers to an affine, homogra-

phy, or epipolar transformation. This geometric verification

is critical for the pipeline’s success, and RANSAC [10] has

proven the method of choice for its implementation [1].

Consequently, numerous extensions have been proposed

in the recent past in order to speed up the different

RANSAC stages [2, 4, 5, 16], to deliver run-time guaran-

tees for real-time performance [19, 23], and to improve the

quality of the estimated solution [6, 9, 11, 24]. However,

even with those extensions, the geometric verification is still

a major bottleneck in many applications. In addition, some

of the above extensions require considerable implementa-

tion effort and are hard to tune for optimal performance.

In this paper, we propose a fast and simple method for

improving RANSAC’s performance. Our main idea is to

introduce a spatial consistency check that results in a re-

duced correspondence set with a higher inlier percentage,

on which RANSAC converges faster to a correct solution.

We experimentally show that the resulting estimation proce-

dure, termed SCRAMSAC (“Spatially Consistent RAndoM

SAmple Consensus”), is widely applicable to a large num-

ber of different datasets, while yielding results that are ro-

bust to degenerate configurations. In particular, we compare

our approach to PROSAC and show that it achieves similar

speedups while being considerably simpler to implement.

In detail, this paper makes the following contributions:

(1) We propose a test for quality of correspondences in a

RANSAC framework that does not only rely on appear-

ance, but that takes into account the quality of neighboring

matches in the image space. (2) We empirically show that

this test leads to a reduced correspondence set with signifi-

cantly increased inlier ratio that can be used to considerably

speed up RANSAC, while still delivering similar-quality re-

sults. (3) We additionally show that this reduced set is not

only suitable for sampling, but also sufficient for the ver-

ification step (in contrast to the reduced sets delivered by,

e.g., PROSAC), thus again improving run-time. (4) Our

proposed algorithm leads to an estimation process that is

more robust to degenerate configurations than PROSAC, so

that it does not become as critical to add special degener-

acy checks. (5) We quantitatively evaluate our approach

on challenging test data and experimentally compare it to

RANSAC and PROSAC with and without degeneracy tests.

The paper is structured as follows. The following section

discusses related work. Sec. 3 then introduces the spatial

consistency check that forms the basis of our algorithm and

describes how it is integrated into a RANSAC framework.

Sec. 4 discusses various extensions, and Sec. 5 presents ex-

perimental results. A final discussion concludes our work.

2. Related Work

RANSAC [10] has become the most popular tool to solve

geometric estimation problems in datasets containing out-

liers. It operates in a hypothesize-and-verify framework.

Given a set of tentative correspondences, RANSAC ran-



domly samples a minimal subset of size m from this set

in order to hypothesize a geometric model. This model is

then verified against the remaining correspondences, and

the number of inliers, i.e. of correspondences consistent

with the model, is determined as its score. This process is it-

erated until a certain termination criterion is met. An impor-

tant property of RANSAC is that given an estimate for the

true ratio ε of inliers to all correspondences, it is possible to

determine the number of samples that must be drawn until

an uncontaminated sample is found with failure probability

η0. This ensures a bounded runtime, as well as a guarantee

on the quality of the estimated result. Since RANSAC’s in-

troduction, various improvements and extensions have been

proposed [1]. In the following, we briefly discuss the ones

that are most closely related to our approach.

When estimating epipolar geometries, problems arise

with (quasi-) degenerate point configurations. Chum et al.

show that if five or more points of the epipolar sample can

be described by a single homography, the resulting epipolar

geometry will not be correct, but the model will still have

a similar number of inliers, causing RANSAC to terminate

too early [9]. DEGENSAC [9] overcomes this problem by

simultaneously keeping a homography and an epipolar hy-

pothesis and applying model selection to choose the final re-

sult. QDEGSAC [11] iteratively applies standard RANSAC

using fewer constraints to find the most appropriate model

describing the data. Degenerate cases are thus detected, and

the correct model can often be recovered by taking into ac-

count the outliers of the degenerate hypothesis.

While standard RANSAC guarantees with a certain

probability that the estimated model is indeed the best, no

a-priori guarantee is given on its runtime. Several exten-

sions have therefore been proposed for real-time applica-

tions. Preemptive RANSAC [19] evaluates a fixed number

of hypotheses in a breadth-first manner, reducing the num-

ber of hypotheses by half after each stage. ARRSAC [23]

first evaluates a few hypotheses in depth in order to estimate

the inlier ratio and from this derives an adaptive number

of hypotheses to evaluate in a similar breadth-first search.

Both approaches are guaranteed to finish in a certain time

frame, but cannot give guarantees on the estimation quality.

A lot of work has been invested in speeding up RANSAC

while preserving result quality. LO-RANSAC [6] improves

hypothesis quality by performing a local optimization step

on the current inlier set every time a new best hypothesis is

found. Other approaches aim to reject bad hypotheses early

on. [8] checks whether the estimated geometry fulfills the

oriented epipolar constraint that only points in front of the

camera are visible. The Td,d test [16] first evaluates the hy-

pothesis on d randomly drawn points and only accepts it if

all d are inliers to the model. The Bail-Out test [2] examines

the inlier-ratio of a new model on all correspondences eval-

uated so far to estimate the probability that this model will

improve on the current best model. The SPRT test [5] takes

a similar approach to estimate the likelihood that the current

model is incorrect. This approach is further extended in the

same paper, leading to an optimal randomized RANSAC

formulation. MLESAC [24] takes a different approach by

improving the rating function for models. Instead of count-

ing inliers to a model, it uses the maximum likelihood esti-

mate as score to directly rate estimation quality.

Most directly related to our approach, several algorithms

try to improve hypothesis quality (and thus convergence

time) by non-uniform sampling. NAPSAC [18] assumes

that features that are close together are more likely to lie

on the same model. It therefore combines the image coor-

dinates of the features in a correspondence pair into a sin-

gle 4D vector in order to guide RANSAC sampling in a

close spatial neighborhood. PROSAC [4] takes the feature

matching score into account in order to preferably sample

from high-ranking correspondences. It orders the corre-

spondences by their similarity scores and operates on pro-

gressively increasing correspondence sets to generate hy-

potheses. In practice, this often results in significant com-

putational savings, since good hypotheses are generated ear-

lier. Both NAPSAC and PROSAC are however vulnerable

to degenerate configurations. For NAPSAC, the reason is

that adjacent feature points often lie in an almost-planar

neighborhood. Similarly, correspondences with high simi-

larity scores, as used in PROSAC, often lie on the same spa-

tial structure, e.g. the same plane seen in an almost-frontal

view. It has therefore been advised to combine them with

checks against degeneracy [1, 9, 11, 23].

In this paper, we propose to create a reduced correspon-

dence set by taking into account the matching quality of

other features in a feature’s scale-invariant neighborhood.

Similar neighborhood definitions have been used for other

purposes. [13] and [26] use a constant number of near-

est neighbors in image space to establish correspondences

by finding local affine transformations between the feature

neighborhoods. [25] uses elliptical MSER regions to bun-

dle SIFT features for an image retrieval task. The definition

of neighborhood most similar to ours is used by [7] in the

context of min-hashing for image retrieval. This paper uses

the features in an affine invariant neighborhood of a hash

key feature to generate further keys and show that this in-

creases the recall rate of hashing. However, none of those

approaches apply this idea for improving RANSAC.

3. Approach
Motivation. When verifying hypotheses, RANSAC cate-

gorizes the correspondences into inliers and outliers. Since

the number of samples taken by RANSAC depends on the

inlier ratio, it is desirable to reduce the fraction of outliers

in the correspondence set. Our approach is motivated by the

observation that there are generally two types of such out-

liers. Outliers of the first kind are caused by valid scene



Figure 1: Local features often lead to incorrect correspon-

dences due to similar structures (colored dots). By taking

into account a larger spatial neighborhood, they can how-

ever be disambiguated (red circle). We use this idea to de-

velop a faster and more robust RANSAC procedure.

matches that just fail the error bound because of limita-

tions of the geometric model, the specific minimal subset it

is estimated from, noise, or combinations of those factors.

Outliers of the second kind are due to mismatching struc-

tures that are mistakingly put into correspondence because

of limitations of the descriptor. In our approach, we focus

on the latter and try to reduce their fraction by working on

a reduced set of more confident correspondences.

Consider the example shown in Fig. 1. As depicted by

the colored dots, similar image structures often cause am-

biguous feature descriptors, which may lead to incorrect

correspondences. The basic idea proposed in this paper is

to augment the discriminative power of the raw feature de-

scriptor by a spatial consistency check (SCC), which takes

into account the matching quality in a larger spatial neigh-

borhood. Specifically, we measure the fraction of neighbor-

ing features in a circular region around a feature in image 1

whose correspondences fall into a similar region in image 2.

We then restrict all further processing to features where this

fraction surpasses a threshold θ, resulting in a reduced set of

higher-quality correspondences. By defining the size of the

neighborhood relative to the feature scale, this procedure is

made scale-invariant.

While this may sound like a relatively simple idea, we

show that it has important consequences for the runtime and

the robustness of the estimated results. In particular, we

show that our approach achieves speedups comparable to

and often surpassing those of PROSAC [4], while yielding

results that are more robust to degenerate configurations.

We begin by giving a formal definition of our spatial con-

sistency check. We then discuss the geometric implications

of our definition and deliver an intuitive interpretation for

its effects. In addition, we discuss several potential limita-

tions. Sec. 5 will then experimentally confirm that those do

not have an adverse effect on our method’s applicability.

Formal Definition. Given an image Ii, we extract a set

of scale-invariant features F(Ii) = {(xj , yj , σj , dj)} with

center coordinates (xj , yj), scale σj , and descriptor dj . For

each feature fj from this set, we define its neighborhood set

NIi
(fj) to comprise all features that fall inside a circular

region around (xj , yj) with radius rσj and whose scale lies

within a similar range (sminσj , smaxσj):

NIi
(fj)={fk∈F(Ii)\{fj} | ‖(xk−xj , yk−yj)‖2≤rσj

∧ smin<
σk

σj

<smax}. (1)

Given an image pair (I1, I2), point correspondences are es-

tablished by matching feature descriptors. We assume one-

sided nearest-neighbor matching with a cut-off threshold on

the similarity score, such that each feature in image 1 has at

most one correspondence in image 2. Thus, we obtain a

correspondence set C

C = {(f1, f2)|f1∈ F(I1) ∧ f
2∈ F(I2)} . (2)

Spatial Consistency Check. Given (I1, I2) and C, we

define the neighborhood set N(c) of a correspondence c=
(f1

j , f
2

k )∈C as

N(c)=
{

(f1, f2)∈C | f1∈NI1
(f1

j ) ∧ f2∈NI2
(f2

k )
}

(3)

and we accept a correspondence as spatially consistent iff

|N(f1

j )|= |
{

(f1, f2)∈C | f1∈NI1
(f1

j )
}

|>0 ∧
|N(c)|

|N(f1

j )|
≥θ

with a threshold θ ∈ [0, 1]. This results in a reduced set

Cred ⊆ C of spatially consistent correspondences.

Algorithm 1 RANSAC with SCC (SCRAMSAC)

1. Computation of the reduced set

Cred ← SCC(C), N = |Cred|
2. RANSAC application

k = 0, εred = m/N , I∗ = 0
while η=(1−εm

red)
k ≥η0 do

Sample m random correspondences from Cred.

Compute model Φ from samples.

Compute number I of inliers for Φ on Cred.

if I > I∗ then

I∗ = I , εred = I∗/N , store Φ.

RANSAC with SCC (SCRAMSAC). The spatial consis-

tency check can be easily integrated into the RANSAC pro-

cedure (c.f . Alg. 1). Let εred denote the ratio of inliers to

all correspondences in Cred. Then the probability that in k
steps RANSAC has only chosen samples with at least one

outlier follows as η=(1−εm
red)

k
. Note that both model gen-

eration and verification are carried out on the reduced set

Cred, leading to considerable speedups in both stages. Once

a result is obtained on Cred, we can additionally compute

the hypothesis’s support on the full set C. In our experi-

ments, we however only perform this last step to report the

corresponding inlier numbers.

Geometric Interpretation. The above definition lends it-

self to an intuitive geometric interpretation. The SCC en-

forces a minimum fraction of consistent matches in a circu-

lar neighborhood around both features in a correspondence
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Figure 2: The SCC criterion penalizes scene structures that

are viewed at vastly different angles, since it is based on cir-

cular neighborhoods whose area of overlap (a) diminishes

with increasing difference in viewing angle ψ (b).

pair. This fraction is naturally bounded by the degree to

which those neighborhoods depict the same region in the

scene. Let us assume for simplicity that both image neigh-

borhoods are locally planar and that NI1
shows the relevant

scene patch in a fronto-parallel view, as visualized in Fig. 2.

If I2 views the same scene patch at an angle ψ, then the

region defined by NI1
corresponds to an ellipse in I2. The

chance of finding a neighborhood correspondence thus de-

pends on the overlap between the two regions in I2, which

scales with cosψ.

This means that our SCC definition automatically penal-

izes scene structures that are viewed at vastly different an-

gles in both images. This is a desired effect, since both the

repeatability and the descriptive power of SIFT features de-

crease with the change in viewing angle [15, 17]. For large

viewpoint changes, the risk of finding an incorrect match

is therefore increased. The SCC still accepts matches under

such viewpoint changes, but demands stronger support from

neighboring features with increasing viewing angle. Con-

cretely, if we enforce a threshold θ on the neighborhood

correspondence fraction, then this limits the accepted fea-

ture matches to scene patches fulfilling ψ≤arccos θ (where

equality only holds if all features in NI1
have their match-

ing features in NI2
). A threshold of θ = 0.8 thus places a

hard limit at ψ≤36.9◦, whereas a threshold of θ=0.55 still

accepts correspondences up to ψ ≤ 56.6◦, which roughly

corresponds to the reliability range of SIFT [17].

Effect of SCC on RANSAC. The net effect is a reduction

of the correspondence set to a reduced set of more confi-

dent matches. This leads to a significant speedup of the

RANSAC procedure for two reasons. First, RANSAC only

needs to operate on a substantially smaller set of correspon-

dences Cred for verifying model hypotheses. This is in con-

trast to PROSAC, which verifies model hypotheses against

all correspondences. In Sec. 5, we experimentally verify

that Cred is still sufficiently representative, such that this

step produces the desired results. Second, the additional

constraints enforced by our SCC lead to an increased inlier

ratio εred in Cred. This directly affects the number k of it-

erations RANSAC has to take until the failure probability η
falls below some constant η0:

k = log(η0)/ log(1− εm
red) . (4)

Thus, SCRAMSAC converges faster to a correct solution,

as will also be verified in Sec. 5.

Limitations. A potential limitation of our approach is

that the SCC may reduce the absolute number of corre-

spondences in Cred to a level that is insufficient to compute

the desired geometric model. As discussed above, such a

case is most likely to occur with large viewpoint changes.

In Sec. 5, we therefore experimentally evaluate SCRAM-

SAC’s robustness to viewpoint changes on several test se-

quences and show that the estimation only breaks down for

very large viewpoint changes of more than 50◦.

In addition, the SCC does not guarantee that only false

correspondences are rejected but might also reject inliers.

Moreover, the ratio of rejected inliers to outliers cannot be

bounded theoretically. So there is no formal guarantee that

SCRAMSAC will indeed converge to the correct model.

However, also for this case, Sec. 5 will empirically show

that the ratio of inliers inCred is (in most cases substantially)

higher than in C, reducing the number of SCRAMSAC it-

erations while still leading to the correct solution.

Comparison with PROSAC. An important difference of

our approach to PROSAC is that SCRAMSAC performs a

single reduction step as a pre-filter to a regular RANSAC

back-end. In contrast, PROSAC draws its speedup from

operating on a progressively increasing set of correspon-

dences. Such a progressive search is potentially dangerous,

since the highest-ranking correspondences often lie on a de-

generate configuration, e.g. the same 3D plane viewed from

favorable angles. This is often the case when taking the fea-

ture similarity as ordering criterion, as proposed in the orig-

inal PROSAC paper [4]. As a result, PROSAC may termi-

nate too early and return an incorrect solution. Fig. 3 shows

an example where this happens on an image pair from the

Leuven Castle sequence [12]. As is also visible in the same

figure, the points chosen by SCRAMSAC are distributed

over a far larger part of the scene, leading to robust estima-

tion results. In addition to being far simpler to implement,

this is a major advantage of SCRAMSAC over PROSAC.

4. Extensions

In order to evaluate our approach, we will compare it to

PROSAC [4]. As explained above, PROSAC is however

susceptible to degenerate point configurations. To ensure a

fair comparison, we therefore combine PROSAC with two

extensions that have been designed to make the estimation

more robust: local optimization (LO-RANSAC) [6] and a

degeneracy test [9, 11]. For our own algorithm, we argue

that local optimization is not necessary, since SCRAMSAC

already achieves comparable results without it. In addi-

tion, we empirically show that the degeneracy test is less

often needed in SCRAMSAC than in PROSAC because of

its more robust feature selection.

Early Model Rejection. As SCRAMSAC only modifies
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Figure 3: (a) Initial correspondences computed by SIFT matching (50% inliers). (b) Remaining correspondences after one

application of the SCC (80% inliers). (c) Correspondences used by PROSAC for hypothesis generation. The SCC results in a

reduced set of higher-quality correspondences, while still providing a sufficient coverage to ensure robust model estimation.

the initial correspondence set, it can be readily combined

with early model rejection techniques such as the Td,d [16]

or SPRT tests [5]. In our experiments in Sec. 5, we ver-

ify this claim by combining SCRAMSAC with Td,d. Our

results show that this combination indeed improves run-

time. Further improvements are possible by plugging in

additional RANSAC extensions.

Iterative Application. One may also extend the SCRAM-

SAC idea and perform several successive iterations of the

SCC in order to further reduce the correspondence set.

Fig. 4(e) shows the resulting correspondence set after six

such iterations. As can be seen, the reduced set is still nicely

distributed over the entire scene structure and leads to a cor-

rect estimation result. In general, we found that 2-3 itera-

tions were typically safe to execute, while more iterations

sometimes reduced the correspondence set too much. In

practice, the benefits of performing this iteration will how-

ever be application dependent and will also depend on the

efficiency of the SCC implementation compared to the re-

maining RANSAC steps. In all subsequent experiments, we

only report results using one single SCC iteration.

5. Experimental Results

In the following, we experimentally evaluate our ap-

proach and compare it to both RANSAC and PROSAC.

Experimental Setup. For each image pair, initial corre-

spondences are obtained by nearest-neighbor matching on

SIFT features using Lowe’s original implementation [15].

These correspondences are filtered using the second-NN

criterion from [15] with a threshold of 0.8. The normal-

ized 8-point algorithm is used for estimating fundamental

matrices, while the normalized DLT algorithm is applied

for computing homographies [12]. Inliers are determined

as those points with a Sampson error of at most 1.0, while

the termination probability of all RANSAC variants is set to

5%. When we refer to LO-PROSAC, we imply the usage of

the LO-step as described in [6]. The parameter experiments

were performed on a 2.4GHz Intel QuadCore with 4 GB of

RAM, while all other tests were performed on a 3GHz Intel

CoreDuo with 4 GB of RAM. Unless specified otherwise,

all experiments were repeated 1000 times to obtain statisti-

cally meaningful results. Plots show the resulting average

values with the standard deviation denoted by error bars.

Setting the Parameters. We set the values of smin and

smax to 0.5 and 2, respectively, thus defining feature neigh-

borhoods to span at most 2 octaves in scale-space. Tests

with different values for smin and smax led to no improve-

ments. According to the argumentation in Sec. 3, we chose

θ = 0.55 as a starting value. Using this value, we performed

tests for various values of r on a set of image pairs and mea-

sured the inlier ratio of both the full set and the reduced set

(Fig. 4(a)), the number of iterations needed by SCRAMSAC

(Fig. 4(b)), and the overall running time (Fig. 4(c)). As can

be seen, performance is stable in the range 4.5 ≤ r ≤ 7.5.

We chose r = 7 as a compromise between robustness and

efficiency. Finally, we validated our choice of θ by fixing

the value of r while iterating over different values of θ. The

results can be found in Fig. 4(d) and show that values of

θ ≥ 0.5 are indeed sensible, with θ = 0.55 being the most

general choice. We therefore fixed r=7 and θ=0.55 for all

subsequent experiments.

Robustness to Viewpoint Changes. The number and relia-

bility of feature matches and thus of neighboring correspon-

dences strongly depend on the lighting and viewing condi-

tions. To evaluate SCRAMSAC’s robustness over a large

range of viewpoint changes and varying lighting conditions,

we apply it to several standard test sequences from the lit-

erature. For robustness under epipolar viewpoint changes,

we use the Leuven Castle and Oxford Corridor sequences

[12]. For homography estimation and robustness to lighting

changes, we test on the Wall and Leuven Illumination se-

quences, respectively [17]. In all cases, we match the first

image of each sequence against all other images and com-

pare the results to those of RANSAC and LO-PROSAC.

The results of this experiment are shown in Fig. 5. It can

be seen that SCRAMSAC remains robust up to large view-

point changes and reaches a comparable result quality as

standard RANSAC, while consuming only a fraction of the
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Figure 4: Experiments with different parameter choices: (a) inlier ratios, (b) number of iterations, and (c) runtimes for

different radius settings; (d) runtimes for different values of θ; (e) remaining correspondences after 6 iterations of the SCC.

latter’s runtime. Compared to LO-PROSAC, it can be seen

that SCRAMSAC yields more stable results (as visible from

the smaller standard deviation of its inlier ratios) at a com-

parable runtime. Only for very large viewpoint changes (the

last images of each sequence) small differences become ap-

parent due to the low absolute number of correspondences

available here. As all four experiments show, the inlier ratio

of the reduced set is consistently and significantly increased,

verifying the general applicability of our idea.

Application to Challenging Image Pairs. To further

demonstrate our approach’s robustness, we compare it with

RANSAC and PROSAC on challenging image pairs from

[3], [4], and [14]. Besides large numbers of candidate

correspondences, these test scenes also contain other chal-

lenges such as repetitive and small-scale structures (A, H,

J), small overlap (B, E, G), and extreme scale (F) and light-

ing changes (C, D). As PROSAC repeatedly yielded degen-

erate results for some test cases, we combine it with both the

LO and the QDEGSAC extension (denoted Q-LO-PROSAC

in Tab. 1), as recommended in [4, 23]. For each algorithm,

we report the inlier ratio ε, the number of iterations k, and

the running time, averaged over 1000 runs. As Tab. 1 shows,

SCRAMSAC improves over RANSAC’s runtime by up to 2

orders of magnitude, while yielding similar-quality results.

Also compared to PROSAC, it often achieves a consider-

able speedup. On some images PROSAC is still faster, but

in those cases the inlier ratios reveal that PROSAC’s so-

lution is often suboptimal. Note again the large standard

deviation of PROSAC’s results, indicating that its runtime

and estimation quality vary considerably between runs. In

contrast, SCRAMSAC performs stably at runtimes that are

in many cases still suitable for real-time applications. A

detailed comparison highlights the conceptual differences

between both approaches: SCRAMSAC typically requires

a larger number of iterations than PROSAC, but takes less

time in each iteration. This is a direct consequence of its

operation on a reduced correspondence set.

In general, we noticed that PROSAC’s performance

strongly depends on its parameter settings, in particular on

the allowable Sampson error and the β parameter from [4].

We tried to ensure a fair comparison and report the best re-

sults we obtained for PROSAC over a variety of choices for

β. Still, we cannot rule out that other settings might improve

the above results. However, the necessity to perform this

adaptation is an argument in favor of SCRAMSAC, which

does not require parameter tuning.

Combination with Early Model Rejection. Finally, we

demonstrate that the performance of SCRAMSAC can be

improved through other RANSAC extensions. For this, we

combine it with a Td,d test, setting d = 1 as suggested by

[16]. The results of this experiment are shown in Tab. 1. As

can be seen from the table, this combination results in no-

ticeable performance improvements for cases with low in-

lier ratios (e.g. almost a factor of 6 speedup for D). In other

cases, the performance remains similar due to SCRAM-

SAC’s already high inlier ratio on the reduced set. We ex-

pect that more sophisticated methods such as SPRT [5] will

further improve the results.

6. Conclusion

In this paper, we have presented an approach for im-

proving RANSAC’s efficiency in geometric matching ap-

plications. Our approach, termed SCRAMSAC, is based

on a spatial consistency check that lets RANSAC operate
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(d) Leuven Illum. (illum. change, homography)

(a) Leuven Castle (viewpoint change, epipolar)

(b) Corridor (forward motion, epipolar)

(c) Wall (viewpoint change, homography)

Figure 5: Results evaluating SCRAMSAC’s robustness to (a)-(c) viewpoint and (d) lighting changes. The plots show inlier

ratios of the original and reduced sets and runtimes (in log-scale), compared to RANSAC and LO-PROSAC. SCRAMSAC

reaches the same result quality as RANSAC (1st column), while performing at the same speed as LO-PROSAC (2nd column).

on a reduced set of more confident correspondences with

a higher inlier ratio. As shown in our experiments, the re-

sulting approach improves RANSAC’s runtime by a large

factor, while yielding similar-quality results. Also in com-

parison to PROSAC, it achieves similar speed-ups but its

results are more stable. Its wide applicability and simplic-

ity of implementation make SCRAMSAC well-suited for

combination with other RANSAC extensions. For example,

it could be used for model generation in real-time variants

such as Preemptive RANSAC [19] or ARRSAC [23]. In ad-

dition, we are planning to investigate extensions of the SCC

to affine invariant features.
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