
Scratch for Budding Computer Scientists

David J. Malan
Division of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts, USA

malan@post.harvard.edu

Henry H. Leitner
Division of Continuing Education

Harvard University
Cambridge, Massachusetts, USA

leitner@harvard.edu

ABSTRACT

Scratch is a “media-rich programming environment” recently de-
veloped by MIT’s Media Lab that “lets you create your own
animations, games, and interactive art.” Although Scratch is
intended to “enhance the development of technological fluency
[among youths] at after-school centers in economically disadvan-
taged communities,” we find remarkable potential in this pro-
gramming environment for higher education as well.

We propose Scratch as a first language for first-time program-
mers in introductory courses, for majors and non-majors alike.
Scratch allows students to program with a mouse: programmatic
constructs are represented as puzzle pieces that only fit together
if “syntactically” appropriate. We argue that this environment
allows students not only to master programmatic constructs be-
fore syntax but also to focus on problems of logic before syntax.
We view Scratch as a gateway to languages like Java.

To validate our proposal, we recently deployed Scratch for the
first time in higher education via Harvard Summer School’s Com-
puter Science S-1: Great Ideas in Computer Science, the summer-
time version of a course at Harvard College. Our goal was not
to improve scores but instead to improve first-time programmers’
experiences. We ultimately transitioned to Java, but we first
introduced programming itself via Scratch. We present in this
paper the results of our trial.

We find that, not only did Scratch excite students at a crit-
ical time (i.e., their first foray into computer science), it also
familiarized the inexperienced among them with fundamentals of
programming without the distraction of syntax. Moreover, when
asked via surveys at term’s end to reflect on how their initial ex-
perience with Scratch affected their subsequent experience with
Java, most students (76%) felt that Scratch was a positive in-
fluence, particularly those without prior background. Those stu-
dents (16%) who felt that Scratch was not an influence, positive
or negative, all had prior programming experience.

Categories and Subject Descriptors:

D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Scratch; D.3.m [PROGRAMMING
LANGUAGES]: Miscellaneous K.3.2 [COMPUTERS
AND EDUCATION]: Computer and Information Science
Education—Computer science education;

General Terms: Human Factors, Languages

Keywords: Java, languages, programming, Scratch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

1. INTRODUCTION

Most programming languages, on first glance, “look like
Greek” to the untrained eye, an amalgam of English and un-
familiar syntax. Consider, after all, even the simplest of Java
programs (Figure 1), whose sheer volume of keywords and
syntax defies explanation on an introductory course’s first
day. The simplest (if not most common) explanation of why
“hello, world” must be written in this way is perhaps a wave
of the hand and a promise to revisit public, static, void
and other potential distractions in the future. Even if these
and other other keywords are introduced gradually, too often
do students remain distracted on subsequent days by semi-
colons and other, fundamentally uninteresting, details. To
be sure, appreciation and mastery of precision is important
in learning to program computers. But, in the first weeks of
an introductory course (for majors or non-majors), too of-
ten do semicolons and their syntactical cousins delay, if not
downright discourage, students’ appreciation and mastery
of more fundamental programmatic constructs (e.g., condi-
tions, loops, variables, etc.) as well as logic itself. We dare-
say that languages like Java challenge students to master
programmatic overhead before programming itself: students
must become masters of syntax before solvers of problems.

Moreover, so accustomed are students today to graphi-
cal interfaces, “hello, world,” whether written by student or
teacher, cannot help but underwhelm. And, yet, in courses
designed to recruit and retain budding computer scientists,
it is perhaps just as important to excite as it is to instruct.
To introduce from the start a graphical library like AWT [16]
or Swing [15], though, is likely to overwhelm.

It is with these hurdles in mind that we propose Scratch [8]
as a first language for first-time programmers in introduc-
tory courses, for majors and non-majors alike. Developed
by the Lifelong Kindergarten (LLK) research group [6] at
MIT’s Media Lab [12], Scratch is a “media-rich program-
ming environment” [10] that empowers students—on day
one—to implement animations, games, and interactive art.
Although Scratch was designed “to enhance the develop-
ment of technological fluency [among youths] at after-school
centers in economically disadvantaged communities” [10], we
find remarkable potential in this programming environment
for higher education as well. Scratch enables students to
program with a mouse, presenting programmatic constructs
as blocks (i.e., puzzle pieces) that only fit together if “syn-
tactically” appropriate. Among these blocks are such fun-
damentals as statements, Boolean expressions, conditions,
loops, and variables. Other blocks, meanwhile, offer pseudo-
randomness as well as multithreading and event-handling,

class Hello
{

public static void main(String [] args)
{

System.out.println("hello, world");
}

}

Figure 1: The sheer volume of keywords and syntax in
even the simplest of Java programs defies explanation on
an introductory course’s first day.

features whose immediate deployment usually isn’t practi-
cal (or, at least, typical) in first courses in computer sci-
ence with languages like Java. With these blocks can stu-
dents program one or more “sprites” (i.e., characters) on a
“stage,” the end result of which is Scratch’s promise of some
animation, game, or interactive art.

In effect, Scratch lowers the bar to programming, empow-
ering first-time programmers not only to master program-
matic constructs before syntax but also to focus on problems
of logic before syntax. We thus view Scratch as a gateway
for students to languages like Java.

To validate our proposal, we recently deployed Scratch for
the first time in higher education by way of Harvard Sum-
mer School’s Computer Science S-1: Great Ideas in Com-
puter Science, a summertime version of a course at Harvard
College by the same name. Per its syllabus, this course
“is a broad introduction to the most important concepts in
computer science.” Not only does the course present pro-
gramming as one such concept, it also laces programming
throughout the course as a mechanism for exploring other
concepts. Although we ultimately transitioned to Java for
most of the course’s examples and problem sets, we first
introduced programming itself via Scratch.

Insofar as our goal was not to improve scores but in-
stead to improve first-time programmers’ experiences, we
surveyed students throughout the summer for their thoughts
on Scratch and its impact on their education. Ultimately,
most students (76%) felt that their exposure to Scratch
was a positive influence on their subsequent experience with
Java. Among those (16%) who felt neither positively nor
negatively influenced by Scratch, each had prior program-
ming experience.

In the section that follows, we provide an overview of
Scratch’s interface and capabilities. In Section 3, we cite
alternatives to Scratch, including one environment that we
used in prior semesters. In Section 4, we describe our de-
ployment of Scratch, thereafter elaborating on the results of
our trial in Section 5. We conclude in Section 6.

2. ABOUT SCRATCH

Written in Squeak [1], an open-source implementation of
Smalltalk-80, Scratch runs atop a virtual machine, ports of
which exist for several flavors of Linux, Mac OS, UNIX, and
Windows. According to LLK, a player for Scratch projects
will soon exist as a Java-based plug-in for browsers as well.

Not only does Scratch allow students to import “costumes”
and sounds for sprites, it also provides a built-in paint edi-
tor and sound recorder with which students can create the
same. Scratch even allows for interaction with the physical
world by way of sensors connected via USB.

Among other controls, Scratch’s interface (Figure 3) of-
fers students a blocks palette, a scripts area, a selection area,

Figure 2: With Scratch, Figure 1 becomes the above.

and a stage. The blocks palette offers students eight cate-
gories of color-coded building blocks, puzzle pieces of sorts
that collectively govern sprites’ behavior on the stage. Pro-
gramming a sprite is as simple as selecting it in the selection
area (after creating it with a click of a button) and dragging
two or more blocks to the scripts area, where they will snap
together if “syntactically” appropriate. Among these blocks
are statements, Boolean expressions, conditions, loops, and
variables as well as support for multiple threads and events
(Figure 4). Execution begins when the student clicks the
interface’s green flag.

With Scratch, then, does “hello, world” (Figure 1) become
a two-piece puzzle (Figure 2).

3. ALTERNATIVES TO SCRATCH

By no means is Scratch the first programming environ-
ment to lend itself to deployment among first-time program-
mers. Most computer scientists recall Logo [9], “the name
for a philosophy of education and a continually evolving fam-
ily of programming languages that aid in its realization.”1

More recent incarnations of Logo include NetLogo [17] and
StarLogo [11]. Related in spirit, meanwhile, are Alice [4],
Crickets [7], Karel the Robot [13], Karel++ [2], Karel J Ro-
bot [3], and JKarel [5].

If each of these environments has one weakness in our eyes,
it is that its world is too restricted or its learning curve is
too high, at least vis-à-vis Scratch. In fact, for a number
of years, we deployed JKarel (as well as its predecessors).
Though JKarel offers a Java-like syntax that does allow for
a more seamless transition to Java itself (as do Karel and
Karel++ for C and C++, respectively), Scratch’s sprites are
not limited to mere navigation along walls and collection of
beepers, as are JKarel’s robots. Rather, Scratch’s world
has “wider walls” [14], whereby students are free to express
themselves programmatically in many more ways. In fact,
among our own students’ submissions were implementations
in Scratch of fairy tales, fish tanks, and Frogger!

4. DEPLOYING SCRATCH

With our course’s summertime version compressed into
eight weeks (with two 2.5-hour lectures scheduled for each),
we opted to spend two lectures and two problem sets on
Scratch (i.e., one week), after which we transitioned to Java
for the remainder of the course.

In the first of our lectures, we introduced students to some
of programming’s most fundamental constructs, including
statements, Boolean expressions, conditions, loops, and vari-
ables. We first presented each construct in the context of
real-world “programs” written in pseudocode (e.g., algo-
rithms for changing a baby’s diaper and putting on socks).
We then re-visited each construct in the context of programs

1Harold Abelson, 1982.

Figure 3: Scratch’s interface consists of a blocks palette, a scripts area, a selection area, and a stage, along with other
controls. Pictured is Oscartime, a game with nine sprites and nineteen scripts whose implementation we explored,
among others, in class.

written in Scratch. Over the course of mere minutes, the
latter grew in complexity from cats (i.e., sprites) meow-
ing once, to cats meowing pseudorandomly, to cats meow-
ing only when “petted,” to cats chasing birds (i.e., other
sprites). With each of these programs (and others) did
we introduce additional programmatic constructs. With its
controls so intuitive and its blocks so self-explanatory, we
spent only moments explaining Scratch’s interface during
this introduction. Scratch was designed, after all, for youth,
who likely have little patience for manuals, let alone lec-
tures. To our own students, then, usage of the environment
itself seemed obvious. We concluded this lecture with an
introduction to threads and events.

In their first problem set on Scratch, students were pre-
sented with a challenge of few requirements and few limits:
“have fun with Scratch and implement a project of your
choice.” Students were told only that their project: must
have two sprites; must have at least three scripts in total;
must use at least one condition, one loop, and one variable;
must use at least one sound; and should probably use a few
dozen puzzle pieces overall. Though we considered assigning
instead several bite-sized tasks, each focused on one or more

concepts, we ultimately decided upon the broader assign-
ment. Insofar as our goal was to excite students, while still
acquainting them with programming, we opted to entrust
our goal to students’ own senses of curiosity and creativity
rather than impose on the experience constraints of our own.
The results (Section 5) were impressive.

In the second of our lectures, we examined several stu-
dents’ submissions in detail, to familiarize the class not only
with the process of writing code but reading and under-
standing that of others. We concluded with a preview of
Java, translating certain constructions in Scratch to equiv-
alent syntax in Java.

In their second problem set on Scratch, students were
challenged to “build upon the work of another student” by
downloading and modifying (noticeably) another student’s
initial submission (which we posted, with permission, in a
gallery on the course’s website).

In the section that follows, we present the results of this
deployment along with reflections by students on the same.
A link to these lectures and problem sets as well as this
gallery appears in the Appendix.

Figure 4: A sampling of Scratch’s building blocks (i.e., puzzle pieces), categorized in terms a budding computer
scientist should understand. Blocks are shaped so that they only snap together if “syntactically” appropriate (e.g., only
hexagonal Boolean expressions fit inside conditions’ hexagonal “holes”). Moreover, certain blocks (e.g., conditions and
loops) dynamically resize themselves to accommodate any number of nested blocks.

no

background

52%

strong

background

16%

weak

background

 32%

Figure 5: At term’s start, we surveyed students about
their prior programming experiences, if any. Among the
25 respondents, 52% had no background in programming
whatsoever, 32% had weak backgrounds (i.e., exposure
to but limited experience with at least one language),
and 16% had strong backgrounds (i.e., at least one year’s
experience with at least one language).

5. RESULTS

Insofar as our aim with this study was not to improve
scores but to improve first-time programmers’ experiences,
we employed subjective measures for its assessment. To
qualify and quantify the results of our trial, we surveyed stu-
dents throughout the semester. On our surveys were ques-
tions about students’ prior programming background, expe-
rience with Scratch, and subsequent acclimation to Java.

Among our 25 respondents, 52% had no background in
programming whatsoever, 32% had exposure to but limited
experience with at least one language, and 16% had at least
one year’s experience with at least one language (Figure 5).2

Though some students spent only 2 or 3 hours on their
first problem set, others spent upwards of 20, implementing
projects more advanced than any of those written in lecture.
The median and mode of students’ development times were 6
and 7 hours, respectively. Comments from students explain
such investments of time: “Scratch is fun to use and really
easy to learn, almost addictive in a way.”

Clear from other comments was that Scratch does indeed
excite: “Scratch was a ton of fun, and chances are one day
when I get bored I will go back to it and make a game. It
was really nice having visible rewards for the work instead
of ‘Oh my god! those randomly generated numbers sorted
themselves!’”

2Among the languages that some of our students had seen
or used before were BASIC, C, C++, Java, JavaScript, Net-
Logo, Perl, PHP, Scheme, and Visual Basic.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

positive influence negative influence not an influence

s
tu

d
e
n

ts

Figure 6: At term’s end, we surveyed students on how
their initial experience with Scratch affected their sub-
sequent experience with Java. Among the 25 respon-
dents, 19 (76%) felt that Scratch was a positive influ-
ence, 2 (8%) felt that Scratch was a negative influence,
and 4 (16%) felt that Scratch was not an influence.

Common among students was this appreciation of Scratch’s
immediate rewards: “[My] brother is a senior programmer
at Apple so occasionally he hands me a book and tells me to
learn something. . . . The thing that didn’t keep me learn-
ing Java and C++ was that there were hardly any tangible
rewards. The thing I really wanted to make was a game but
according to my brother it was next to impossible for me to
do it. Where as [sic] with Scratch it was extremely easy for
me to do it.”

Confident after two lectures and problem sets that Scratch
had engaged, we waited until term’s end for evidence that
it had also enlightened. When asked at term’s end to reflect
on how their initial experience with Scratch affected their
subsequent experience with Java, 19 students (76%) felt that
Scratch was a positive influence, 2 (8%) felt that Scratch was
a negative influence, and 4 (16%) felt that Scratch was not
an influence (Figure 6).

Among the positive respondents were explanations like:
“The experience with Scratch helped me get a general idea
of how to think like a programmer. Specifically, working
with Scratch helped me to develop an intuitive sense of how
loops and variables worked in a generic sense. This . . .
subsequently made it much easier to adapt to the particular
syntax used in Java for implementing such constructs.” In
the words of another, “Though we did not learn Java syntax
by using Scratch, we learned the type of thinking necessary
to implement simple programs. . . . I was able to approach

the first Java programs with an idea of how to tackle the
problems. Though I did not yet know how to create a for

loop, I knew when a for loop was necessary because I had
used loops in my Scratch program.”

Comments from one negative respondent were bitter-sweet:
“I feel Scratch negatively influenced me for the rest of the
course. Scratch was a lot of fun to use, and it was really
easy. Then we started coding in Java and its [sic] about 100
times harder than Scratch, and the results are much less en-
joyable than what I could easily achieve in Scratch. I think
Scratch would have been better to have fun with after . . .
Java.”

Worthy of note, though perhaps not surprising, is that
each of the neutral respondents admitted prior program-
ming experience. One such student’s comments stood out:
“I think Scratch didn’t really help me with Java. I had fun
with Scratch and I see how it could serve as a didactic tool
for some people but I would have preferred to jump straight
into Java. The elements of programming that Scratch at-
tempts to teach are not particularly difficult to understand
and I feel may be ‘safely’ introduced using Java itself. . . .
I feel we could have progressed a lot more into Java had we
jumped directly into it.”

With students’ reflections nonetheless quite positive over-
all, we ultimately judged this deployment of Scratch a suc-
cess. Not only does the programming environment seem to
excite students whom Java, as a very first language, might
fail to engage, it also appears to ease the transition for those
without background to more cryptic syntax ahead. As a
gateway to languages like Java, then, Scratch appears a vi-
able choice. As one student confirms, “I had a great time
using Scratch, and found it [a] very rewarding way to get
into programming.”

Another student puts it more simply: “It is awesome.”

6. CONCLUSION

We present in this paper the motivation for and results
of our deployment in higher education of Scratch, a new
programming environment that empowers students to im-
plement animations, games, and interactive art. Based on
our experience with just over two dozen students in Har-
vard Summer School’s Computer Science S-1: Great Ideas
in Computer Science, we propose Scratch as a viable gate-
way to languages like Java. Not only does Scratch excite
students at a critical time (i.e., their first foray into com-
puter science), it also familiarizes the inexperienced among
them with fundamentals of programming without the dis-
traction of syntax.

To be sure, Scratch does not provide every construct avail-
able in languages like Java. Nor does it support data types,
data structures, methods, parameters, return values, inher-
itance, or polymorphism, all of which might be appropriate
to introduce in introductory courses. But to emphasize what
Scratch lacks is to understate what it offers: its simultaneous
simplicity and power are what engage and excite students in
the first place. Once hooked by Scratch, students can still
be handed to Java.

In future semesters will we experiment with variations on
this past summer’s lectures and problem sets. In the mean-
time, it is with the success of our own deployment in mind
that we propose Scratch as a first language for first-time
programmers in introductory courses in computer science.

APPENDIX

Available for download at
http://www.eecs.harvard.edu/∼malan/

are this trial’s lectures and problem sets as well as students’
submissions, posted with their permission.

ACKNOWLEDGEMENTS

We extend our thanks and congratulations to LLK for its
wonderful work on Scratch. We are grateful, in particu-
lar, to Mitchel Resnick, John Maloney, Natalie Rusk, Amon
Millner, and Shaundra Daily for their inspiration and sup-
port of this work. We also thank S-1’s teaching fellows—
Rebecca Nesson, Kevin Wang, and James Dowdell—as well
as S-1’s students, without whose thoughts and efforts this
work would not have been possible.

REFERENCES

[1] Apple Computer, Inc. Squeak. www.squeak.org.

[2] J. Bergin, M. Stehlik, J. Roberts, and R. E. Pattis.
Karel++: A Gentle Introduction to the Art of

Object-Oriented Programming. John Wiley and Sons,
Inc., 1996.

[3] J. Bergin, M. Stehlik, J. Roberts, and R. E. Pattis.
Karel J Robot: A Gentle Introduction to the Art of

Object-Oriented Programming in Java. CafePress.com,
2006.

[4] Carnegie Mellon University. Alice v2.0.
www.alice.org.

[5] H. Wellenius. JKarel.
www.fas.harvard.edu/∼libe50a/jkarel.html, 2003.

[6] Lifelong Kindergarten, MIT Media Lab.
llk.media.mit.edu.

[7] Lifelong Kindergarten, MIT Media Lab. Crickets.
llk.media.mit.edu/projects.php?id=1942.

[8] Lifelong Kindergarten, MIT Media Lab. Scratch.
weblogs.media.mit.edu/llk/scratch/.

[9] Logo Foundation. Logo.
el.media.mit.edu/logo-foundation/.

[10] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: A Sneak Preview. In Second

International Conference on Creating, Connecting,

and Collaborating through Computing, pages 104–109,
Kyoto, Japan, 2004.

[11] Massachusetts Institute of Technology. StarLogo.
education.mit.edu/starlogo/.

[12] MIT Media Laboratory. www.media.mit.edu.

[13] R. E. Pattis. Karel The Robot: A Gentle Introduction

to the Art of Programming. John Wiley and Sons,
Inc., 1995.

[14] M. Resnick and B. Silverman. Some Reflections on
Designing Construction Kits for Kids. In Proceedings

of International Conference for Interaction Design

and Children, Boulder, CO, 2005.

[15] Sun Microsystems, Inc. Java Foundation Classes
(JFC/Swing). java.sun.com/products/jfc/.

[16] Sun Microsystems, Inc. The AWT in 1.0 and 1.1.
java.sun.com/products/jdk/awt/.

[17] U. Wilensky, Center for Connected Learning and
Computer-Based Modeling, Northwestern University.
Logo. ccl.northwestern.edu/netlogo/.

