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SCRDet++: Detecting Small, Cluttered and
Rotated Objects via Instance-Level Feature
Denoising and Rotation Loss Smoothing
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Abstract—Small and cluttered objects are common in real-world which are challenging for detection. The difficulty is further
pronounced when the objects are rotated, as traditional detectors often routinely locate the objects in horizontal bounding box such that
the region of interest is contaminated with background or nearby interleaved objects. In this paper, we first innovatively introduce the
idea of denoising to object detection. Instance-level denoising on the feature map is performed to enhance the detection to small and
cluttered objects. To handle the rotation variation, we also add a novel loU constant factor to the smooth L1 loss to address the long
standing boundary problem, which to our analysis, is mainly caused by the periodicity of angular (PoA) and exchangeability of edges
(EoE). By combing these two features, our proposed detector is termed as SCRDet++. Extensive experiments are performed on large
aerial images public datasets DOTA, DIOR, UCAS-AQOD as well as natural image dataset COCO, scene text dataset ICDAR2015, small
traffic light dataset BSTLD and our released S2TLD by this paper. The results show the effectiveness of our approach. The released

dataset S2TLD is made public available, which contains 5,786 images with 14,130 traffic light instances across five categories.

Index Terms—Object Detection, Feature Denoising, Rotation Detection, Boundary Problem, Aerial Images.

1 INTRODUCTION

BJECT detection is one of the fundamental tasks in com-

O puter vision and various general-purpose detectors [1],
[2], [3], [4], [5], [6], [7] based on convolutional neural net-
works (CNNs) have been devised. Promising results have
been achieved on public benchmarks including MS COCO
[8] and VOC2007 [9] etc. However, most existing detectors
do not pay particular attention to some common aspects
for robust object detection in the wild: small size, cluttered
arrangement and arbitrary orientations. These challenges
are especially pronounced for aerial image [10], [11], [12],
[13] which has become an important area for detection
in practice, for its various civil applications, e.g. resource
detection, environmental monitoring, and urban planning.

In the context of remote sensing, we also present some
specific discussion to motivate this paper, as shown in Fig.
1. It shall be noted that these three aspects also prevail in
other scenarios e.g. natural images and scene texts.

1) Small objects. Aerial images often contain small
objects overwhelmed by complex surrounding scenes.

2) Cluttered arrangement. Objects e.g. vehicles and ships
in aerial images are often densely arranged, leading to inter-
class feature coupling and intra-class feature boundary blur.
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(a) Horizontal detection.

(b) Rotation detection.

Fig. 1. Small, cluttered and rotated objects in complex scene whereby
rotation detection plays an important role. Red boxes indicate missing
detection which are suppressed by non-maximum suppression (NMS).

3) Arbitrary orientations. Objects in aerial images can
appear in various orientations. Rotation detection is neces-
sary especially considering the high aspect ratio issue: the
horizontal bounding box for a rotated object is more loose
than an aligned rotated one, such that the box contains a
large portion of background or nearby cluttered objects as
disturbance. Moreover, it will be greatly affected by non-
maximum suppression, see Fig. 1(a).

As described above, the small/cluttered objects problem
can be interleaved with the rotation variance. In this paper,
we aim to address the first challenge by seeking a new way
of dismissing the noisy interference from both background
and other foreground objects. While for rotation alignment,
a new rotation loss is devised accordingly. Our both tech-
niques can serve as plug in for existing detectors [7], [14],
[15], [16], [17], [18], in an out of box manner. We give further
description as follows.

For small and cluttered object detection, we devise a
denoising module and in fact denoising has not been stud-
ied for objection detection. We observe two common types



of noises that are orthogonal to each other: i) image level
noise, which is object-agnostic, and ii) instance level noise,
specifically often in the form of mutual interference between
objects, as well as background interference. Such noises
are ubiquitous and pronounced in aerial images which are
remotely sensed. In fact, denoising has been a long standing
task [19], [20], [21], [22] in image processing while they are
rarely designated for object detection, and the denoising is
finally performed on raw image for the purpose of image
enhancement rather than downstream semantic tasks, espe-
cially in an end-to-end manner.

In this paper, we explore the way of performing instance
level denoising (InLD) and particularly in the feature map
(i.e. latent layers’ outputs by CNNSs), for robust detection.
The hope is to reduce the inter-class feature coupling and
intra-class interference, meanwhile blocking background in-
terference. To this end, a novel InLD component is des-
ignated to decouple the features of different object cate-
gories into their respective channels approximately. Mean-
while, in the spatial domain, the features of the object and
background are enhanced and weakened, respectively. It is
worth noting that the above idea is conceptually similar to
but inherently different from the recent efforts [20], [22]
for image level feature map denoising (ImLD), which is
used as a way of enhancing the image recognition model’s
robustness against attack, rather than location sensitive ob-
ject detection. Readers are referred to Tab. 5 for a quick
verification that our InLD can more effectively improve
detection than ImLD for both horizontal and rotation cases.

On the other hand, as discussed above, as a closely
interleaved problem to small/cluttered object detection, ac-
curate rotation estimation is addressed by devising a novel
IoU-Smooth L1 loss. It is motivated by the fact that the
existing state-of-the-art regression-based rotation detection
methods e.g. five-parameter regression [18], [23], [24], [25]
suffer from the issue of discontinuous boundaries, which is
inherently caused by the periodicity of angular (PoA) and
exchangeability of edges (EoE) [26] (see details in Sec. 3.3.2).

We conduct extensive ablation study and experiments on
multiple datasets including both aerial images from DOTA
[10], DIOR [11], UCAS-AOD [27], as well as natural image
dataset COCO [8], scene text dataset ICDAR2015 [28], small
traffic light dataset BSTLD [29] and our newly released
S?TLD to illustrate the promising effects of our techniques.

The preliminary content of this paper has partially ap-
peared in the conference version [30]!, with the detector

1. Compared with the conference version, this journal version has
made the following extensions: i) we take a novel feature map denois-
ing perspective to the small and cluttered object detection problem, and
specifically devise a new instance-level feature denoising technique for
detecting small and cluttered objects with little additional computation
and parameter overhead; ii) comprehensive ablation study of our
instance-level feature denoising component across datasets, which can
be easily plugged into existing detectors. Our new method significantly
outperforms our previous detector in the conference version (e.g.
overall detection accuracy 72.61% versus 76.81%, and 75.35% versus
79.35% on the OBB and HBB task of DOTA-v1.0 dataset, respectively);
iii) We collect, annotate and release a new small traffic light dataset
(5,786 images with 1,4130 traffic light instances across five categories)
to further verify the versatility and generalization performance of the
instance-level denoising module; iv) last but not least, the paper has
been largely rephrased and expanded to cover the discussion of up-
to-date works including those on image denoising and small object
detection. The source code is also released.
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named SCRDet (Small, Cluttered, and Rotated Object De-
tector). In this journal version, we extend our improved
detector called SCRDet++. The overall contributions are:

1) To our best knowledge, we are the first to develop
the concept of instance level noise (at least in the context
of object detection), and design a novel Instance-Level De-
noising (InLD) module in feature map. This is realized by
supervised segmentation whose ground truth is approxi-
mately obtained by the bounding box in object detection.
The proposed module effectively addresses the challenges in
detecting small size, arbitrary direction, and dense distribu-
tion objects with little computation and parameter increase.

2) Towards more robust handling of arbitrarily-rotated
objects, an improved smooth L1 loss is devised by adding
the IoU constant factor, which is tailored to solve the bound-
ary problem of the rotating bounding box regression.

3) We create and release a real-world traffic light dataset:
S2TLD. It consists of 5,786 images with 14,130 traffic light
instances across five categories: red, green, yellow, off and
wait on. It further verifies the effectiveness of InLLD, and it
is available at https://github.com/Thinklab-SJTU/S2TLD.

4) Our method achieves state-of-the-art performance on
public datasets for rotation detection in complex scenes like
the aerial images. Experiments also show that our InLD
module, which can be easily plugged into existing archi-
tectures, can notably improve detection on different tasks.

2 RELATED WORK

We first discuss existing detectors for both horizontal
bounding box based detection and rotation detection. Then
some representative works on image denoising and small
object detection are also introduced.

2.1 Horizontal Region Object Detection

There is an emerging line of deep network based object
detectors. R-CNN [1] pioneers the CNN-based detection
pipeline. Subsequently, region-based models such as Fast
R-CNN [3], Faster R-CNN [7], and R-FCN [6] are pro-
posed, which achieves more cost-effective detection. SSD [4],
YOLO [5] and RetinaNet [15] are representative single-stage
methods, and their single-stage structure further improves
detection speed. In addition to anchor-based methods, many
anchor-free also have become popular in recent years. FCOS
[31], CornerNet [32], CenterNet [33] and ExtremeNet [34]
attempt to predict some keypoints of objects such as corners
or extreme points, which are then grouped into bounding
boxes, and these detectors have also been applied to the
field of remote sensing [35], [36]. R-P-Faster R-CNN [37]
achieves satisfactory performance in small datasets. The
method [38] combines both deformable convolution layers
[39] and region-based fully convolutional networks (R-FCN)
to improve detection accuracy further. The work [40] adopts
top-down and skipped connections to produce a single
high-level feature map of a fine resolution, improving the
performance of the deformable Faster R-CNN model. IoU-
Adaptive R-CNN [41] reduces the loss of small object infor-
mation by a new IoU-guided detection network. FMSSD [42]
aggregates the context information both in multiple scales
and the same scale feature maps. However, objects in aerial
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Fig. 2. The pipeline of our method (using RetinaNet [15] as an embodiment). Our SCRDet++ mainly consists of four modules: basic embodiment for
feature extraction, Image-level denoising for removing common image noise, instance-level denoising module for suppressing instance noise (i.e.,
inter-class feature coupling and distraction between intra-class and background) and the ‘class+box’ branch for predicting classification score and
bounding box position. ‘C’ and ‘A’ represent the number of object categories and the number of anchor at each feature point, respectively.

images with small size, cluttered distribution and arbitrary
rotation are still challenging, especially for horizontal region
detection methods.

2.2 Arbitrary-Oriented Object Detection

The demand for rotation detection has been increasing
recently like for aerial images and scene texts. Recent
advances are mainly driven by the adoption of rotated
bounding boxes or quadrangles to represent multi-oriented
objects. For scene text detection, RRPN [16] employs ro-
tated RPN to generate rotated proposals and further per-
form rotated bounding box regression. TextBoxes++ [43]
adopts vertex regression on SSD. RRD [44] further improves
TextBoxes++ by decoupling classification and bounding box
regression on rotation-invariant and rotation sensitive fea-
tures, respectively. EAST [45] directly predicts words or
text lines of arbitrary orientations and quadrilateral shapes
in full images, eliminating unnecessary intermediate steps
with a single neural network. Recent text spotting meth-
ods like FOTS [46] show that training text detection and
recognition simultaneously can greatly boost detection per-
formance. In contrast, aerial images object detection is more
challenging: first, multi-category object detection requires
the generalization of the detector. Second, small objects
in aerial images are usually densely arranged on a large
scale. Third, aerial image detection requires a more robust
algorithm due to the variety of noises. Many aerial im-
ages rotation detection algorithms are designed for different
problems. ICN [23], ROI Transformer [24], and SCRDet [30]
are representative of two-stage aerial images rotation de-
tectors, which are mainly designed from the perspective
of feature extraction. From the results, they have achieved

good performance in small or dense object detection. Com-
pared to the previous methods, R3Det [18] and RSDet [47]
are based on a single-stage detection method which pay
more attention to the trade-off of accuracy and speed.
Gliding Vertex [48] and RSDet [47] achieve more accurate
object detection via quadrilateral regression prediction. Axis
Learning [36] and O?-DNet [35] are combined with the latest
popular anchor-free ideas, to overcome the problem of too
many anchors in anchor-based detection methods.

23

Deep learning has obtained much attention in image denois-
ing. The survey [19] divides image denoising using CNNs
into four types (see the references therein): 1) additive white
noisy images; 2) real noisy images; 3) blind denoising and
4) hybrid noisy images, as the combination of noisy, blurred
and low-resolution images. In addition, image denoising
also helps to improve the performance of other computer vi-
sion tasks, such as image classification [20], object detection
[21], semantic segmentation [22], etc. In addition to image
noise, we find that there is also instance noise in the field
of object detection. Instance noise describes object-aware
noise, which is more widespread in object detection than
object-agnostic image noise. In this paper, we will explore
the application of image-level denoising and instance-level
denoising techniques to object detection in complex scenes.

Image Denoising

2.4 Small Object Detection

Small object detection remains an unsolved challenge. Com-
mon small object solutions include data augmentation [49],



multi-scale feature fusion [14], [50], tailored sampling strate-
gies [30], [51], [52], generative adversarial networks [53],
and multi-scale training [54] etc. In this paper, we show that
denoising is also an effective means to improve the detection
performance of small objects. In complex scenes, the feature
information of small objects is often overwhelmed by the
background area, which often contains a large number of
similar objects. Unlike ordinary image-level denoising, we
will use instance-level denoising to improve the detection
capabilities of small objects, which is a new perspective.
This paper mainly considers designing a general-
purpose instance level feature denoising module, to boost
the performance of horizontal detection and rotation detec-
tion in challenging aerial imagery, as well as natural images
and scene texts. Besides, we also design an IoU-Smooth L1
loss to solve the boundary problem of the arbitrary-oriented
object detection for more accurate rotation estimation.

3 THE PROPOSED METHOD
3.1 Approach Overview

Fig. 2 illustrates the pipeline of the proposed SCRDet++.
It mainly consists of four modules: i) feature extraction via
CNNs which can take different forms of CNNs from existing
detectors e.g. [1], [4], ii) image-level denoising (ImLD) mod-
ule for removing common image noise, which is optional
as its effect can be well offset by the subsequent InLD as
devised in this paper; iii) instance-level denoising (InLD)
module for suppressing instance noise (i.e., inter-class fea-
ture coupling and distraction between intra-class and back-
ground) and iv) the class and box branch for predicting score
and (rotated) bounding box. Specifically, we first describe
our main technique i.e. instance-level denoising module
(InLD) in Sec. 3.2, which further contains a comparison with
the image level denoising module (ImLD). Finally, we detail
the network learning which involves a specially designed
smooth loss for rotation estimation in Sec. 3.3. Note that in
experiments we show that InLD can replace and strike a
more effective role for detection than ImLD, making ImLD
a dispensable component in our pipeline.

3.2 Instance-level Feature Map Denoising

In this subsection, we present our devised instance-level
feature map denoising approach. To emphasis the impor-
tance of our instance-level operation, we further compare
it with image-level denoising in feature map, which is also
adopted for robust image recognition model learning in [20].
To our best knowledge, our approach is the first for using
(instance level) feature map denoising for object detection.
The denoising module can be learned in an end-to-end
manner together with other modules, which is optimized
for the object detection task.

3.2.1

Instance-level noise generally refers to the mutual interfer-
ence among objects, and also that from background. We
discuss its properties in the following aspects. In particular,
as shown in Fig. 3, the adversary effect to object detection
is especially pronounced in the feature map that calls for
feature space denoising rather than on the raw input image.

Instance-Level Noise

Fig. 3. Images (left) and their feature maps before (middle) and after
(right) the instance-level denoising operation. First row: non-object with
object-like shape. Second row: inter-class feature coupling and intra-
class feature boundary blurring. Third row: weak feature response.

1) The non-object with object-like shape has a higher
response in the feature map, especially for small objects (see
the top row of Fig. 3).

2) Clutter objects that are densely arranged tend to suffer
the issue for inter-class feature coupling and intra-class
feature boundary blurring (see the middle row of Fig. 3).

3) The response of object is not prominent enough sur-
rounded by the background (see the bottom row of Fig. 3).

3.2.2 Mathematical Modeling of Instance-Level Denoising

To dismiss instance level noise, one can generally refer to
the idea of attention mechanism, as a common way of re-
weighting the convolutional response maps to highlight the
important parts and suppress the uninformative ones, such
as spatial attention [55] and channel-wise attention [56]. We
show that existing aerial image rotation detectors, including
FADet [27], SCRDet [30] and CAD-Det [25], often use the
simple attention mechanism to re-weight the output, which
can be reduced into the following general form:

C
Y=AX)0X=W,0X0W. =W, 0 Jxi-w. (1)

=1

where X, Y € RE*H*W represents two feature maps of
input image. The attention function A(X) refers to the
proposal output by a certain attention module e.g. [55], [56].
Note ® is the element-wise product. W, € RH*W and
W. € RY denote the spatial weight and channel weight.
w! indicates the weight of the i-th channel, respectively.
Throughout the paper, | J means the concatenation operation
for connecting tensor along the feature map’s channels.
However, Eq. 1 simply distinguishes feature response
between objects and background in spatial domain, and w
is only used to measure the importance of each channel.
In other words, the interaction between intra-class objects



Fig. 4. Feature maps corresponding to clean images (top) and to their
noisy versions (bottom). The noise is randomly generated by a Gaussian
function with a mean value of 0 and a variance of 0.005. The first and
third columns: images; the rest columns: feature maps. The contrast
between foreground and background in the feature map of the clean
image is more obvious (second column), and the boundaries between
dense objects are clearer (fourth column).

and inter-class objects is not considered which is impor-
tant for detection in complex scene. We are aimed to de-
vise a new network that can not only distinguish object
from background, but also weaken the mutual interference
among objects. Specifically, we propose adding instance-
level denoising (InLD) module at intermediate layers of
convolutional networks. The key is to decouple the feature
of different object categories into their respective channels,
and meanwhile the features of objects and background are
enhanced and weakened in the spatial domain, respectively.

As a result, our new formulation is as follows, which
considers the total J number of object categories with one
additional category for background:

Y =Drnp(X) ©X =Wrp ©X

I+1 ) ) I+1 C; ) ) (2)
:UWE'LLD@XZ:UUW;QX;
i=1 i=1j=1

where Wi,p € REXHXW s 3 hierarchical weight.
Wi, p € REXHXW Xi ¢ REXHXW denotes the weight
and feature response corresponding to the i-th category, and
its channel number is denoted by C;, for C' = 21'121 Ci+Chy.
W; and x§- denotes the weight and feature of the i-th
category along the j-th channel, respectively.

As can be seen from Eq. 1 and Eq. 2, Dr,,1,p(X) can be
approximated as a combination of multiple .A*(X?), which
denotes the attention function of category i. Thus we have:

I+1
Y =Drun(X)0X = [ JAX) o X @)

i=1

Without loss of generality, consider an image containing
objects belonging to the first Iy (Ip < I) categories. In this
paper, we aim to decouple the above formula into three
parts as concatenated to each other (see Fig. 5):

Io C; I Gy Chg
Y = wh® x5 U wioxiu | Jwy ox)?
P P q q k k (4
i=1p=1 j=Io+1q=1 k1 )
categories in image categories not in image background

For background and unseen categories not in image,
ideally the response is filtered by our devised denoising
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Fig. 5. Feature map with decoupled category-specific feature signals
along channels. The abbreviation ‘HA’, ‘SP’, ‘SH’, and ‘SV’ indicate ‘Har-
bor’, ‘Swimming pool’, ‘Ship’, and ‘Small vehicle’, respectively. ‘Others’
include background and unseen categories that do not appear in the im-
age. Features of different categories are decoupled into their respective
channels (top and middle), while the features of object and background
are enhanced and suppressed in spatial domain, respectively (bottom).

module to be as small as possible. From this perspective,
Eq. 4 can be further interpreted by:

Ip C; I

Y=JJw ox,u U o, u 0
i=1p=1 j=Ig+1 ~ ©)
N . N , background

categories in image categories not in image

where O denotes tensor with small feature response one
aims to achieve, for each category O; and background Oy,,.

In the following subsection, we show how to achieve the
above decoupled feature learning among categories.

3.2.3 Implementation of Instance-Level Denoising

Based on the above derivations, we devise a practical neural
network based implementation. Our analysis starts with
the simplest case with a single channel for each category’s
weight Wi ;- in Eq. 2, or namely C; = 1. In this setting,
the learned weight Wr,,1,p can be regarded as the result of
semantic segmentation of the image for specific categories
(a three-dimensional one-hot vector). Then more channels
of weight Wy,r,p in Dy,p can be guided by semantic
segmentation, as illustrated in Fig. 2 and Fig. 5. In semantic
segmentation task, the feature responses of each category on
the previous layers of the output layer tend to be separated
in the channel dimension, and the feature responses of the
foreground and background in the spatial dimension are
also polarized. Hence one can adopt a semantic segmenta-
tion network for the operations in Eq. 5. Another advantage
for holding this semantic segmentation view is that it can
be conducted in an end-to-end supervised fashion, whose
learned denoising weights can be more reliable and effective
than the self-attention based alternatives [55], [56].



TABLE 1
Ablative study of five image level denoising settings as used in [20] on
the OBB task of DOTA-v1.0 dataset.

Base Model Image-Level Denoising mAP (%)
none 65.73
bilateral, dot prod 66.94
bilateral, gaussian 67.03
R?Det [18] nonlocal, %ot prod 66.82
nonlocal, gaussian 67.68
nonlocal, gaussian, 3x3 mean 66.88

In Fig. 2, we give a specific implementation as follows.
The input feature map expands the receptive field by N
dilated convolutions [57] and a 1 x 1 convolutional layer
at first. For instance, the values of N take the numbers of
{1,1,1,1,1} on pyramid levels P3 to P7, respectively as
set in our experiments. The feature map is then processed
by two parallel 1 x 1 convolutional layers to obtain the
two important outputs. One output (a three-dimensional
one-hot feature map) is used to perform coarse multi-class
segmentation, and the annotated bounding box in detection
tasks can be used as the approximate ground truth. The
hope is that this output will guide the other output into
a denoising feature map.

As shown in Fig. 5, this denoising feature map and
the original feature map are combined (by dot operation)
to obtain the final decoupled feature map. The purpose
is in two-folds: along the channel dimension, inter-class
feature responses of different object categories (excluding
the background) are basically decoupled into their respec-
tive channels; In the spatial dimension, intra-class feature
boundaries are sharpened due to the feature response of
the object area is enhanced and background is weakened.
As such, the three issues as raised in the beginning of this
subsection are alleviated.

As shown in the upper right corner of Fig. 2, the classifi-
cation model is decomposed into two terms: objectness and
category classification, as written by:

P(class;, object) = P(class;|object) x P(object)  (6)
—_— —

category classification objectness

This probability map P(object) relates to whether the
anchor for each feature point is an object. While the above
decoupled features are directly used for object classification
P(class;|object) (as well as rotation regression which will
be discussed in Sec. 3.3).

During training, the probability map P(object) will be
used as a weight for the regression loss (see Eq. 9), making
those ambiguous positive samples get smaller weights and
giving higher quality positive samples more attention. We
find in the experiment that the introduction of the proba-
bility map can speed up the convergence of the model and
improve the detection results, as shown in Tab. 2.

3.2.4 Comparison with Image-Level Denoising

Image denoising is a fundamental task in image processing,
which may impose notable impact to image recognition, as
has been recently studied and verified in [20]. Specifically,
the work [20] shows that the transformations performed
by the network layers exacerbate the perturbation, and the
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hallucinated activations can overwhelm the activations due
to true signal, which leads to worse prediction.

Here we also study this issue in the context of aerial
images through directly borrow the image level denoising
model [20]. As shown in Fig. 4, we add Gaussian noise
on the raw aerial images and compare with the clean ones.
The same feature map on clean and noisy images, extracted
from the same channel of a res3 block in the same detection
network trained on clean images are visualized. Though
the noise has little effect and it is difficult to distinguish
by naked eyes. However, it becomes more obvious in the
feature map such that the objects are gradually submerged
in the background or the boundary between the objects
tends to be blurred.

Since the convolution operation and the traditional de-
noising filters are highly correlated, we resort to a po-
tential solution [20] which employs convolutional layers
to simulate different types of differential filters, such as
non-local means, bilateral filtering, mean filtering, and me-
dian filtering. Inspired by the success of these operation
in adversarial attacks [20], in this paper we migrate and
extend these differential operations for object detection. We
show the generic form of ImLD in Fig. 2. It processes the
input features by a denoising operation, such as non-local
means or other variants. The denoised representation is first
processed by a 1 x 1 convolutional layer, and then added to
the module’s input via a residual connection. The simulation
of ImLD is expressed as follows:

Y = F(X) + X @)

where F(X) is the output by a certain filter. X, Y €
REXHXW represent the whole feature map of input image.
The effect of the imposed denosing module is shown in Tab.
1. In the following, we further show that the more notable
detection improvement comes from the InLD module and
its effect can well cover the image level one.

3.3 Loss Function Design and Learning

3.3.1 Horizontal Object Detection

For horizontal detection, regressing the bounding box by:
te = (¢ — %a)/Wa, ty = (Y — Ya)/ha
tw = log(w/wa), tr = log(h/ha),
o= (& =) /wa,ty, = (' —ya)/he
tu = log(w'/wa), th = log(h' /1)

where x, y, w, h denote the box’s center coorc}inates, width,

and height, respectively. Variables x,z,,x are for the

ground-truth box, anchor box, and predicted box, respec-

tively (likewise for y, w, h).

The multi-task loss of horizontal detection is defined as:

>

j€{z,y,w,h}
)\ N A h w
cls InLD 4
N ;Lcls(pnatn) + % w Xi:Xj:LInLD(Uijauij)
/ ©)
where N indicates the number of anchors, ¢,, is a binary
value (t,, = 1 for foreground and ¢,, = 0 for background, no
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+




[-90,0)

X-axis

Fig. 6. Rotation box definitions (OpenCV definition). # denotes the acute
angle to the x-axis, and for the other side we refer it as w. The range of
angle representation is [—90, 0).

— \ 1 \ stepl
\ \|w Example: \ \ ’w_\

Proposal: (0, 0, 100, 25, -pi/2) \ \ \

w x Predict box: (0, 0, 100, 25, -5pi/8) | X \

\ Target offset: (0, 0, log(1/4), log(4), 3pi/8) \
Predict offset: (0, 0, 0, 0, -pi/8) \

Loss=Smooth-L1(Predict - Target)

\ = loss(PoA) + loss(E0E) >> 0

(a) Ideal case. (b) Actual case.

Fig. 7. Boundary discontinuity of angle regression. Blue, green, red
bounding box denotes anchor/proposal, ground-truth, prediction box.

(a) Smooth L1 loss.

(b) IoU-smooth L1 loss.

Fig. 8. Detection results by two losses. For this dense arrangement case,
the angle estimation error will also make the classification even harder.

TABLE 2
Ablative study for speed and accuracy of InLD on OBB task of DOTA.
Binary-Mask and Multi-Mask refer to binary and multi-class semantic
segmentation, respectively. Coproduct denotes multiplying the
objectness term P(object) or not in Eq. 6.

Base Model | Mask Type | Coproduct | FPS | mAP (%)
null X 14 65.73
Binary-Mask X 13.5 68.12
3 y
REDet [18] 1 ypylti-Mask x 13 | 6943
Multi-Mask v 13 69.81

regression for background). p(object,,) indicates the proba-
bility that the current anchor is the object. v;lj denotes the
predicted offset vectors of the n-th anchor, v,,; is the targets
vector between n-th anchor and ground-truth it matches. ¢,,
represents the label of object, p,, is the probability distribu-
tion of various classes calculated by sigmoid function. w;j;,
u, ; denote the label and predict of mask’s pixel respectively.
The hyper-parameter A.q, Acis, Arnzp control the trade-off
and are set to 1 by default. The classification loss L5 is
focal loss [15]. The regression loss L4 is smooth L1 loss
as defined in [3], and the InLD loss Ly,1p is pixel-wise
softmax cross-entropy.

3.3.2 Rotation Object Detection

In contrast, we need to redefine the representation of the
bounding box. Fig. 6(a) shows the rectangular definition of
the 90 degree angle representation range [18], [30], [47], [58],
[59]. 6 denotes the acute angle to the x-axis, and for the other
side we refer it as w. Note this definition is also officially
adopted by OpenCV>.

Rotation detection needs to carefully address the bound-
ary problem. In particular, there exists the boundary prob-
lem for the angle regression, as shown in Fig. 7(a). It shows
that an ideal form of regression (the blue box rotates coun-
terclockwise to the red box), but the loss of this situation
is very large due to the periodicity of angular (PoA) and
exchangeability of edges (EoE). Therefore, the model has to
be regressed in other complex forms like in Fig. 7(b) (such
as the blue box rotating clockwise while scaling w and h),
increasing the difficulty of regression, as shown in Fig. 8(a).

As for the regression equation of 6, we use two forms as
the baseline to be compared:

o Direct regression (default in this paper), namely Reg.
(AB). The model directly predicts the angle offset ¢}:

to =(0 — 0,) - /180

/ / (10)
ty =(0' —0,) - 7/180

o Indirect regression, marked as Reg.” (sin6, cos0). It

predicts two vectors (t, o and t}_.,) to match the

two targets from ground truth (tsin ¢ and tcos):

tsing =sin (0 - 7/180), teoso = cos (0 - w/180)

’ ’ ’ ’ 11
tang =sin (0 - 7/180),t.,59 = cos (0 - 7/180) ()

To ensure that t;izn 0+ t;%s ¢ = 1 is satisfied, we perform the
following normalization processing:

’

’ to:
sin 0
to — sin
sin 6 t’2 t12
sin 0 + cos O
. (12)
’
cos 0
teoso = ; ;
2 2
tsin 0 + tcos 6

It should be noted that indirect regression is a simpler
way to avoid boundary problems.

In order to better solve the boundary problem, we intro-

duce the IoU constant factor % in the traditional
reg (V5,05

smooth L1 loss, as shown in Eq. 13. This new loss function
is named IoU-smooth L1 loss. It can be seen that in the
boundary case, the loss function is approximately equal
to | — log(IoU)| =~ 0, eliminating the sudden increase
in loss caused by |Lreg(v;- vj)|, as shown in Fig. 8(b).
The new regression loss can be divided into two parts:
Lreg (v, ;)

|Lreq(v),05)]
tion, and | —log(IoU)| for the magnitude of gradient. In ad-
dition, using IoU to optimize location accuracy is consistent

determines the direction of gradient propaga-

2. https://opencv.org/


https://opencv.org/

TABLE 3
Ablative study by accuracy (%) of the number of dilated convolution on
pyramid levels and the InLD loss Ly, p in InLD on OBB task of DOTA.
It can be found that supervised learning is the main contribution of InLD
rather than more convolution layers.

InLD

dilated convolution [57]  Li,rp RetinaNet-H [18]  R®Det [18]
- - 62.21 65.73
{44,322} X 62.36 66.62
{11,1,1,1} v 65.40 69.81
{44322} v 65.52 69.07
TABLE 4

Detailed ablative study by accuracy (%) of the effect of InLD on two
traffic light datasets. Note the category ‘wait on’ is only available in our
collected S2TLD dataset as released by this paper.

Dataset Base Model InLD red yellow | green off waiton | mAP
RetinaNet [15] X 9794 | 88.63 97.17 | 90.13 92.40 93.25
S2TLD Vv 98.15 | 87.66 97.12 | 93.88 93.75 94.11
FPN [14] X 97.98 87.55 97.42 | 93.42 98.31 94.93
vV 98.04 | 92.84 97.69 | 92.06 99.08 95.94
- X 6991 | 1971 7711 | 2233 = 4726

. A . 8 - 8.5
BSTLD [29] RetinaNet [15] 7050 | 2405 | 7716 | 2251 48.56
FPN [14] X 89.27 | 4782 92.01 | 40.73 - 67.46
Vv 89.88 | 49.93 9242 | 4245 - 68.67

TABLE 5

Ablative study by accuracy (%) of ImLD, InLD and their combination
(numbers in bracket denote relative improvement against using InLD
alone) on different datasets and different detection tasks.

Dataset and task Base Model Baseline | ImLD | InLD | ImLD + InLD
RetinaNet-H [18] 6221 6239 | 6540 | 65.62 (+0.22)
DOTA-v1.0 OBB [10] RetinaNet-R [18] 61.94 63.96 64.52 64.60 (+0.08)
R3Det [18] 65.73 67.68 | 69.81 69.95 (+0.14)
DOTA-v1.0 HBB [10] RetinaNet [15] 67.76 68.05 68.33 68.50 (+0.17)
DIOR [11] RetinaNet [15] 68.05 6842 | 69.36 69.35 (-0.01)
FPN [14] 71.74 71.83 | 73.21 | 73.25 (+0.04)
ICDAR2015 [28] RetinaNet-H [18] 77.13 — 78.68 -
FPN [14] 36.1 - 37.2 -
CoCo 8] RetinaNet [15] 344 ~ | 358 -
S?TLD RetinaNet [15] 93.25 - 94.11 -

with IoU-dominated metric, which is more straightforward
and effective than coordinate regression.

Areg o/
L, = ;g ; t,, - p(objecty)
j€{z,y,w,h,0}
2 N A h w
cls InLD ’
+ N ;Lcls(pnytn) + h % w ;;LInLD(uij7uij)

(13)
where IoU is the overlap of prediction and ground-truth.

’
Lieg(Unj, vnj)
7

|LT59(Unj7 Vng )|

|—log(IoU)|

4 EXPERIMENTS

Experiments are performed on a server with GeForce RTX
2080 Ti and 11G memory. We first give the description of the
dataset, and then use these datasets to verify the advantage
of the proposed method. Source code is available at https:
/ /github.com/SJTU-Thinklab-Det/DOTA-DOAL
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We choose a wide variety of public datasets from both
aerial images as well as natural images and scene texts for
evaluation. The details are as follows.

DOTA [10]: DOTA-v1.0 is a complex aerial image dataset
for object detection, which contains objects exhibiting a wide
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variety of scales, orientations, and shapes. DOTA-v1.0 con-
tains 2,806 aerial images and 15 common object categories
from different sensors and platforms. The fully annotated
DOTA-v1.0 benchmark contains 188,282 instances, each of
which is labeled by an arbitrary quadrilateral. There are two
detection tasks for DOTA: horizontal bounding boxes (HBB)
and oriented bounding boxes (OBB). The training set, vali-
dation set, and test set account for 1/2,1/6, 1/3 of the entire
data set, respectively. In contrast, DOTA-v1.5 uses the same
images as DOTA-v1.0, but extremely small instances (less
than 10 pixels) are also annotated. Moreover, a new category,
containing 402,089 instances in total is added in this version.
While DOTA-v2.0 contains 18 common categories, 11,268
images and 1,793,658 instances. Compared to DOTA-v1.5, it
includes the new categories. The 11,268 images in DOTA-
v2.0 are split into training, validation, test-dev, and test-
challenge sets. We divide the images into 600 x 600 subim-
ages with an overlap of 150 pixels and scale it to 800 x 800.
The short names for categories are defined as (abbreviation-
full name): PL-Plane, BD-Baseball diamond, BR-Bridge,
GTF-Ground field track, SV-Small vehicle, LV-Large ve-
hicle, SH-Ship, TC-Tennis court, BC-Basketball court, ST-
Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-
Harbor, SP-Swimming pool, HC-Helicopter, CC-container
crane, AP-airport and HP-helipad.

DIOR [11]: DIOR is another large aerial images dataset
labeled by a horizontal bounding box. It consists of 23,463
images and 190,288 instances, covering 20 object classes.
DIOR has a large variation of object size, not only in
spatial resolutions, but also in the aspect of inter-class and
intra-class size variability across objects. The complexity
of DIOR is also reflected in different imaging conditions,
weathers, seasons, and image quality, and it has high
inter-class similarity and intra-class diversity. The training
protocol of DIOR is basically consistent with DOTA-v1.0.
The short names c1-c20 for categories in our experiment
are defined as: Airplane, Airport, Baseball field, Basketball
court, Bridge, Chimney, Dam, Expressway service area, Ex-
pressway toll station, Golf field, Ground track field, Harbor,
Overpass, Ship, Stadium, Storage tank, Tennis court, Train
station, Vehicle, and Wind mill.

UCAS-AOD [79]: UCAS-AQOD contains 1,510 aerial im-
ages of approximately 659 x 1,280 pixels, it contains two
categories of 14,596 instances. In line with [10], [23], we
randomly select 1,110 for training and 400 for testing.

BSTLD [29]: BSTLD contains 13,427 camera images at a
resolution of 720 x 1,280 pixels and contains about 24,000
annotated small traffic lights. Specifically, 5,093 training
images are annotated by 15 labels every 2 seconds, but
only 3,153 images contain the instance, about 10,756. There
are very few instances of many categories, so we reclassify
them into 4 categories (red, yellow, green, off). In contrast,
8,334 consecutive test images are annotated by 4 labels at
about 15 fps. In this paper, we only use the training set of
BSTLD, whose median traffic light width is 8.6 pixels. In the
experiment, we divide BSTLD training set into a training set
and a test set according to the ratio of 6 : 4. Note that we
use the RetinaNet with P2 feature level and FPN to verify
InLD, and scale the size of the input image to 720 x 1,280.


https://github.com/SJTU-Thinklab-Det/DOTA-DOAI
https://github.com/SJTU-Thinklab-Det/DOTA-DOAI

(f) red

(g) red, green, wait on

(h) red

(i) red

() green

Fig. 9. lllustrations of the five categories and different lighting and weather conditions in our collected S2TLD dataset as released in the paper.

horizontal and rotation anchors, respectively.

TABLE 6
Ablative study by accuracy (%) of each component in our method on the OBB task of DOTA-v1.0 dataset. For RetinaNet, ‘H’ and ‘R’ represents the

Base Method Backbone | InLD | Data Aug. PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC | mAP
RetinaNet-H [18] ResNet50 X X 88.87 | 74.46 | 40.11 | 58.03 | 63.10 | 50.61 | 63.63 | 90.89 | 7791 | 76.38 | 48.26 | 55.85 | 50.67 | 60.23 | 34.23 | 62.22
ResNet50 Vv X 88.83 | 74.70 | 40.80 | 65.85 | 59.76 | 53.51 | 67.38 | 90.82 | 78.49 | 80.52 | 52.02 | 59.77 | 53.56 | 66.80 | 48.24 | 65.40
RetinaNet-R [18] ResNet50 X X 88.92 | 67.67 | 3355 | 56.83 | 66.11 | 73.28 | 75.24 | 90.87 | 73.95 | 75.07 | 43.77 | 56.72 | 51.05 | 55.86 | 21.46 | 62.02
ResNet50 Vv X 8896 | 70.77 | 33.30 | 62.02 | 66.35 | 75.69 | 7349 | 90.84 | 78.73 | 77.21 | 47.54 | 55.59 | 51.52 | 58.06 | 37.65 | 64.52
ResNet50 X X 88.78 | 74.69 | 41.94 | 59.88 | 68.90 | 69.77 | 69.82 | 90.81 | 77.71 | 80.40 | 50.98 | 58.34 | 52.10 | 58.30 | 43.52 | 65.73
ResNet152 x Vv 89.24 | 80.81 | 51.11 | 65.62 | 70.67 | 76.03 | 78.32 | 90.83 | 84.89 | 84.42 | 65.10 | 57.18 | 68.10 | 68.98 | 60.88 | 72.81
R3Det [18] ResNet50 Vv X 88.63 | 75.98 | 45.88 | 65.45 | 69.74 | 74.09 | 78.30 | 90.78 | 7896 | 81.28 | 56.28 | 63.01 | 57.40 | 68.45 | 5293 | 69.81
ResNet101 Vv Vv 89.25 | 83.30 | 49.94 | 66.20 | 71.82 | 77.12 | 79.53 | 90.65 | 82.14 | 84.57 | 65.33 | 63.89 | 67.56 | 68.48 | 54.89 | 72.98
ResNet152 Vv Vv 89.20 | 83.36 | 50.92 | 68.17 | 71.61 | 80.23 | 78.53 | 90.83 | 86.09 | 84.04 | 65.93 | 60.80 | 68.83 | 7131 | 66.24 | 74.41
TABLE 7

Ablative study by accuracy (%) of loU-Smooth L1 loss by using it or not in the three methods on the OBB task of DOTA-v1.0 dataset. Numbers in
bracket denote the relative improvement by using the proposed loU-Smooth L1 loss.

Method Backbone | ToU-Smooth LT | InLD PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
RetinaNet-R [18] ResNet50 X X 88.92 | 67.67 | 33.55 | 56.83 | 66.11 | 73.28 | 75.24 | 90.87 | 73.95 | 75.07 | 43.77 | 56.72 | 51.05 | 55.86 | 21.46 62.02
ResNet50 vV X 89.27 | 74.93 | 37.01 | 6449 | 66.00 | 75.87 | 77.75 | 90.76 | 80.35 | 80.31 | 54.75 | 61.17 | 61.07 | 64.78 | 51.24 | 68.65 (+6.63)
SCRDet [30] ResNet101 X X 89.65 | 79.51 | 43.86 | 67.69 | 67.41 | 5593 | 64.86 | 90.71 | 77.77 | 84.42 | 57.67 | 61.38 | 64.29 | 66.12 | 62.04 68.89
ResNet101 Vv X 89.41 | 78.83 | 50.02 | 65.59 | 69.96 | 57.63 | 72.26 | 90.73 | 81.41 | 84.39 | 52.76 | 63.62 | 62.01 | 67.62 | 61.16 | 69.83 (+0.94)
FPN [14] ResNet101 X v 90.25 | 85.24 | 55.18 | 73.24 | 7038 | 73.77 | 77.00 | 90.77 | 87.74 | 86.63 | 68.89 | 63.45 | 72.73 | 67.96 | 60.23 74.90
ResNet101 Vv Vv 89.77 | 83.90 | 56.30 | 73.98 | 72.60 | 75.63 | 82.82 | 90.76 | 87.89 | 86.14 | 65.24 | 63.17 | 76.05 | 68.06 | 70.24 | 76.20 (+1.30)
TABLE 8 The experiments are initialized by ResNet50 [60] by

Ablative study by accuracy (%) of loU-Smooth L1 loss on the OBB task
of DOTA-v1.0, DOTA-v1.5 and DOTA-v2.0.

Method Loss DOTA-v1.0 | DOTA-v1.5 | DOTA-v2.0
Smooth L1 (Reg.) 64.17 56.10 43.06
RetinaNet-H | Smooth L1 (Reg.*) 65.78 57.17 43.92
IoU-Smooth L1 66.99 59.16 46.31

S2TLD: S?*TLD? is our collected and annotated traffic
light dataset as released in this paper. It contains 5,786
images of approximately 1,080 x 1,920 pixels (1,222 images)
and 720 x 1,280 pixels (4,564 images). It also contains 5 cate-
gories (namely red, yellow, green, off and wait on) of 14,130
instances. The scenes cover a variety of lighting, weather
and traffic conditions, including busy street scenes inner-
city, dense stop-and-go traffic, strong changes in illumina-
tion/exposure, flickering/fluctuating traffic lights, multiple
visible traffic lights, image parts that can be confused with
traffic lights (e.g. large round tail lights), as shown in Fig. 9.
The training strategy is consistent with BSTLD.

In addition to the above datasets, we also use natural
image dataset COCO [8] and scene text dataset ICDAR2015
[28] for further evaluation.

3. S2TLD is available at https://github.com/Thinklab-SJTU/S2TLD

default unless otherwise specified. The weight decay and
momentum for all experiments are set 0.0001 and 0.9, re-
spectively. We employ MomentumOptimizer over 8 GPUs
with a total of 8 images per minibatch. We follow the stan-
dard evaluation protocol of COCO, while for other datasets,
the anchors of RetinaNet-based method have areas of 322
to 5122 on pyramid levels from P3 to P7, respectively. At
each pyramid level we use anchors at seven aspect ratios
{1,1/2,2,1/3,3,5,1/5} and three scales {2°,2'/3 2%/3},
For rotating anchor-based method (RetinaNet-R), the angle
is set by an arithmetic progression from —90° to —15° with
an interval of 15 degrees.

4.2 Ablation Study

The ablation study covers the detailed evaluation of the
effect of image level denoising (ImLD) and instance level
denoising (InLD), as well as their combination.

Effect of Image-Level Denoising. We experiment with
five denoising modules introduced in [20] on DOTA-v1.0.
We use our previous work R3Det [18], one of the most state-
of-the-art methods on the DOTA-v1.0, as the baseline. From
Tab. 1, one can observe that most methods work effectively
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TABLE 9
AP and mAP (%) across categories of OBB and HBB task on DOTA. MS indicates multi-scale training and testing.

OBB Task Backbone | PL | BD | BR | GIF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | mAP
Two-stage methods

FR-O [10] ResNetl0I [60] | 79.09 | 69.12 | 17.17 | 6349 | 3420 | 37.16 | 3620 | 89.19 | 69.60 | 58.96 | 49.4 | 5252 | 46.69 | 44.80 | 46.30 | 52.93
R-DEPN [58] ResNet101 80.92 | 65.82 | 33.77 | 5894 | 5577 | 50.94 | 5478 | 90.33 | 66.34 | 68.66 | 4873 | 51.76 | 55.10 | 5132 | 3588 | 57.94
R2CNN [17] ResNet101 80.94 | 65.67 | 3534 | 67.44 | 59.92 | 5091 | 55.81 | 90.67 | 66.92 | 7239 | 55.06 | 52.23 | 55.14 | 5335 | 48.22 | 60.67
RRPN [16] ResNet101 88.52 | 71.20 | 31.66 | 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 | 53.08 | 51.94 | 53.58 | 61.01
ICN [23] ResNet101 81.40 | 7430 | 47.70 | 7030 | 64.90 | 67.80 | 70.00 | 90.80 | 79.10 | 7820 | 53.60 | 62.90 | 67.00 | 64.20 | 50.20 | 68.20
RADet [61] ResNeXt101 [62] | 79.45 | 76.99 | 48.05 | 65.83 | 6546 | 7440 | 68.86 | 89.70 | 7814 | 74.97 | 49.92 | 64.63 | 66.14 | 7158 | 62.16 | 69.09
Rol-Transformer [24] ResNet101 88.64 | 78.52 | 43.44 | 7592 | 68.81 | 73.68 | 8359 | 90.74 | 77.27 | 8146 | 5839 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56
CAD-Net [25] ResNet101 87.8 | 824 | 494 | 735 | 711 | 635 | 767 | 909 | 792 | 733 | 484 | 609 | 620 | 67.0 | 622 | 699
SCRDet [30] ResNet101 89.98 | 80.65 | 52.09 | 6836 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 6625 | 68.24 | 65.21 | 72.61
SARD [63] ResNet101 89.93 | 84.11 | 54.19 | 72.04 | 6841 | 61.18 | 66.00 | 90.82 | 87.79 | 86.59 | 65.65 | 64.04 | 66.68 | 68.84 | 68.03 | 72.95
FADet [27] ResNet101 90.21 | 79.58 | 4549 | 7641 | 73.18 | 68.27 | 79.56 | 90.83 | 83.40 | 84.68 | 5340 | 6542 | 7417 | 69.69 | 64.86 | 73.28
MFIAR-Net [64] ResNet152 [60] 89.62 | 84.03 | 52.41 | 70.30 | 70.13 | 67.64 | 77.81 | 90.85 | 8540 | 86.22 | 63.21 | 64.14 | 68.31 | 70.21 | 62.11 | 73.49
Gliding Vertex [48] ResNet101 89.64 | 85.00 | 5226 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 | 75.02
Mask OBB [65] ResNeXt101 89.56 | 85.95 | 5421 | 7290 | 76.52 | 74.16 | 85.63 | 89.85 | 83.81 | 86.48 | 54.89 | 69.64 | 73.94 | 69.06 | 63.32 | 75.33
FFA [66] ResNet101 901 | 827 | 542 | 752 | 71.0 | 799 | 835 | 907 | 839 | 846 | 612 | 680 | 707 | 760 | 637 | 757
APE [67] ResNeXt-101 89.96 | 83.62 | 53.42 | 76.03 | 7401 | 77.16 | 79.45 | 90.83 | 87.15 | 8451 | 67.72 | 60.33 | 7461 | 71.84 | 65.55 | 75.75
CSL [26] ResNet152 90.25 | 85.53 | 54.64 | 7531 | 70.44 | 7351 | 77.62 | 90.84 | 86.15 | 86.69 | 69.60 | 68.04 | 73.83 | 7110 | 68.93 | 76.17
SCRDet++ (FPN) ResNet101 89.77 | 83.90 | 56.30 | 7398 | 72.60 | 75.63 | 82.82 | 90.76 | 87.89 | 86.14 | 6524 | 63.17 | 76.05 | 68.06 | 70.24 | 76.20
SCRDet++ MS (FPN) ResNet101 90.05 | 84.39 | 5544 | 7399 | 77.54 | 71.11 | 86.05 | 90.67 | 87.32 | 87.08 | 69.62 | 68.90 | 73.74 | 71.29 | 65.08 | 76.81
Single-stage methods

TENet [68] ResNet101 8020 | 64.54 | 39.82 | 3207 | 49.71 | 65.01 | 5258 | 8145 | 44.66 | 7851 | 4654 | 56.73 | 64.40 | 6424 | 36.75 | 57.14
Axis Learning [36] ResNet101 79.53 | 77.15 | 3859 | 61.15 | 67.53 | 7049 | 7630 | 89.66 | 79.07 | 83.53 | 47.27 | 61.01 | 56.28 | 66.06 | 36.05 | 65.98
P-RSDet [69] ResNet101 89.02 | 73.65 | 47.33 | 7203 | 70.58 | 73.71 | 7276 | 90.82 | 80.12 | 81.32 | 59.45 | 57.87 | 60.79 | 65.21 | 52.59 | 69.82
O2-DNet [35] Hourglass104 [70] | 89.31 | 82.14 | 47.33 | 61.21 | 71.32 | 74.03 | 78.62 | 90.76 | 8223 | 81.36 | 60.93 | 60.17 | 5821 | 66.98 | 61.03 | 71.04
R3Det [18] ResNet152 89.24 | 80.81 | 51.11 | 65.62 | 70.67 | 76.03 | 7832 | 90.83 | 84.89 | 84.42 | 6510 | 57.18 | 68.10 | 68.98 | 60.88 | 72.81
RSDet [47] ResNet152 901 | 820 | 538 | 685 | 702 | 787 | 736 | 912 | 871 | 847 | 643 | 682 | 66.1 | 693 | 637 | 741
SCRDet++ (R*Det) ResNet152 89.20 | 83.36 | 5092 | 68.17 | 71.61 | 80.23 | 7853 | 90.83 | 86.09 | 84.04 | 6593 | 60.8 | 68.83 | 7131 | 66.24 | 7441
SCRDet++ MS (R3Det) ResNet152 88.68 | 8522 | 5470 | 7371 | 71.92 | 84.14 | 79.39 | 90.82 | 87.04 | 86.02 | 67.90 | 60.86 | 7452 | 70.76 | 72.66 | 76.56
HBB Task Backbone | PL | BD | BR | GIF | SV | LV | SH | TC | BC [ ST | SBF | RA | HA | SP | HC | mAP
Two-stage methods

FR-H[7] ResNet101 8032 | 77.55 | 32.86 | 68.13 | 53.66 | 5249 | 50.04 | 9041 | 75.05 | 59.59 | 57.00 | 49.81 | 61.69 | 56.46 | 41.85 | 60.46
ICN [23] ResNet101 90.00 | 77.70 | 53.40 | 7330 | 73.50 | 65.00 | 7820 | 90.80 | 79.10 | 84.80 | 57.20 | 62.10 | 73.50 | 70.20 | 58.10 | 72.50
IoU-Adapt R-CNN [41] ResNet101 88.62 | 80.22 | 53.18 | 6697 | 7630 | 72.59 | 84.07 | 90.66 | 80.95 | 7624 | 57.12 | 66.65 | 84.08 | 6636 | 56.85 | 72.72
SCRDet [30] ResNet101 90.18 | 81.88 | 55.30 | 7329 | 72.09 | 77.65 | 78.06 | 90.91 | 82.44 | 8639 | 6453 | 63.45 | 75.77 | 7821 | 60.11 | 75.35
FADet [27] ResNet101 90.15 | 78.60 | 5192 | 7523 | 73.60 | 7127 | 8141 | 90.85 | 83.94 | 8477 | 5891 | 65.65 | 76.92 | 79.36 | 68.17 | 75.38
Mask OBB [65] ResNeXt-101 89.69 | 87.07 | 5851 | 7204 | 7821 | 7147 | 8520 | 89.55 | 8471 | 86.76 | 5438 | 70.21 | 78.98 | 77.46 | 70.40 | 76.98
A2RMNet [71] ResNet101 89.84 | 83.39 | 60.06 | 73.46 | 79.25 | 83.07 | 87.88 | 90.90 | 87.02 | 87.35 | 60.74 | 69.05 | 79.88 | 79.74 | 6517 | 78.45
SCRDet++ (FPN) ResNet101 90.01 | 82.32 | 61.94 | 68.62 | 69.62 | 81.17 | 78.83 | 90.86 | 86.32 | 85.10 | 65.10 | 61.12 | 77.69 | 80.68 | 64.25 | 76.24
SCRDet++ MS (FPN) ResNet101 90.00 | 86.25 | 65.04 | 7452 | 72.93 | 84.17 | 79.05 | 90.72 | 87.37 | 87.06 | 72.10 | 66.72 | 82.64 | 80.57 | 71.07 | 79.35
Single-stage methods

SBL [72] ResNet50 89.15 | 66.04 | 46.79 | 5256 | 73.06 | 66.13 | 78.66 | 90.85 | 6740 | 7222 | 39.88 | 56.89 | 69.58 | 67.73 | 3474 | 6477
FMSSD [42] VGG16 [73] 89.11 | 81.51 | 4822 | 67.94 | 69.23 | 73.56 | 76.87 | 90.71 | 82.67 | 73.33 | 5265 | 67.52 | 72.37 | 80.57 | 60.15 | 72.43
EER [74] VGG16 88.36 | 83.90 | 45.78 | 67.24 | 76.80 | 77.15 | 8535 | 90.77 | 85.55 | 75.77 | 54.64 | 60.76 | 71.40 | 77.90 | 60.94 | 73.49
SCRDet++ (RetinaNet) ResNet152 87.89 | 84.64 | 56.94 | 68.03 | 74.67 | 78.75 | 7850 | 90.80 | 85.60 | 84.98 | 53.56 | 56.75 | 76.66 | 75.08 | 62.75 | 74.37

TABLE 10

Accuracy (%) on DIOR. * indicates our own

implementation, higher than the official baseline. t indicates data augmentation is used.

Backbone [ 1 [ 2 | B [ & [ & [ 6 | &7 [ 8 [ 9 [ cl0 [ cIT [ 12 [ cI3 [ 14 [ cI5 [ c16 [ cd7 [ c18 [ c19 | 20 [ mAP
Two-stage methods
Faster-RCNN [7] VGGI16 53.6 493 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0 56.9 50.2 50.1 27.7 73.0 39.8 752 38.6 23.6 454 54.1
Mask-RCNN [75] ResNet-50 538 | 723 | 632 | 81.0 | 387 | 726 | 559 | 716 | 670 | 730 | 758 | 442 | 565 | 719 | 586 | 536 | 811 | 540 | 431 81.1 635
ResNet-101 53.9 76.6 63.2 80.9 40.2 725 60.4 76.3 62.5 76.0 75.9 46.5 57.4 71.8 68.3 53.7 81.0 62.3 43.0 81.0 65.2
PANet [76] ResNet-50 619 704 71.0 80.4 389 725 56.6 68.4 60.0 69.0 74.6 41.6 55.8 717 729 62.3 81.2 54.6 482 86.7 63.8
ResNet-101 60.2 72.0 70.6 80.5 43.6 72.3 614 72.1 66.7 72.0 73.4 453 56.9 717 704 62.0 80.9 57.0 47.2 84.5 66.1
CornerNet [32] Hourglass104 | 58.8 84.2 72.0 80.8 464 75.3 64.3 81.6 76.3 79.5 79.5 26.1 60.6 37.6 70.7 452 84.0 571 43.0 759 64.9
FPN [14] ResNet-50 54.1 714 63.3 81.0 26 72.5 575 68.7 62.1 73.1 76.5 428 56.0 718 57.0 535 812 53.0 43.1 80.9 63.1
ResNet-101 54.0 74.5 63.3 80.7 44.8 72.5 60.0 75.6 62.3 76.0 76.8 46.4 57.2 71.8 68.3 53.8 81.1 59.5 43.1 81.2 65.1
CSFF [77] ResNet-101 572 79.6 70.1 874 46.1 76.6 62.7 82.6 732 782 81.6 50.7 59.5 73.3 634 58.5 859 61.9 29 86.9 68.0
FPN* ResNet-50 66.57 | 83.00 | 71.89 | 83.02 | 50.41 | 75.74 | 70.23 | 81.08 | 74.83 | 79.03 | 77.74 | 5529 | 62.06 | 7226 | 72.10 | 68.64 | 81.20 | 66.07 | 54.56 | 89.09 | 71.74
SCRDet++ (FPN*) ResNet-50 66.35 | 83.36 | 74.34 | 87.33 | 5245 | 77.98 | 70.06 | 84.22 | 77.95 | 80.73 | 81.26 | 56.77 | 63.70 | 7329 | 71.94 | 71.24 | 83.40 | 62.28 | 55.63 | 90.00 | 73.21
SCRDet++ (FPN*)f ResNet-101 80.79 | 87.67 | 80.46 | 89.76 | 57.83 | 80.90 | 75.23 | 90.01 | 82.93 | 84.51 | 83.55 | 63.19 | 67.25 | 72.59 | 79.20 | 70.44 | 89.97 | 70.71 | 58.82 | 90.25 | 77.80
Single-stage methods
SSD [4] VGG16 59.5 727 72.4 75.7 29.7 65.8 56.6 63.5 53.1 65.3 68.6 49.4 481 59.2 61.0 46.6 76.3 55.1 274 65.7 58.6
YOLOV3 [78] Darknet-53 72.2 29.2 74.0 78.6 31.2 69.7 26.9 48.6 54.4 31.1 61.1 449 49.7 87.4 70.6 68.7 87.3 294 48.3 78.7 57.1
RetinaNet [15] ResNet-50 537 773 69.0 81.3 4.1 72.3 625 76.2 66.0 777 742 50.7 59.6 712 69.3 4438 81.3 542 45.1 834 65.7
ResNet-101 533 77.0 69.3 85.0 4.1 732 624 78.6 62.8 78.6 76.6 499 59.6 71.1 68.4 45.8 81.3 55.2 444 85.5 66.1
RetinaNet* ResNet-50 59.98 | 79.02 | 70.85 | 83.37 | 4525 | 75.93 | 64.53 | 76.87 | 66.63 | 80.25 | 76.75 | 55.94 | 60.70 | 70.38 | 61.45 | 60.15 | 81.13 | 62.76 | 44.52 | 84.46 | 68.05
SCRDet++ (RetinaNet*) ResNet-50 6433 | 7899 | 7324 | 8572 | 45.83 | 75.99 | 68.41 | 79.28 | 68.93 | 77.68 | 77.87 | 56.70 | 62.15 | 70.38 | 67.66 | 60.42 | 80.93 | 63.74 | 44.44 | 84.56 | 69.36
SCRDet++ (RetinaNet*)t ResNet-101 7194 | 84.99 | 79.48 | 88.86 | 52.27 | 79.12 | 77.63 | 89.52 | 77.79 | 84.24 | 83.07 | 64.22 | 65.57 | 71.25 | 76.51 | 64.54 | 88.02 | 70.91 | 47.12 | 85.10 | 75.11

except the mean filtering. Among them, the non-local with
Gaussian is the most effective (1.95% higher).

Effect of Instance-Level Denoising. The purpose of
designing InLD is to make the feature of different categories
decoupled in the channel dimension, while the features of
the object and non-object are enhanced and weakened in
the spatial dimension, respectively. We have designed some
verification tests and obtained positive results as shown in
Tab. 2. We first explore the utility of weakening the non-
object noise by binary semantic segmentation, and the de-
tection mAP has increased from 65.73% to 68.12%. The result
on multi-category semantic segmentation further proves

that there is indeed interference between objects, which is
reflected by the 1.31% increase of detection mAP (reaching
69.43%). From the above two experiments, we can prelimi-
narily speculate that the interference in the non-object area is
the main reason that affects the performance of the detector.
It is surprising to find that coproducting the prediction score
for objectness (see P(object) in Eq. 6) can further improve
performance and speed up training with a final accuracy of
69.81%. Experiments in Tab. 6 show that InLD has greatly
improved the R3Det’s performance of small objects, such as
BR, SV, LV, SH, SP, HC, which increased by 3.94%, 0.84%,
4.32%, 8.48%, 10.15%, and 9.41%, respectively. While the



(a) COCO: the red boxes represent missed objects and the orange
boxes represent false alarms.

(c) S®TLD: the red box represent missed object.

Fig. 10. Visual illustration of detection results on the datasets of COCO,
ICDAR2015, S2TLD before (right) and after (left) using InLD.

accuracy is greatly improved, the detection speed of the
model is only reduced by 1fps (at 13fps). In addition to the
DOTA-v1.0 dataset, we have used more datasets to verify
the general applicability, such as DIOR, ICDAR, COCO
and S2TLD. InLD obtains 1.44%, 1.55%, 1.4% and 0.86%
improvements in each of the four datasets according to Tab.
5 and Fig. 10 shows the visualization results before and after
using InLD. In order to investigate whether the performance
improvement brought by InLD is due to the extra computa-
tion (dilated convolutions) or supervised learning (Lr,1p),
we perform ablation experiments by controlling the number
of dilated convolutions and supervision signal. Tab. 3 shows
that supervised learning is the main contribution of InLD
rather than more convolution layers.

In particular, we conduct a detailed study on the SJTU
Small Traffic Light Dataset (S?TLD) which is our newly
released traffic detection dataset. Compared with BSTLD,
S?’TLD has more available categories. In addition, S*TLD
contains two different resolution images taken from two
different cameras, which can be used for more challenging
detection tasks. Tab. 4 shows the effectiveness of InLD on
these two traffic light datasets.

Effect of combining ImLD and InLD. A natural idea is
whether we can combine these two denoising structures,
as shown in Fig. 2. For more comprehensive study, we
perform detailed ablation experiments on different datasets
and different detection tasks. The experimental results are
listed in Tab. 5, and we tend to get the following remarks:

1) Most of the datasets are relatively clean, so ImLD does
not obtain a significant increase in all datasets.

(h) SV and LV (i) PL and HC

() BR

Fig. 11. Visual illustration of detection results on OBB task on DOTA-v1.0
of different objects by the proposed method.

2) The performance improvement of detectors with InLD
is very significant and stable, and is superior to ImLD.

3) The gain by the combination of ImLD and InLD is not
large, mainly because their effects are somewhat overlap-
ping: InLD weakens the feature response of the non-object
region while weakening the image noise interference.

Therefore, ImLD is an optional module depending on
the dataset and computing environment. We will not use
ImLD in subsequent experiments unless otherwise stated.

Effect of IloU-Smooth L1 Loss on detectors and datasets.
The IoU-Smooth L1 loss* eliminates the boundary effects of
the angle, making it easier for the model to regress to the
objects coordinates. Tab. 7 shows that new loss improves
three detectors’ accuracy to 69.83%, 68.65% and 76.20%.
Angle direct regression (Reg.) always suffer from boundary
discontinuity. In contrast, angle indirect regression (Reg*.)
is a simpler way to avoid it and has an advantage in
DOTA-v1.0, DOTA-v1.5 and DOTA-v2.0 according to Tab.
8. IoU-Smooth L1 Loss further improves the performance to
66.99%, 59.16% and 46.31% on three datasets.

Effect of data augmentation and backbone. Using
ResNet101 as backbone and data augmentation (random
horizontal, vertical flipping, graying, and rotation), we
observe a reasonable improvement in Tab. 6 (69.81% —
72.98%). We improve the final performance of the model
from 72.98% to 74.41% by using ResNet152 as backbone.

4. Source code of IoU-Smooth L1 Loss is separately available at: https:
//github.com/yangxue0827 /RotationDetection


https://github.com/yangxue0827/RotationDetection
https://github.com/yangxue0827/RotationDetection
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(b) Plane (OBB task).

Fig. 12. Detection examples of our proposed method in large scenarios on DOTA-v1.0 dataset. Our method can both effectively handle the dense
(top plot with white bounding box) and rotating (bottom plot with red bounding box) cases. Zoom in for better view.

Due to the extreme imbalance of categories in the dataset,
this provides a notable advantage to data augmentation, but
we have found that this does not affect the functioning of
InLD under these heave settings, from 72.81% to 74.41%. All
experiments are performed on the OBB task on DOTA-v1.0,
and the final model based on R®Det is also named R3Det++°.

4.3 Comparison with the State-of-the-Art Methods

We compare our proposed InLD with the state-of-the-art
algorithms on two datasets DOTA-v1.0 [10] and DIOR [11].
Our model outperforms all other models.

5. Code of R3Det and R3Det++ are all available at https://github.
com/Thinklab-SJTU/R3Det_Tensorflow.

Results on DOTA-v1.0. We compare our results with the
state-of-the-arts results in DOTA-v1.0 as depicted in Tab. 9.
The results of DOTA-v1.0 reported here are obtained by sub-
mitting our predictions to the official DOTA-v1.0 evaluation
server®. In the OBB task, we add the proposed InLD module
to a single-stage detection method (R®Det++) and a two-
stage detection method (FPN-InLD). Our methods achieve
the best performance, 76.56% and 76.81% respectively. To
make fair comparison, we do not use overlays of various
tricks, oversized backbones, and model ensemble, which
are often used on DOTA's leaderboard methods. In the HBB

6. https:/ /captain-whu.github.io/DOTA /evaluation.html


https://github.com/Thinklab-SJTU/R3Det_Tensorflow
https://github.com/Thinklab-SJTU/R3Det_Tensorflow
https://captain-whu.github.io/DOTA/evaluation.html

TABLE 11
Performance by accuracy (%) on UCAS-AOD dataset.

Method mAP | Plane Car
YOLOv2 [80] 87.90 | 96.60 | 79.20
R-DFPN [58] 89.20 | 95.90 | 82.50
DRBox [81] 89.95 | 9490 | 85.00
S?ARN [82] 9490 | 97.60 | 92.20
RetinaNet-H [18] 9547 | 97.34 | 93.60
ICN [23] 95.67 - -

FADet [27] 95.71 | 98.69 | 92.72
R3Det [18] 96.17 | 98.20 | 94.14
SCRDet++ (R3Det) | 96.95 | 98.93 | 94.97

task, we also conduct the same experiments and obtain com-
petitive detection mAP, about 74.37% and 76.24%. Model
performance can be further improved to 79.35% if multi-
scale training and testing are used. It is worth noting that
FADet [27], SCRDet [30] and CAD-Det [25] use the simple
attention mechanism by Eq. 1, but our performance is far
better than all. Fig. 11 shows some aerial sub-images, and
Fig. 12 shows the aerial images of large scenes. In general,
our method has the following two advantages over other
methods: i) we have solved the boundary problem in rota-
tion detection, which is not considered by many methods;
ii) an instance level denoising method is used, which is very
helpful for complex remote sensing images.

Results on DIOR and UCAS-AOD. DIOR is a new
large-scale aerial images dataset, and has more categories
than DOTA. In addition to the official baselines, we also
give our final detection results in Tab. 10. It should be noted
that the baseline we reproduce is higher than the official one.
In the end, we obtain 77.80% and 75.11% mAP on FPN and
RetinaNet based methods. Tab. 11 illustrates the comparison
of performance on UCAS-AOD dataset. As we can see, our
method achieves 96.95% for OBB task and is the best out of
all the existing published methods.

5 CONCLUSION

We have presented an instance level denoising technique in
the feature map for improving detection especially for small
and densely arranged objects e.g. in aerial images. The core
idea of InLD is to make the feature of different categories
decoupled over different channels, while the features of
the object and non-object are enhanced and weakened in
the space, respectively. Meanwhile, the IoU constant factor
is added to the smooth L1 loss to address the boundary
problem in rotation detection for more accurate rotation
estimation. We perform extensive ablation studies and com-
parative experiments on multiple aerial image datasets such
as DOTA, DIOR, UCAS-AOD, small traffic light dataset
BSTLD and our released S?TLD, and demonstrate that our
method achieves the state-of-the-art detection accuracy. We
also use natural image dataset COCO and scene text dataset
ICDAR?2015 to verify the effectiveness of our approach.
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