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SCREEN CONFORMAL EINSTEIN LIGHTLIKE
HYPERSURFACES OF A LORENTZIAN SPACE FORM

Dae Ho Jin

Abstract. In this paper, we study the geometry of lightlike hypersur-
faces of a semi-Riemannian manifold. We prove a classification theorem
for Einstein lightlike hypersurfaces M of a Lorentzian space form subject
such that the second fundamental forms of M and its screen distribution
S(TM) are conformally related by some non-vanishing smooth function.

1. Introduction

It is well known that the normal bundle TM⊥ of the lightlike hypersurfaces
(M, g) of a semi-Riemannian manifold (M̄, ḡ) is a vector subbundle of TM ,
of rank 1. A complementary vector bundle S(TM) of TM⊥ in TM is non-
degenerate distribution on M , called a screen distribution on M , such that

(1.1) TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by (M, g, S(TM)). Denote by F (M) the algebra of smooth func-
tions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . We use the same notation for any other vector bundle. For
any null section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists
a null section N of a vector bundle tr(TM) in S(TM)⊥ [3] satisfying

(1.2) ḡ(ξ,N) = 1, ḡ(N, N) = ḡ(N,X) = 0, ∀X ∈ Γ (S(TM)|U ) .

Then the tangent bundle TM̄ of M̄ is decomposed as follows:

(1.3) TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to the screen distribution S(TM) respectively.

Recently, Atindogbe-Ezin-Tossa have proved the following theorem for Ein-
stein lightlike hypersurfaces of a Lorentzian space form in their paper [2]:
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Theorem A ([2]). Let (M, g, S(TM)) be a screen homothetic lightlike hyper-
surface of a Lorentzian space form (M̄m+2(c), ḡ), c ≥ 0. If M is Einstein, that
is, Ric = γg (γ constant), then γ ≥ mc and

(1) If γ = mc, then M is locally a product manifold L × M∗, where the
integral submanifold M∗ of S(TM) is a Riemannian m-space form
with the same curvature c as M̄ and L is an open subset of a lightlike
geodesic ray in M̄ .

(2) If γ > mc, then M is locally a product L × M∗, where M∗ is a Rie-
mannian m-space form of positive constant curvature c + 2(γ − mc)
which is isometric to a sphere.

The purpose of this paper is to prove a characterization theorem for screen con-
formal Einstein lightlike hypersurfaces M of a Lorentzian space form (M̄(c), ḡ).

Theorem 1.1. Let (M, g, S(TM)) be a screen conformal Einstein lightlike
hypersurface of a Lorentzian space form (M̄m+2(c), ḡ); m > 2. Then c = 0
and M is locally a product manifold L×Mα ×Mβ, where L is an open subset
of a lightlike geodesic ray in M̄ and Mα and Mβ are leaves of some integerable
distributions of M such that

(1) If γ 6= 0, either Mα or Mβ is an m-dimensional totally umbilical Ein-
stein Riemannian space form which is isometric to a sphere or a hy-
perbolic space according to the sign of γ and the other is a point.

(2) If γ = 0, Mα is an (m− 1) or an m-dimensional Euclidean space and
Mβ is a non-null curve or a point.

Comparing our Theorem 1.1 with above result Theorem A, we observe that
Theorem 1.1 has the following new features of geometric significance:

(1) Since the key player of lightlike hypersurfaces is the integral submanifold
M∗ = Mα×Mβ of the screen distribution S(TM), Theorem 1.1 provides more
deeper geometry of M∗ than Theorem A.

(2) We prove c = 0 if M is screen conformal and m > 2. This is a significant
result. The screen conformal is more weak condition than the screen homo-
thetic. We can also find c = 0 for arbitrary m (without the condition m > 2
due to Note 2) if M is screen homothetic (as Theorem A). Contrary to this,
there is no discussion on such a relationship in Atindogbe-Ezin-Tossa’s above
result. Recall the following structure equations:

Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism
of Γ(TM) on Γ(S(TM)) with respect to the decomposition (1.1). Then the
local Gauss and Weingartan formulas are given by

∇̄XY = ∇XY + B(X, Y )N ,(1.4)
∇̄XN = −ANX + τ(X)N ,(1.5)
∇XPY = ∇∗XPY + C(X, PY )ξ,(1.6)
∇Xξ = −A∗ξX − τ(X)ξ(1.7)
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for any X, Y ∈ Γ(TM), where the symbols ∇ and ∇∗ are the induced linear
connections on TM and S(TM) respectively, B and C are the local second
fundamental forms on TM and S(TM) respectively, AN and A∗ξ are the shape
operators on TM and S(TM) respectively and τ is a 1-form on TM .

Since ∇̄ is torsion-free, ∇ is also torsion-free and B is symmetric. From
the fact that B(X, Y ) = ḡ(∇̄XY, ξ) for all X, Y ∈ Γ(TM), we know that B is
independent of the choice of a screen distribution and satisfies

(1.8) B(X, ξ) = 0, ∀ X ∈ Γ(TM).

The induced connection ∇ of M is not metric and satisfies

(1.9) (∇Xg)(Y, Z) = B(X, Y ) η(Z) + B(X, Z) η(Y )

for any X, Y, Z ∈ Γ(TM), where η is a 1-form such that

(1.10) η(X) = ḡ(X, N), ∀ X ∈ Γ(TM).

But ∇∗ is a metric connection. The above local second fundamental forms B
and C of M and on S(TM) are related to their shape operators by

B(X, Y ) = g(A∗ξX, Y ), ḡ(A∗ξX, N) = 0,(1.11)

C(X, PY ) = g(ANX, PY ), ḡ(ANX, N) = 0.(1.12)

From (1.11), A∗ξ is S(TM)-valued and self-adjoint on TM such that

(1.13) A∗ξξ = 0,

that is, ξ is an eigenvector field of A∗ξ corresponding to the eigenvalue 0.
We denote by R̄, R and R∗ the curvature tensors of ∇̄, ∇ and ∇∗ re-

spectively. Using the Gauss-Weingarten equations for M and S(TM), we
obtain the Gauss-Codazzi equations for M and S(TM) such that, for any
X, Y, Z, W ∈ Γ(TM),

ḡ(R̄(X, Y )Z, PW ) = g(R(X, Y )Z, PW )(1.14)
+ B(X, Z)C(Y, PW )−B(Y, Z)C(X, PW ),

ḡ(R̄(X, Y )Z, ξ) = g(R(X, Y )Z, ξ)(1.15)
= (∇XB)(Y, Z)− (∇Y B)(X, Z)

+ B(Y, Z)τ(X)−B(X, Z)τ(Y ),
ḡ(R̄(X, Y )Z, N) = g(R(X, Y )Z, N),(1.16)
g(R(X, Y )PZ, PW ) = g(R∗(X, Y )PZ, PW )(1.17)

+ C(X, PZ)B(Y, PW )
−C(Y, PZ)B(X, PW ),

g(R(X, Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X, PZ)(1.18)
+ C(X, PZ)τ(Y )− C(Y, PZ)τ(X).
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2. Screen conformal hypersurfaces

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M̄, ḡ)
is screen conformal [1] if the shape operators AN and A∗ξ of M and S(TM) re-
spectively are related by AN = ϕA∗ξ , or equivalently,

(2.1) C(X,PY ) = ϕB(X, Y ), ∀X, Y ∈ Γ(TM),

where ϕ is a non-vanishing smooth function on a neighborhood U in M . In
particular, if ϕ is a non-zero constant, M is called screen homothetic.

Note 1. For a screen conformal M , C is symmetric on S(TM). Thus, by [3],
S(TM) is integrable and M is locally a product manifold L×M∗, where L is
an open subset of a lightlike geodesic ray in M̄ and M∗ is a leaf of S(TM).

Let M̄ be a semi-Riemannian space form M̄(c), by (1.15), we have

(2.2) (∇XB)(Y, Z)− (∇Y B)(X,Z) = B(X, Z)τ(Y )−B(Y,Z)τ(X)

for all X, Y, Z ∈ Γ(TM). Using this, (1.16), (1.18) and (2.1), we obtain

{X[ϕ]− 2ϕτ(X)}B(Y, PZ)− {Y [ϕ]− 2ϕτ(Y )}B(X, PZ)(2.3)
= c{g(Y, PZ)η(X)− g(X, PZ)η(Y )}.

Replacing Y by ξ in (2.3), we obtain

(2.4) {ξ[ϕ]− 2ϕτ(ξ)}B(X,PZ) = cg(X,PZ).

Using this equation, we have the following result.

Theorem 2.1 ([6]). Let (M, g, S(TM)) be a screen conformal lightlike hyper-
surface of a semi-Riemannian space form (M̄m+2(c), ḡ); m > 2. Then c = 0.

Proof. Assume that c 6= 0. Then ξ[ϕ] − 2ϕτ(ξ) 6= 0 and B 6= 0, that is, M is
not a totally geodesic. From (2.1) and (2.4), we have

(2.5) B(X,Y ) = ρ g(X, Y ), C(X, Y ) = ϕρ g(X, Y ), ∀ X, Y ∈ Γ(TM),

where ρ = c(ξ[ϕ]− 2ϕτ(ξ))−1 6= 0. From (2.1) and (2.5), we get ϕρ 6= 0. Thus
M and S(TM) are not totally geodesic but totally umbilical. Since M is screen
conformal, by Note 1, M is locally a product manifold L×M∗, where L is an
open subset of a lightlike geodesic ray in M̄ and M∗ is a leaf of S(TM). Since
M̄ is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

(2.6) R∗(X, Y )Z = (c + 2ϕρ2){g(Y, Z)X − g(X,Z)Y }
for all X, Y, Z ∈ Γ(S(TM)). Thus the leaf M∗ of S(TM) is a semi-Riemannian
manifold of curvature (c + 2ϕρ2). Let Ric∗ be the induced symmetric Ricci
tensor of M∗. From (2.6), we have

(2.7) Ric∗(X, Y ) = (c + 2ϕρ2)(m− 1) g(X, Y ), ∀ X, Y ∈ Γ(S(TM)).
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Thus M∗ is an Einstein manifold. Since M∗ is a semi-Riemannian manifold and
m > 2, we show that (c + 2ϕρ2) is a constant and M∗ has constant curvature
(c + 2ϕρ2). Using (1.9), (2.2) and (2.5), we have

(2.8) {X[ρ] + ρτ(X)− ρ2η(X)}PY = {Y [ρ] + ρτ(Y )− ρ2η(Y )}PX.

Suppose there exists a vector field Xo ∈ Γ(TM) such that Xo[ρ] + ρτ(Xo) −
ρ2η(Xo) 6= 0 at each point x ∈ M . Then PY = fPXo for any Y ∈ Γ(TM),
where f is a smooth function. It follows that all vectors from the fiber S(TM)x

are co-linear with (PXo)x . It is a contradiction as dim (S(TM)x) > 2. Thus

X[ρ] + ρτ(X)− ρ2η(X) = 0, ∀X ∈ Γ(TM).

This implies ξ[ρ] = ρ2 − ρτ(ξ). Therefore, 0 = ξ[ϕρ2] = ρ(c + 2ϕρ2). Since
(c + 2ϕρ2) is a constant and ρ 6= 0, we have c + 2ϕρ2 = 0. Thus M∗ is a
semi-Euclidean space and C = 0. Thus, from (2.4), we have ϕρ = 0. This
means c = 0. It is contradiction to c 6= 0. Thus we have c = 0. ¤

3. Einstein lightlike hypersurfaces

The Ricci tensor R̄ic of M̄ and the induced Ricci type tensor R(0, 2) of M
are defined by

R̄ic(X, Y ) = trace{Z → R̄(X, Z)Y }, ∀ X, Y ∈ Γ(TM̄),(3.1)

R(0, 2)(X, Y ) = trace{Z → R(Z, X)Y }, ∀ X, Y ∈ Γ(TM).(3.2)

Substituting the Gauss-Codazzi equations (1.14) and (1.16) in (3.1) and using
the relations (1.11) and (1.12), for all X, Y ∈ Γ(TM), we obtain

R(0, 2)(X, Y ) = R̄ic(X, Y ) + B(X, Y )trAN − g(ANX, A∗ξY )− ḡ(R(ξ, Y )X, N).

A tensor field R(0, 2) of M is called its induced Ricci tensor, denoted by Ric,
if it is symmetric. If M̄ is a semi-Riemannian space form (M̄(c), ḡ), then we
have R̄(ξ, Y )X = cḡ(X, Y )ξ and R̄ic(X, Y ) = (m + 1)c ḡ(X, Y ). Thus

(3.3) R(0, 2)(X,Y ) = mcg(X,Y ) + B(X, Y )trAN − g(ANX,A∗ξY ).

For the rest of this section, by (M, g, S(TM)) we shall mean a screen con-
formal lightlike hypersurfaces of a Lorentzian space form (M̄m+2(c), ḡ); m > 2
unless otherwise specified. In this case, S(TM) is Riemannian and integrable
distribution and the sectional curvature c of M̄(c) satisfies c = 0. For this class
of lightlike hypersurfaces, R(0, 2) is a symmetric Ricci tensor Ric.

Note 2. It is well known that R(0, 2) is symmetric if and only if each 1-form τ
is closed, i.e., dτ = 0, on any U ⊂ M [5]. Therefore, suppose R(0, 2) is symmet-
ric, there exists a smooth function f on U such that τ = df . Consequently we
get τ(X) = X(f). If we take ξ̄ = αξ, it follows that τ(X) = τ̄(X) + X(Inα).
Setting α = exp(f) in this equation, we get τ̄(X) = 0 for any X ∈ Γ(TM| U ).
We call the pair {ξ, N} on U such that the corresponding 1-form τ vanishes
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the distinguished null pair of M . Although S(TM) is not unique, it is canon-
ically isomorphic to the factor vector bundle TM ] = TM/Rad(TM) consid-
ered by Kupeli [7]. Thus all S(TM) are mutually isomorphic. For this rea-
son, let (M, g, S(TM)) be a screen conformal Einstein lightlike hypersurface
equipped with the distinguished null pair {ξ, N} of a Lorentzian space form
(M̄m+2(c), ḡ); m > 2. Under this hypothesis, we show that ξ[ϕ]B(X,Y ) =
cg(X, Y ) due to (2.4). Thus if M is screen homothetic, then we have c = 0.

Let M be an Einstein manifold, that is, R(0, 2) = Ric = γg, where γ is a
constant if m > 2. Since ξ is an eigenvector field of A∗ξ corresponding to the
eigenvalue 0 due to (1.13) and A∗ξ is Γ(S(TM))-valued real symmetric, A∗ξ have
m real orthonormal eigenvector fields in S(TM) and is diagonalizable. Consider
a frame field of eigenvectors {ξ, E1, . . . , Em} of A∗ξ such that {E1, . . . , Em} is
an orthonormal frame field of S(TM). Then

A∗ξEi = λiEi, 1 ≤ i ≤ m.

Since M is screen conformal and Ric = γg, the equation (3.3) reduces to

(3.4) g(A∗ξX, A∗ξY )− sg(A∗ξX, Y ) + ϕ−1γ g(X, Y ) = 0,

where s = trA∗ξ . Put X = Y = Ei in (3.4), λi is a solution of equation

(3.5) x2 − sx + ϕ−1γ = 0.

The equation (3.5) has at most two distinct solutions which are smooth real
valued function on U . Assume that there exists p ∈ {0, 1, . . . , m} such that
λ1 = · · · = λp = α and λp+1 = · · · = λm = β, by renumbering if necessary.
From (3.5), we have

(3.6) s = α + β = pα + (m− p)β ; αβ = ϕ−1γ.

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal Einstein lightlike hy-
persurface of a Lorentzian space form (M̄m+2(c), ḡ); m > 2. Then M is locally
a product manifold L×Mα×Mβ, where L is an open subset of a lightlike geo-
desic ray in M̄ and Mα and Mβ are totally umbilical leaves of some integerable
distributions of M .

Proof. If the equation (3.5) has only one solution α, then, by Note 1, we have
M = L×M∗ ∼= L×M∗×{x} for any x ∈ M , where M∗ = Mα. Since B(X,Y ) =
g(A∗ξX, Y ) = αg(X,Y ) for all X, Y ∈ Γ(TM), M is totally umbilical. By (2.1),
we get C(X,Y ) = ϕαg(X, Y ) for all X, Y ∈ Γ(TM). Thus M∗ is also totally
umbilical. In this case, our assertion is true.

Assume the equation (3.5) has exactly two distinct solutions α and β. If
p = 0 or p = m, then we also show that M = L × M∗ ∼= L × M∗ × {x}
for any x ∈ M and M∗ = Mα or Mβ . In these cases, M and M∗ are also
totally umbilical. Let 0 < p < m. Consider the following four distributions
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Dα, Dβ , Ds
α and Ds

β on M :

Γ(Dα) = {X ∈ Γ(TM) | A∗ξX = α PX}, Ds
α = PDα ;

Γ(Dβ) = {U ∈ Γ(TM) | A∗ξU = β PU}, Ds
β = PDβ .

Then Dα ∩ Dβ = TM⊥ and Ds
α ∩ Ds

β = {0}. As A∗ξPX = A∗ξX = αPX for
all X ∈ Γ(Dα) and A∗ξPU = A∗ξU = βPU for all U ∈ Γ(Dβ), PX and PU
are eigenvector fields of the real symmetric operator A∗ξ corresponding to the
different eigenvalues α and β respectively. Thus PX ⊥

g
PU and g(X, U) =

g(PX, PU) = 0, that is, Dα⊥g Dβ . Also, since B(X, U) = g(A∗ξX, U) =
αg(PX, PU) = 0, we show that Dα⊥B

Dβ .
Since {Ei}1≤i≤p and {Ea}p+1≤a≤m are vector fields of Ds

α and Ds
β respec-

tively and Ds
α and Ds

β are mutually orthogonal vector subbundle of S(TM),
Ds

α and Ds
β are non-degenerate distributions of rank p and rank (m − p) re-

spectively. Thus we have S(TM) = Ds
α ⊕orth Ds

β .
From (3.4), we show that (A∗ξ)

2−(α+β)A∗ξ+αβP = 0. Let Y ∈ Im(A∗ξ−αP ),
then there exists X ∈ Γ(TM) such that Y = (A∗ξ−αP )X. Then (A∗ξ−βP )Y =
0 and Y ∈ Γ(Dβ). Thus Im(A∗ξ − αP ) ⊂ Γ(Dβ). Since the morphism A∗ξ − αP

maps Γ(TM) onto Γ(S(TM)), we have Im(A∗ξ −αP ) ⊂ Γ(Ds
β). By duality, we

also have Im(A∗ξ − βP ) ⊂ Γ(Ds
α).

For X, Y ∈ Γ(Dα) and U ∈ Γ(Dβ), we have

(∇XB)(Y, U) = − g((A∗ξ − αP )∇XY, U) + αB(X, Y )η(U)

and (∇XB)(Y, U) = (∇Y B)(X,U) due to (1.15). Thus g((A∗ξ−αP )[X, Y ], U) =
0. Since the distribution Ds

β is non-degenerate and Im(A∗ξ − αP ) ⊂ Γ(Ds
β), we

have (A∗ξ −αP )[X, Y ] = 0. Thus [X,Y ] ∈ Γ(Dα) and Dα is integrable. By du-
ality, Dβ is also integrable. Since S(TM) is integrable, for any X, Y ∈ Γ(Ds

α),
we have [X,Y ] ∈ Γ(Dα) and [X, Y ] ∈ Γ(S(TM)). Thus [X, Y ] ∈ Γ(Ds

α) and
Ds

α is integrable. So is Ds
β .

For X, Y ∈ Γ(Dα), we have

(∇XB)(Y,Z) = − g((A∗ξ − αP )∇XY,Z) + αB(X,Y )η(Z)

+ (Xα) g(Y, Z) + α2η(Y ) g(X, Z).

Using this and the fact that (∇XB)(Y,Z) = (∇Y B)(X,Z), we obtain

(3.7) {Xα− α2η(X)}g(Y, Z) = {Y α− α2η(Y )}g(X, Z),

due to (A∗ξ−αP )[X, Y ] = 0. Therefore, for X, Y ∈ Γ(Ds
α) and Z ∈ Γ(S(TM)),

we obtain (Xα)g(Y,Z) = (Y α)g(X,Z). Since S(TM) is non-degenerate, we
have dα(X)Y = dα(Y )X. Suppose there exists a vector field Xo ∈ Γ(Ds

α) such
that dα(Xo)x 6= 0 at each point x ∈ M . Then Y = fXo for any Y ∈ Γ(Ds

α),
where f is a smooth function. It follows that all vectors from the fiber (Ds

α)x

are colinear with (Xo)x. It is a contradiction as dim (Ds
α)x = p > 1. Thus we

have dα|Ds
α

= 0. By duality, we also have dβ|Ds
β

= 0. Thus α is a constant
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along Ds
α and β is a constant along Ds

β . Since (p − 1)α = −(m − p − 1)β, α

and β are constants along S(TM).
From (2.3) with c = 0, we have

(3.8) (Xϕ)B(Y,Z) = (Y ϕ)B(X, Z), ∀X, Y, Z ∈ Γ(TM).

Take X, Y, Z ∈ Γ(Ds
α), the equation (3.8) reduces to

(Xϕ)α g(Y, Z) = (Y ϕ)α g(X, Z), i.e., d(Xϕ)α Y = (Y ϕ)α X.

Since dim (Ds
α)x > 1, we have (Xϕ)α = 0 for all X ∈ Γ(Ds

α). While, take
X ∈ Γ(Ds

β) and Y, Z ∈ Γ(Ds
α) in (3.8), we have (Xϕ)α = 0 for all X ∈ Γ(Ds

β).
Consequently, we obtain (Xϕ)α = 0 for all X ∈ Γ(S(TM)). By duality,
we get (Xϕ)β = 0 for all X ∈ Γ(S(TM)). Since (α, β) 6= (0, 0), we have
Xϕ = 0 for all X ∈ Γ(S(TM)), that is, ϕ is a constant along S(TM). For all
X, Y ∈ Γ(Ds

α), we have ξ[ϕ]α = 0 due to (2.3). Also, for all X, Y ∈ Γ(Ds
β), we

have ξ[ϕ]β = 0. Thus we have ξ[ϕ] = 0. Consequently we have X[ϕ] = 0 for all
X ∈ Γ(TM), i.e., ϕ is a constant on M . For all X ∈ Γ(Ds

α) and U ∈ Γ(Ds
β),

since (∇XB)(U,Z) = (∇UB)(X,Z), we get

g({(A∗ξ − βP )∇XU − (A∗ξ − αP )∇UX}, Z) = 0, ∀Z ∈ Γ(S(TM)).

Since S(TM) is non-degenerate, we have (A∗ξ − βP )∇XU = (A∗ξ − αP )∇UX.

Since the left term of the last equation is in Γ(Ds
α) and the right term is in

Γ(Ds
β) and Ds

α ∩Ds
β = {0}, we have (A∗ξ−βP )∇XU = 0 and (A∗ξ−αP )∇UX =

0. This imply that ∇XU ∈ Γ(Dβ) and ∇UX ∈ Γ(Dα). On the other hand,
∇XU = ∇∗XU and ∇UX = ∇∗UX due to Dα⊥BDβ , we have

(3.9) ∇XU ∈ Γ(Ds
β), ∇UX ∈ Γ(Ds

α), ∀X ∈ Γ(Ds
α); ∀U ∈ Γ(Ds

β).

For X, Y ∈ Γ(Ds
α) and U, V ∈ Γ(Ds

β), since g(X, U) = 0, we have

g(∇Y X,U) + g(X,∇Y U) = 0, g(∇V U,X) + g(U,∇V X) = 0.

Using (3.9), we have g(X,∇Y U) = g(U,∇V X) = 0. Thus we get

(3.10) g(∇Y X, U) = 0 ; g(X, ∇V U) = 0.

Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) =
Ds

α ⊕orth Ds
β , where Ds

α and Ds
β are parallel and integrable distributions with

respect to the induced connection ∇∗ on M∗ due to (3.10), by the decomposi-
tion theorem of de Rham [8], we have M∗ = Mα×Mβ , where Mα and Mβ are
some leaves of Ds

α and Ds
β respectively. Thus we have our theorem. ¤

Proof of Theorem 1.1. First, we prove that γ = 0 and αβ = 0 for 0 < p < m.
From the facts that (p− 1)α = −(m− p− 1)β and m > 2, if p = 1, then β = 0
and if p = m− 1, then α = 0. Thus we have γ = 0. Let 1 < p < m− 1. Then,
for X ∈ Γ(Ds

α) and U ∈ Γ(Ds
β), using (3.9) and (3.10), we have

g(R(X, U)U, X) = g(∇X∇UU, X).
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From the second equation of (3.10), we know that ∇UU has no component of
Dα. Since P maps Γ(Dβ) onto Γ(Ds

β) and S(TM) = Ds
α ⊕orth Ds

β , we have

∇UU = P (∇UU) + η(∇UU)ξ ; P (∇UU) ∈ Γ(Ds
β).

It follows that
g(∇X∇UU,X) = g(∇XP (∇UU), X) + (∇Xη)(∇UU)) g(ξ,X)

+ η(∇X∇UU)g(ξ, X) + η(∇UU)g(∇Xξ, X)

= − α η(∇UU)g(X,X).

Since η(∇UU) = g(U,ANU) = ϕg(U,A∗ξU) = ϕβ g(U,U), we have

g(R(X, U)U, X) = −ϕαβg(X, X)g(U, U).

While, from the Gauss equation (1.14), we have

g(R(X, U)U, X) = ϕαβg(X, X)g(U, U).

From the last two equations, we get γ = ϕαβ = 0 for 1 < p < m − 1. Conse-
quently we show that if 0 < p < m, then γ = 0 and αβ = 0. ¤

(1) Let γ 6= 0 : In case (trA∗ξ)
2 6= 4ϕ−1γ. The equation (3.5) has two non-

vanishing distinct solutions α and β. If 0 < p < m, then we have γ = 0. Thus
p = 0 or p = m. If p = 0, then Ds

α = {0} and Ds
β = S(TM). If p = m, then

Ds
α = S(TM) and Ds

β = {0}. From (1.14) and (1.18), we have

R∗(X, Y )Z = 2ϕα2{g(Y, Z)X − g(X, Z)Y }, ∀ X, Y, Z ∈ Γ(Dα);

R∗(U, V )W = 2ϕβ2{g(V, W )U − g(U, W )V }, ∀ U, V, W ∈ Γ(Dβ).
Thus either Mα or Mβ , which are leafs of Dα or Dβ respectively, is a Rie-
mannian manifold M∗ of constant curvature 2ϕα2 or 2ϕβ2 respectively and
the other leaf is a point {x}. If p = m, that is, M∗ = Mα, since B(X, Y ) =
αg(X, Y ) for all X, Y ∈ Γ(S(TM)), we have C(X,Y ) = ϕαg(X,Y ) for all
X, Y ∈ Γ(S(TM)). If p = 0, that is, M∗ = Mβ , since B(U, V ) = βg(U, V ) for
all U, V ∈ Γ(S(TM)), we have C(U, V ) = ϕβg(U, V ) for all U, V ∈ Γ(S(TM)).
Thus the leaf M∗ is a totally umbilical which is not a totally geodesics. Con-
sequently M is locally a product manifold L × M∗ × {x} or L × {x} × M∗,
where M∗ is an m-dimensional totally umbilical Riemannian manifold of con-
stant curvature 2ϕβ2 or 2ϕα2 which is isometric to a sphere or a hyperbolic
space, {x} is a point.

In case (trA∗ξ)
2 = 4ϕ−1γ. The equation (3.5) has only one non-zero constant

solution, named by α and α is only one eigenvalue of A∗ξ . In this case, the
equations (3.6) reduce to s = 2α = mα ; α2 = ϕ−1γ. Thus we have m = 2.
Thus this case is not appear.

(2) Let γ = 0. The equation (3.6) reduces to x(x− s) = 0. In case trA∗ξ 6= 0.
Let α = 0 and β = s. Then we have s = β = (m− p)β, i.e., (m− p− 1)β = 0.
So p = m− 1. Thus the leaf Mα of Ds

α is totally geodesic (m− 1)-dimensional
Riemannian manifold and the leaf Mβ of Ds

β is a spacelike curve. In the sequel,
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let X, Y, Z ∈ Γ(Ds
α) and U ∈ Γ(Ds

β). From (1.14), (1.18) and c = 0, we have
R∗(X, Y )Z = R(X, Y )Z = R̄(X, Y )Z = 0. Using (3.10) and the fact that the
connection ∇∗ is metric, we have

g(∇∗XY, U) = −g(Y, ∇∗XU) = −g(Y, ∇XU) = 0.

Thus ∇∗XY ∈ Γ(Ds
α). From this result, (1.6), (3.9) and the integrable prop-

erty of Ds
α, we have g(R∗(X, Y )Z, U) = 0. This implies παR∗(X, Y )Z =

R∗(X, Y )Z = 0, where πα is the projection morphism of Γ(S(TM)) on Γ(Ds
α)

and παR∗ is the curvature tensor of Ds
α. Thus Mα is a Euclidean manifold.

Thus M is locally a product L×Mα×Mβ , where Mα is an (m−1)-dimensional
Euclidean space and Mβ is a spacelike curve in M̄ .

In case trA∗ξ = 0. Then we have α = β = 0 and A∗ξ = 0 or equivalently
B = 0 and Ds

α = Ds
β = S(TM). Thus M is totally geodesic in M̄ . Since M

is screen conformal, we also have C = AN = 0. Thus the leaf M∗ of S(TM)
is also totally geodesic. Thus we have ∇̄XY = ∇∗XY for any tangent vector
fields X and Y to the leaf M∗. This implies that M∗ is a Euclidean m-space.
Thus M is locally a product L×M∗ × {x}, where L is a null curve and {x} is
a point.
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