Commun. Korean Math. Soc. **25** (2010), No. 2, pp. 225–234 DOI 10.4134/CKMS.2010.25.2.225

SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM

Dae Ho Jin

ABSTRACT. In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-vanishing smooth function.

1. Introduction

It is well known that the normal bundle TM^{\perp} of the lightlike hypersurfaces (M,g) of a semi-Riemannian manifold $(\overline{M},\overline{g})$ is a vector subbundle of TM, of rank 1. A complementary vector bundle S(TM) of TM^{\perp} in TM is nondegenerate distribution on M, called a *screen distribution* on M, such that

(1.1)
$$TM = TM^{\perp} \oplus_{\text{orth}} S(TM)$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a lightlike hypersurface by (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. We use the same notation for any other vector bundle. For any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a null section N of a vector bundle $\operatorname{tr}(TM)$ in $S(TM)^{\perp}$ [3] satisfying

(1.2) $\bar{g}(\xi, N) = 1, \ \bar{g}(N, N) = \bar{g}(N, X) = 0, \ \forall X \in \Gamma(S(TM)|_{\mathcal{U}}).$

Then the tangent bundle $T\bar{M}$ of \bar{M} is decomposed as follows:

(1.3) $T\overline{M} = TM \oplus \operatorname{tr}(TM) = \{TM^{\perp} \oplus \operatorname{tr}(TM)\} \oplus_{\operatorname{orth}} S(TM).$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to the screen distribution S(TM) respectively.

Recently, Atindogbe-Ezin-Tossa have proved the following theorem for Einstein lightlike hypersurfaces of a Lorentzian space form in their paper [2]:

O2010 The Korean Mathematical Society

Received March 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

 $Key\ words\ and\ phrases.$ Einstein lightlike hypersurfaces, screen conformal, Lorentzian space forms.

Theorem A ([2]). Let (M, g, S(TM)) be a screen homothetic lightlike hypersurface of a Lorentzian space form $(\overline{M}^{m+2}(c), \overline{g}), c \geq 0$. If M is Einstein, that is, $Ric = \gamma g$ (γ constant), then $\gamma \geq mc$ and

- If γ = mc, then M is locally a product manifold L × M*, where the integral submanifold M* of S(TM) is a Riemannian m-space form with the same curvature c as M and L is an open subset of a lightlike geodesic ray in M.
- (2) If $\gamma > mc$, then M is locally a product $L \times M^*$, where M^* is a Riemannian m-space form of positive constant curvature $c + 2(\gamma mc)$ which is isometric to a sphere.

The purpose of this paper is to prove a characterization theorem for screen conformal Einstein lightlike hypersurfaces M of a Lorentzian space form $(\bar{M}(c), \bar{g})$.

Theorem 1.1. Let (M, g, S(TM)) be a screen conformal Einstein lightlike hypersurface of a Lorentzian space form $(\overline{M}^{m+2}(c), \overline{g}); m > 2$. Then c = 0and M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is an open subset of a lightlike geodesic ray in \overline{M} and M_{α} and M_{β} are leaves of some integerable distributions of M such that

- (1) If $\gamma \neq 0$, either M_{α} or M_{β} is an m-dimensional totally umbilical Einstein Riemannian space form which is isometric to a sphere or a hyperbolic space according to the sign of γ and the other is a point.
- (2) If $\gamma = 0$, M_{α} is an (m-1) or an m-dimensional Euclidean space and M_{β} is a non-null curve or a point.

Comparing our Theorem 1.1 with above result Theorem A, we observe that Theorem 1.1 has the following new features of geometric significance:

(1) Since the key player of lightlike hypersurfaces is the integral submanifold $M^* = M_{\alpha} \times M_{\beta}$ of the screen distribution S(TM), Theorem 1.1 provides more deeper geometry of M^* than Theorem A.

(2) We prove c = 0 if M is screen conformal and m > 2. This is a significant result. The screen conformal is more weak condition than the screen homothetic. We can also find c = 0 for arbitrary m (without the condition m > 2due to Note 2) if M is screen homothetic (as Theorem A). Contrary to this, there is no discussion on such a relationship in Atindogbe-Ezin-Tossa's above result. Recall the following structure equations:

Let ∇ be the Levi-Civita connection of M and P the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas are given by

(1.4) $\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N,$

(1.5)
$$\overline{\nabla}_X N = -A_N X + \tau(X) N,$$

(1.6)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi$$

(1.7) $\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi$

for any $X, Y \in \Gamma(TM)$, where the symbols ∇ and ∇^* are the induced linear connections on TM and S(TM) respectively, B and C are the local second fundamental forms on TM and S(TM) respectively, A_N and A_{ξ}^* are the shape operators on TM and S(TM) respectively and τ is a 1-form on TM.

Since $\overline{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact that $B(X,Y) = \overline{g}(\overline{\nabla}_X Y,\xi)$ for all $X, Y \in \Gamma(TM)$, we know that B is independent of the choice of a screen distribution and satisfies

(1.8)
$$B(X,\xi) = 0, \ \forall \ X \in \Gamma(TM).$$

The induced connection ∇ of M is not metric and satisfies

(1.9)
$$(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y)$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form such that

(1.10)
$$\eta(X) = \bar{g}(X, N), \ \forall \ X \in \Gamma(TM).$$

But ∇^* is a metric connection. The above local second fundamental forms B and C of M and on S(TM) are related to their shape operators by

(1.11) $B(X, Y) = g(A_{\xi}^*X, Y), \qquad \bar{g}(A_{\xi}^*X, N) = 0,$

(1.12)
$$C(X, PY) = g(A_N X, PY), \ \bar{g}(A_N X, N) = 0$$

From (1.11), $A_{\mathcal{E}}^*$ is S(TM)-valued and self-adjoint on TM such that

that is, ξ is an eigenvector field of A^*_ξ corresponding to the eigenvalue 0.

We denote by \overline{R} , R and R^* the curvature tensors of $\overline{\nabla}$, ∇ and ∇^* respectively. Using the Gauss-Weingarten equations for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) such that, for any $X, Y, Z, W \in \Gamma(TM)$,

$$\begin{array}{ll} (1.14) & \bar{g}(\bar{R}(X,Y)Z,PW) = g(R(X,Y)Z,PW) \\ & + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW), \\ (1.15) & \bar{g}(\bar{R}(X,Y)Z,\xi) = g(R(X,Y)Z,\xi) \\ & = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) \\ & + B(Y,Z)\tau(X) - B(X,Z)\tau(Y), \\ (1.16) & \bar{g}(\bar{R}(X,Y)Z,N) = g(R(X,Y)Z,N), \\ (1.17) & g(R(X,Y)PZ,PW) = g(R^*(X,Y)PZ,PW) \\ & + C(X,PZ)B(Y,PW) \\ & - C(Y,PZ)B(X,PW), \\ (1.18) & g(R(X,Y)PZ,N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) \\ & + C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X). \end{array}$$

2. Screen conformal hypersurfaces

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is screen conformal [1] if the shape operators A_N and A_{ξ}^* of M and S(TM) respectively are related by $A_N = \varphi A_{\xi}^*$, or equivalently,

(2.1)
$$C(X, PY) = \varphi B(X, Y), \ \forall X, Y \in \Gamma(TM),$$

where φ is a non-vanishing smooth function on a neighborhood \mathcal{U} in M. In particular, if φ is a non-zero constant, M is called *screen homothetic*.

Note 1. For a screen conformal M, C is symmetric on S(TM). Thus, by [3], S(TM) is integrable and M is locally a product manifold $L \times M^*$, where L is an open_subset of a lightlike geodesic ray in \overline{M} and M^* is a leaf of S(TM).

Let \overline{M} be a semi-Riemannian space form $\overline{M}(c)$, by (1.15), we have

(2.2)
$$(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) = B(X,Z)\tau(Y) - B(Y,Z)\tau(X)$$

for all $X, Y, Z \in \Gamma(TM)$. Using this, (1.16), (1.18) and (2.1), we obtain

(2.3)
$$\{X[\varphi] - 2\varphi\tau(X)\}B(Y, PZ) - \{Y[\varphi] - 2\varphi\tau(Y)\}B(X, PZ)$$
$$= c\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\}.$$

Replacing Y by ξ in (2.3), we obtain

(2.4)
$$\{\xi[\varphi] - 2\varphi\tau(\xi)\}B(X, PZ) = cg(X, PZ).$$

Using this equation, we have the following result.

Theorem 2.1 ([6]). Let (M, g, S(TM)) be a screen conformal lightlike hypersurface of a semi-Riemannian space form $(\overline{M}^{m+2}(c), \overline{g}); m > 2$. Then c = 0.

Proof. Assume that $c \neq 0$. Then $\xi[\varphi] - 2\varphi\tau(\xi) \neq 0$ and $B \neq 0$, that is, M is not a totally geodesic. From (2.1) and (2.4), we have

$$(2.5) \qquad B(X,Y) = \rho g(X,Y), \ C(X,Y) = \varphi \rho g(X,Y), \ \forall \ X, \ Y \in \Gamma(TM),$$

where $\rho = c(\xi[\varphi] - 2\varphi\tau(\xi))^{-1} \neq 0$. From (2.1) and (2.5), we get $\varphi\rho \neq 0$. Thus M and S(TM) are not totally geodesic but totally umbilical. Since M is screen conformal, by Note 1, M is locally a product manifold $L \times M^*$, where L is an open subset of a lightlike geodesic ray in \overline{M} and M^* is a leaf of S(TM). Since \overline{M} is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

(2.6)
$$R^*(X,Y)Z = (c + 2\varphi\rho^2)\{g(Y,Z)X - g(X,Z)Y\}$$

for all X, Y, $Z \in \Gamma(S(TM))$. Thus the leaf M^* of S(TM) is a semi-Riemannian manifold of curvature $(c + 2\varphi\rho^2)$. Let Ric^* be the induced symmetric Ricci tensor of M^* . From (2.6), we have

(2.7)
$$Ric^*(X,Y) = (c + 2\varphi\rho^2)(m-1)g(X,Y), \ \forall X, Y \in \Gamma(S(TM)).$$

Thus M^* is an Einstein manifold. Since M^* is a semi-Riemannian manifold and m > 2, we show that $(c + 2\varphi\rho^2)$ is a constant and M^* has constant curvature $(c + 2\varphi\rho^2)$. Using (1.9), (2.2) and (2.5), we have

(2.8)
$$\{X[\rho] + \rho\tau(X) - \rho^2\eta(X)\}PY = \{Y[\rho] + \rho\tau(Y) - \rho^2\eta(Y)\}PX.$$

Suppose there exists a vector field $X_o \in \Gamma(TM)$ such that $X_o[\rho] + \rho \tau(X_o) - \rho^2 \eta(X_o) \neq 0$ at each point $x \in M$. Then $PY = fPX_o$ for any $Y \in \Gamma(TM)$, where f is a smooth function. It follows that all vectors from the fiber $S(TM)_x$ are co-linear with $(PX_o)_x$. It is a contradiction as dim $(S(TM)_x) > 2$. Thus

$$X[\rho] + \rho\tau(X) - \rho^2\eta(X) = 0, \ \forall X \in \Gamma(TM).$$

This implies $\xi[\rho] = \rho^2 - \rho\tau(\xi)$. Therefore, $0 = \xi[\varphi\rho^2] = \rho(c + 2\varphi\rho^2)$. Since $(c + 2\varphi\rho^2)$ is a constant and $\rho \neq 0$, we have $c + 2\varphi\rho^2 = 0$. Thus M^* is a semi-Euclidean space and C = 0. Thus, from (2.4), we have $\varphi\rho = 0$. This means c = 0. It is contradiction to $c \neq 0$. Thus we have c = 0.

3. Einstein lightlike hypersurfaces

The Ricci tensor Ric of \overline{M} and the induced Ricci type tensor $R^{(0,2)}$ of M are defined by

(3.1)
$$\overline{Ric}(X,Y) = \operatorname{trace}\{Z \to \overline{R}(X,Z)Y\}, \forall X, Y \in \Gamma(T\overline{M}),$$

(3.2)
$$R^{(0,2)}(X,Y) = \operatorname{trace}\{Z \to R(Z,X)Y\}, \ \forall \ X, \ Y \in \Gamma(TM).$$

Substituting the Gauss-Codazzi equations (1.14) and (1.16) in (3.1) and using the relations (1.11) and (1.12), for all $X, Y \in \Gamma(TM)$, we obtain

$$R^{(0,2)}(X,Y) = \bar{Ric}(X,Y) + B(X,Y)trA_N - g(A_NX,A_{\xi}^*Y) - \bar{g}(R(\xi,Y)X,N).$$

A tensor field $R^{(0,2)}$ of M is called its *induced Ricci tensor*, denoted by Ric, if it is symmetric. If \overline{M} is a semi-Riemannian space form $(\overline{M}(c), \overline{g})$, then we have $\overline{R}(\xi, Y)X = c\overline{g}(X, Y)\xi$ and $\overline{Ric}(X, Y) = (m+1)c\,\overline{g}(X, Y)$. Thus

(3.3)
$$R^{(0,2)}(X,Y) = mc g(X,Y) + B(X,Y) tr A_N - g(A_N X, A_{\xi}^* Y)$$

For the rest of this section, by (M, g, S(TM)) we shall mean a screen conformal lightlike hypersurfaces of a Lorentzian space form $(\overline{M}^{m+2}(c), \overline{g}); m > 2$ unless otherwise specified. In this case, S(TM) is Riemannian and integrable distribution and the sectional curvature c of $\overline{M}(c)$ satisfies c = 0. For this class of lightlike hypersurfaces, $R^{(0,2)}$ is a symmetric Ricci tensor *Ric*.

Note 2. It is well known that $R^{(0,2)}$ is symmetric if and only if each 1-form τ is closed, i.e., $d\tau = 0$, on any $\mathcal{U} \subset M$ [5]. Therefore, suppose $R^{(0,2)}$ is symmetric, there exists a smooth function f on \mathcal{U} such that $\tau = df$. Consequently we get $\tau(X) = X(f)$. If we take $\bar{\xi} = \alpha \xi$, it follows that $\tau(X) = \bar{\tau}(X) + X(\ln \alpha)$. Setting $\alpha = \exp(f)$ in this equation, we get $\bar{\tau}(X) = 0$ for any $X \in \Gamma(TM_{|\mathcal{U}|})$. We call the pair $\{\xi, N\}$ on \mathcal{U} such that the corresponding 1-form τ vanishes

the distinguished null pair of M. Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle $TM^{\sharp} = TM/\text{Rad}(\text{TM})$ considered by Kupeli [7]. Thus all S(TM) are mutually isomorphic. For this reason, let (M, g, S(TM)) be a screen conformal Einstein lightlike hypersurface equipped with the distinguished null pair $\{\xi, N\}$ of a Lorentzian space form $(\overline{M}^{m+2}(c), \overline{g}); m > 2$. Under this hypothesis, we show that $\xi[\varphi]B(X, Y) = cg(X, Y)$ due to (2.4). Thus if M is screen homothetic, then we have c = 0.

Let M be an Einstein manifold, that is, $R^{(0,2)} = Ric = \gamma g$, where γ is a constant if m > 2. Since ξ is an eigenvector field of A_{ξ}^* corresponding to the eigenvalue 0 due to (1.13) and A_{ξ}^* is $\Gamma(S(TM))$ -valued real symmetric, A_{ξ}^* have m real orthonormal eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of eigenvectors $\{\xi, E_1, \ldots, E_m\}$ of A_{ξ}^* such that $\{E_1, \ldots, E_m\}$ is an orthonormal frame field of S(TM). Then

$$A_{\varepsilon}^* E_i = \lambda_i E_i, \ 1 \le i \le m.$$

Since M is screen conformal and $Ric = \gamma g$, the equation (3.3) reduces to

(3.4)
$$g(A_{\xi}^*X, A_{\xi}^*Y) - sg(A_{\xi}^*X, Y) + \varphi^{-1}\gamma g(X, Y) = 0,$$

where $s = \operatorname{tr} A_{\mathcal{E}}^*$. Put $X = Y = E_i$ in (3.4), λ_i is a solution of equation

$$(3.5) x^2 - sx + \varphi^{-1}\gamma = 0$$

The equation (3.5) has at most two distinct solutions which are smooth real valued function on \mathcal{U} . Assume that there exists $p \in \{0, 1, \ldots, m\}$ such that $\lambda_1 = \cdots = \lambda_p = \alpha$ and $\lambda_{p+1} = \cdots = \lambda_m = \beta$, by renumbering if necessary. From (3.5), we have

(3.6)
$$s = \alpha + \beta = p\alpha + (m-p)\beta; \ \alpha\beta = \varphi^{-1}\gamma.$$

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal Einstein lightlike hypersurface of a Lorentzian space form $(\overline{M}^{m+2}(c), \overline{g}); m > 2$. Then M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is an open subset of a lightlike geodesic ray in \overline{M} and M_{α} and M_{β} are totally umbilical leaves of some integerable distributions of M.

Proof. If the equation (3.5) has only one solution α , then, by Note 1, we have $M = L \times M^* \cong L \times M^* \times \{x\}$ for any $x \in M$, where $M^* = M_{\alpha}$. Since $B(X, Y) = g(A_{\xi}^*X, Y) = \alpha g(X, Y)$ for all $X, Y \in \Gamma(TM)$, M is totally umbilical. By (2.1), we get $C(X, Y) = \varphi \alpha g(X, Y)$ for all $X, Y \in \Gamma(TM)$. Thus M^* is also totally umbilical. In this case, our assertion is true.

Assume the equation (3.5) has exactly two distinct solutions α and β . If p = 0 or p = m, then we also show that $M = L \times M^* \cong L \times M^* \times \{x\}$ for any $x \in M$ and $M^* = M_{\alpha}$ or M_{β} . In these cases, M and M^* are also totally umbilical. Let 0 . Consider the following four distributions

 $D_{\alpha}, D_{\beta}, D^s_{\alpha} \text{ and } D^s_{\beta} \text{ on } M$:

$$\begin{split} \Gamma(D_{\alpha}) &= \{ X \in \Gamma(TM) \mid A_{\xi}^* X = \alpha PX \}, \ D_{\alpha}^s = PD_{\alpha} ; \\ \Gamma(D_{\beta}) &= \{ U \in \Gamma(TM) \mid A_{\xi}^* U = \beta PU \}, \ D_{\beta}^s = PD_{\beta}. \end{split}$$

Then $D_{\alpha} \cap D_{\beta} = TM^{\perp}$ and $D_{\alpha}^{s} \cap D_{\beta}^{s} = \{0\}$. As $A_{\xi}^{*}PX = A_{\xi}^{*}X = \alpha PX$ for all $X \in \Gamma(D_{\alpha})$ and $A_{\xi}^{*}PU = A_{\xi}^{*}U = \beta PU$ for all $U \in \Gamma(D_{\beta})$, PX and PUare eigenvector fields of the real symmetric operator A_{ξ}^{*} corresponding to the different eigenvalues α and β respectively. Thus $PX \perp_{g} PU$ and g(X, U) =g(PX, PU) = 0, that is, $D_{\alpha} \perp_{g} D_{\beta}$. Also, since $B(X, U) = g(A_{\xi}^{*}X, U) =$ $\alpha g(PX, PU) = 0$, we show that $D_{\alpha} \perp_{B} D_{\beta}$.

Since $\{E_i\}_{1 \le i \le p}$ and $\{E_a\}_{p+1 \le a \le m}$ are vector fields of D^s_{α} and D^s_{β} respectively and D^s_{α} and D^s_{β} are mutually orthogonal vector subbundle of S(TM), D^s_{α} and D^s_{β} are non-degenerate distributions of rank p and rank (m-p) respectively. Thus we have $S(TM) = D^s_{\alpha} \oplus_{\text{orth}} D^s_{\beta}$.

From (3.4), we show that $(A_{\xi}^*)^2 - (\alpha + \beta)A_{\xi}^* + \alpha\beta P = 0$. Let $Y \in \text{Im}(A_{\xi}^* - \alpha P)$, then there exists $X \in \Gamma(TM)$ such that $Y = (A_{\xi}^* - \alpha P)X$. Then $(A_{\xi}^* - \beta P)Y = 0$ and $Y \in \Gamma(D_{\beta})$. Thus $\text{Im}(A_{\xi}^* - \alpha P) \subset \Gamma(D_{\beta})$. Since the morphism $A_{\xi}^* - \alpha P$ maps $\Gamma(TM)$ onto $\Gamma(S(TM))$, we have $\text{Im}(A_{\xi}^* - \alpha P) \subset \Gamma(D_{\beta}^*)$. By duality, we also have $\text{Im}(A_{\xi}^* - \beta P) \subset \Gamma(D_{\alpha}^*)$.

For $X, Y \in \Gamma(D_{\alpha})$ and $U \in \Gamma(D_{\beta})$, we have

 $(\nabla_X B)(Y,U) = -g((A_{\xi}^* - \alpha P)\nabla_X Y, U) + \alpha B(X,Y)\eta(U)$

and $(\nabla_X B)(Y,U) = (\nabla_Y B)(X,U)$ due to (1.15). Thus $g((A^*_{\xi} - \alpha P)[X,Y],U) = 0$. Since the distribution D^s_{β} is non-degenerate and $\operatorname{Im}(A^*_{\xi} - \alpha P) \subset \Gamma(D^s_{\beta})$, we have $(A^*_{\xi} - \alpha P)[X,Y] = 0$. Thus $[X,Y] \in \Gamma(D_{\alpha})$ and D_{α} is integrable. By duality, D_{β} is also integrable. Since S(TM) is integrable, for any $X, Y \in \Gamma(D^s_{\alpha})$, we have $[X,Y] \in \Gamma(D_{\alpha})$ and $[X,Y] \in \Gamma(S(TM))$. Thus $[X,Y] \in \Gamma(D^s_{\alpha})$ and D^s_{α} is integrable. So is D^s_{β} .

For $X, Y \in \Gamma(D_{\alpha})$, we have

$$(\nabla_X B)(Y,Z) = -g((A_{\xi}^* - \alpha P)\nabla_X Y, Z) + \alpha B(X,Y)\eta(Z) + (X\alpha) g(Y,Z) + \alpha^2 \eta(Y) g(X,Z).$$

Using this and the fact that $(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z)$, we obtain

(3.7)
$$\{X\alpha - \alpha^2 \eta(X)\}g(Y,Z) = \{Y\alpha - \alpha^2 \eta(Y)\}g(X,Z),$$

due to $(A_{\xi}^{\epsilon} - \alpha P)[X, Y] = 0$. Therefore, for $X, Y \in \Gamma(D_{\alpha}^{s})$ and $Z \in \Gamma(S(TM))$, we obtain $(X\alpha)g(Y,Z) = (Y\alpha)g(X,Z)$. Since S(TM) is non-degenerate, we have $d\alpha(X)Y = d\alpha(Y)X$. Suppose there exists a vector field $X_o \in \Gamma(D_{\alpha}^{s})$ such that $d\alpha(X_o)_x \neq 0$ at each point $x \in M$. Then $Y = fX_o$ for any $Y \in \Gamma(D_{\alpha}^{s})$, where f is a smooth function. It follows that all vectors from the fiber $(D_{\alpha}^{s})_x$ are collinear with $(X_o)_x$. It is a contradiction as dim $(D_{\alpha}^{s})_x = p > 1$. Thus we have $d\alpha|_{D_{\alpha}^{s}} = 0$. By duality, we also have $d\beta|_{D_{\alpha}^{s}} = 0$. Thus α is a constant

along D^s_{α} and β is a constant along D^s_{β} . Since $(p-1)\alpha = -(m-p-1)\beta$, α and β are constants along S(TM).

From (2.3) with c = 0, we have

(3.8)
$$(X\varphi)B(Y,Z) = (Y\varphi)B(X,Z), \ \forall X, Y, Z \in \Gamma(TM).$$

Take X, Y, $Z \in \Gamma(D^s_{\alpha})$, the equation (3.8) reduces to

$$(X\varphi)\alpha g(Y,Z) = (Y\varphi)\alpha g(X,Z), \text{ i.e., } d(X\varphi)\alpha Y = (Y\varphi)\alpha X.$$

Since dim $(D_{\alpha}^{s})_{x} > 1$, we have $(X\varphi)\alpha = 0$ for all $X \in \Gamma(D_{\alpha}^{s})$. While, take $X \in \Gamma(D_{\beta}^{s})$ and $Y, Z \in \Gamma(D_{\alpha}^{s})$ in (3.8), we have $(X\varphi)\alpha = 0$ for all $X \in \Gamma(D_{\beta}^{s})$. Consequently, we obtain $(X\varphi)\alpha = 0$ for all $X \in \Gamma(S(TM))$. By duality, we get $(X\varphi)\beta = 0$ for all $X \in \Gamma(S(TM))$. Since $(\alpha, \beta) \neq (0, 0)$, we have $X\varphi = 0$ for all $X \in \Gamma(S(TM))$, that is, φ is a constant along S(TM). For all $X, Y \in \Gamma(D_{\alpha}^{s})$, we have $\xi[\varphi]\alpha = 0$ due to (2.3). Also, for all $X, Y \in \Gamma(D_{\beta}^{s})$, we have $\xi[\varphi]\beta = 0$. Thus we have $\xi[\varphi] = 0$. Consequently we have $X[\varphi] = 0$ for all $X \in \Gamma(TM)$, i.e., φ is a constant on M. For all $X \in \Gamma(D_{\alpha}^{s})$ and $U \in \Gamma(D_{\beta}^{s})$, since $(\nabla_{X}B)(U, Z) = (\nabla_{U}B)(X, Z)$, we get

$$g(\{(A_{\xi}^* - \beta P)\nabla_X U - (A_{\xi}^* - \alpha P)\nabla_U X\}, Z) = 0, \ \forall Z \in \Gamma(S(TM)).$$

Since S(TM) is non-degenerate, we have $(A_{\xi}^{*} - \beta P)\nabla_{X}U = (A_{\xi}^{*} - \alpha P)\nabla_{U}X$. Since the left term of the last equation is in $\Gamma(D_{\alpha}^{s})$ and the right term is in $\Gamma(D_{\beta}^{s})$ and $D_{\alpha}^{s} \cap D_{\beta}^{s} = \{0\}$, we have $(A_{\xi}^{*} - \beta P)\nabla_{X}U = 0$ and $(A_{\xi}^{*} - \alpha P)\nabla_{U}X = 0$. This imply that $\nabla_{X}U \in \Gamma(D_{\beta})$ and $\nabla_{U}X \in \Gamma(D_{\alpha})$. On the other hand, $\nabla_{X}U = \nabla_{X}^{*}U$ and $\nabla_{U}X = \nabla_{U}^{*}X$ due to $D_{\alpha} \perp_{B} D_{\beta}$, we have

(3.9)
$$\nabla_X U \in \Gamma(D^s_\beta), \ \nabla_U X \in \Gamma(D^s_\alpha), \ \forall X \in \Gamma(D^s_\alpha); \ \forall U \in \Gamma(D^s_\beta).$$

For $X, Y \in \Gamma(D^s_{\alpha})$ and $U, V \in \Gamma(D^s_{\beta})$, since g(X, U) = 0, we have

$$g(\nabla_Y X, U) + g(X, \nabla_Y U) = 0, \ g(\nabla_V U, X) + g(U, \nabla_V X) = 0.$$

Using (3.9), we have $g(X, \nabla_Y U) = g(U, \nabla_V X) = 0$. Thus we get

(3.10)
$$g(\nabla_Y X, U) = 0; \ g(X, \nabla_V U) = 0.$$

Since the leaf M^* of S(TM) is a Riemannian manifold and $S(TM) = D^s_{\alpha} \oplus_{\text{orth}} D^s_{\beta}$, where D^s_{α} and D^s_{β} are parallel and integrable distributions with respect to the induced connection ∇^* on M^* due to (3.10), by the decomposition theorem of de Rham [8], we have $M^* = M_{\alpha} \times M_{\beta}$, where M_{α} and M_{β} are some leaves of D^s_{α} and D^s_{β} respectively. Thus we have our theorem.

Proof of Theorem 1.1. First, we prove that $\gamma = 0$ and $\alpha\beta = 0$ for 0 . $From the facts that <math>(p-1)\alpha = -(m-p-1)\beta$ and m > 2, if p = 1, then $\beta = 0$ and if p = m - 1, then $\alpha = 0$. Thus we have $\gamma = 0$. Let $1 . Then, for <math>X \in \Gamma(D_{\alpha}^{s})$ and $U \in \Gamma(D_{\beta}^{s})$, using (3.9) and (3.10), we have

$$g(R(X, U)U, X) = g(\nabla_X \nabla_U U, X).$$

From the second equation of (3.10), we know that $\nabla_U U$ has no component of D_{α} . Since P maps $\Gamma(D_{\beta})$ onto $\Gamma(D^s_{\beta})$ and $S(TM) = D^s_{\alpha} \oplus_{\text{orth}} D^s_{\beta}$, we have

$$\nabla_U U = P(\nabla_U U) + \eta(\nabla_U U)\xi; \ P(\nabla_U U) \in \Gamma(D^s_\beta).$$

It follows that

$$g(\nabla_X \nabla_U U, X) = g(\nabla_X P(\nabla_U U), X) + (\nabla_X \eta)(\nabla_U U)) g(\xi, X) + \eta(\nabla_X \nabla_U U) g(\xi, X) + \eta(\nabla_U U) g(\nabla_X \xi, X) = -\alpha \eta(\nabla_U U) g(X, X).$$

Since $\eta(\nabla_U U) = g(U, A_N U) = \varphi g(U, A_{\xi}^* U) = \varphi \beta g(U, U)$, we have

$$g(R(X, U)U, X) = -\varphi \alpha \beta g(X, X)g(U, U).$$

While, from the Gauss equation (1.14), we have

$$g(R(X, U)U, X) = \varphi \alpha \beta g(X, X)g(U, U).$$

From the last two equations, we get $\gamma = \varphi \alpha \beta = 0$ for $1 . Consequently we show that if <math>0 , then <math>\gamma = 0$ and $\alpha \beta = 0$.

(1) Let $\gamma \neq 0$: In case $(\operatorname{tr} A_{\xi}^{s})^{2} \neq 4\varphi^{-1}\gamma$. The equation (3.5) has two nonvanishing distinct solutions α and β . If $0 , then we have <math>\gamma = 0$. Thus p = 0 or p = m. If p = 0, then $D_{\alpha}^{s} = \{0\}$ and $D_{\beta}^{s} = S(TM)$. If p = m, then $D_{\alpha}^{s} = S(TM)$ and $D_{\beta}^{s} = \{0\}$. From (1.14) and (1.18), we have

$$R^*(X,Y)Z = 2\varphi\alpha^2 \{g(Y,Z)X - g(X,Z)Y\}, \ \forall X, Y, Z \in \Gamma(D_\alpha);$$

$$R^*(U,V)W = 2\varphi\beta^2 \{g(V,W)U - g(U,W)V\}, \ \forall \ U, \ V, \ W \in \Gamma(D_\beta).$$

Thus either M_{α} or M_{β} , which are leafs of D_{α} or D_{β} respectively, is a Riemannian manifold M^* of constant curvature $2\varphi\alpha^2$ or $2\varphi\beta^2$ respectively and the other leaf is a point $\{x\}$. If p = m, that is, $M^* = M_{\alpha}$, since $B(X,Y) = \alpha g(X,Y)$ for all $X, Y \in \Gamma(S(TM))$, we have $C(X,Y) = \varphi\alpha g(X,Y)$ for all $X, Y \in \Gamma(S(TM))$. If p = 0, that is, $M^* = M_{\beta}$, since $B(U,V) = \beta g(U,V)$ for all $U, V \in \Gamma(S(TM))$, we have $C(U,V) = \varphi\beta g(U,V)$ for all $U, V \in \Gamma(S(TM))$, we have $C(U,V) = \varphi\beta g(U,V)$ for all $U, V \in \Gamma(S(TM))$. Thus the leaf M^* is a totally umbilical which is not a totally geodesics. Consequently M is locally a product manifold $L \times M^* \times \{x\}$ or $L \times \{x\} \times M^*$, where M^* is an m-dimensional totally umbilical Riemannian manifold of constant curvature $2\varphi\beta^2$ or $2\varphi\alpha^2$ which is isometric to a sphere or a hyperbolic space, $\{x\}$ is a point.

In case $(\operatorname{tr} A_{\xi}^*)^2 = 4\varphi^{-1}\gamma$. The equation (3.5) has only one non-zero constant solution, named by α and α is only one eigenvalue of A_{ξ}^* . In this case, the equations (3.6) reduce to $s = 2\alpha = m\alpha$; $\alpha^2 = \varphi^{-1}\gamma$. Thus we have m = 2. Thus this case is not appear.

(2) Let $\gamma = 0$. The equation (3.6) reduces to x(x-s) = 0. In case $\operatorname{tr} A_{\xi}^* \neq 0$. Let $\alpha = 0$ and $\beta = s$. Then we have $s = \beta = (m-p)\beta$, i.e., $(m-p-1)\beta = 0$. So p = m-1. Thus the leaf M_{α} of D_{α}^s is totally geodesic (m-1)-dimensional Riemannian manifold and the leaf M_{β} of D_{β}^s is a spacelike curve. In the sequel,

let $X, Y, Z \in \Gamma(D^s_{\alpha})$ and $U \in \Gamma(D^s_{\beta})$. From (1.14), (1.18) and c = 0, we have $R^*(X, Y)Z = R(X, Y)Z = \overline{R}(X, Y)Z = 0$. Using (3.10) and the fact that the connection ∇^* is metric, we have

 $g(\nabla_X^*Y, U) = -g(Y, \nabla_X^*U) = -g(Y, \nabla_X U) = 0.$

Thus $\nabla_X^* Y \in \Gamma(D_\alpha^s)$. From this result, (1.6), (3.9) and the integrable property of D_α^s , we have $g(R^*(X, Y)Z, U) = 0$. This implies $\pi_\alpha R^*(X, Y)Z =$ $R^*(X, Y)Z = 0$, where π_α is the projection morphism of $\Gamma(S(TM))$ on $\Gamma(D_\alpha^s)$ and $\pi_\alpha R^*$ is the curvature tensor of D_α^s . Thus M_α is a Euclidean manifold. Thus M is locally a product $L \times M_\alpha \times M_\beta$, where M_α is an (m-1)-dimensional Euclidean space and M_β is a spacelike curve in \overline{M} .

In case $\operatorname{tr} A_{\xi}^{*} = 0$. Then we have $\alpha = \beta = 0$ and $A_{\xi}^{*} = 0$ or equivalently B = 0 and $D_{\alpha}^{s} = D_{\beta}^{s} = S(TM)$. Thus M is totally geodesic in \overline{M} . Since M is screen conformal, we also have $C = A_{N} = 0$. Thus the leaf M^{*} of S(TM) is also totally geodesic. Thus we have $\overline{\nabla}_{X}Y = \nabla_{X}^{*}Y$ for any tangent vector fields X and Y to the leaf M^{*} . This implies that M^{*} is a Euclidean m-space. Thus M is locally a product $L \times M^{*} \times \{x\}$, where L is a null curve and $\{x\}$ is a point.

References

- C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421–442.
- [2] C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58–71.
- [3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [4] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
- [5] _____, A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
- [6] D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 3, 271–276.
- [7] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
- [8] G. de Rham, Sur la reductibilité d'un espace de Riemann, Comment. Math. Helv. 26 (1952), 328–344.
- [9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. (2) 21 (1969), 363–388.

DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY KYONGJU 780-714, KOREA *E-mail address*: jindh@dongguk.ac.kr