SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM

Dae Ho Jin

Abstract

In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form subject such that the second fundamental forms of M and its screen distribution $S(T M)$ are conformally related by some non-vanishing smooth function.

1. Introduction

It is well known that the normal bundle $T M^{\perp}$ of the lightlike hypersurfaces (M, g) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is a vector subbundle of $T M$, of rank 1. A complementary vector bundle $S(T M)$ of $T M^{\perp}$ in $T M$ is nondegenerate distribution on M, called a screen distribution on M, such that

$$
\begin{equation*}
T M=T M^{\perp} \oplus_{\mathrm{orth}} S(T M) \tag{1.1}
\end{equation*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. We use the same notation for any other vector bundle. For any null section ξ of $T M^{\perp}$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a null section N of a vector bundle $\operatorname{tr}(T M)$ in $S(T M)^{\perp}$ [3] satisfying

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=0, \forall X \in \Gamma\left(\left.S(T M)\right|_{\mathcal{U}}\right) \tag{1.2}
\end{equation*}
$$

Then the tangent bundle $T \bar{M}$ of \bar{M} is decomposed as follows:

$$
\begin{equation*}
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\left\{T M^{\perp} \oplus \operatorname{tr}(T M)\right\} \oplus_{\text {orth }} S(T M) \tag{1.3}
\end{equation*}
$$

We call $\operatorname{tr}(T M)$ and N the transversal vector bundle and the null transversal vector field of M with respect to the screen distribution $S(T M)$ respectively.

Recently, Atindogbe-Ezin-Tossa have proved the following theorem for Einstein lightlike hypersurfaces of a Lorentzian space form in their paper [2]:

[^0]Theorem $\mathbf{A}([2])$. Let $(M, g, S(T M))$ be a screen homothetic lightlike hypersurface of a Lorentzian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right), c \geq 0$. If M is Einstein, that $i s$, Ric $=\gamma g$ (γ constant), then $\gamma \geq m c$ and
(1) If $\gamma=m c$, then M is locally a product manifold $L \times M^{*}$, where the integral submanifold M^{*} of $S(T M)$ is a Riemannian m-space form with the same curvature c as \bar{M} and L is an open subset of a lightlike geodesic ray in \bar{M}.
(2) If $\gamma>m c$, then M is locally a product $L \times M^{*}$, where M^{*} is a Riemannian m-space form of positive constant curvature $c+2(\gamma-m c)$ which is isometric to a sphere.
The purpose of this paper is to prove a characterization theorem for screen conformal Einstein lightlike hypersurfaces M of a Lorentzian space form $(\bar{M}(c), \bar{g})$.

Theorem 1.1. Let $(M, g, S(T M))$ be a screen conformal Einstein lightlike hypersurface of a Lorentzian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right) ; m>2$. Then $c=0$ and M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is an open subset of a lightlike geodesic ray in \bar{M} and M_{α} and M_{β} are leaves of some integerable distributions of M such that
(1) If $\gamma \neq 0$, either M_{α} or M_{β} is an m-dimensional totally umbilical Einstein Riemannian space form which is isometric to a sphere or a hyperbolic space according to the sign of γ and the other is a point.
(2) If $\gamma=0, M_{\alpha}$ is an $(m-1)$ or an m-dimensional Euclidean space and M_{β} is a non-null curve or a point.

Comparing our Theorem 1.1 with above result Theorem A, we observe that Theorem 1.1 has the following new features of geometric significance:
(1) Since the key player of lightlike hypersurfaces is the integral submanifold $M^{*}=M_{\alpha} \times M_{\beta}$ of the screen distribution $S(T M)$, Theorem 1.1 provides more deeper geometry of M^{*} than Theorem A.
(2) We prove $c=0$ if M is screen conformal and $m>2$. This is a significant result. The screen conformal is more weak condition than the screen homothetic. We can also find $c=0$ for arbitrary m (without the condition $m>2$ due to Note 2) if M is screen homothetic (as Theorem A). Contrary to this, there is no discussion on such a relationship in Atindogbe-Ezin-Tossa's above result. Recall the following structure equations:

Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N, \tag{1.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N, \tag{1.5}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi, \tag{1.6}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{1.7}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$, where the symbols ∇ and ∇^{*} are the induced linear connections on $T M$ and $S(T M)$ respectively, B and C are the local second fundamental forms on $T M$ and $S(T M)$ respectively, A_{N} and A_{ξ}^{*} are the shape operators on $T M$ and $S(T M)$ respectively and τ is a 1-form on $T M$.

Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact that $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ for all $X, Y \in \Gamma(T M)$, we know that B is independent of the choice of a screen distribution and satisfies

$$
\begin{equation*}
B(X, \xi)=0, \forall X \in \Gamma(T M) \tag{1.8}
\end{equation*}
$$

The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.9}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$, where η is a 1 -form such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \forall X \in \Gamma(T M) \tag{1.10}
\end{equation*}
$$

But ∇^{*} is a metric connection. The above local second fundamental forms B and C of M and on $S(T M)$ are related to their shape operators by

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \tag{1.12}
\end{array}
$$

From (1.11), A_{ξ}^{*} is $S(T M)$-valued and self-adjoint on $T M$ such that

$$
\begin{equation*}
A_{\xi}^{*} \xi=0, \tag{1.13}
\end{equation*}
$$

that is, ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 .
We denote by \bar{R}, R and R^{*} the curvature tensors of $\bar{\nabla}, \nabla$ and ∇^{*} respectively. Using the Gauss-Weingarten equations for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$ such that, for any $X, Y, Z, W \in \Gamma(T M)$,
(1.14) $\bar{g}(\bar{R}(X, Y) Z, P W)=g(R(X, Y) Z, P W)$

$$
+B(X, Z) C(Y, P W)-B(Y, Z) C(X, P W)
$$

(1.15) $\bar{g}(\bar{R}(X, Y) Z, \xi)=g(R(X, Y) Z, \xi)$

$$
\begin{aligned}
= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \\
& +B(Y, Z) \tau(X)-B(X, Z) \tau(Y),
\end{aligned}
$$

(1.16) $\bar{g}(\bar{R}(X, Y) Z, N)=g(R(X, Y) Z, N)$,
(1.17) $g(R(X, Y) P Z, P W)=g\left(R^{*}(X, Y) P Z, P W\right)$

$$
\begin{aligned}
& +C(X, P Z) B(Y, P W) \\
& -C(Y, P Z) B(X, P W)
\end{aligned}
$$

$$
\begin{align*}
g(R(X, Y) P Z, N)= & \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \tag{1.18}\\
& +C(X, P Z) \tau(Y)-C(Y, P Z) \tau(X)
\end{align*}
$$

2. Screen conformal hypersurfaces

A lightlike hypersurface $(M, g, S(T M))$ of a semi-Riemannian manifold (\bar{M}, \bar{g}) is screen conformal [1] if the shape operators A_{N} and A_{ξ}^{*} of M and $S(T M)$ respectively are related by $A_{N}=\varphi A_{\xi}^{*}$, or equivalently,

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y), \forall X, Y \in \Gamma(T M), \tag{2.1}
\end{equation*}
$$

where φ is a non-vanishing smooth function on a neighborhood \mathcal{U} in M. In particular, if φ is a non-zero constant, M is called screen homothetic.

Note 1. For a screen conformal M, C is symmetric on $S(T M)$. Thus, by [3], $S(T M)$ is integrable and M is locally a product manifold $L \times M^{*}$, where L is an open subset of a lightlike geodesic ray in \bar{M} and M^{*} is a leaf of $S(T M)$.

Let \bar{M} be a semi-Riemannian space form $\bar{M}(c)$, by (1.15), we have

$$
\begin{equation*}
\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)=B(X, Z) \tau(Y)-B(Y, Z) \tau(X) \tag{2.2}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Using this, (1.16), (1.18) and (2.1), we obtain

$$
\begin{align*}
& \{X[\varphi]-2 \varphi \tau(X)\} B(Y, P Z)-\{Y[\varphi]-2 \varphi \tau(Y)\} B(X, P Z) \tag{2.3}\\
= & c\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} .
\end{align*}
$$

Replacing Y by ξ in (2.3), we obtain

$$
\begin{equation*}
\{\xi[\varphi]-2 \varphi \tau(\xi)\} B(X, P Z)=c g(X, P Z) \tag{2.4}
\end{equation*}
$$

Using this equation, we have the following result.
Theorem 2.1 ([6]). Let $(M, g, S(T M))$ be a screen conformal lightlike hypersurface of a semi-Riemannian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right) ; m>2$. Then $c=0$.

Proof. Assume that $c \neq 0$. Then $\xi[\varphi]-2 \varphi \tau(\xi) \neq 0$ and $B \neq 0$, that is, M is not a totally geodesic. From (2.1) and (2.4), we have

$$
\begin{equation*}
B(X, Y)=\rho g(X, Y), C(X, Y)=\varphi \rho g(X, Y), \forall X, Y \in \Gamma(T M) \tag{2.5}
\end{equation*}
$$

where $\rho=c(\xi[\varphi]-2 \varphi \tau(\xi))^{-1} \neq 0$. From (2.1) and (2.5), we get $\varphi \rho \neq 0$. Thus M and $S(T M)$ are not totally geodesic but totally umbilical. Since M is screen conformal, by Note $1, M$ is locally a product manifold $L \times M^{*}$, where L is an open subset of a lightlike geodesic ray in \bar{M} and M^{*} is a leaf of $S(T M)$. Since \bar{M} is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

$$
\begin{equation*}
R^{*}(X, Y) Z=\left(c+2 \varphi \rho^{2}\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{2.6}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(S(T M))$. Thus the leaf M^{*} of $S(T M)$ is a semi-Riemannian manifold of curvature $\left(c+2 \varphi \rho^{2}\right)$. Let $R i c^{*}$ be the induced symmetric Ricci tensor of M^{*}. From (2.6), we have

$$
\begin{equation*}
\operatorname{Ric}^{*}(X, Y)=\left(c+2 \varphi \rho^{2}\right)(m-1) g(X, Y), \forall X, Y \in \Gamma(S(T M)) \tag{2.7}
\end{equation*}
$$

Thus M^{*} is an Einstein manifold. Since M^{*} is a semi-Riemannian manifold and $m>2$, we show that $\left(c+2 \varphi \rho^{2}\right)$ is a constant and M^{*} has constant curvature $\left(c+2 \varphi \rho^{2}\right)$. Using (1.9), (2.2) and (2.5), we have

$$
\begin{equation*}
\left\{X[\rho]+\rho \tau(X)-\rho^{2} \eta(X)\right\} P Y=\left\{Y[\rho]+\rho \tau(Y)-\rho^{2} \eta(Y)\right\} P X \tag{2.8}
\end{equation*}
$$

Suppose there exists a vector field $X_{o} \in \Gamma(T M)$ such that $X_{o}[\rho]+\rho \tau\left(X_{o}\right)-$ $\rho^{2} \eta\left(X_{o}\right) \neq 0$ at each point $x \in M$. Then $P Y=f P X_{o}$ for any $Y \in \Gamma(T M)$, where f is a smooth function. It follows that all vectors from the fiber $S(T M)_{x}$ are co-linear with $\left(P X_{o}\right)_{x}$. It is a contradiction as $\operatorname{dim}\left(S(T M)_{x}\right)>2$. Thus

$$
X[\rho]+\rho \tau(X)-\rho^{2} \eta(X)=0, \forall X \in \Gamma(T M)
$$

This implies $\xi[\rho]=\rho^{2}-\rho \tau(\xi)$. Therefore, $0=\xi\left[\varphi \rho^{2}\right]=\rho\left(c+2 \varphi \rho^{2}\right)$. Since $\left(c+2 \varphi \rho^{2}\right)$ is a constant and $\rho \neq 0$, we have $c+2 \varphi \rho^{2}=0$. Thus M^{*} is a semi-Euclidean space and $C=0$. Thus, from (2.4), we have $\varphi \rho=0$. This means $c=0$. It is contradiction to $c \neq 0$. Thus we have $c=0$.

3. Einstein lightlike hypersurfaces

The Ricci tensor $\overline{\text { Ric of }} \bar{M}$ and the induced Ricci type tensor $R^{(0,2)}$ of M are defined by

$$
\begin{align*}
& \overline{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \bar{R}(X, Z) Y\}, \forall X, Y \in \Gamma(T \bar{M}) \tag{3.1}\\
& R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}, \forall X, Y \in \Gamma(T M) \tag{3.2}
\end{align*}
$$

Substituting the Gauss-Codazzi equations (1.14) and (1.16) in (3.1) and using the relations (1.11) and (1.12), for all $X, Y \in \Gamma(T M)$, we obtain
$R^{(0,2)}(X, Y)=\overline{\operatorname{Ric}}(X, Y)+B(X, Y) \operatorname{tr} A_{N}-g\left(A_{N} X, A_{\xi}^{*} Y\right)-\bar{g}(R(\xi, Y) X, N)$.
A tensor field $R^{(0,2)}$ of M is called its induced Ricci tensor, denoted by Ric, if it is symmetric. If \bar{M} is a semi-Riemannian space form $(\bar{M}(c), \bar{g})$, then we have $\bar{R}(\xi, Y) X=c \bar{g}(X, Y) \xi$ and $\overline{\operatorname{Ric}}(X, Y)=(m+1) c \bar{g}(X, Y)$. Thus

$$
\begin{equation*}
R^{(0,2)}(X, Y)=m c g(X, Y)+B(X, Y) \operatorname{tr} A_{N}-g\left(A_{N} X, A_{\xi}^{*} Y\right) \tag{3.3}
\end{equation*}
$$

For the rest of this section, by $(M, g, S(T M))$ we shall mean a screen conformal lightlike hypersurfaces of a Lorentzian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right) ; m>2$ unless otherwise specified. In this case, $S(T M)$ is Riemannian and integrable distribution and the sectional curvature c of $\bar{M}(c)$ satisfies $c=0$. For this class of lightlike hypersurfaces, $R^{(0,2)}$ is a symmetric Ricci tensor Ric.

Note 2. It is well known that $R^{(0,2)}$ is symmetric if and only if each 1-form τ is closed, i.e., $d \tau=0$, on any $\mathcal{U} \subset M$ [5]. Therefore, suppose $R^{(0,2)}$ is symmetric, there exists a smooth function f on \mathcal{U} such that $\tau=d f$. Consequently we get $\tau(X)=X(f)$. If we take $\bar{\xi}=\alpha \xi$, it follows that $\tau(X)=\bar{\tau}(X)+X(\operatorname{In} \alpha)$. Setting $\alpha=\exp (f)$ in this equation, we get $\bar{\tau}(X)=0$ for any $X \in \Gamma\left(T M_{\mid \mathcal{U}}\right)$. We call the pair $\{\xi, N\}$ on \mathcal{U} such that the corresponding 1-form τ vanishes
the distinguished null pair of M. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $T M^{\sharp}=T M / \operatorname{Rad}(\mathrm{TM})$ considered by Kupeli [7]. Thus all $S(T M)$ are mutually isomorphic. For this reason, let $(M, g, S(T M))$ be a screen conformal Einstein lightlike hypersurface equipped with the distinguished null pair $\{\xi, N\}$ of a Lorentzian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right) ; m>2$. Under this hypothesis, we show that $\xi[\varphi] B(X, Y)=$ $c g(X, Y)$ due to (2.4). Thus if M is screen homothetic, then we have $c=0$.

Let M be an Einstein manifold, that is, $R^{(0,2)}=R i c=\gamma g$, where γ is a constant if $m>2$. Since ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 due to (1.13) and A_{ξ}^{*} is $\Gamma(S(T M))$-valued real symmetric, A_{ξ}^{*} have m real orthonormal eigenvector fields in $S(T M)$ and is diagonalizable. Consider a frame field of eigenvectors $\left\{\xi, E_{1}, \ldots, E_{m}\right\}$ of A_{ξ}^{*} such that $\left\{E_{1}, \ldots, E_{m}\right\}$ is an orthonormal frame field of $S(T M)$. Then

$$
A_{\xi}^{*} E_{i}=\lambda_{i} E_{i}, 1 \leq i \leq m .
$$

Since M is screen conformal and Ric $=\gamma g$, the equation (3.3) reduces to

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-s g\left(A_{\xi}^{*} X, Y\right)+\varphi^{-1} \gamma g(X, Y)=0 \tag{3.4}
\end{equation*}
$$

where $s=\operatorname{tr} A_{\xi}^{*}$. Put $X=Y=E_{i}$ in (3.4), λ_{i} is a solution of equation

$$
\begin{equation*}
x^{2}-s x+\varphi^{-1} \gamma=0 . \tag{3.5}
\end{equation*}
$$

The equation (3.5) has at most two distinct solutions which are smooth real valued function on \mathcal{U}. Assume that there exists $p \in\{0,1, \ldots, m\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=\alpha$ and $\lambda_{p+1}=\cdots=\lambda_{m}=\beta$, by renumbering if necessary. From (3.5), we have

$$
\begin{equation*}
s=\alpha+\beta=p \alpha+(m-p) \beta ; \alpha \beta=\varphi^{-1} \gamma . \tag{3.6}
\end{equation*}
$$

Theorem 3.1. Let $(M, g, S(T M))$ be a screen conformal Einstein lightlike hypersurface of a Lorentzian space form $\left(\bar{M}^{m+2}(c), \bar{g}\right) ; m>2$. Then M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is an open subset of a lightlike geodesic ray in \bar{M} and M_{α} and M_{β} are totally umbilical leaves of some integerable distributions of M.

Proof. If the equation (3.5) has only one solution α, then, by Note 1 , we have $M=L \times M^{*} \cong L \times M^{*} \times\{x\}$ for any $x \in M$, where $M^{*}=M_{\alpha}$. Since $B(X, Y)=$ $g\left(A_{\xi}^{*} X, Y\right)=\alpha g(X, Y)$ for all $X, Y \in \Gamma(T M), M$ is totally umbilical. By (2.1), we get $C(X, Y)=\varphi \alpha g(X, Y)$ for all $X, Y \in \Gamma(T M)$. Thus M^{*} is also totally umbilical. In this case, our assertion is true.

Assume the equation (3.5) has exactly two distinct solutions α and β. If $p=0$ or $p=m$, then we also show that $M=L \times M^{*} \cong L \times M^{*} \times\{x\}$ for any $x \in M$ and $M^{*}=M_{\alpha}$ or M_{β}. In these cases, M and M^{*} are also totally umbilical. Let $0<p<m$. Consider the following four distributions
$D_{\alpha}, D_{\beta}, D_{\alpha}^{s}$ and D_{β}^{s} on $M:$

$$
\begin{aligned}
& \Gamma\left(D_{\alpha}\right)=\left\{X \in \Gamma(T M) \mid A_{\xi}^{*} X=\alpha P X\right\}, D_{\alpha}^{s}=P D_{\alpha} \\
& \Gamma\left(D_{\beta}\right)=\left\{U \in \Gamma(T M) \mid A_{\xi}^{*} U=\beta P U\right\}, \quad D_{\beta}^{s}=P D_{\beta}
\end{aligned}
$$

Then $D_{\alpha} \cap D_{\beta}=T M^{\perp}$ and $D_{\alpha}^{s} \cap D_{\beta}^{s}=\{0\}$. As $A_{\xi}^{*} P X=A_{\xi}^{*} X=\alpha P X$ for all $X \in \Gamma\left(D_{\alpha}\right)$ and $A_{\xi}^{*} P U=A_{\xi}^{*} U=\beta P U$ for all $U \in \Gamma\left(D_{\beta}\right), P X$ and $P U$ are eigenvector fields of the real symmetric operator A_{ξ}^{*} corresponding to the different eigenvalues α and β respectively. Thus $P X \perp_{g} P U$ and $g(X, U)=$ $g(P X, P U)=0$, that is, $D_{\alpha} \perp_{g} D_{\beta}$. Also, since $B(X, U)=g\left(A_{\xi}^{*} X, U\right)=$ $\alpha g(P X, P U)=0$, we show that $D_{\alpha} \perp_{B} D_{\beta}$.

Since $\left\{E_{i}\right\}_{1 \leq i \leq p}$ and $\left\{E_{a}\right\}_{p+1 \leq a \leq m}$ are vector fields of D_{α}^{s} and D_{β}^{s} respectively and D_{α}^{s} and D_{β}^{s} are mutually orthogonal vector subbundle of $S(T M)$, D_{α}^{s} and D_{β}^{s} are non-degenerate distributions of rank p and rank $(m-p)$ respectively. Thus we have $S(T M)=D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$.

From (3.4), we show that $\left(A_{\xi}^{*}\right)^{2}-(\alpha+\beta) A_{\xi}^{*}+\alpha \beta P=0$. Let $Y \in \operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right)$, then there exists $X \in \Gamma(T M)$ such that $Y=\left(A_{\xi}^{*}-\alpha P\right) X$. Then $\left(A_{\xi}^{*}-\beta P\right) Y=$ 0 and $Y \in \Gamma\left(D_{\beta}\right)$. Thus $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}\right)$. Since the morphism $A_{\xi}^{*}-\alpha P$ maps $\Gamma(T M)$ onto $\Gamma(S(T M))$, we have $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}^{s}\right)$. By duality, we also have $\operatorname{Im}\left(A_{\xi}^{*}-\beta P\right) \subset \Gamma\left(D_{\alpha}^{s}\right)$.

For $X, Y \in \Gamma\left(D_{\alpha}\right)$ and $U \in \Gamma\left(D_{\beta}\right)$, we have

$$
\left(\nabla_{X} B\right)(Y, U)=-g\left(\left(A_{\xi}^{*}-\alpha P\right) \nabla_{X} Y, U\right)+\alpha B(X, Y) \eta(U)
$$

and $\left(\nabla_{X} B\right)(Y, U)=\left(\nabla_{Y} B\right)(X, U)$ due to (1.15). Thus $g\left(\left(A_{\xi}^{*}-\alpha P\right)[X, Y], U\right)=$ 0 . Since the distribution D_{β}^{s} is non-degenerate and $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}^{s}\right)$, we have $\left(A_{\xi}^{*}-\alpha P\right)[X, Y]=0$. Thus $[X, Y] \in \Gamma\left(D_{\alpha}\right)$ and D_{α} is integrable. By duality, D_{β} is also integrable. Since $S(T M)$ is integrable, for any $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$, we have $[X, Y] \in \Gamma\left(D_{\alpha}\right)$ and $[X, Y] \in \Gamma(S(T M))$. Thus $[X, Y] \in \Gamma\left(D_{\alpha}^{s}\right)$ and D_{α}^{s} is integrable. So is D_{β}^{s}.

For $X, Y \in \Gamma\left(D_{\alpha}\right)$, we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, Z)= & -g\left(\left(A_{\xi}^{*}-\alpha P\right) \nabla_{X} Y, Z\right)+\alpha B(X, Y) \eta(Z) \\
& +(X \alpha) g(Y, Z)+\alpha^{2} \eta(Y) g(X, Z)
\end{aligned}
$$

Using this and the fact that $\left(\nabla_{X} B\right)(Y, Z)=\left(\nabla_{Y} B\right)(X, Z)$, we obtain

$$
\begin{equation*}
\left\{X \alpha-\alpha^{2} \eta(X)\right\} g(Y, Z)=\left\{Y \alpha-\alpha^{2} \eta(Y)\right\} g(X, Z) \tag{3.7}
\end{equation*}
$$

due to $\left(A_{\xi}^{*}-\alpha P\right)[X, Y]=0$. Therefore, for $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$ and $Z \in \Gamma(S(T M))$, we obtain $(X \alpha) g(Y, Z)=(Y \alpha) g(X, Z)$. Since $S(T M)$ is non-degenerate, we have $d \alpha(X) Y=d \alpha(Y) X$. Suppose there exists a vector field $X_{o} \in \Gamma\left(D_{\alpha}^{s}\right)$ such that $d \alpha\left(X_{o}\right)_{x} \neq 0$ at each point $x \in M$. Then $Y=f X_{o}$ for any $Y \in \Gamma\left(D_{\alpha}^{s}\right)$, where f is a smooth function. It follows that all vectors from the fiber $\left(D_{\alpha}^{s}\right)_{x}$ are colinear with $\left(X_{o}\right)_{x}$. It is a contradiction as $\operatorname{dim}\left(D_{\alpha}^{s}\right)_{x}=p>1$. Thus we have $\left.d \alpha\right|_{D_{\alpha}^{s}}=0$. By duality, we also have $\left.d \beta\right|_{D_{\beta}^{s}}=0$. Thus α is a constant
along D_{α}^{s} and β is a constant along D_{β}^{s}. Since $(p-1) \alpha=-(m-p-1) \beta, \alpha$ and β are constants along $S(T M)$.

From (2.3) with $c=0$, we have

$$
\begin{equation*}
(X \varphi) B(Y, Z)=(Y \varphi) B(X, Z), \forall X, Y, Z \in \Gamma(T M) \tag{3.8}
\end{equation*}
$$

Take $X, Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$, the equation (3.8) reduces to

$$
(X \varphi) \alpha g(Y, Z)=(Y \varphi) \alpha g(X, Z), \text { i.e., } d(X \varphi) \alpha Y=(Y \varphi) \alpha X
$$

Since $\operatorname{dim}\left(D_{\alpha}^{s}\right)_{x}>1$, we have $(X \varphi) \alpha=0$ for all $X \in \Gamma\left(D_{\alpha}^{s}\right)$. While, take $X \in \Gamma\left(D_{\beta}^{s}\right)$ and $Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$ in (3.8), we have $(X \varphi) \alpha=0$ for all $X \in \Gamma\left(D_{\beta}^{s}\right)$. Consequently, we obtain $(X \varphi) \alpha=0$ for all $X \in \Gamma(S(T M))$. By duality, we get $(X \varphi) \beta=0$ for all $X \in \Gamma(S(T M))$. Since $(\alpha, \beta) \neq(0,0)$, we have $X \varphi=0$ for all $X \in \Gamma(S(T M))$, that is, φ is a constant along $S(T M)$. For all $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$, we have $\xi[\varphi] \alpha=0$ due to (2.3). Also, for all $X, Y \in \Gamma\left(D_{\beta}^{s}\right)$, we have $\xi[\varphi] \beta=0$. Thus we have $\xi[\varphi]=0$. Consequently we have $X[\varphi]=0$ for all $X \in \Gamma(T M)$, i.e., φ is a constant on M. For all $X \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U \in \Gamma\left(D_{\beta}^{s}\right)$, since $\left(\nabla_{X} B\right)(U, Z)=\left(\nabla_{U} B\right)(X, Z)$, we get

$$
g\left(\left\{\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U-\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X\right\}, Z\right)=0, \forall Z \in \Gamma(S(T M))
$$

Since $S(T M)$ is non-degenerate, we have $\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U=\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X$. Since the left term of the last equation is in $\Gamma\left(D_{\alpha}^{s}\right)$ and the right term is in $\Gamma\left(D_{\beta}^{s}\right)$ and $D_{\alpha}^{s} \cap D_{\beta}^{s}=\{0\}$, we have $\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U=0$ and $\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X=$ 0 . This imply that $\nabla_{X} U \in \Gamma\left(D_{\beta}\right)$ and $\nabla_{U} X \in \Gamma\left(D_{\alpha}\right)$. On the other hand, $\nabla_{X} U=\nabla_{X}^{*} U$ and $\nabla_{U} X=\nabla_{U}^{*} X$ due to $D_{\alpha} \perp_{B} D_{\beta}$, we have

$$
\begin{equation*}
\nabla_{X} U \in \Gamma\left(D_{\beta}^{s}\right), \nabla_{U} X \in \Gamma\left(D_{\alpha}^{s}\right), \forall X \in \Gamma\left(D_{\alpha}^{s}\right) ; \forall U \in \Gamma\left(D_{\beta}^{s}\right) \tag{3.9}
\end{equation*}
$$

For $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U, V \in \Gamma\left(D_{\beta}^{s}\right)$, since $g(X, U)=0$, we have

$$
g\left(\nabla_{Y} X, U\right)+g\left(X, \nabla_{Y} U\right)=0, g\left(\nabla_{V} U, X\right)+g\left(U, \nabla_{V} X\right)=0
$$

Using (3.9), we have $g\left(X, \nabla_{Y} U\right)=g\left(U, \nabla_{V} X\right)=0$. Thus we get

$$
\begin{equation*}
g\left(\nabla_{Y} X, U\right)=0 ; g\left(X, \nabla_{V} U\right)=0 . \tag{3.10}
\end{equation*}
$$

Since the leaf M^{*} of $S(T M)$ is a Riemannian manifold and $S(T M)=$ $D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$, where D_{α}^{s} and D_{β}^{s} are parallel and integrable distributions with respect to the induced connection ∇^{*} on M^{*} due to (3.10), by the decomposition theorem of de Rham [8], we have $M^{*}=M_{\alpha} \times M_{\beta}$, where M_{α} and M_{β} are some leaves of D_{α}^{s} and D_{β}^{s} respectively. Thus we have our theorem.

Proof of Theorem 1.1. First, we prove that $\gamma=0$ and $\alpha \beta=0$ for $0<p<m$. From the facts that $(p-1) \alpha=-(m-p-1) \beta$ and $m>2$, if $p=1$, then $\beta=0$ and if $p=m-1$, then $\alpha=0$. Thus we have $\gamma=0$. Let $1<p<m-1$. Then, for $X \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U \in \Gamma\left(D_{\beta}^{s}\right)$, using (3.9) and (3.10), we have

$$
g(R(X, U) U, X)=g\left(\nabla_{X} \nabla_{U} U, X\right)
$$

From the second equation of (3.10), we know that $\nabla_{U} U$ has no component of D_{α}. Since P maps $\Gamma\left(D_{\beta}\right)$ onto $\Gamma\left(D_{\beta}^{s}\right)$ and $S(T M)=D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$, we have

$$
\nabla_{U} U=P\left(\nabla_{U} U\right)+\eta\left(\nabla_{U} U\right) \xi ; P\left(\nabla_{U} U\right) \in \Gamma\left(D_{\beta}^{s}\right)
$$

It follows that

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{U} U, X\right)= & \left.g\left(\nabla_{X} P\left(\nabla_{U} U\right), X\right)+\left(\nabla_{X} \eta\right)\left(\nabla_{U} U\right)\right) g(\xi, X) \\
& +\eta\left(\nabla_{X} \nabla_{U} U\right) g(\xi, X)+\eta\left(\nabla_{U} U\right) g\left(\nabla_{X} \xi, X\right) \\
= & -\alpha \eta\left(\nabla_{U} U\right) g(X, X)
\end{aligned}
$$

Since $\eta\left(\nabla_{U} U\right)=g\left(U, A_{N} U\right)=\varphi g\left(U, A_{\xi}^{*} U\right)=\varphi \beta g(U, U)$, we have

$$
g(R(X, U) U, X)=-\varphi \alpha \beta g(X, X) g(U, U)
$$

While, from the Gauss equation (1.14), we have

$$
g(R(X, U) U, X)=\varphi \alpha \beta g(X, X) g(U, U)
$$

From the last two equations, we get $\gamma=\varphi \alpha \beta=0$ for $1<p<m-1$. Consequently we show that if $0<p<m$, then $\gamma=0$ and $\alpha \beta=0$.
(1) Let $\gamma \neq 0$: In case $\left(\operatorname{tr} A_{\xi}^{*}\right)^{2} \neq 4 \varphi^{-1} \gamma$. The equation (3.5) has two nonvanishing distinct solutions α and β. If $0<p<m$, then we have $\gamma=0$. Thus $p=0$ or $p=m$. If $p=0$, then $D_{\alpha}^{s}=\{0\}$ and $D_{\beta}^{s}=S(T M)$. If $p=m$, then $D_{\alpha}^{s}=S(T M)$ and $D_{\beta}^{s}=\{0\}$. From (1.14) and (1.18), we have

$$
\begin{aligned}
R^{*}(X, Y) Z & =2 \varphi \alpha^{2}\{g(Y, Z) X-g(X, Z) Y\}, \forall X, Y, Z \in \Gamma\left(D_{\alpha}\right) \\
R^{*}(U, V) W & =2 \varphi \beta^{2}\{g(V, W) U-g(U, W) V\}, \forall U, V, W \in \Gamma\left(D_{\beta}\right)
\end{aligned}
$$

Thus either M_{α} or M_{β}, which are leafs of D_{α} or D_{β} respectively, is a Riemannian manifold M^{*} of constant curvature $2 \varphi \alpha^{2}$ or $2 \varphi \beta^{2}$ respectively and the other leaf is a point $\{x\}$. If $p=m$, that is, $M^{*}=M_{\alpha}$, since $B(X, Y)=$ $\alpha g(X, Y)$ for all $X, Y \in \Gamma(S(T M))$, we have $C(X, Y)=\varphi \alpha g(X, Y)$ for all $X, Y \in \Gamma(S(T M))$. If $p=0$, that is, $M^{*}=M_{\beta}$, since $B(U, V)=\beta g(U, V)$ for all $U, V \in \Gamma(S(T M))$, we have $C(U, V)=\varphi \beta g(U, V)$ for all $U, V \in \Gamma(S(T M))$. Thus the leaf M^{*} is a totally umbilical which is not a totally geodesics. Consequently M is locally a product manifold $L \times M^{*} \times\{x\}$ or $L \times\{x\} \times M^{*}$, where M^{*} is an m-dimensional totally umbilical Riemannian manifold of constant curvature $2 \varphi \beta^{2}$ or $2 \varphi \alpha^{2}$ which is isometric to a sphere or a hyperbolic space, $\{x\}$ is a point.

In case $\left(\operatorname{tr} A_{\xi}^{*}\right)^{2}=4 \varphi^{-1} \gamma$. The equation (3.5) has only one non-zero constant solution, named by α and α is only one eigenvalue of A_{ξ}^{*}. In this case, the equations (3.6) reduce to $s=2 \alpha=m \alpha ; \alpha^{2}=\varphi^{-1} \gamma$. Thus we have $m=2$. Thus this case is not appear.
(2) Let $\gamma=0$. The equation (3.6) reduces to $x(x-s)=0$. In case $\operatorname{tr} A_{\xi}^{*} \neq 0$. Let $\alpha=0$ and $\beta=s$. Then we have $s=\beta=(m-p) \beta$, i.e., $(m-p-1) \beta=0$. So $p=m-1$. Thus the leaf M_{α} of D_{α}^{s} is totally geodesic $(m-1)$-dimensional Riemannian manifold and the leaf M_{β} of D_{β}^{s} is a spacelike curve. In the sequel,
let $X, Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U \in \Gamma\left(D_{\beta}^{s}\right)$. From (1.14), (1.18) and $c=0$, we have $R^{*}(X, Y) Z=R(X, Y) Z=\bar{R}(X, Y) Z=0$. Using (3.10) and the fact that the connection ∇^{*} is metric, we have

$$
g\left(\nabla_{X}^{*} Y, U\right)=-g\left(Y, \nabla_{X}^{*} U\right)=-g\left(Y, \nabla_{X} U\right)=0
$$

Thus $\nabla_{X}^{*} Y \in \Gamma\left(D_{\alpha}^{s}\right)$. From this result, (1.6), (3.9) and the integrable property of D_{α}^{s}, we have $g\left(R^{*}(X, Y) Z, U\right)=0$. This implies $\pi_{\alpha} R^{*}(X, Y) Z=$ $R^{*}(X, Y) Z=0$, where π_{α} is the projection morphism of $\Gamma(S(T M))$ on $\Gamma\left(D_{\alpha}^{s}\right)$ and $\pi_{\alpha} R^{*}$ is the curvature tensor of D_{α}^{s}. Thus M_{α} is a Euclidean manifold. Thus M is locally a product $L \times M_{\alpha} \times M_{\beta}$, where M_{α} is an ($m-1$)-dimensional Euclidean space and M_{β} is a spacelike curve in \bar{M}.

In case $\operatorname{tr} A_{\xi}^{*}=0$. Then we have $\alpha=\beta=0$ and $A_{\xi}^{*}=0$ or equivalently $B=0$ and $D_{\alpha}^{s}=D_{\beta}^{s}=S(T M)$. Thus M is totally geodesic in \bar{M}. Since M is screen conformal, we also have $C=A_{N}=0$. Thus the leaf M^{*} of $S(T M)$ is also totally geodesic. Thus we have $\bar{\nabla}_{X} Y=\nabla_{X}^{*} Y$ for any tangent vector fields X and Y to the leaf M^{*}. This implies that M^{*} is a Euclidean m-space. Thus M is locally a product $L \times M^{*} \times\{x\}$, where L is a null curve and $\{x\}$ is a point.

References

[1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
[2] C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58-71.
[3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[4] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
[5] _ A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
[6] D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 16 (2009), no. 3, 271-276.
[7] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
[8] G. de Rham, Sur la reductibilitè d'un espace de Riemann, Comment. Math. Helv. 26 (1952), 328-344.
[9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. (2) 21 (1969), 363-388.

Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received March 18, 2009.
 2000 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. Einstein lightlike hypersurfaces, screen conformal, Lorentzian space forms.

