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SCREEN CONFORMAL EINSTEIN LIGHTLIKE
HYPERSURFACES OF A LORENTZIAN SPACE FORM

DAE Ho JIN

ABSTRACT. In this paper, we study the geometry of lightlike hypersur-
faces of a semi-Riemannian manifold. We prove a classification theorem
for Einstein lightlike hypersurfaces M of a Lorentzian space form subject
such that the second fundamental forms of M and its screen distribution
S(TM) are conformally related by some non-vanishing smooth function.

1. Introduction

It is well known that the normal bundle TM~* of the lightlike hypersurfaces
(M, g) of a semi-Riemannian manifold (M, g) is a vector subbundle of 7'M,
of rank 1. A complementary vector bundle S(TM) of TM* in TM is non-
degenerate distribution on M, called a screen distribution on M, such that

(1.1) TM =TM* @ S(TM),

where ®qtn denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by (M, g, S(TM)). Denote by F(M) the algebra of smooth func-
tions on M and by T'(E) the F(M) module of smooth sections of a vector
bundle E over M. We use the same notation for any other vector bundle. For
any null section ¢ of TM~ on a coordinate neighborhood & C M, there exists
a null section N of a vector bundle tr(TM) in S(TM)* [3] satisfying

(12)  g(&,N)=1, g(N,N)=g(N,X) =0, VX e I'(S(TM)lu) -
Then the tangent bundle TM of M is decomposed as follows:
(1.3) TM =TM @ tx(TM) = {TM* @ tr(TM)} ©oren S(TM).

We call tr(T'M) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution S(T'M) respectively.
Recently, Atindogbe-Ezin-Tossa have proved the following theorem for Ein-

stein lightlike hypersurfaces of a Lorentzian space form in their paper [2]:
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Theorem A ([2]). Let (M,g,S(TM)) be a screen homothetic lightlike hyper-
surface of a Lorentzian space form (M™%2(c), ), ¢ > 0. If M is Einstein, that
is, Ric = g (v constant), then v > mc and

(1) If v = me, then M is locally a product manifold L x M*, where the
integral submanifold M* of S(T'M) is a Riemannian m-space form
with the same curvature ¢ as M and L is an open subset of a lightlike
geodesic ray in M.

(2) If v > me, then M is locally a product L x M*, where M* is a Rie-
mannian m-space form of positive constant curvature ¢ + 2(y — mc)

which is isometric to a sphere.

The purpose of this paper is to prove a characterization theorem for screen con-

formal Einstein lightlike hypersurfaces M of a Lorentzian space form (M (c), g).

Theorem 1.1. Let (M,g,S(TM)) be a screen conformal Einstein lightlike
hypersurface of a Lorentzian space form (M™%2(c), g); m > 2. Then ¢ = 0
and M 1is locally a product manifold L x My x Mg, where L is an open subset
of a lightlike geodesic ray in M and M, and Mg are leaves of some integerable
distributions of M such that

(1) If v # 0, either M, or Mg is an m-dimensional totally umbilical Ein-
stein Riemannian space form which is isometric to a sphere or a hy-
perbolic space according to the sign of v and the other is a point.

(2) If y =0, M,, is an (m — 1) or an m-dimensional Euclidean space and
Mg is a non-null curve or a point.

Comparing our Theorem 1.1 with above result Theorem A, we observe that
Theorem 1.1 has the following new features of geometric significance:

(1) Since the key player of lightlike hypersurfaces is the integral submanifold
M* = M, x Mg of the screen distribution S(T'M), Theorem 1.1 provides more
deeper geometry of M* than Theorem A.

(2) We prove ¢ = 0 if M is screen conformal and m > 2. This is a significant
result. The screen conformal is more weak condition than the screen homo-
thetic. We can also find ¢ = 0 for arbitrary m (without the condition m > 2
due to Note 2) if M is screen homothetic (as Theorem A). Contrary to this,
there is no discussion on such a relationship in Atindogbe-Ezin-Tossa’s above
result. Recall the following structure equations:

Let V be the Levi-Civita connection of M and P the projection morphism
of I'(T'M) on I'(S(T'M)) with respect to the decomposition (1.1). Then the
local Gauss and Weingartan formulas are given by

(1.4) VxY = VxY + B(X, Y)N,
(1.5) VxN = —AyX + 1(X)N,
(1.6) VxPY = ViPY +C(X, PY)E,
(1.7) Vxé = —A;X —7(X)¢
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for any X, Y € T'(TM), where the symbols V and V* are the induced linear
connections on TM and S(TM) respectively, B and C are the local second
fundamental forms on T'M and S(T'M) respectively, Ay and Af are the shape
operators on TM and S(TM) respectively and 7 is a 1-form on TM.

Since V is torsion-free, V is also torsion-free and B is symmetric. From
the fact that B(X,Y) = g(VxY,€) for all X, Y € I'(TM), we know that B is
independent of the choice of a screen distribution and satisfies

(1.8) B(X,¢&)=0,VX el(TM).

The induced connection V of M is not metric and satisfies
(1.9) (Vxg)(Y, 2) = BX, Y)(Z) + B(X, Z)n(Y)
for any X, Y, Z € T'(TM), where n is a 1-form such that
(1.10) n(X)=g(X, N), VX eT(TM).

But V* is a metric connection. The above local second fundamental forms B
and C of M and on S(T'M) are related to their shape operators by

(L11) B(X,Y)= g(A{X,Y),  glALX,N)=0,

(1.12) C(X, PY)=g(AnX, PY), g(AnyX, N)=0.

From (1.11), A7 is S(T'M)-valued and self-adjoint on 7'M such that
(1.13) A6 =0,

that is, £ is an eigenvector field of AZ corresponding to the eigenvalue 0.

We denote by R, R and R* the curvature tensors of V, V and V* re-
spectively. Using the Gauss-Weingarten equations for M and S(TM), we
obtain the Gauss-Codazzi equations for M and S(T'M) such that, for any
X, Y, Z, Wel(TM),

(1.14) g(R(X,Y)Z, PW) = g(R(X, Y)Z, PW)
+ B(X, Z)C(Y, PW) — B(Y, Z)C(X, PW),
(1.15)  g(R(X,Y)Z, §) = g(R(X, Y)Z, €)
= (VxB)(Y, Z) - (VyB)(X, Z)
+ B(Y, Z2)7(X) - B(X, Z)r(Y),
(1.16) g(R(X,Y)Z, N)=g(R(X,Y)Z, N),
(1.17)  g(R(X, Y)PZ, PW) = g(R*(X, Y)PZ, PW)
+ C(X,PZ)B(Y, PW)
—C(Y,PZ)B(X,PW),
(1.18) g(R(X,Y)PZ, N) = (VxC)(Y, PZ) — (VyC)(X, PZ)
+ O(X, PZ)r(Y) — C(Y, PZ)7(X).
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2. Screen conformal hypersurfaces

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M, g)
is screen conformal[l] if the shape operators Ay and A7 of M and S(T'M) re-
spectively are related by Ay = ¢ A¥, or equivalently,

(2.1) C(X,PY)=¢B(X,Y), VX, Y e T(TM),
where ¢ is a non-vanishing smooth function on a neighborhood &/ in M. In

particular, if ¢ is a non-zero constant, M is called screen homothetic.

Note 1. For a screen conformal M, C' is symmetric on S(T'M). Thus, by [3],

S(TM) is integrable and M is locally a product manifold L x M*, where L is

an open subset of a lightlike geodesic ray in M and M* is a leaf of S(T'M).
Let M be a semi-Riemannian space form M (c), by (1.15), we have

(2.2) (VxB)(Y,Z) = (VyB)(X,Z) = B(X, Z)7(Y) — B(Y, Z)7(X)

for all X, Y, Z € I'(T'M). Using this, (1.16), (1.18) and (2.1), we obtain

(2.3) {X[p] = 207(X)}B(Y, PZ) = {Y[p] — 2¢7(Y)}B(X, PZ)
= c{g(Y, PZ)n(X) = g(X, PZ)n(Y)}.

Replacing Y by ¢ in (2.3), we obtain

(2.4) {le] = 207(8)}B(X, PZ) = cg(X, PZ).

Using this equation, we have the following result.

Theorem 2.1 ([6]). Let (M,g,S(TM)) be a screen conformal lightlike hyper-
surface of a semi-Riemannian space form (M™%2(c), g); m > 2. Then ¢ = 0.

Proof. Assume that ¢ # 0. Then &[p] — 2¢7(§) # 0 and B # 0, that is, M is
not a totally geodesic. From (2.1) and (2.4), we have

(25)  B(X,Y)=pg(X,Y), C(X,Y)=ppg(X,Y), VX, Y € I(TM),

where p = c(&[p] — 2¢7(£)) 7! # 0. From (2.1) and (2.5), we get pp # 0. Thus
M and S(T'M) are not totally geodesic but totally umbilical. Since M is screen
conformal, by Note 1, M is locally a product manifold L x M*, where L is an
open subset of a lightlike geodesic ray in M and M* is a leaf of S(T'M). Since
M is a space of constant curvature, from (1.14), (1.17) and (2.5), we have

(2.6) RY(X,Y)Z = (c+20p"){9(Y, Z2)X — 9(X,Z)Y}

forall X, Y, Z e T'(S(TM)). Thus the leaf M* of S(T M) is a semi-Riemannian
manifold of curvature (c + 2pp?). Let Ric* be the induced symmetric Ricci
tensor of M*. From (2.6), we have

(2.7 Ric*(X,Y) = (c+2¢p*)(m — 1) g(X,Y), ¥V X, Y € T(S(TM)).
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Thus M* is an Einstein manifold. Since M* is a semi-Riemannian manifold and
m > 2, we show that (c+ 2¢pp?) is a constant and M* has constant curvature
(c+2¢p?). Using (1.9), (2.2) and (2.5), we have

(2.8)  {X[p] + pr(X) = p*n(X)}PY = {Y[p] + p7(Y) — p*n(Y)} PX.

Suppose there exists a vector field X, € I'(T'M) such that X,[p] + p7(X,) —
0*n(X,) # 0 at each point z € M. Then PY = fPX, for any Y € I'(TM),
where f is a smooth function. It follows that all vectors from the fiber S(T'M),,
are co-linear with (PX,), . It is a contradiction as dim (S(T'M),) > 2. Thus

X[p] + p7(X) — p*n(X) =0, VX € T(TM).

This implies £[p] = p? — p7(£). Therefore, 0 = &[pp?] = p(c + 2¢p?). Since
(¢ + 2¢p?) is a constant and p # 0, we have ¢ + 2pp? = 0. Thus M* is a
semi-Euclidean space and C' = 0. Thus, from (2.4), we have ¢p = 0. This
means ¢ = 0. It is contradiction to ¢ # 0. Thus we have ¢ = 0. O

3. Einstein lightlike hypersurfaces

The Ricci tensor Ric of M and the induced Ricci type tensor R(:2) of M
are defined by

(3.1) Rie(X,Y) = trace{Z — R(X, Z)Y}, ¥V X, Y e I(TM),
(3.2) RO2(X,Y) = trace{Z — R(Z,X)Y}, V X, Y e D(TM).

Substituting the Gauss-Codazzi equations (1.14) and (1.16) in (3.1) and using
the relations (1.11) and (1.12), for all X, Y € T'(T'M), we obtain

RO2(X)Y) = Ric(X,Y) + B(X,Y)trAy — g(AnX, ALY) — g(R(£, V)X, N).

A tensor field R(2) of M is called its induced Ricci tensor, denoted by Ric,

if it is symmetric. If M is a semi-Riemannian space form (M(c), g), then we
have R(§, V)X = cg(X, V)¢ and Ric(X,Y) = (m+1)cg(X, Y). Thus

(3.3) RO2(X,Y) =mcg(X,Y) + B(X,Y)trAy — g(AnX, ALY).

For the rest of this section, by (M, g, S(TM)) we shall mean a screen con-
formal lightlike hypersurfaces of a Lorentzian space form (M™*2(c), g); m > 2
unless otherwise specified. In this case, S(T'M) is Riemannian and integrable
distribution and the sectional curvature ¢ of M(c) satisfies ¢ = 0. For this class
of lightlike hypersurfaces, R(>?) is a symmetric Ricci tensor Ric.

Note 2. It is well known that R( 2 is symmetric if and only if each 1-form 7
is closed, i.e., dT = 0, on any U C M [5]. Therefore, suppose R(©:2) is symmet-
ric, there exists a smooth function f on U such that 7 = df. Consequently we
get 7(X) = X(f). If we take £ = af, it follows that 7(X) = 7(X) + X(Ina).
Setting o = exp(f) in this equation, we get 7(X) = 0 for any X € I'(T'M|y).
We call the pair {{, N} on U such that the corresponding 1-form 7 vanishes
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the distinguished null pair of M. Although S(TM) is not unique, it is canon-
ically isomorphic to the factor vector bundle TM* = T'M/Rad(TM) consid-
ered by Kupeli [7]. Thus all S(T'M) are mutually isomorphic. For this rea-
son, let (M,g,S(TM)) be a screen conformal Einstein lightlike hypersurface
equipped with the distinguished null pair {£, N} of a Lorentzian space form
(M™*2(c), g); m > 2. Under this hypothesis, we show that &[p]B(X,Y) =
cg(X,Y) due to (2.4). Thus if M is screen homothetic, then we have ¢ = 0.

Let M be an Einstein manifold, that is, R(%? = Ric = ~g, where 7 is a
constant if m > 2. Since ¢ is an eigenvector field of A corresponding to the
eigenvalue 0 due to (1.13) and Af is I'(S(T'M))-valued real symmetric, A have
m real orthonormal eigenvector fields in S(T'M) and is diagonalizable. Consider
a frame field of eigenvectors {{, E1, ..., Ey,} of Af such that {E1, ..., Ep} is
an orthonormal frame field of S(T'M). Then

AEEZ = )\iEiu 1 S 1 S m.
Since M is screen conformal and Ric = 7g, the equation (3.3) reduces to
(3.4) g(AEX, ALY) — sg(AEX, Y) + ¢ 1y g(X, Y) =0,

where s = trA;. Put X =Y = E; in (3.4), A; is a solution of equation

(3.5) 22 —sr+ oty =0.

The equation (3.5) has at most two distinct solutions which are smooth real
valued function on Y. Assume that there exists p € {0, 1, ..., m} such that
M ==X =aand A\py; = --- = A, = 3, by renumbering if necessary.
From (3.5), we have

(3.6) s=a+p=pa+(m—p)pF; af=¢ .

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal Einstein lightlike hy-
persurface of a Lorentzian space form (M™%2(c),g); m > 2. Then M is locally
a product manifold L x My x Mg, where L is an open subset of a lightlike geo-
desic ray in M and M, and Mg are totally umbilical leaves of some integerable
distributions of M.

Proof. If the equation (3.5) has only one solution «, then, by Note 1, we have
M = LxM* = LxM*x{z} for any x € M, where M* = M,,. Since B(X,Y) =
g(AZX, Y)=ag(X,Y) forall XY € (T M), M is totally umbilical. By (2.1),
we get C(X,Y) = pag(X,Y) for all X, Y € I'(T'M). Thus M* is also totally
umbilical. In this case, our assertion is true.

Assume the equation (3.5) has exactly two distinct solutions a and §. If
p = 0 or p = m, then we also show that M = L x M* =2 L x M* x {z}
for any x € M and M* = M, or Mpg. In these cases, M and M™* are also
totally umbilical. Let 0 < p < m. Consider the following four distributions
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Dy, Dg, Dy, and Dj on M:

I'(Dy) = {X €T(TM) | A;X = a PX}, D} = PD,;
[(Dg) = {UeT(TM) | A{lU = BPU}, Dj = PDg.

Then D, N Dg = TM+ and D N Dj = {0}. As A;PX = A;X = aPX for
all X € I'(D,) and A;PU = A;U = PU for all U € I(Dg), PX and PU
are eigenvector fields of the real symmetric operator Az corresponding to the
different eigenvalues a and f3 respectively. Thus PX L PU and g(X,U) =
g(PX,PU) = 0, that is, D, L, Dg. Also, since B(X, U) = g(AEX, U) =
ag(PX, PU) =0, we show that D, L, Dg.

Since {E;}1<i<p and {E,}pr1<a<m are vector fields of Df and D respec-
tively and Dy, and Dj are mutually orthogonal vector subbundle of S (TM),
D;, and Dy are non-degenerate distributions of rank p and rank (m — p) re-
spectively. Thus we have S(TM) = D2, @ortn Dj.

From (3.4), we show that (Az)zf(aJrﬂ)AquaﬁP =0. Let Y € Im(A{—aP),
then there exists X € I'(T'M) such that Y = (A —aP)X. Then (A -GP)Y =
0 and Y € I'(Dg). Thus Im(Af — aP) C I'(Dg). Since the morphism A — aP
maps ['(T'M) onto I'(S(T'M)), we have Im(Af — aP) C T'(D3). By duality, we
also have Im(A; — BP) C I'(Dy,).

For X, Y e I'(D,) and U € I'(Dg), we have

(VxB)(Y.U) = —g((A; — aP)VxY.U) +aB(X,Y)y(U)

and (VxB)(Y,U) = (Vy B)(X,U) due to (1.15). Thus g((A;—aP)[X,Y],U) =
0. Since the distribution Dj is non-degenerate and Im(A; — aP) C I'(D3), we
have (A7 —aP)[X,Y] = 0. Thus [X,Y] € I'(Dy) and D, is integrable. By du-
ality, Dg is also integrable. Since S(T'M) is integrable, for any X, Y € I'(D32),
we have [X,Y] € T'(D,) and [X,Y] € T'(S(TM)). Thus [X,Y] € T'(D5) and
Dy, is integrable. So is Dj.

For X, Y € I'(D,,), we have

(VxB)(Y;Z) = — g((Ag — aP)VxY, Z) + aB(X,Y)n(Z)
+ (Xa) g(Y, Z) + o*n(Y) g(X, Z).
Using this and the fact that (VxB)(Y, Z) = (Vy B)(X, Z), we obtain
(3.7) {Xa—a(X)}g(Y, Z2) = {Ya - o®n(Y)}g(X, 2),

due to (A7 —aP)[X, Y] = 0. Therefore, for X, Y € I'(D;) and Z € I'(S(T'M)),
we obtain (Xa)g(Y,Z) = (Ya)g(X,Z). Since S(T'M) is non-degenerate, we
have da(X)Y = da(Y)X. Suppose there exists a vector field X, € I'(D%) such
that da(X,), # 0 at each point x € M. Then Y = fX, for any Y € I'(D%),
where f is a smooth function. It follows that all vectors from the fiber (D7),
are colinear with (X,),. It is a contradiction as dim (D$),, = p > 1. Thus we
have da|ps = 0. By duality, we also have dj| Dy = 0. Thus « is a constant
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along Dy, and 3 is a constant along Dj. Since (p — 1)a = —(m —p —1)3, a
and [ are constants along S(TM).
From (2.3) with ¢ = 0, we have

(3.8) (Xp)B(Y, Z) = (V9)B(X, 2), VX, Y, Z € T(TM).
Take X, Y, Z € I'(D?)), the equation (3.8) reduces to
(Xp)ag(Y,Z) = (Yelag(X, Z), ie, d(Xp)aY = (Yy)a X.

Since dim (D), > 1, we have (Xyp)a = 0 for all X € I'(D3). While, take
X eT'(Dj) and Y, Z € I'(Dy) in (3.8), we have (X¢)a = 0 for all X € I'(D3).
Consequently, we obtain (X¢)a = 0 for all X € I'(S(TM)). By duality,
we get (X¢)8 = 0 for all X € I'(S(TM)). Since (o, ) # (0,0), we have
Xp=0forall X € I'(S(TM)), that is, ¢ is a constant along S(T'M). For all
X, Y € T'(Dy,), we have {[pla = 0 due to (2.3). Also, for all X, Y € I'(D3), we
have £[p]8 = 0. Thus we have {[p] = 0. Consequently we have X[¢] = 0 for all
X € D(T'M), ie., ¢ is a constant on M. For all X € I'(Dy) and U € I'(D3),
since (VxB)(U,Z) = (VuB)(X, Z), we get
9({(Af = BP)VxU — (A —aP)Vy X}, Z) = 0, VZ € T'(S(TM)).

Since S(T'M) is non-degenerate, we have (A; — BP)VxU = (A — aP)VyX.
Since the left term of the last equation is in I'(D2) and the right term is in
I'(Dg) and D, N D = {0}, we have (A —BP)VxU = 0 and (A{ —aP)Vy X =
0. This imply that VxU € I'(Dg) and VyX € I'(D,). On the other hand,
VxU =V4U and Vy X = V3 X due to D, LpDg, we have
(3.9) VxU € T(D}), VuX €T(D3), VX € (D) YU € T(D3).

For X, Y € I'(Dy) and U, V € I'(Dj), since g(X,U) = 0, we have

9(Vy X, U) + g(X,VyU) = 0, g(VyU,X) + g(U, Vv X) = 0.

Using (3.9), we have g(X,VyU) = g(U,Vy X) = 0. Thus we get
(3.10) g(Vy X, U)=0; g(X, VyU) =0.

Since the leaf M* of S(T'M) is a Riemannian manifold and S(TM) =
D, ®oren Dfj, where Df, and Dj are parallel and integrable distributions with
respect to the induced connection V* on M* due to (3.10), by the decomposi-

tion theorem of de Rham [8], we have M* = M, x Mg, where M, and My are
some leaves of D and Dj respectively. Thus we have our theorem. O

Proof of Theorem 1.1. First, we prove that vy =0 and a8 =0 for 0 < p < m.
From the facts that (p —1)a = —(m—p—1)Fand m > 2,if p=1, then 5 =0
and if p=m — 1, then &« = 0. Thus we have v =0. Let 1 <p <m — 1. Then,
for X € T'(Dy,) and U € I'(D3), using (3.9) and (3.10), we have

g(R(Xa U)U7 X) = g(vaUUv X)
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From the second equation of (3.10), we know that VU has no component of
D, Since P maps I'(Dg) onto I'(D3) and S(T'M) = D, ®oren Dj, we have

VoU = P(VyU) +n(VyU)¢; P(VyU) € F(Dg)
It follows that
9(VxVuU, X) = g(VxP(VyU), X) + (Vxn)(VuU)) g(§, X)
+ n(VxVuU)g(€, X) +n(VuU)g(Vx§, X)
— — an(VuU)g(X.X).
Since n(VyU) = g(U, ANU) = ¢g(U, AgU) = @B g(U,U), we have
While, from the Gauss equation (1.14), we have
9(R(X, U)U, X) = pafyg(X, X)g(U, U).

From the last two equations, we get v = paff = 0 for 1 < p < m — 1. Conse-
quently we show that if 0 < p < m, then v =0 and af = 0. (]

(1) Let v # 0: In case (trAz)2 # 4p~1v. The equation (3.5) has two non-
vanishing distinct solutions a and 3. If 0 < p < m, then we have v = 0. Thus
p=0orp=m. If p=0, then Dy = {0} and Dj = S(T'M). If p = m, then
D;, = S(T'M) and Dj = {0}. From (1.14) and (1.18), we have

R*(X,Y)Z =2pa*{g(Y, Z)X — g(X, Z)Y}, V X, Y, Z € T(Da);

R*(Uv V)W = 2@52{9(‘/7 W)U - g(Uv W)V}v v Uv ‘/7 W e F(Dﬁ)
Thus either M, or Mg, which are leafs of D, or Dg respectively, is a Rie-
mannian manifold M* of constant curvature 2pa? or 2932 respectively and
the other leaf is a point {z}. If p = m, that is, M* = M,, since B(X,Y) =
ag(X,Y) for all X,Y € I'(S(TM)), we have C(X,Y) = pag(X,Y) for all
X, Y e N(S(T'M)). If p=0, that is, M* = Mg, since B(U,V) = Bg(U,V) for
allU, V e I'(S(TM)), we have C(U,V) = pBg(U,V) for allU, V € I'(S(T'M)).
Thus the leaf M* is a totally umbilical which is not a totally geodesics. Con-
sequently M is locally a product manifold L x M* x {z} or L x {z} x M*,
where M* is an m-dimensional totally umbilical Riemannian manifold of con-
stant curvature 2p3? or 2pa? which is isometric to a sphere or a hyperbolic
space, {z} is a point.

In case (trAg)2 = 4¢~ 4. The equation (3.5) has only one non-zero constant
solution, named by a and « is only one eigenvalue of Az. In this case, the
equations (3.6) reduce to s = 2a = ma; o? = ¢~ 1y. Thus we have m = 2.
Thus this case is not appear.

(2) Let v = 0. The equation (3.6) reduces to z(x — s) = 0. In case trA7 # 0.
Let « =0 and 8 =s. Then we have s = 8 = (m —p)g3, i.e.,, (m—p—1)8=0.
So p =m — 1. Thus the leaf M, of D3 is totally geodesic (m — 1)-dimensional
Riemannian manifold and the leaf Mg of Dj is a spacelike curve. In the sequel,
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let X, Y, ZeT'(D;) and U € I'(Dj). From (1.14), (1.18) and ¢ = 0, we have
R*(X,Y)Z=R(X,Y)Z = R(X,Y)Z = 0. Using (3.10) and the fact that the
connection V* is metric, we have

9(VxY, U) = —g(Y, Vi U) = —g(Y, VxU) = 0.

Thus VLY € I'(D?). From this result, (1.6), (3.9) and the integrable prop-
erty of D5, we have g(R*(X,Y)Z, U) = 0. This implies 7, R*(X,Y)Z =
R*(X,Y)Z =0, where m, is the projection morphism of I'(S(TM)) on I'(D3)
and 7, R* is the curvature tensor of DJ. Thus M, is a Euclidean manifold.
Thus M is locally a product L x M, x Mg, where M, is an (m —1)-dimensional
Euclidean space and Mg is a spacelike curve in M.

In case trAg = 0. Then we have a = 6 = 0 and Ag‘ = 0 or equivalently
B =0 and D, = Dj = S(T'M). Thus M is totally geodesic in M. Since M
is screen conformal, we also have C = Ax = 0. Thus the leaf M* of S(T'M)
is also totally geodesic. Thus we have VxY = V%Y for any tangent vector
fields X and Y to the leaf M*. This implies that M™* is a Euclidean m-space.
Thus M is locally a product L x M* x {z}, where L is a null curve and {z} is
a point.
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