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We study some properties of a half-lightlike submanifoldM , of a semi-Riemannian manifold,

whose shape operator is conformal to the shape operator of its screen distribution. We show

that any screen distribution S(TM) of M is integrable and the geometry of M has a close

relation with the nondegenerate geometry of a leaf of S(TM). We prove some results on

symmetric induced Ricci tensor and null sectional curvature of this class.
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1. Introduction. The Riemannian geometry of submanifolds [3] is one of the most

important topics of differential geometry. It is well known that semi-Riemannian sub-

manifolds [9] have many similarities with their Riemannian case.

However, the lightlike submanifolds [6] are different since (contrary to the nondegen-

erate cases) their normal vector bundle intersects with the tangent bundle. Thus, one

cannot use, in the usual way, the classical submanifold theory to define any induced

object on a lightlike submanifold. To deal with this anomaly, the lightlike submanifolds

were introduced and presented in a book by Duggal and Bejancu [6]. They introduced

a nondegenerate screen distribution to construct a nonintersecting lightlike transver-

sal vector bundle of the tangent bundle. Since then, a suitable choice of an integrable

screen distribution has produced several new results on lightlike geometry (see, e.g,

[1, 4, 5, 7] and many more references therein). Also, see [8] for a different approach to

deal with lightlike (degenerate) submanifolds. However, unfortunately, there are only

two papers [5, 7] (after the publication of Duggal-Bejancu’s book [6]) on a subclass called

half-lightlike submanifolds of codimension 2 (see Section 2) which provides a physical

model of null 2-surfaces in 4-dimensional space-time manifolds (see Example 3.3).

The growing importance of geometry in mathematical physics and very limited in-

formation available on half-lightlike submanifolds are the motivation for the study on

this topic. Since the shape operator plays a key role in the geometry of submanifolds

[3, 6], the objective of this paper is to study those half-lightlike submanifolds, of a

semi-Riemannian manifold, whose shape operator is conformal to the shape operator

of their screen distribution.

In Section 2, we brief basic information needed for the rest of the paper. In Section 3,

we define screen conformal half-lightlike submanifolds M and prove that any screen

distribution S(TM) of M is integrable (see Theorem 3.5). This result is important since

it does not hold for an arbitrary lightlike submanifold. Then we prove (Theorem 3.6)

that the geometry ofM is closely related with the nondegenerate geometry of a leafM′

of its integrable S(TM). In particular, M = L⊕M′ is a product lightlike manifold if and
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only if there exists an induced Levi-Civita connection onM (Theorem 3.9), where L and

M′ are leaves of RadTM and S(TM), respectively. We also find conditions for the in-

duced Ricci tensor to be symmetric and induced nonvanishing sectional curvature ofM .

Using Kupeli’s [8] concept of an irrotational lightlike submanifold (see Definition 3.7)

we show that the induced Ricci tensor of any screen conformal half-lightlike irrotational

submanifold is symmetric. This result is desirable both for geometry and its physical

interpretation. In Section 4, we show that some classical results of Riemannian sub-

manifolds also hold for screen conformal totally umbilical half-lightlike submanifolds

of a semi-Riemannian space form M̄(c).

2. Half-lightlike submanifolds. Let (M̄, ḡ) be an (m+2)-dimensional (m> 1) semi-

Riemannian manifold of index q ≥ 1 and M a submanifold of codimension 2 of M̄ .

In case ḡ is degenerate on the tangent bundle TM of M we say that M is a lightlike

submanifold of M̄ [6]. Throughout this paper we denote by F(M) the algebra of smooth

functions on M and by Γ(E) the F(M)-module of smooth sections of a vector bundle

E over M . We use the same notation for any other vector bundle. All manifolds are

paracompact and smooth. For basic information on the geometry of submanifolds, we

refer to [3]. Denote by g the induced degenerate tensor field of ḡ on M . Then, there

exists locally (or globally) a vector field ξ ∈ Γ(TM), ξ ≠ 0, such that g(ξ,X)= 0 for any

X ∈ Γ(TM), and for each tangent space TxM , we consider

TxM
⊥ =

{

u∈ TxM̄ : ḡ(u,v)= 0,∀v ∈ TxM
}

(2.1)

a degenerate 2-dimensional orthogonal (but not complementary) subspace of TxM̄ . The

radical subspace RadTxM = TxM∩TxM
⊥ depends on the pointx ∈M . The submanifold

M is said to be r -lightlike if the mapping

RadTM : x ∈M �→ RadTxM (2.2)

defines a radical distribution on M of rank r > 0. M is a half-lightlike submanifold of

M̄ [7] if r = 1 and there exist ξ,u∈ TxM
⊥ such that

ḡ(ξ,v)= 0, ḡ(u,u)≠ 0, ∀v ∈ TxM
⊥. (2.3)

The above relations imply that ξ ∈ RadTxM . Thus,

ḡ(ξ,X)= ḡ(ξ,v)= 0, ∀X ∈ Γ(TM), v ∈ Γ
(

TM⊥
)

. (2.4)

Thus, RadTM is locally (or globally) spanned by ξ. There exists a supplementary non-

degenerate distribution to RadTM in TM , called a screen distribution S(TM) of M [6]

with the following orthogonal distribution:

TM = RadTM ⊥ S(TM). (2.5)

In this paper, we assume that M is half-lightlike. Consider orthogonal complementary

distribution S(TM⊥) to S(TM) in TM̄ . Certainly ξ and u belong to Γ(S(TM⊥)). Choose



SCREEN CONFORMAL HALF-LIGHTLIKE SUBMANIFOLDS 3739

u as a unit vector field, with ḡ(u,u) = ǫ = ±1. We brief the following results (for de-

tails see [7]). Consider a supplementary distribution D to RadTM in S(TM⊥) which is

spanned by u. Hence we have the following orthogonal decomposition:

S
(

TM⊥
)

=D ⊥D⊥, (2.6)

where D⊥ is the orthogonal complementary distribution to D in S(TM⊥). There exists

a uniquely defined vector field N ∈ Γ(D⊥) satisfying

ḡ(N,ξ)≠ 0, ḡ(N,N)= ḡ(N,u)= 0. (2.7)

Hence, N is a lightlike vector field which is neither tangent to M nor collinear with u

since ḡ(u,ξ)= 0. Define a vector bundle tr(TM) of M by

tr(TM)=D ⊥ ntr(TM), (2.8)

where ntr(TM) is a 1-dimensional vector bundle generated by N. Therefore,

TM̄ = S(TM)⊥
(

RadTM⊕tr(TM)
)

= S(TM)⊥D ⊥
(

RadTM⊕ntr(TM)
)

.
(2.9)

According to the decompositions (2.5) and (2.9) we choose the fields of frames {ξ,W1,

. . . ,Wm−1} and {ξ,W1, . . . ,Wm−1,u,N} on M and M̄ , respectively, where {W1, . . . ,Wm−1}

is an orthonormal basis of Γ(S(TM)).

Although S(TM) is not unique, it is canonically isomorphic to the factor vector bun-

dle TM/RadTM [8]. For the dependence of all the induced geometric objects of M

on {S(TM),S(TM⊥)}, we refer to [6, Chapter 5]. In particular, the following result is

important for this paper.

Proposition 2.1 [6, page 157]. The second fundamental forms of a lightlike sub-

manifold M do not depend on S(TM), S(TM⊥), and ntr(TM).

Let P be the projection of TM on S(TM). It follows from (2.9) that

X = PX+η(X)ξ, η(X)= ḡ(X,N), ∀X ∈ Γ(TM). (2.10)

According to (2.5) and (2.9) we put

∇̄XY =∇XY +h(X,Y),

∇̄XN =−ANX+∇XN,

∇̄Xu=−AuX+∇Xu, ∀X,Y ∈ Γ(TM),

(2.11)

where ∇XY , ANX, and AuX belong to Γ(TM), while h(X,Y), ∇XN, and ∇Xu belong to

Γ(tr(TM)), ∇̄ is the Levi-Civita connection on M̄ and∇ is a torsion-free linear connection

on M . Define symmetric F(M)-bilinear forms D1 and D2 and 1-forms ρ1, ρ2, ε1, and ε2
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by

D1(X,Y)= ḡ
(

h(X,Y),ξ
)

, D2(X,Y)= ǫḡ
(

h(X,Y),u
)

,

ρ1(X)= ḡ
(

∇XN,ξ
)

, ρ2(X)= ǫḡ
(

∇XN,u
)

,

ε1(X)= ḡ
(

∇Xu,ξ
)

, ε2(X)= ǫḡ
(

∇Xu,u
)

,

(2.12)

for any X,Y ∈ Γ(TM). It follows that

h(X,Y)=D1(X,Y)N+D2(X,Y)u,

∇XN = ρ1(X)N+ρ2(X)u,

∇Xu= ε1(X)N+ε2(X)u.

(2.13)

Hence (2.11) become

∇̄XY =∇XY +D1(X,Y)N+D2(X,Y)u, (2.14)

∇̄XN =−ANX+ρ1(X)N+ρ2(X)u, (2.15)

∇̄Xu=−AuX+ε1(X)N+ε2(X)u, (2.16)

for any X,Y ∈ Γ(TM). We call h, D1, and D2 the second fundamental form, the lightlike

second fundamental form, and the screen second fundamental form of M with respect

to tr(TM), respectively. Both AN and Au are linear operators on Γ(TM) and AN is called

the shape operator of M . Since u is a unit vector field, (2.16) implies ε2(X) = 0. In a

similar way, since ξ and N are lightlike vector fields, from (2.14)–(2.16) we obtain

D1(X,ξ)= 0, ḡ
(

ANX,N
)

= 0, (2.17)

ḡ
(

AuX,Y
)

= ǫD2(X,Y)+ε1(X)η(Y). (2.18)

Next, by using (2.10), (2.14)–(2.16), and (2.18), we obtain

ρ1(X)=−η
(

∇Xξ
)

, ρ2(X)= ǫη
(

AuX
)

, ε1(X)=−ǫD2(X,ξ), (2.19)
(

∇Xg
)

(Y ,Z)=D1(X,Y)η(Z)+D1(X,Z)η(Y) (2.20)

for any X,Y ,Z ∈ Γ(TM). Thus, in general, the induced connection ∇ is not a metric

(Levi-Civita) connection. From (2.14) it follows that D1 and D2 are symmetric bilinear

forms on Γ(TM). From (2.5) we obtain

∇XPY =∇
∗
XPY +h

∗(X,PY),

∇Xξ1 =−A
∗
ξX+∇

⊥
Xξ, ∀X,Y ∈ Γ(TM),

(2.21)

where ∇∗XPY and A∗ξ belong to Γ(S(TM)), while h∗(X,PY) and ∇⊥Xξ1 belong to Γ(Rad

TM). It follows that ∇∗ and ∇⊥ are linear connections on the screen and radical distri-

butions, respectively,A∗ξ is the shape operator of S(TM), and∇∗ is a metric connection

on S(TM). Define

E(X,PY)= ḡ
(

h∗(X,PY),N
)

, u1(X)= ḡ
(

∇⊥Xξ,N
)

, (2.22)



SCREEN CONFORMAL HALF-LIGHTLIKE SUBMANIFOLDS 3741

for all X,Y ∈ Γ(TM). It follows that

h∗(X,PY)= E(X,PY)ξ, ∇⊥Xξ1 =u1(X)ξ, ∀X,Y ∈ Γ(TM). (2.23)

Hence the two equations of (2.21) become

∇XPY =∇
∗
XPY +E(X,PY)ξ, (2.24)

∇Xξ =−A
∗
ξX+u1(X)ξ, (2.25)

where h∗ and E are the second fundamental form and the local second fundamental

form of S(TM) with respect to RadTM , and A∗ξ is the shape operator of the screen

distribution. Equations (2.14)–(2.16) on one side and (2.24)–(2.25) on the other side are

related by

E(X,PY)= g
(

ANX,PY
)

, (2.26)

D1(X,PY)= g
(

A∗ξX,PY
)

, (2.27)

u1(X)=−ρ1(X), ∀X,Y ∈ Γ(TM). (2.28)

From (2.17) and (2.27) we derive

A∗ξ ξ = 0. (2.29)

Theorem 2.2 [6]. Let M be a half-lightlike submanifold of M̄ . Then the following

assertions are equivalent:

(1) the induced connection ∇ on M is a metric connection;

(2) D1 vanishes identically on M ;

(3) A∗ξ vanishes identically on M ;

(4) ξ is a Killing vector field;

(5) TM⊥ is a parallel distribution with respect to ∇.

Thus, contrary to the case of a lightlike hypersurface (see [6, page 88]), a half-lightlike

submanifold satisfying one of the conditions of Theorem 2.2 is not totally geodesic

unless D2 vanishes on M . In particular, the existence of an induced connection on M ,

with nonvanishing second fundamental form h, is one of the important results of half-

lightlike submanifolds.

3. Conformal screen shape operator. It is well known that the second fundamental

form and its shape operator of a nondegenerate submanifold are related by means

of the metric tensor field. Contrary to this we see from Section 2 that in the case of

half-lightlike submanifolds M the second fundamental forms of M and their screen

distribution S(TM) are related to their respective shape operators AN and A∗ξ . As the

shape operator is an information tool in studying the geometry of submanifolds, in this

paper we consider a class of half-lightlike submanifolds with conformal screen shape

operator defined as follows.

Definition 3.1. A half-lightlike submanifold M of a semi-Riemannian manifold is

screen locally (resp., globally) conformal if on any coordinate neighborhood � (resp.,

� = M) there exists a nonzero smooth function ϕ such that for any null vector field
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ξ ∈ Γ(TM⊥) the relation

ANX =ϕA
∗
ξX, ∀X ∈ Γ

(

TM|�
)

, (3.1)

holds between the shape operators AN and A∗ξ of M and S(TM), respectively.

In the case of half-lightlike submanifolds, since ANX and A∗ξX belong to screen dis-

tribution for any X ∈ Γ(TM), this definition is well defined.

Example 3.2. Consider in R5
2 a submanifold M given by the equations

x4 =
(

x2
1+x

2
2

)1/2
, x3 =

(

1−x2
5

)1/2
, x5,x1,x2 > 0. (3.2)

Then we have

TM = Span

{

ξ = x1
∂

∂x1
+x2

∂

∂x2
+x4

∂

∂x4
,

U = x4
∂

∂x1
+x1

∂

∂x4
,V =−x5

∂

∂x3
+x3

∂

∂x5

}

,

TM⊥ = Span

{

ξ,u= x3
∂

∂x3
+x5

∂

∂x5

}

.

(3.3)

Thus RadTM = Span{ξ} is a distribution onM and S(TM⊥)= Span{u}. HenceM is a

half-lightlike submanifold of R5
2 , with S(TM)= Span{U,V}. Also, the lightlike transver-

sal bundle ntr(TM) is spanned by

N =
1

2x2
2

{

x1
∂

∂x1
−x2

∂

∂x2
+x4

∂

∂x4

}

. (3.4)

By direct calculations, we obtain

∇̄Uξ =U, ∇̄Vξ = 0, ∇̄ξξ = ξ,

∇̄UN =
1

2x2
2

U, ∇̄VN = 0, ∇̄ξN =−N.
(3.5)

Then, from (2.15) and (2.25) we obtain

A∗ξU =−U, A∗ξ V = 0,

ANU =−
1

2x2
2

U, ρ1(U)= 0, ρ2(U)= 0,

ANV = 0, ρ1(V)= 0, ρ2(V)= 0,

ANξ = 0, ρ1(ξ)=−1, ρ2(ξ)= 0.

(3.6)

Hence we derive ANX = (1/2x
2
2)A

∗
ξX, for all X ∈ Γ(TM). Thus M is a screen conformal

lightlike submanifold with ϕ = 1/2x2
2 .

Example 3.3. Following [5, Section 3] one can show that an n-dimensional half-

lightlike submanifold of a Minkowski space-timeRn+2
1 is screen lightlike with a constant
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conformal factor. In particular, a null 2-surface in 4-dimensional space-time mani-

fold is a physical example of such half-lightlike submanifolds. Indeed, consider a 4-

dimensional space-time (M̄, ḡ), with Lorentzian metric ḡ, of signature (−,+,+,+), which

admits a smooth 2-parameter group G, generated by two spacelike Killing vector fields

U and V . Suppose M̄ also admits a non-Killing null vector field ξ. Then, U and V will

span a lightlike surfaceM defined by U[aVb]U
aVb = 0, a,b ∈ {1,2,3,4}. At any x of TxM

we have a unique null vector tangent to TxM given by

ξ =U−ΩV, Ω =
(

VaVa
)−1
UbVb, ḡ(ξ,U)= 0= ḡ(ξ,V). (3.7)

It is easy to see that M is a half-lightlike surface of M̄ such that RadTM = Span{ξ}.

Since ξ is non-Killing, it follows from Theorem 2.2 thatD1 ≠ 0 and, therefore,M neither

admits a metric connection nor is totally geodesic.

Proposition 3.4. Let M be a half-lightlike submanifold of a semi-Riemannian man-

ifold M̄ . Then, M is screen conformal if and only if

E(X,PY)=ϕD1(X,PY), ∀X,Y ∈ Γ(TM). (3.8)

Proof. Suppose M is a screen conformal half-lightlike submanifold. Then, from

(2.26), (2.27), and (3.1), we get

E(X,PY)= g
(

ANX,PY
)

=ϕg
(

A∗ξX,PY
)

=ϕD1(X,PY) (3.9)

for all X,Y ∈ Γ(TM). Conversely, if E(X,PY)=ϕD1(X,PY), for all X,Y ∈ Γ(TM), then

(2.26) and (2.27) imply g(ANX,PY)= g(ϕA
∗
ξX,PY). Thus, we get ANX =ϕA

∗
ξX, which

completes the proof.

Let M be screen conformal. Then, from (2.24) and (3.8) we get

∇XPY =∇
∗
XPY +ϕD1(X,PY)ξ, ∀X,Y ∈ Γ(TM). (3.10)

Theorem 3.5. Any screen distribution of a screen conformal half-lightlike submani-

fold M of a semi-Riemannian manifold M̄ is integrable.

Proof. Using (2.14) and (3.10) and for any X,Y ,Z ∈ Γ(TM), we obtain

ḡ
(

[X,Y],N
)

= ḡ
(

∇XY ,N
)

− ḡ
(

∇YX,N
)

=ϕD1(X,Y)ḡ(ξ,N)−ϕD1(Y ,X)ḡ(ξ,N)

=ϕ
{

D1(X,Y)−D1(Y ,X)
}

.

(3.11)

Since D1 is symmetric, we get ḡ([X,Y],N)= 0. Hence S(TM) is integrable.

Theorem 3.6. Let M be a screen conformal half-lightlike submanifold of a semi-

Riemannian manifold M̄ , with a leaf M′ of S(TM). Then

(1) M is totally geodesic,

(2) M is totally umbilical,

(3) M is minimal,

if and only if M′ is so immersed as a submanifold of M̄ and ε1 vanishes on M .
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Proof. Using (3.8) we obtain

∇̄XY =∇
∗
XY +ϕD1(X,Y)ξ+D1(X,Y)N+D2(X,Y)u (3.12)

for any X,Y ∈ Γ(TM′). Then we have

∇̄XY =∇
′
XY +h

′(X,Y), (3.13)

where h′ and ∇′ are second fundamental form and the Levi-Civita connection of M′

in M̄ . Thus, from (3.12) and (3.13) we obtain

h′(X,Y)= (ϕξ+N)D1(X,Y)+D2(X,Y)u (3.14)

for any X,Y ∈ Γ(TM′). On the other hand, from (2.18) we have

ǫD2(ξ,PZ)= g
(

Auξ,PZ
)

, ǫD2(PZ,ξ)=−ε1(PZ). (3.15)

Since D2 is symmetric, we obtain −ε1(PZ) = g(Auξ,PZ). Similarly we get ǫD2(ξ,ξ) =

ε1(ξ). Consequently, we obtain

D2(ξ,PZ)=D2(PZ,ξ)=D2(ξ,ξ)= 0⇐⇒ ε1(Z)= 0 ∀Z ∈ Γ(TM). (3.16)

Thus the proof follows from (3.14) and (3.16).

Definition 3.7. A lightlike submanifoldM is said to be irrotational if ∇̄Xξ ∈ Γ(TM)

for any X ∈ Γ(TM), where ξ ∈ Γ(RadTM) [8].

For a half-lightlike M , since D1(X,ξ)= 0, the above definition is equivalent to D2(X,

ξ)= 0= ε1(X), for all X ∈ Γ(TM). Using this in (3.16) we state the following corollary.

Corollary 3.8. LetM be an irrotational screen conformal half-lightlike submanifold

of a semi-Riemannian manifold M̄ . Then

(1) M is totally geodesic,

(2) M is totally umbilical,

(3) M is minimal,

if and only if a leaf M′ of any S(TM) is so immersed as a submanifold of M̄ .

Theorem 3.9. Let M be a screen conformal half-lightlike submanifold of a semi-

Riemannian manifold M̄ . Then, the following assertions are equivalent:

(1) any leaf of S(TM) is totally geodesic in M ;

(2) M is a lightlike product manifold of M′ and L, where M′, a leaf of S(TM), is a

nondegenerate manifold and L is a one-dimensional lightlike manifold;

(3) D1 vanishes identically on M ;

(4) the induced connection ∇ on M is a metric connection.

Proof. From (2.14) we have g(∇ξξ,X) = ḡ(∇̄ξξ,X) for X ∈ Γ(S(TM)) and ξ ∈

Γ(Rad(TM)). Now ∇̄, a metric connection, implies g(∇ξξ,X)=−ḡ(ξ,∇̄ξX). Now, using
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(2.14) and (2.17), we obtain g(∇ξξ,X)=−D1(ξ,X)ḡ(ξ,N). Thus, from (2.17), we get

g
(

∇ξξ,X
)

= 0. (3.17)

Similarly, from (2.15) we derive ḡ(∇XY ,N) = g(ANX,Y) for all X,Y ∈ Γ(S(TM)) and

N ∈ Γ(ltr(TM)). Then, from (3.1), we obtain ḡ(∇XY ,N) = ϕg(A
∗
ξX,Y). Thus, from

(2.27), we get

ḡ
(

∇XY ,N
)

=ϕD1(X,Y). (3.18)

Now, from (3.17) and (3.18), the equivalence of (1) and (2) follows. If M is a lightlike

product, then any leaf of S(TM) is parallel. Thus, from (3.18)D1 = 0 sinceD1(X,ξ)= 0.

Conversely, ifD1 = 0, then from (3.18) a leaf of S(TM) is parallel and considering (3.17)

we obtain (2). Thus (2) is equivalent to (3). Finally, the equivalence of (3) and (4) comes

from Theorem 2.2.

Denote by R̄ and R the curvature tensors of ∇̄ and∇, respectively. Then, using (2.14)–

(2.16) and (2.18)–(2.25), we obtain

R̄(X,Y)Z = R(X,Y)Z+D1(X,Z)ANY −D1(Y ,Z)ANX

+D2(X,Z)AuY −D2(Y ,Z)AuX

+
{(

∇XD1

)

(Y ,Z)−
(

∇YD1

)

(X,Z)

+ρ1(X)D1(Y ,Z)−ρ1(Y)D1(X,Z)

+ε(X)D2(Y ,Z)−ε(Y)D2(X,Z)
}

N

+
{(

∇XD2

)

(Y ,Z)−
(

∇YD2

)

(X,Z)

+ρ2(X)D1(Y ,Z)−ρ2(Y)D1(X,Z)
}

u.

(3.19)

LetM be screen conformal. Consider the Riemannian curvature of type (0,4) of ∇̄, and

by using (3.19) and the definition of curvature tensors, we derive the following structure

equations:

ḡ
(

R̄(X,Y)Z,PW
)

= g
(

R(X,Y)Z,PW
)

+ϕ
{

D1(X,Z)D1(Y ,PW)−D1(Y ,Z)D1(X,PW)
}

+ǫ
{

D2(X,Z)D2(Y ,PW)−D2(Y ,Z)D2(X,PW)
}

,

(3.20)

ḡ
(

R̄(X,Y)PZ,N
)

= ḡ
(

R(X,Y)PZ,N
)

+ǫ
{

ρ2(Y)D2(X,PZ)−ρ2(X)D2(Y ,PZ)
}

= g
(

∇X
(

ANY
)

−∇Y
(

ANX
)

−AN[X,Y],PZ
)

+ϕ
{

ρ1(Y)D1(X,PZ)−ρ1(X)D1(Y ,PZ)
}

+ǫ
{

ρ2(Y)D2(X,PZ)−ρ2(X)D2(Y ,PZ)
}

,

(3.21)

ḡ
(

R̄(X,Y)ξ,PZ
)

= g
(

R(X,Y)ξ,PZ
)

+ǫD2(X,ξ)D2(Y ,PZ)

−ǫD2(Y ,ξ)D2(X,PZ).
(3.22)
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Let R∗ be the curvature tensor of ∇∗. Using (2.24) and (3.8) we obtain

R(X,Y)PZ = R∗(X,Y)PZ−ϕ
{

D1(Y ,PZ)A
∗
ξX−D1(X,PZ)A

∗
ξ Y
}

+ϕ
{(

∇XD1

)

(Y ,PZ)−
(

∇YD1

)

(X,PZ)
}

ξ

+D1(Y ,PZ)
{

X(ϕ)−ϕρ1(X)
}

ξ

−D1(X,PZ)
{

Y(ϕ)−ϕρ1(Y)
}

ξ.

(3.23)

Theorem 3.10. Let M be a screen conformal half-lightlike submanifold of a semi-

Riemannian space form M̄(c). Then, the induced Ricci tensor of M is symmetric if and

only if

(

D2∧ρ2

)

(ξ,X,Y)=D2(X,Y)ρ2(ξ). (3.24)

Proof. The Ricci tensor of a half-lightlike submanifold is given by

Ric(X,Y)=

m−1
∑

i=1

εg
(

R
(

X,ei
)

Y ,ei
)

+ ḡ
(

R(X,ξ)Y ,N
)

, ∀X,Y ∈ Γ(TM). (3.25)

For a space form M̄(c), from (3.8), (3.20), and (3.21), we have

Ric(X,Y)= (1−m)cg(X,Y)

+

m−1
∑

i=1

{(

−D1(X,Y)D1

(

ei,ei
)

+D1

(

ei,Y
)

D1

(

X,ei
))

ϕ

−ε
(

D2(X,Y)D2

(

ei,ei
)

+D2

(

ei,Y
)

D2

(

X,ei
))}

−εD2(X,Y)ρ2(ξ)+εD2(ξ,Y)ρ2(X).

(3.26)

Thus we get

Ric(X,Y)−Ric(Y ,X)= ε
{

D2(ξ,Y)ρ2(X)−D2(ξ,X)ρ2(Y)
}

=
(

D2∧ρ2

)

(ξ,X,Y)−D2(X,Y)ρ2(ξ),
(3.27)

which proves the theorem.

The following result holds from Definition 3.7 and (3.27).

Corollary 3.11. The Ricci tensor of any irrotational screen conformal half-lightlike

submanifold M of M̄(c) is symmetric.

Let p ∈M and let ξ be a null vector of TpM . A plane H of TpM is called a null plane

directed by ξ if it contains ξ, ḡ(ξ,W) = 0 for any W ∈ H and there exits W0 ∈ H such

that ḡ(W0,W0) ≠ 0. Then the null sectional curvature of H with respect to ξ and ∇ is

defined by [2, page 431]

Kξ(H)=
Rp(W,ξ,ξ,W)

gp(W,W)
. (3.28)
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Theorem 3.12. Let M be a screen conformal half-lightlike submanifold of a space

form M̄(c). Then, the null sectional curvature of M is given by

Kξ(H)= ǫ
{

D2(ξ,ξ)D2(X,X)−D2(X,ξ)D2(ξ,X)
}

, (3.29)

for X ∈ Γ(S(TM)) and ξ ∈ Γ(RadTM).

Proof. From (3.20) we have

Kξ(H)=ϕ
{

D1(X,ξ)D1(ξ,X)−D1(ξ,ξ)D1(X,X)
}

+ǫ
{

D2(ξ,ξ)D2(X,X)−D2(X,ξ)D2(ξ,X)
}

.
(3.30)

Using (2.17) we obtain (3.29), which proves the theorem.

Moreover, using (2.19) in (3.29) and Definition 3.7, we have the following corollary.

Corollary 3.13. The null sectional curvature of a screen conformal half-lightlike

submanifold M of M̄(c) vanishes identically if and only if

(

D2∧ε1

)

(X,ξ,X)=−ǫε2
1(X), ∀X ∈ Γ

(

S(TM)
)

, ξ ∈ Γ(RadTM). (3.31)

Consequently, the null sectional curvature of any irrotational conformal half-lightlike

submanifold of M̄(c) vanishes identically.

Theorem 3.14. LetM be a screen conformal half-lightlike submanifold of M̄(c) with

D2 = 0. Then, M is flat if and only if M′ is flat and c = 0.

Proof. Suppose M is flat. For M̄(c), from (3.21) we derive

g
(

R(X,Y)PZ,N
)

=−ǫD2(X,PZ)ρ2(Y)+ǫD2(Y ,PZ)ρ2(X)

+c
{

g(Y ,PZ)η(X)−g(X,PZ)η(Y)
}

= 0.
(3.32)

Since D2 = 0 and M is flat, we obtain

c
{

g(Y ,PZ)η(X)−g(X,PZ)η(Y)
}

= 0. (3.33)

Thus, for X = ξ and Y = PZ , we derive cg(PZ,PZ)= 0, hence c = 0. On the other hand,

from (3.20) we have

g
(

R(X,Y)PZ,PW
)

= c
{

g(Y ,PZ)g(X,PW)−g(X,PZ)g(Y ,PW)
}

−ϕ
{

D1(Y ,PW)D1(X,PZ)−D1(Y ,PZ)D1(X,PW)
}

−ǫD2(X,PZ)D2(Y ,PW)

+ǫD2(Y ,PZ)D2(X,PW).

(3.34)

Using (3.34) in (3.23) we get

2g
(

R(X,Y)PZ,PW
)

= g
(

R∗(X,Y)PZ,PW
)

+ǫD2(X,PW)D2(Y ,PZ)

−D2(X,PZ)D2(Y ,PW)

+c
{

g(Y ,PZ)g(X,PW)−g(X,PZ)g(Y ,PW)
}

.

(3.35)
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Thus, from (3.35) we have R∗ = 0 due to c = 0 and D2 = 0. Now suppose that M′ is flat

and c = 0. Using (3.32) and (3.35) we obtain

g
(

R(X,Y)PZ,PW
)

= 0, g
(

R(X,Y)PZ,N
)

= 0. (3.36)

On the other hand, since M̄ is a space form and D1(X,ξ)= 0, we have

ḡ
(

R(X,Y)ξ,N
)

= 0, ∀X ∈ Γ(TM). (3.37)

Moreover, since D2 = 0, from (3.22) we get

g
(

R(X,Y)ξ,PZ
)

= 0. (3.38)

Thus, (3.36)–(3.38) imply R = 0, which proves the theorem.

Example 3.15. Consider the screen conformal half-lightlike submanifold M of R5
2

given in Example 3.2, and by direct calculations, we obtain

∇̄UV = ∇̄VU = ∇̄ξV = ∇̄Vξ = 0, ∇̄Uξ =U,

∇̄UU =
1

2
ξ+x2

2N, ∇̄VV =−u, ∇̄ξξ = ξ,

∇̄Uu= 0, ∇̄Vu= V, ∇̄ξu= 0.

(3.39)

Thus, from (2.14)–(2.16), (2.25), and (2.26) we derive

∇UU =
1

2
ξ, E(U,U)=

1

2
, AuU = 0, AuV =−V, Auξ = 0,

D1(U,U)= x
2
2 , D1(V ,V)= 0, D2(U,U)= 0, D2(V ,V)=−1,

D2(X,ξ)= 0, ǫ1(X)= 0, ∀X ∈ Γ(TM).

(3.40)

Hence M is irrotational with a symmetric Ricci tensor (Theorem 3.10) and vanishing

null sectional curvature (Corollary 3.13). D1 ≠ 0 implies that ∇ is not a metric connec-

tion and M is not totally geodesic. Also M′ is not totally geodesic in M̄ (Theorem 3.6).

Moreover, S(TM) is not parallel in M due to E(U,U) ≠ 0. Thus M is not a lightlike

product (Theorem 3.9).

4. Totally umbilical submanifolds. Following the definition of totally umbilical Rie-

mannian submanifolds [3], we say that a lightlike submanifold (M,g) of a semi-

Riemannian manifold (M̄, ḡ) is said to be totally umbilical in M̄ if there is a smooth

transversal vector field � ∈ Γ(tr(TM)) on M , called the transversal curvature vector

field of M , such that, for all X,Y ∈ Γ(TM),

h(X,Y)=�ḡ(X,Y). (4.1)

The above definition does not depend on the screen distribution and the transversal

bundle of M . Let M be a half-lightlike submanifold. Using (2.14) and (4.1), we conclude
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that M is totally umbilical if and only if there exist smooth functions H1 ∈ Γ(ltr(TM))

and H2 ∈ Γ(S(TM
⊥)) such that

D1(X,Y)= g(X,Y)H1, (4.2)

D2(X,Y)= g(X,Y)H2, (4.3)

for any X,Y ∈ Γ(TM). We have the following existence theorem.

Theorem 4.1. Let M be a half-lightlike submanifold of a semi-Riemannian manifold

M̄ . Suppose S(TM) is integrable and any leafM′ of S(TM) is totally umbilical immersed

in M̄ as a codimension 3 nondegenerate submanifold with αβ > 0. Then M is screen

locally conformal if and only if E(ξ,PX) = 0 for ξ ∈ Γ(RadTM) and X ∈ Γ(TM), where

α and β are components of mean curvature vector field of the leaf, in the direction of ξ

and N.

Proof. Let M′ be a leaf of S(TM). Then we have

∇̄XY =∇
∗
XY +E(X,Y)ξ+D1(X,Y)N+D2(X,Y)u (4.4)

for any X,Y ∈ Γ(TM′). The mean curvature vector field H∗ is H∗ =αξ+βN+γu. Since

M′ is totally umbilical in M̄ , we get

E(X,Y)ξ+D1(X,Y)N+D2(X,Y)u= g(X,Y){αξ+βN+γu}. (4.5)

Thus we have

E(X,Y)=αg(X,Y),

D1(X,Y)= βg(X,Y), D2(X,Y)= γg(X,Y).
(4.6)

Equations (4.6) imply E(X,Y) = (α/β)D1(X,Y). Hence, E(X,Y) = (α/β)D1(X,Y) for

all X,Y ∈ Γ(TM′). Since A∗ξ ξ = 0 and E(ξ,Y) = 0, we obtain ANX = ϕA
∗
ξX for X ∈

Γ(TM). Conversely, ifM is screen conformal, then it can be seen that E(ξ,X)= 0, which

completes the proof.

Definition 4.2. A leaf M′ of an integrable screen distribution S(TM) of a lightlike

submanifold M of a semi-Riemannian manifold M̄ is totally umbilical in M if and only

if on any coordinate neighborhood �⊂M there is a smooth function K such that

E(X,PY)=Kg(X,PY). (4.7)

For a screen conformal M , (3.8) implies that M′ is totally umbilical if

D1(X,PY)=
K

ϕ
g(X,PY), ∀X ∈ Γ(TM). (4.8)

Theorem 4.3. Let M be a screen conformal half-lightlike submanifold of M̄ . Then M

is totally umbilical if and only if

P
(

AuX
)

=H2PX, ε1(X)= 0, X ∈ Γ(TM), (4.9)

and a leaf M′ of any S(TM) is totally umbilical in M .
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Proof. From (2.18) we obtain that D2(X,Y) = g(X,Y)H2 if and only if P(AuX) =

H2PX and ε1(X) = 0, for all X ∈ Γ(TM) (also proved in [7]). Suppose D1(X,Y) =

g(X,Y)H1. Then,M is screen conformal and (3.8) implies E(X,Y)=ϕH1g(X,Y). Hence

M′ is totally umbilical with K =ϕH1. Conversely, if M′ is totally umbilical, then using

(3.8), (4.7), and (2.17) we obtain D1(X,Y) = H1g(X,Y), where H1 = K/ϕ, which com-

pletes proof.

Theorem 4.4. Let M be a screen conformal totally umbilical half-lightlike submani-

fold of a semi-Riemannian manifold M̄ . Then

(1) M′ is totally umbilical in M̄ ;

(2) M is totally geodesic if and only if M′ is totally geodesic in M̄ .

Proof. For totally umbilical M , D2(X,ξ) = 0. Thus, from (3.14), (4.2), and (4.3), we

obtain h′(X,Y)= g(X,Y)(H1ϕξ+H1N+H2u), for all X,Y ∈ Γ(TM′), which completes

the proof.

Theorem 4.5. LetM(c) be a screen conformal half-lightlike submanifold of constant

curvature c of M̄ . SupposeM′ is totally umbilical inM(c). Then c = 0, that is, the subman-

ifold is a semi-Euclidean space if and only if the mean curvature vector K is a solution of

the partial differential equation

ξ(K)−Kρ1(ξ)−K
2ϕ−1 = 0. (4.10)

Proof. From (3.23) we have

ḡ
(

R(X,Y)PZ,N
)

=ϕ
{(

∇XD1

)

(Y ,PZ)−
(

∇YD1

)

(X,PZ)
}

+D1(Y ,PZ)
{

X(ϕ)−ϕρ1(X)
}

−D1(X,PZ)
{

Y(ϕ)−ϕρ1(Y)
}

(4.11)

for X,Y ,Z ∈ Γ(TM). On the other hand, using (2.20) and (4.8) we obtain

(

∇XD1

)

(Y ,PZ)=
(

X(K)ϕ−1+X
(

ϕ−1
)

K
)

g(Y ,PZ)

+K2(ϕ)−2g(X,PZ)η(Y).
(4.12)

Thus, by direct calculations, using (4.8), (4.11), and (4.12), we derive

ḡ
(

R(X,Y)PZ,N
)

=
{

X(K)−K2ϕ−1η(X)−Kρ1(X)
}

g(Y ,PZ)

+
{

K2ϕ−1η(Y)−Y(K)+Kρ1(Y)
}

g(X,PZ).
(4.13)

Since M is of constant curvature, for X = ξ, we obtain

cg(Y ,PZ)=
{

ξ(K)−K2ϕ−1−Kρ1(ξ)
}

g(Y ,PZ), (4.14)

which proves the assertion of the theorem.
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LetM be a totally umbilical half-lightlike submanifold in M̄(c). Then, by direct calcu-

lations, using (2.14), (2.15), (2.16), and (4.2) and taking the tangential parts, we obtain

R(X,Y)Z = c
{

g(Y ,Z)X−g(X,Z)Y
}

−g(X,Z)H1ANY

+g(Y ,Z)H1ANX+H2

{

g(Y ,Z)AuX−g(X,Z)AuY
}

.
(4.15)

Now, from (2.19), (4.15), (4.3), (2.27), (3.1), and (4.8) we obtain

g
(

R(X,Y)Z,W
)

= c
{

g(Y ,Z)g(X,W)−g(X,Z)g(Y ,W)
}

−g(X,Z)ϕg(Y ,W)
(

H1

)2
+g(Y ,Z)ϕg(X,W)

(

H1

)2

−g(X,Z)H2ǫD2(Y ,W)+g(Y ,Z)H2ǫD2(X,W),

(4.16)

for all X,Y ,Z ∈ Γ(TM) and W ∈ Γ(S(TM)). Thus we obtain

g
(

R(X,Y)Z,W
)

=
[

g(Y ,Z)g(X,W)−g(X,Z)g(Y ,W)
]

×
[

c+ϕ
(

H1

)2
+ǫ
(

H2

)2
]

.

(4.17)

On the other hand, from (3.23) we obtain

g
(

R(X,Y)Z,W
)

= R∗
(

(X,Y)Z,W
)

−ϕg(Y ,Z)H1g
(

A∗ξX,W
)

+ϕg(X,Z)H1g
(

A∗ξ Y ,W
)

(4.18)

for all X,Y ∈ Γ(TM) and Z,W ∈ Γ(S(TM)). Here, using (2.27) and (3.1) we get

g
(

R(X,Y)Z,W
)

= R∗
(

(X,Y)Z,W
)

−ϕ
(

H1

)2[
g(Y ,Z)g(X,W)−g(X,Z)g(Y ,W)

]

.

(4.19)

Thus, from (4.17) and (4.19), we obtain

g
(

R∗(X,Y)Z,W
)

=
{

g(Y ,Z)g(X,Z)−g(X,Z)g(Y ,W)
}

×
{

c+2ϕ
(

H1

)2
+ǫ
(

H2

)2
}

(4.20)

for all X,Y ∈ Γ(TM) and Z,W ∈ Γ(S(TM)). As a result of (4.20) we have the following

result.

Theorem 4.6. Let M be a screen conformal totally umbilical half-lightlike submani-

fold of a semi-Riemannian space form M̄(c). If dim(M′) > 2, thenM′ is a semi-Riemann-

ian space form if and only if ϕ = constant.

From the proofs of Theorems 3.10 and 3.12, the following results hold.

(a) Let M be a screen conformal totally umbilical half-lightlike submanifold of M̄(c).

Then, the Ricci tensor of M is symmetric.

(b) Let M be a screen conformal totally umbilical half-lightlike submanifold of M̄(c).

Then, the null sectional curvature of M vanishes identically.
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Example 4.7. Consider in R4
1 a surface M given by the equations

x1 = x3, x2 =
(

1−x2
4

)1/2
. (4.21)

Then we have

TM = Span

{

ξ =
∂

∂x1
+

∂

∂x3
, u=−x4

∂

∂x2
+x2

∂

∂x4

}

,

TM⊥ = Span

{

ξ =
∂

∂x1
+

∂

∂x3
, v = x2

∂

∂x2
+x4

∂

∂x4

}

.

(4.22)

Thus, M is a half-lightlike submanifold of R4
1 with RadTM = Span{ξ} and

S(TM)= Span{u}, S
(

TM⊥
)

= Span{v},

ntr(TM)= Span

{

N =
1

2

(

−
∂

∂x1
+

∂

∂x3

)}

.
(4.23)

Hence, we obtain A∗ξu = ANu = 0. Thus M is a trivial screen conformal half-lightlike

submanifold. On the other hand, by direct calculations, we derive

D1 = 0, D2(ξ,X)= 0, ∀X ∈ Γ(TM), D2(u,u)=−g(u,u). (4.24)

Thus M is a screen conformal totally umbilical half-lightlike submanifold. Moreover,

D1 = 0 implies that ∇ is a metric connection.

Concluding remarks. Recently, Duggal [4, 5] studied the following problem: find

a class of lightlike submanifolds whose geometry is essentially the same as that of their

chosen screen distribution S(TM).

The above problem is motivated due to the fact that the lightlike geometry directly

depends on a suitable choice of screen distribution, which plays an important role. For

example, it has been shown in [6, page 133] that the geometry of a Monge lightlike

hypersurface of R4
1 essentially reduces to the geometry of a leaf of its canonical screen

distribution (see also [1, 4] for some more results on the above-stated problem). In [5],

a technique was used to show that some aspects of the geometry of a half-lightlike

submanifold of a Minkowski space-time are the same as those of a leaf of its chosen

integrable screen distribution. In the present paper, we have shown that any screen dis-

tribution of a screen conformal half-light submanifold M of a semi-Riemannian man-

ifold is integrable (Theorem 3.5) and the geometry of M has a close relation with the

nondegenerate geometry of a leaf of their screen distribution S(TM) (Theorems 3.6

and 4.3). Thus, we have made further progress in solving the above-stated problem.

Finally, as per Proposition 2.1, the second fundamental forms of a lightlike subman-

ifold M do not depend on the vector bundles S(TM), S(TM⊥), and ntr(TM). Thus, the

results of this paper are stable with respect to any change in the above vector bundles.
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