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Abstract 

Functional electrical stimulation (FES) activates nerves using electrical currents, and is widely used in 
medical applications to assist movement of patients with central nervous system lesions. The recent 
emergence of small electrode arrays enables greater muscle selectivity and reduces fatigue compared 
to the use of traditional large electrodes; however existing fabrication techniques are expensive and 
have limited flexibility and comfort which limits patient uptake. This work presents a screen printed 
flexible and breathable fabric electrode array (FEA) which consists of four printed functional layers. 
Successful operation has been demonstrated by stimulating an optimised selection of electrodes in 
order to achieve clinically relevant reference postures (‘pointing’, ‘pinch’ and ‘open hand’). The 
materials with skin contact used in FEA have been cytotoxicity tested to establish that they are 
biocompatible. The FEA demonstrates the potential for printable polymer materials to realise 
comfortable, wearable and cost effective functional systems in healthcare applications. 

Keywords: functional electrical stimulation (FES), fabric electrode array, screen printing, e-textile, 
biocompatibility, smart fabric 

1 Introduction 
Functional electrical stimulation (FES) is a technique to activate nerves using safe levels of electrical 
current in a coordinated manner in order to stimulate muscle activity [1]. It is widely used to assist the 
movement of patients with central nervous system lesions which may result from head trauma, spinal 
cord injury, stroke or other neurological disorders. FES uses electrodes to stimulate the neural tissues 
entering the muscle. The electrodes may either be implanted but are more commonly and 
conveniently placed on the surface of the skin. Surface electrical stimulation has widespread clinical 
use since the approach is non-invasive and comparatively straightforward to deploy.  

Surface stimulation requires a sequence of electric charges to be delivered across an anodic and 
cathodic electrode pair, placed over the muscle body. Existing clinical surface electrodes are typically 
large and employ a self-adhesive hydrogel to improve electrical contact. The drawbacks of large 
electrode FES devices include insufficient selectivity and quicker patient fatigue due to the co-
activation of various non-synergistic muscles [2]. Employing a large number of small surface 
electrodes has been found to address the lack of selectivity and a variety of different electrode arrays 
have recently emerged [3]. These have been found to assist patients with complex tasks through 
selective muscle stimulation [2-4]. In particular, electrode arrays have enabled the stimulation of 
functional wrist and hand gestures which are a critical component of the activities of daily living, 
involving at least 41 musculo-tendon units actuating a 16 joint system with 23 degrees of freedom [5].  

The long-term goal is to produce wearable FES technology that provides maximum function, comfort 
and convenience. This necessitates exploiting the intrinsic properties of fabric (e.g. flexibility, 
breathability, light weight) by fabricating suitable electrode arrays directly on an appropriate fabric. 
To date, no fabrication technique has yet been demonstrated that can realise such an electrode array 
economically. Embroidery has been used by T. Keller et al. to manufacture smart fabric type electrode 
pads and electrode wiring on fabric for neuroprosthetic applications [6]. However, this required 
expensive high quality custom made silver sputtered yarns produced using plasma vapor sputtering 
since commercial metal coated yarns (e.g. silver coated Nylon 66 ‘ShieldX’) showed low uniformity 
due to the degradation of the conductive yarn surface during the embroidery process [7]. Weaving and 
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knitting have been used in fabricating smart fabrics for various wearable electronic applications (e.g. 
sensing, display, health monitoring, power generating) [8-10]. However, these methods are also not 
suitable for fabricating a wearable FES array. Weaving and knitting approaches impose limitations on 
the design of the array because the conductive path is constrained to follow the physical location of 
the yarns within the fabric. There is also a lack of homogeneity in the resistance of the conductive 
pattern due to the imprecise gaps between the conductive yarns. 

This paper presents flexible and breathable fabric electrode array (FEA, Figure 1a) fabricated entirely 
by screen printing the active electrode array directly onto a standard fabric. Screen printing is a 
straightforward and cost effective fabrication method which facilitates significant design freedom in 
terms of pattern geometries [11, 12]. It is a well established technology in both the textile and printed 
electronic fields. The printed FEA has required the development of bespoke polymer based screen 
printable pastes that can be processed in a manner compatible with textiles. These materials are now 
commercially available from Smart Fabric Inks Ltd, UK [13].  A carbon loaded silicone rubber has 
been applied to form the electrodes which enable dry contact via the conductive pad-skin interface 
and avoids the need to use the hydrogel that is typically required by existing electrodes [14]. The 
materials with skin contact used in the FEA are biocompatible. The performance of the FEA has been 
compared to that of the leading alternative, which comprises a flexible printed circuit board (PCB) 
array on polycarbonate with a hydrogel layer (Fatronik-Tecnalia, Spain, Figure 1b). The FEA can 
produce comparable angular joint movement compared to the PCB array; in addition, FEA has 
significant improvement on the flexibility, breathability and comfort. Critical postures of daily life 
have been achieved by stimulation of an optimised selection of elements.   

251658240  
Figure 1. Fabric electrode array (a) and flexible PCB array from Fatronik-Tecnalia (b). 

2 Material and Fabrication 

2.1 Material 

2.1.1 Fabric 

The polyester/cotton (65/35, 2X1 twill, 210g/m2, 316µm thick, provided by Klopman International) 
used in this study is a typical fabric for clothing. It combines the advantages of polyester fibre (e.g. 
wrinkle resistance, shape retention, durability, abrasion resistance, resistance to light damage) and the 
benefits of cotton fibre (e.g. comfort, softness, moisture absorption, light weight). 

2.1.2 Pastes 

The paste materials and their curing methods used in this study are shown in Table 1. 
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Table 1. Paste properties and curing conditions. 

Pastes Materials Curing conditions 
Fabink-UV-IF1004 Polyurethane acrylate paste UV light 
Fabink-UV-IF1044 Waterproof polyurethane acrylate paste  UV light 
Fabink-TC-AG4001 Silver flake in vinyl resin polymer and solvent 10 minutes at 120°C 
Carbon rubber Carbon filled silicone polymer paste 30 minutes at 80°C 

2.2 Fabrication process 
Fabrication overview 

A DEK248 semi-automatic screen printer was used to print the FEA which consists of four functional 
layers: a) an interface layer on fabric to provide a smooth surface for subsequent printing; b) a silver 
layer to form conductive pads and tracks; c) an encapsulation layer over the conductive tracks to 
provide protection and electrical insulation, which leaves the silver tracks at the end open for 
connection as shown in Figure 2; d) a carbon loaded silicone rubber layer over the conductive pads to 
provide a good electrical connection with the skin. The printing processing steps are shown in Figure 
2.  

251658240  
Figure 2. Top views of the FES processing after the printing of each layer, with sequence: interface layer (a), 

conductive silver layer (b), encapsulation layer (c) and carbon loaded silicone rubber layer (d). 

2.2.1 Interface layer printing 

Printing the silver conductor directly onto fabric is not ideal due to the rough surface of the fabric. In 
this work, the surface roughness is reduced by first printing a polyurethane based interface layer. The 
interface layer is made up of two different polyurethane paste compositions. These pastes (denoted 
Fabink-UV-IF1044 and Fabink-UV-IF1004 supplied by Smart Fabric Inks Ltd, UK) are UV curable 
polyurethanes which provide a flexible and smooth surface after curing. The benefit of combining a 
waterproof material (Fabink-UV-IF1044) and a material with good adhesion (Fabink-UV-IF1004) 
have been reported in our previous work [15]. UV curing is a rapid room temperature polymerisation 
technique. It is more environmentally friendly than the established thermal curing method due to the 
low release of volatile organic compounds (VOCs) and is entirely compatible with textiles.  

When printing, a 250 thread/inch stainless steel screen with 40 µm emulsion thickness supplied by 
MCI Precision Screen Ltd was found to give the best print quality. The interface layer was formed 
using three prints of Fabink-IF-UV-1044 followed by one print of Fabink-IF-UV-1004. Two deposits 
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of paste were applied for each print. UV curing was applied after each print by exposing each sample 
to a 400W mercury (Hg) bulb in a UV cabinet (UV Light Technology Ltd). The UV curing time was 
60s for Fabink-IF-UV-1044 and 30s for the Fabink-IF-UV1004 respectively at an energy of 53 
mW/cm2 at a wavelength of 365 nm. The total thickness of the interface layer is 135 µm measured 
using a scanning electron microscope Zeiss EVO LS25. SEM micrographs of the bare fabric and the 
fabric with 1 to 4 prints of interface layer each consisting of two deposits are shown in the 
supplementary materials.   

2.2.2 Conductive layer printing 

The conductive silver paste used in this study is Fabink-TC-AG4001 which is a thermally cured 
polymer paste that gives a high conductivity and exhibits good adhesion to the interface and 
encapsulation layer. The conductive silver tracks/pads were printed using one print of a single deposit 
of Fabink-TC-AG4001. A 120 thread/cm polyester screen with 10 µm emulsion thickness was used.  
The paste was cured in a box oven at 120 °C for 8 minutes. The thickness of the silver conductor is 5 
µm.  

2.2.3 Encapsulation layer printing 

An encapsulation layer was printed on top of the conductive tracks apart from at the connector end 
and the electrode pads which are left exposed for further processing. This provides physical protection 
and also reduces the strain in the silver track under bending by moving it closer to the neutral axis. A 
250 thread/inch stainless steel screen with 30 µm emulsion thickness was used in the encapsulation 
layer printing. The encapsulation layer was formed using one print of Fabink-IF-UV1004 followed by 
two prints of Fabink-IF-UV-1044; one deposit of paste was applied for each print. The UV curing 
time was 30 s for the Fabink-IF-UV1004 and 60s for the Fabink-IF-UV1044 at a lower energy level, 
31 mW/cm2 at 365nm. This was because only one deposit of paste was applied for both types of paste 
so the curing time was shorter than the time used for the interface layer curing. The total thickness of 
the encapsulation layer is 75 µm.  

2.2.4 Carbon rubber layer printing 

Finally, one print of a single deposit of a thermally curable custom carbon loaded Viscolo 22 silicone 
rubber paste was printed on top of the silver electrode pads to provide the connection between the 
conductive silver pads and the skin [16]. A 100 µm thick stainless steel stencil screen was used in the 
printing. The paste was cured at 80 °C for 30 minutes leaving a dry electrode layer with a thickness of 
25 µm. The use of dry electrodes eliminates potential discomfort caused by the stickiness of the 
hydrogel. The final FEA can therefore be reused indefinitely to provide a more cost effective and less 
wasteful solution.  

The scanning electron microscope (SEM) micrographs of the conductive tracks and the conductive 
pads of the final FEA are shown in Figure 3a and b.  
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Figure 3. SEM micrographs of the conductive tracks (a) and conductive pads (b). 

3 The benefit of using the interface layer 
The silver paste penetrates into the yarns when it was printed directly onto the fabric, and results in 
non–conductive film after printing and curing a single deposit of silver paste on bare fabric (Figure 
4a). To achieve conductivity, multiple deposits and prints of silver are required and this is expensive 
and time consuming [17]. The interface layer enables good conductivity using only a single print of 
one deposit of silver. The effectiveness of the interface can be established by comparing the resistance 
of the silver tracks on the interface with the resistance achieved when printing on Kapton (DuPont). 

Encapsulation layer 3 (Fabink-IF-UV-1044)

Encapsulation layer 2 (Fabink-IF-UV-1044)

Encapsulation layer 1 (Fabink-IF-UV-1004)

Conductive track layer 
Interface layer 4 (Fabink-IF-UV-1004) 

Interface layer 3 (Fabink-IF-UV-1044) 

Interface layer 2 (Fabink-IF-UV-1044) 

Interface layer 1 (Fabink-IF-UV-1044) 

Fabric  

Interface layer 4 (Fabink-IF-UV-1004) 

Interface layer 3 (Fabink-IF-UV-1044) 

Interface layer 2 (Fabink-IF-UV-1044) 

Interface layer 1 (Fabink-IF-UV-1044) 

Fabric  

Carbon/rubber layer 
Conductive pad layer 
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Kapton is a flexible polyimide film which has a smooth surface and is widely used in printed flexible 
electronics.  

One deposit of the silver paste was printed on the fabric with interface layer and another on Kapton. 
In both cases the paste was cured at 120 °C for 8 minutes in a box oven. Figure 4d shows that for a 
given length of silver track, a lower resistance was obtained for the rough fabric with the interface 
layer compared with the Kapton. The sheet resistances of the silver tracks are 49.4 mΩ/sq on the 
fabric with interface layer and 54.9 mΩ/sq on Kapton respectively at a thickness of 5 µm. The 
underlying interface also provides protection for the conductive silver tracks from damage and sweat 
ingress which can occur through the underside of the fabric. The printed silver tracks have good 
definition and are clearly separated with a 0.4 mm gap between the silver tracks at the connector end 
(Figure 4c).  

251658240  

Figure 4. Silver tracks/pads on bare fabric (a); fabric with interface layer (b); conductive track separation (c); 
resistivity of the conductive silver tracks on fabric interface layer and Kapton (d). 

4 Material biocompatibility test 
Wearable fabric arrays must be manufactured using biocompatible materials to avoid harm to the user. 
Cytotoxicity testing is a primary measurement method for devices and materials involving contact 
with the skin in medical applications. It is a rapid, standardised, sensitive and cost effective method to 
evaluate whether a material is harmful at significant levels and its effect on cellular components. To 
conduct the assessment, the cytotoxicity test (ISO 10993-5: Agar Overlay of L929 cells, 24 hrs 
incubation) was applied to the materials which make contact with the skin [18]. The Agar Overlay test 
is designed to determine the cytotoxicity of diffusible components from materials. An agar layer was 
added over a cell monolayer to protect the cells from damage while allowing the diffusion of the 
leachable materials. The test sample was placed on top of the agar layer and incubated for 24 hours at 
37±1°C. The cell monolayers were examined and scored based on the degree of cellular destruction.   
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The encapsulating Fabink-IF-UV1044 and carbon loaded silicone rubber materials were tested by 
Nelson Laboratories in the USA [19]. The criteria is negative control (polypropylene pellets) which 
receive a ‘0’ reactivity grade and positive control (latex natural rubber) which receive ‘3-4’ reactivity 
grades (moderate to severe). Scores of 0, 1 and 2 are pass and scores of 3 and 4 are fail. Table 2 shows 
the results of 3 tests with both materials passing the cytotoxicity test with an average score of ‘0’ and 
‘1’ respectively for Fabink-UV-IF 1044 and carbon loaded silicone rubber.  This is a key step towards 
ensuring biocompatibility of the FEA.  

Table 2. Cytotoxicity test results for the printed materials in contact with skin. 

Scores 
Materials 

#1 #2 #3 Average
Results 

Fabink-UV-IF-1044 0 1 0 0 pass 

Carbon loaded silicone rubber 1 1 1 1 pass 

5 FES functions on assisting hand movement 

5.1 Effects of the individual electrode 
Initial functional tests of the FEA were performed to establish selectivity, comfort and achievable 
joint motion when applied to the forearm for hand and wrist motion. Evaluation was undertaken with 
two unimpaired participants (denoted P1, P2) who were instructed to provide no voluntary effort. To 
provide comparative validation, tests were also performed using a standard flexible PCB array 
manufactured by Fatronik-Tecnalia (Figure 1b) of identical size and layout. Both electrode arrays 
were tested using fully validated stimulation and sensing hardware that have been used in recent 
clinical trials with stroke patients [20]. The array was positioned as shown in Figure 5, to cover wrist 
and finger extensor muscles. The details of the test equipment and processing are described in the 
supplementary materials. 

251658240  

Figure 5. Monitoring system for FEA assisted hand movement. 
Figure 6 presents results of individual electrode stimulation in assisting wrist extension which is a 
critical component in the restoration of lost hand function. These results confirm that FEA produces 
similar levels of movement when compared with the flexible PCB array. There is also a similar 
pattern of movement in each case, which confirms repeatability despite the tests being performed on 
an underlying biomechanical system which is extremely sensitive to physiological effects, as well as 
small changes in array and sensor position. No discomfort was reported by the participants during the 
tests.  
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251658240  

Figure 6. Mean wrist extension using FEA for P1(a) and P2(c); flexible PCB array for P1 (b) and P2(d). 
To quantify differences in movement, the 2-norm of movement produced in one repetition of the test 
sequence was calculated using equation 1:  

     (1) 

where y0(i) and y1(i) are glove and electrogoniometer joint angles at the beginning and end of each 
ramp test respectively for the ith element. The mean and standard deviation across repetitions is shown 
in Table 3. The results shows that the fabric array produces an average of 96.6% and 97.5% of the 
angular joint movement compared with the flexible PCB for P1 and P2 respectively. It also indicates 
greater repeatability of movement using the fabric electrode, perhaps due to a reduction in movement 
associated with the absence of a hydrogel layer. 

Table 3. Mean (standard deviation) of total movement 2-norm using each array type. 

Participant FEA Flexible PCB array 

P1 1929.9 (94.1) 1998.5 (189.9) 

P2 1752.4 (155.0) 1797.7 (226.7) 

5.2 Effects of the optimised multi electrodes 
The functionality of an electrode array is highly dependent on the control strategy used to select and 
stimulate individual elements. Existing control methods embed simple rule-based selection of suitable 
sites in order to produce the greatest level of appropriate movement, while minimizing undesired 
effect [20-23]. Such approaches have proved capable of generating selective movement, but are slow 
and imprecise since they do not exploit an underlying dynamic model linking FES and resulting 
motion. The greatest levels of accuracy have been achieved using a technique called Iterative 
Learning Control (ILC) which embeds the idea of learning from past experience. This technique was 
used to evaluate the performance of the fabric electrodes, with full details of the ILC scheme given in 
[24]. Three different reference postures were selected to verify the optimization procedure; ‘pointing’ 
with the index finger, a ‘pinch’ hand posture and an ‘open’ hand posture. These postures are shown in 
Figure 7 and were performed at a wrist angle of approximately 35° extension, with each test starting 
from an initial wrist angle of approximately 30° flexion. The task set incorporates specific finger 
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movement as well as extension of the fingers and wrist, comprising key elements of activities of daily 
living.  

251658240  
Figure 7. Stimulation patterns for pointing (a), pinching (b)  and open hand (c) gestures (shading indicates the 

pulsewidth levels).  
 

Three repetitions of ILC were performed for each posture. To quantify the accuracy attained the 
percentage error was calculated across all joints for each posture using equation 2, 

      (2) 

where y0 is the initial posture prior to stimulation, and e3 is the error after 3 repetitions of ILC. The 
results are shown in Table 4 for each task. The ILC procedure yields results with a mean joint angle 
error of typically less than 7% of the initial value. It can also be seen that the FEA is able to produce 
slightly superior results when compared with the flexible PCB array.  

Table 4. Percentage error across all joints using each array type. 

Array Participant Pointing Pinch Open hand 

P1 5.29 5.33 6.18 
FEA 

P2 3.55 6.97 5.45 

P1 6.81 7.73 7.90 
Flexible PCB array 

P2 4.46 6.86 6.51 

6 Conclusions	

The feasibility of manufacturing fabric electrode arrays (FEA) using low temperature screen printable 
materials has been demonstrated which establishes the potential for wearable FES technology with a 
high level of breathability and flexibility. Fabric surface roughness has been reduced significantly by 
using an interface layer between the conductor and the rough fabric. Printing a single deposit of silver 
on the fabric interface layer has achieved better conductivity than on Kapton when the interface layer 
was used on the fabric. The materials with skin contact in the FEA are biocompatible which was 
confirmed by cytotoxicity tests. The dry electrode provides improved comfort and lifespan compared 
to existing approaches which use a conductive hydrogel layer.  

Tests have shown that the FEA can provide highly accurate assistance of movement. The FEA can 
produce over 90% of the angular joint movement generated by the leading alternative which is a 
flexible PCB array on polycarbonate with a hydrogel layer. Furthermore, joint movement has greater 
repeatability on FEA compared to the PCB plastic electrode array. Different reference postures 
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(‘pointing’, ‘pinch’ and ‘open hand’) have been achieved by stimulating an optimised selection of 
elements. The FEA therefore has the potential for wide medical application for assistance and 
rehabilitation in both clinical and home environments.  

Acknowledgement  

The authors would like to acknowledge funding from Wessex Medical Research UK and EPSRC 
under grant number EP/1005323/1. 

References 

[1] S. Hamid, R. Hayek, Role of electrical stimulation for rehabilitation and regeneration after spinal 
cord injury: an overview, European Spin Journal, 17(2008) 1256-1269. 

[2] N. Malesevic, L.Z. Maneski, V. Ilic, N. Jorgovanovic, G. Bijelic, T. Keller, D. Popovic, A multi-
pad electrode based functional electrical stimulation system for restoration of grasp, J Neuroeng 
Rehabil, 9(2012) 66. 

[3] S. Micera, T. Keller, M. Lawrence, M. Morari, D.B. Popović, Wearable neural prostheses. 
Restoration of sensory-motor function by transcutaneous electrical stimulation, IEEE Eng Med Biol 
Mag, 29(2010) 64-69. 

[4] B.W. Heller, A.J. Clarke, T.R. Good, T.J. Healey, S. Nair, E.J. Pratt, M.L. Reeves, J.M. van der 
Meulen, A.T. Barker, Automated setup of functional electrical stimulation for drop foot using a novel 
64 channel prototype stimulator and electrode array: Results from a gait-lab based study, Med Eng 
Phys, 35(2013) 74-81. 

[5] W. Tsang, K. Singh, E. Fiume, Helping hand: an anatomically accurate inverse dynamics solution 
for unconstrained hand motion,  2005 ACM SIG-GRAPH/Eurographics symposium on Computer 
animation2005, pp. 319-328. 

[6] T. Keller, M. Lawrence, A. Kuhn, Textile neuroprosthesis garment for functional elec-trical 
stimulation.,  International Workshop on Functional Electrical Stimulation, Krems, Austria, 2007, pp. 
107-110. 

[7] M. Lawrence, Transcutaneous Electrode Technology for Neuroprostheses: ETH Zürich; 2009. 

[8] A. Lymberis, R. Paradiso, Smart Fabrics and Interactive Textile Enabling Wearable Personal 
Applications: R&D State of the Art and Future Challenges,  30th Annual International IEEE EMBS 
Conference, Vancouver, British Columbia, Canada, 2008, pp. 5270-5273. 

[9] K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, G. Tröster, Woven Electronic Fibers 
with Sensing and Display Functions for Smart Textiles, Adv Mater, 22(2010) 5178-5182. 

[10] K. Cherenack, L.v. Pieterson, Smart textiles: Challenges and opportunities, J Appl Phys, 
112(2012) 091301. 

[11] M. Zirkl, A. Sawatdee, U. Helbig, M. Krause, G. Scheipl, E. Kraker, P.A. Ersman, D. Nilsson, D. 
Platt, P. Bodö, S. Bauer, G. Domann, B. Stadlober, An All-Printed Ferroelectric Active Matrix Sensor 
Network Based on Only Five Functional Materials Forming a Touchless Control Interface, Adv 
Mater, 23(2011) 2069-2074. 

[12] Y. Kim, H. Kim, H.-J. Yoo, Electrical Characterization of Screen-Printed Circuits on the Fabric, 
Advanced Packaging, IEEE Transactions on, 33(2010) 196-205. 

[13] www.fabinks.com. 

[14] M.R. Neuman, Biopotential Electrodes, in: J.D. Bronzino (Ed.) The Biomedical Engineering 
Handbook, 2nd ed., CRC2000, pp. 889-900. 

[15] K. Yang, R. Torah, Y. Wei, S. Beeby, J. Tudor, Waterproof and durable screen printed silver 
conductive tracks on textiles, Textile Research Journal, 83(2013) 93-101. 



Page 11 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

[16] G. Paul, R. Torah, K. Yang, S. Beeby, J. Tudor, Material selection for screen printed human bio-
potential monitoring on textiles,  5th International Exhibition and Conference for the Printed 
Electronics Industry LOPE-C, Munich, Germany, 2013. 

[17] I. Kazani, C. Hertleer, G. De Mey, A. Schwarz, G. Guxho, L. Van Langenhove, Electrical 
Conductive Textiles Obtained by Screen Printing, FIBRES & TEXTILES in Eastern Europe, 
20(2012) 57-63. 

[18] MDDI, A Practical Guide to ISO 10993-5: Cytotoxicity, 
http://www.mddionline.com/article/practical-guide-iso-10993-5-cytotoxicity, (accessed 3 August, 
2013). 

[19] www.nelsonlabs.com/ 

[20] K. Meadmore, T. Exell, A.-M. Hughes, E. Hallewell, C. Freeman, M. Kutlu, J. Burridge, E. 
Rogers, Electrical stimulation and iterative learning control for functional recovery in the upper limb 
post-stroke,  International Conference on Rehabilitation Robotics, Seattle, US, 2013. 

[21] A. Popović-Bijelić, G. Bijelić, N. Jorgovanović, D. Bojanić, M.B. Popović, D.B. Popović, Multi-
Field Surface Electrode for Selective Electrical Stimulation, Artif Organs, 29(2005) 448-452. 

[22] S.B. O'Dwyer, D.T. O'Keeffe, S. Coote, G.M. Lyons, An electrode configuration technique using 
an electrode matrix arrangement for FES-based upper arm rehabilitation systems, Med Eng Phys, 
28(2006) 166-176. 

[23] B.W. Heller, A.J. Clarke, T.R. Good, T.J. Healey, S. Nair, E.J. Pratt, Automated setup of 
functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and 
electrode array: results from a gait-lab based study, Med Eng Phys, 35(2013) 74-81. 

[24] C. T. Freeman, Electrode Array-based Electrical Stimulation using Iterative Learning Control 
with Restricted Input Subspace, Control engineering practice, 23:2, (2014), 32-43. 

 

Biographies 

K. Yang received the BEng in Material Engineering from Beijing Institute of Fashion Technology, 
China, in 2004. She obtained her Ph.D. degree in School of Chemistry from University of Leeds in 
2009. Since 2009, Kai Yang has been a Research Fellow in the School of Electronics and Computer 
Science, University of Southampton in UK. She has worked on the printed electronic textile projects 
funded by EU FP7, EPSRC, DSTL and Wessex Medical Research. Dr Yang is a co-founder and 
director of the Smart Fabric Inks company.  Her research interests include smart fabrics, ink 
formulation, biocompatible materials, and textile digital printing.  

C. Freeman is a reader in applied control at the University of Southampton. He received the B.Sc. 
degree in mathematical sciences from the Open University in 2006, the B.Eng. degree in 
electromechanical engineering from the University of Southampton in 2000, and the Ph.D. degree in 
control systems from the same institution in 2004. His control research interests include iterative 
learning and repetitive control theory and their experimental application to industrial systems and 
biomedical engineering. He has led the engineering component on large UK government funded 
grants which have developed a range of upper limb systems using robotic and Functional Electrical 
Stimulation (FES) technology that have each been trialled clinically with stroke patients. In this area 
his current focus is on biomechanics, motor learning and control, non-contact sensing, electrode-array 
based FES, and touch-table technology. He has 190 publications in these fields 

R. Torah graduated with a BEng (Honours) in Electronic Engineering in 1999 and an MSc in 
Instrumentation and Transducers in 2000, both from the University of Southampton. Between 2001 



Page 12 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

and 2004 Russel obtained a PhD in Electronics from the University of Southampton in the 
optimisation of thick-film piezo ceramics. Since 2005 he has been a full time researcher at the 
University of Southampton where he is currently a Senior Research Fellow. Dr Torah is a co-founder 
and director of the Smart Fabric Inks (in 2011) company specialising in printed smart fabrics.  Dr 
Torah’s research interests are currently focused on smart fabric development but he also has extensive 
knowledge of energy harvesting, sensors and transducers. He has over 50 publications in these fields. 

S. Beeby obtained a BEng (Honours) degree in Mechanical Engineering from the University of 
Portsmouth, UK, in 1992. He obtained his PhD from the University of Southampton, UK, in 1998 on 
the subject of micromechanical resonators. Following his PhD, he became a Research Fellow in the 
School of Electronics and Computer Science (ECS). He was appointed as a Reader in 2008 and was 
awarded a personal Chair in 2011. He was recently awarded a prestigious EPSRC Leadership 
Fellowship to investigate the combination of screen printed materials for energy harvesting on fabrics. 
His research interests include energy harvesting, electronic textiles, MEMS and active printed 
materials development. He has co-ordinated two EU research projects and is principal or co-
investigator on a further 6 projects. He leads the UK’s Energy Harvesting Network and is a co-
founder of Perpetuum Ltd, a University spin-out based upon vibration energy harvesting formed in 
2004. He is also co-founder and director of two other companies Smart Fabric Inks Ltd and D4 Tech-
neology Ltd. He is a member of the ZEROPOWER Scientific Advisory Committee and the Energy 
Harvesting Special Interest Group Steering Board. He has co-authored one book, ‘MEMS Mechanical 
Sensors’ (Artech House, Inc., Boston, London, 2004) and co-edited ‘Energy Harvesting for 
Autonomous Systems’ (Artec House, Inc., Boston, London, 2010). He has over 240 publications in 
the field and 8 patents. 

 J. Tudor obtained a BSc (Eng) in electronic and electrical engineering from University College 
London and a PhD in physics from Surrey University. In 1987, John joined Schlumberger Industries 
working first at their Transducer Division in Farnborough and then their Research Centre in Paris, 
France. In 1990, he joined the University of Southampton as a lecturer. In 1994, John moved to ERA 
Technology becoming the microsystems program manager. In 2001, John returned to the School of 
Electronics and Computer Science, University of Southampton where he is currently a Principal 
Research Fellow. His research interests include smart fabrics, screen printing, dispenser printing, 
MEMS, microsystems, energy harvesting, sensors, resonant sensors, inkjet printing and wireless 
sensors. He is a co-founder of Perpetuum Ltd and a co-founder and director of two other companies 
Smart Fabric Inks Ltd and D4 Technology Ltd. He has 150 publications and is both a chartered 
physicist and engineer. 



Page 13 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

List of Figures  

Figure 1. Fabric electrode array (a) and flexible PCB array from Fatronik‐Tecnalia (b). 

Figure 2. Top views of the FES processing after the printing of each layer, with sequence: interface 
layer (a), conductive silver layer (b), encapsulation layer (c) and carbon loaded silicone rubber layer 
(d). 

Figure 3. SEM micrographs of the conductive tracks (a) and conductive pads (b). 

Figure 4. Silver tracks/pads on bare fabric (a); fabric with interface layer (b); conductive tracks 
seperation (c); resistivity of the conductive silver tracks on fabric interface layer and Kapton (d). 

Figure 5. Monitoring system for FEA assisted hand movement. 

Figure 6. Mean wrist extension using FEA for P1(a) and P2(c); flexible PCB array for P1 (b) and P2(d). 

Figure 7. Stimulation patterns for pointing (a), pinching (b)  and open hand (c) gestures (shading 
indicates the pulsewidth levels). 
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• A flexible and breathable fabric electrode array (FEA) has been fabricated entirely by screen 
printing method. 

• High conductivity (sheet resistance = 49.4 mΩ/sq) was achieved on fabric through use of an 
interface layer. 

• Materials used in the FEA which make skin contact have passed the ISO cytoxocity test.  

• FEA can provide highly accurate assistance of joint movement. 

• Different reference postures have been achieved by stimulating an optimised selection of 
elements.  

 

  


