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Poisson surface reconstruction creates watertight surfaces from oriented

point sets. In this work we extend the technique to explicitly incorporate

the points as interpolation constraints. The extension can be interpreted as

a generalization of the underlying mathematical framework to a screened

Poisson equation. In contrast to other image and geometry processing

techniques, the screening term is defined over a sparse set of points rather

than over the full domain. We show that these sparse constraints can

nonetheless be integrated efficiently. Because the modified linear system

retains the same finite-element discretization, the sparsity structure is

unchanged, and the system can still be solved using a multigrid approach.

Moreover we present several algorithmic improvements that together

reduce the time complexity of the solver to linear in the number of points,

thereby enabling faster, higher-quality surface reconstructions.
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1. INTRODUCTION

Poisson surface reconstruction [Kazhdan et al. 2006] is a well
known technique for creating watertight surfaces from oriented
point samples acquired with 3D range scanners. The technique
is resilient to noisy data and misregistration artifacts. However,
as noted by several researchers, it suffers from a tendency to
over-smooth the data [Alliez et al. 2007; Manson et al. 2008;
Calakli and Taubin 2011; Berger et al. 2011; Digne et al. 2011].

In this work, we explore modifying the Poisson reconstruc-
tion algorithm to incorporate positional constraints. This mod-
ification is inspired by the recent reconstruction technique of
Calakli and Taubin [2011]. It also relates to recent work in im-
age and geometry processing [Nehab et al. 2005; Bhat et al. 2008;
Chuang and Kazhdan 2011], in which a data fidelity term is used
to “screen” the associated Poisson equation. In our surface recon-
struction context, this screening term corresponds to a soft con-
straint that encourages the reconstructed isosurface to pass through
the input points.

The approach we propose differs from the traditional screened
Poisson formulation in that the position and gradient constraints

are defined over different domain types. Whereas gradients are
constrained over the full 3D space, positional constraints are
introduced only over the input points, which lie near a 2D manifold.
We show how these two types of constraints can be efficiently
integrated, so that we can leverage the original multigrid structure
to solve the linear system without incurring a significant overhead
in space or time.

To demonstrate the benefits of screening, Figure 1 compares results
of the traditional Poisson surface reconstruction and the screened
Poisson formulation on a subset of 11.4M points from the scan of
Michelangelo’s David [Levoy et al. 2000]. Both reconstructions are
computed over a spatial octree of depth 10, corresponding to an
effective voxel resolution of 10243. Screening generates a model
that better captures the input data (as visualized by the surface
cross-sections overlaid with the projection of nearby samples),
even though both reconstructions have similar complexity (6.8M
and 6.9M triangles respectively) and required similar processing
time (230 and 272 seconds respectively, without parallelization).1

Another contribution of our work is to modify both the octree
structure and the multigrid implementation to reduce the time
complexity of solving the Poisson system from log-linear to linear
in the number of input points. Moreover we show that hierarchical
point clustering enables screened Poisson reconstruction to attain
this same linear complexity.

2. RELATED WORK

Reconstructing surfaces from scanned points is an important and
extensively studied problem in computer graphics. The numerous
approaches can be broadly categorized as follows.

Combinatorial Algorithms. Many schemes form a triangula-
tion using a subset of the input points [Cazals and Giesen 2006].
Space is often discretized using a tetrahedralization or a voxel
grid, and the resulting elements are partitioned into inside and
outside regions using an analysis of cells [Amenta et al. 2001;
Boissonnat and Oudot 2005; Podolak and Rusinkiewicz 2005],
eigenvector computation [Kolluri et al. 2004], or graph cut
[Labatut et al. 2009; Hornung and Kobbelt 2006].

Implicit Functions. In the presence of sampling noise, a common
approach is to fit the points using the zero set of an implicit func-
tion, such as a sum of radial bases [Carr et al. 2001] or piecewise
polynomial functions [Ohtake et al. 2005; Nagai et al. 2009]. Many
techniques estimate a signed-distance function [Hoppe et al. 1992;

1The performance of the unscreened solver is measured using our imple-

mentation with screening weight set to zero. The implementation of the

original Poisson reconstruction runs in 412 seconds.
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Fig. 1: Reconstruction of the David head‡, comparing traditional Poisson surface reconstruction (left) and screened Poisson surface reconstruction which

incorporates point constraints (center). The rightmost diagram plots pixel depth (z) values along the colored segments together with the positions of nearby

samples. The introduction of point constraints significantly improves fit accuracy, sharpening the reconstruction without amplifying noise.

Bajaj et al. 1995; Curless and Levoy 1996]. If the input points are
unoriented, an important step is to correctly infer the sign of the
resulting distance field [Mullen et al. 2010].

Our work extends Poisson surface reconstruction [Kazhdan et al.
2006], in which the implicit function corresponds to the model’s
indicator function χ . The function χ is often defined to have value 1
inside and value 0 outside the model. To simplify the derivations, in

this paper we define χ to be 1
2 inside and −1

2 outside, so that its zero
isosurface passes near the points. The function χ is solved using a
Laplacian system discretized over a multiresolution B-spline basis,
as reviewed in Section 3.

Alliez et al. [2007] form a Laplacian system over a tetrahedral-
ization, and constrain the solution’s biharmonic energy; the de-
sired function is obtained as the solution to an eigenvector prob-
lem. Manson et al. [2008] represent the indicator function χ using
a wavelet basis, and efficiently compute the basis coefficients using
simple local sums over an adapted octree.

Calakli and Taubin [2011] optimize a signed-distance function
to have value zero at the points, have derivatives that agree
with the point normals, and minimize a Hessian smoothness
norm. The resulting optimization involves a bilaplacian operator,
which requires estimating derivatives of higher order than in the
Laplacian. The reconstructed surfaces are shown to have good
accuracy, strongly suggesting the importance of explicitly fitting
the points within the optimization. This motivated us to explore
whether a Laplacian system could be extended in this respect, and
also be compatible with a multigrid solver.

Screened Poisson Surface Fitting. The method of Nehab et al.
[2005], which simultaneously fits position and normal constraints,
may also be viewed as the solution of a screened Poisson equation.
The fitting algorithm assumes that a 2D parametric domain (i.e.,
a plane or triangle mesh) is already established. The position and
derivative constraints are both defined over this 2D domain.

In contrast, in Poisson surface reconstruction the 2D domain
manifold is initially unknown, and therefore the goal is to infer an
indicator function χ rather than a parametric function. This leads
to a hybrid problem with derivative (Laplacian) constraints defined
densely over 3D and position constraints defined sparsely on the set
of points sampled near the unknown 2D manifold.

3. REVIEW OF POISSON SURFACE

RECONSTRUCTION

The approach of Poisson surface reconstruction is based on the
observation that the (inward pointing) normal field of the boundary
of a solid can be interpreted as the gradient of the solid’s
indicator function. Thus, given a set of oriented points sampling the
boundary, a watertight mesh can be obtained by (1) transforming
the oriented point samples into a continuous vector field in 3D,
(2) finding a scalar function whose gradients best match the vector
field, and (3) extracting the appropriate isosurface.

Because our work focuses primarily on the second step, we review
it here in more detail.

Scalar Function Fitting. Given a vector field ~V : R3 → R
3, the

goal is to solve for the scalar function χ : R3 → R minimizing:

E(χ) =
∫

‖∇χ(p)−~V (p)‖2d p. (1)

Using the Euler-Lagrange formulation, the minimum is obtained
by solving the Poisson equation:

∆χ = ∇ ·~V .

System Discretization. The Galerkin formulation is used to
transform this into a finite-dimensional system [Fletcher 1984].
First, a basis {B1, . . . ,BN} : R3 →R is chosen, namely a collection
of trivariate (usually triquadratic) B-spline functions. With respect
to this basis, the discretization becomes:

〈∆χ,Bi〉[0,1]3 = 〈∇ ·~V ,Bi〉[0,1]3 1 ≤ i ≤ N

where 〈·, ·〉[0,1]3 is the standard inner-product on the space of

(scalar- and vector-valued) functions defined on the unit cube:

〈F,G〉[0,1]3 =
∫

[0,1]3
F(p) ·G(p) d p,

〈~U ,~V 〉[0,1]3 =
∫

[0,1]3
〈~U(p),~V (p)〉 d p.

Since the solution is itself expressed in terms of the basis functions:

χ(p) =
N

∑
i=1

xiBi(p),
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finding the coefficients {xi} of the solution reduces to solving the
linear system Ax = b where:

Ai j = 〈∇Bi,∇B j〉[0,1]3 and bi = 〈~V ,∇Bi〉[0,1]3 . (2)

The basis functions {B1, . . . ,BN} are chosen to be compactly
supported, so most pairs of functions do not have overlapping
support, and thus the matrix A is sparse.

Because the solution is expected to be smooth away from the input
samples, the linear system is discretized by first adapting an octree
to the input samples and then associating an (appropriately scaled
and translated) trivariate B-spline function to each octree node.
This provides high-resolution detail in the vicinity of the surface
while reducing the overall dimensionality of the system.

System Solution. Given the hierarchy defined by an octree of
depth D, a multigrid approach is used to solve the linear system.
The basis functions are partitioned according to the depths of their

associated nodes and, for each depth d, a linear system Adxd = bd

is defined using the corresponding B-splines {Bd
1 , . . . ,B

d
Nd
}, such

that χ(p) = ∑
D
d=0 ∑i xd

i Bd
i (p).

Because the octree-selected B-spline functions do not form a
complete grid at each depth, it is generally not possible to prolong

the solution xd at depth d into the solution xd+1 at depth d + 1.
(The B-spline associated with a given node is a sum of B-spline
functions associated not only with its own child nodes, but also
with child nodes of its neighbors.) Instead, the constraints at depth
d + 1 are adjusted to account for the part of the solution already
realized at coarser depths.

Pseudocode for a cascadic solver, where the solution is only relaxed
on the up-stroke of the V-cycle, is given in Algorithm 1.

Algorithm 1: Cascadic Poisson Solver

1 For d ∈ {0, . . . ,D} Iterate from coarse to fine

2 For d′ ∈ {0, . . . ,d −1} Remove the constraints

3 bd = bd −Add′xd′ met at coarser depths

4 Relax Adxd = bd Adjust the system at depth d

Here, Add′
is the Nd × Nd′ matrix used to transform solution

coefficients at depth d′ into constraints at depth d:

Add′

i j = 〈∇Bd
i ,∇Bd′

j 〉[0,1]3 .

Note that, by definition, Ad = Add .

Isosurface Extraction. Solving the Poisson equation, one obtains
a function χ that approximates the indicator function. Ideally, the
function’s zero level-set should therefore correspond to the desired
surface. In practice however, the function χ can differ from the true
indicator function due to several sources of error:

—The point sampling may be noisy, possibly containing outliers.

—The Galerkin discretization is only an approximation of the
continuous problem.

—The point sampling density is approximated during octree
construction.

To mitigate these errors, in [Kazhdan et al. 2006] the implicit
function is adjusted by globally subtracting the average value of
the function at the input samples.

4. INCORPORATING POINT CONSTRAINTS

The original Poisson surface reconstruction algorithm adjusts the
implicit function using a single global offset such that its average
value at all points is zero. However, the presence of errors can cause
the implicit function to drift so that no global offset is satisfactory.
Instead, we seek to explicitly interpolate the points.

Given the set of input points P with weights w : P → R
≥0, we

add to the energy of Equation 1 a term that penalizes the function’s
deviation from zero at the samples:

E(χ)=
∫

‖~V (p)−∇χ(p)‖2d p+
α ·Area(P)

∑p∈P w(p) ∑
p∈P

w(p)χ2(p) (3)

where α is a weight that trades off the importance of fitting the
gradients and fitting the values, and Area(P) is the area of the
reconstructed surface, estimated by computing the local sampling
density as in [Kazhdan et al. 2006]. In our implementation, we
set the per-sample weights w(p) = 1, although one can also use
confidence values if these are available.

The energy can be expressed concisely as

E(χ) = 〈~V −∇χ,~V −∇χ〉[0,1]3 +α〈χ,χ〉(w,P) (4)

where 〈·, ·〉(w,P) is the bilinear, symmetric, positive, semi-definite

form on the space of functions in the unit-cube, obtained by taking
the weighted sum of function values:

〈F,G〉(w,P) =
Area(P)

∑p∈P w(p) ∑
p∈P

w(p) ·F(p) ·G(p).

4.1 Interpretation as a Screened Poisson Equation

The energy in Equation 4 combines a gradient constraint integrated
over the spatial domain with a value constraint summed at
discrete points. As shown in the appendix, its minimization can be

interpreted as a screened Poisson equation (∆−α Ĩ)χ = ∇ ·~V with
an appropriately defined operator Ĩ.

4.2 Discretization

We apply a discretization similar to that in Section 3 to the
minimization of the energy in Equation 4. The coefficients of the
solution χ with respect to the basis {B1, . . . ,BN} are again obtained
by solving a linear system of the form Ax= b. The right-hand-side b
is unchanged because the constrained value at the sample points is
zero. Matrix A now includes the point constraints:

Ai j = 〈∇Bi,∇B j〉[0,1]3 +α〈Bi,B j〉(w,P). (5)

Note that incorporating the point constraints does not change the
sparsity of matrix A because Bi(p) ·B j(p) is nonzero only if the
supports of the two functions overlap, in which case the Poisson
equation has already introduced a nonzero entry in the matrix.

As in Section 3, we solve this linear system using a cascadic
multigrid algorithm – iterating over the octree depths from coarsest
to finest, adjusting the constraints, and relaxing the system. Similar
to Equation 5, the matrix used to transform a solution at depth d′ to
a constraint at depth d is expressed as:

Add′

i j = 〈∇Bd
i ,∇Bd′

j 〉[0,1]3 +α〈Bd
i ,B

d′

j 〉(w,P).
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Fig. 2: Visualizations of the reconstructed implicit function along a planar

slice through the cow‡ (shown in blue on the left), for the original

Poisson solver, and for the screened Poisson solver without and with scale-

independent screening.

This operator adjusts the constraint bd (line 3 of Algorithm 1)
not only by removing the Poisson constraints met at coarser
resolutions, but also by modifying the constrained values at points
where the coarser solution does not evaluate to zero.

4.3 Scale-Independent Screening

To balance the two energy terms in Equation 3, it is desirable to
adjust the screening parameter α such that (1) the reconstructed
surface shape is invariant under scaling of the input points with
respect to the solver domain, and (2) the prolongation of a solution
at a coarse depth is an accurate estimate of the solution at a
finer depth in the cascadic multigrid approach. We achieve both
these goals by adjusting the relative weighting of position and
gradient constraints across the different octree depths. Noting that
the magnitude of the gradient constraint scales with resolution, we
double the weight of the interpolation constraint with each depth:

Add′

i j = 〈∇Bd
i ,∇Bd′

j 〉[0,1]3 +2dα〈Bd
i ,B

d′

j 〉(w,P).

The adaptive weight of 2d is chosen to keep the Laplacian and
screening constraints around the surface in balance. To see this,
assume that the points are locally planar, and consider the row of
the system matrix corresponding to an octree node overlapping
the points. The coefficients of the system in that row are the
sum of Laplacian and screening terms. If we consider the rows
corresponding to the child nodes that overlap the surface, we find
that the contribution from the Laplacian constraints scales by a
factor of 1/2 while the contribution from the screening term scales
by a factor of 1/4.2 Thus, scaling the screening weights by a factor
of two with each resolution keeps the two terms in balance.

Figure 2 shows the benefit of scale-independent screening in
reconstructing a cow model. The leftmost image shows a plane
passing through the bounding cube of the cow, and the images
to the right show the values of the computed indicator function
along that plane, for different implementations of the solver.
As the figure shows, the unscreened Poisson solver provides a
good approximation of the indicator functions, with values inside
(resp. outside) the surface approximately 1/2 (resp. -1/2). However,
applying the same solver to the screened Poisson equation (second
from right) provides a solution that is only correct near the input
samples and returns to zero near the faces of the bounding cube,

2For the Laplacian term, the Laplacian scales by a factor of 4 with

refinement, and volumetric integrals scale by a factor of 1/8. For the

screening term, area integrals scale by a factor of 1/4.

potentially resulting in spurious surface sheets away from the
surface. It is only with scale-independent screening (right) that we
obtain a high-quality solution to the screened Poisson equation.

Scale-Independence. Using this resolution adaptive weighting,
our system has the property that the reconstruction obtained by
solving at depth D is identical to the reconstruction that would be
obtained by scaling the point set by 1/2 and solving at depth D+1.

To see this, we consider the two energies that guide the reconstruc-
tion, E~V (χ) measuring the extent to which the gradients of the so-

lution match the prescribed vector field, and E(w,P)(χ) measuring

the extent to which the solution meets the screening constraint:

E~V (χ) =
∫

∥

∥

∥

~V (p)−∇χ(p)
∥

∥

∥

2
d p

E(w,P)(χ) =
Area(P)

∑p∈P w(p) ∑
p∈P

w(p)χ2(p).

Scaling by 1/2, we obtain a new point set (w̃,P̃) with positions
scaled by 1/2, unchanged weights, w̃(p) = w(2p), and scaled area,

Area(P̃) = Area(P)/4; a new scalar field, χ̃(p) = χ(2p); and

a new vector field, ~̃V (p) = 2~V (2p). Computing the corresponding
energies, we get:

E~̃V
(χ̃) =

1

2
E~V (χ) and E(w̃,P̃)(χ̃) =

1

4
E(w,P)(χ).

Thus, scaling the screening weight by a factor of two with each
successive depth ensures that the sum of energies is unchanged (up
to multiplication by a constant) so the minimizer remains the same.

4.4 Boundary Conditions

In order to define the linear system, it is necessary to define the
behavior of the function space along the boundary of the integration
domain. In the original Poisson reconstruction the authors imposed
Dirichlet boundary conditions, forcing the implicit function to have

a value of −1
2 along the boundary. In the present work we extend the

implementation to support Neumann boundary conditions as well,
forcing the normal derivative to be zero along the boundary.

In principle these two boundary conditions are equivalent for
watertight surfaces, since the indicator function has a constant
negative value outside the model. However, in the presence of
missing data we find Neumann constraints to be less restrictive
because they only require that the implicit function have zero
derivative across the boundary of the integration domain, a property
that is compatible with the gradient constraint since the guiding

vector field~V is set to zero away from the samples. (Note that when
the surface does cross the boundary of the domain, the Neumann
boundary constraints create a bias to crossing the domain boundary
orthogonally.)

Figure 3 shows the practical implications of this choice when
reconstructing the Angel model, which was only scanned from
the front. The left image shows the original point set and the
reconstructions using Dirichlet and Neumann boundary conditions
are shown to the right. As the figure shows, imposing Dirichlet
constraints creates a water-tight surface that closes off before
reaching the boundary while using Neumann constraints allows the
surface to extend out to the boundary of the domain.
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Fig. 3: Reconstructions of the Angel point set‡ (left) using Dirichlet (center)

and Neumann (right) boundary conditions.

Similar results can be seen at the bases of the models in Figures 1
and 4a, with the original Poisson reconstructions obtained using
Dirichlet constraints and the screened reconstructions obtained
using Neumann constraints.

5. IMPROVED ALGORITHMIC COMPLEXITY

In this section we discuss the efficiency of our reconstruction al-
gorithm. We begin by analyzing the complexity of the algorithm
described above. Then, we present two algorithmic improvements.
The first describes how hierarchical clustering can be used to re-
duce the screening overhead at coarser resolutions. The second ap-
plies to both the unscreened and screened solver implementations,
showing that the asymptotic time complexity in both cases can be
reduced to be linear in the number of input points.

5.1 Efficiency of basic solver

Let us begin by analyzing the computational complexity of the
unscreened and screened solvers. We assume that the points P are
evenly distributed over a surface, so that the depth of the adapted
octree is D=O(log |P|) and the number of octree nodes at depth d

is O(4d).

We also note that the number of nonzero entries in matrix Add′

is O(4d), since the matrix has O(4d) rows and each row has at

most 53 nonzero entries. (Since we use second-order B-splines,
basis functions are supported within their one-ring neighborhoods
and the support of two functions will overlap only if one is within
the two-ring neighborhood of the other.)

Assuming that the matrices Add′
have already been computed, the

computational complexity for the different steps in Algorithm 1 is:

Step 3: O(4d) – since Add′
has O(4d) nonzero entries.

Step 4: O(4d) – since Ad has O(4d) nonzero entries and the
number of relaxation steps performed is constant.

Steps 2-3: ∑
d−1
d′=0 O(4d) = O(4d ·d).

Steps 2-4: O(4d ·d +4d) = O(4d ·d).

Steps 1-4: ∑
D
d=0 O(4d ·d) = O(4D ·D) = O(|P| · log |P|).

There still remains the computation of matrices Add′
.

For the unscreened solver, the complexity of computing Add′

is O(4d), since each entry can be computed in constant time. Thus,
the overall time complexity remains O(|P| · log |P|).

For the screened solver, the complexity of computing Add′

is O(|P|) since defining the coefficients requires accumulating
the screening contribution from each of the points, and each point
contributes to a constant number of rows. Thus, the overall time
complexity is dominated by the cost of evaluating the coefficients

of Add′
which is:

D

∑
d=0

d−1

∑
d′=0

O(|P|) = O(|P| ·D2) = O(|P| · log2 |P|).

5.2 Hierarchical Clustering of Point Constraints

Our first modification is based on the observation that since the
basis functions at coarser resolutions are smooth, it is unnecessary
to constrain them at the precise sample locations. Instead, we
cluster the weighted points as in [Rusinkiewicz and Levoy 2000].

Specifically, for each depth d, we define (wd ,Pd) where pi ∈ Pd

is the weighted average position of the points falling into octree

node i at depth d, and wd(pi) is the sum of the associated weights.3

If all input points have weight w(p) = 1, then wd(pi) is simply the
number of points falling into node i.

This alters the computation of the system matrix coefficients:

Add′

i j = 〈∇Bd
i ,∇Bd′

j 〉[0,1]3 +2dα〈Bd
i ,B

d′

j 〉(wd ,Pd).

Note that since d > d′, the value 〈Bd
i ,B

d′

j 〉(wd ,Pd) is obtained by

summing over points stored with the finer resolution.

In particular, the complexity of computing Add′
for the screened

solver becomes O(|Pd |) = O(4d), which is the same as that of the
unscreened solver, and both implementations now have an overall
time complexity of O(|P| · log |P|).

On typical examples, hierarchical clustering reduces execution time
by a factor of almost two, and the reconstructed surface is visually
indistinguishable.

5.3 Conforming Octrees

To account for the adaptivity of the octree, Algorithm 1 subtracts
off the constraints met at all coarser resolutions before relaxing
at a given depth (steps 2-3), resulting in an algorithm with log-
linear time complexity. We obtain an implementation with linear
complexity by forcing the octree to be conforming. Specifically,
we define two octree cells to be mutually visible if the supports of
their associated B-splines overlap, and we require that if a cell at
depth d is in the octree, then all visible cells at depth d−1 must also
be in the tree. Making the tree conforming requires the addition of

new nodes at coarser depths, but this still results in O(4d) nodes at
depth d.

While the conforming octree does not satisfy the condition that
a coarser solution can be prolonged into a finer one, it has the
property that the solution obtained at depths {0, . . . ,d − 1} that
is visible to a node at depth d can be expressed entirely in terms
of the coefficients at depth d − 1. Using an accumulation vector
to store the visible part of the solution, we obtain the linear-time
implementation in Algorithm 2.

3Note that the weight wd(p) is unrelated to the screening weight 2d

introduced in Section 4.3 for scale-independent screening.
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Here, Pd
d−1 is the B-spline prolongation operator, expressing a

solution at depth d − 1 in terms of coefficients at depth d. The

number of nonzero entries in Pd
d−1 is O(4d), since each column

has at most 43 nonzero entries, so steps 2-5 of Algorithm 2 all

have complexity O(4d). Thus, the overall complexity of both the
unscreened and screened solvers becomes O(|P|).

Algorithm 2: Conforming Cascadic Poisson Solver

1 For d ∈ {0, . . . ,D} Iterate from coarse to fine.

2 x̂d−1 = Pd−1
d−2 x̂d−2 Upsample coarser

accumulation vector.

3 x̂d−1 = x̂d−1 + xd−1 Add in coarser solution.

4 bd = bd −Ad d−1x̂d−1 Remove constraints

met at coarser depths.

5 Relax Adxd = bd Adjust the system at depth d.

5.4 Implementation Details

The algorithm is implemented in C++, using OpenMP for multi-
threaded parallelization. We use a conjugate-gradient solver to re-
lax the system at each multigrid level. With the exception of the
octree construction, most of the operations involved in the Poisson
reconstruction can be categorized as operations that either “accu-
mulate” or “distribute” information [Bolitho et al. 2007, 2009]. The
former do not introduce write-on-write conflicts and are trivial to
parallelize. The latter only involve linear operations, and are par-
allelized using a standard map-reduce approach: in the map phase
we create a duplicate copy of the data for each thread to distribute
values into, and in the reduce phase we merge the copies by taking
their sum.

6. RESULTS

We evaluate the algorithm (Screened) by comparing its accuracy
and computational efficiency with several prior methods: the
original Poisson reconstruction of Kazhdan et al. [2006] (Poisson),
the Wavelet reconstruction of Manson et al. [2008] (Wavelet), and
the Smooth Signed Distance reconstruction of Calakli and Taubin
[2011] (SSD).

For the new algorithm, we set the screening weight to α =4 and
use Neumann boundary conditions in all experiments. (Numerical
results obtained using Dirichlet boundaries were indistinguishable.)
For the prior methods, we set algorithmic parameters to values
recommended by the authors, using Haar Wavelets in the Wavelet
reconstruction and setting the value/normal/Hessian weights to
1/1/0.25 in the SSD reconstruction. For Poisson, SSD, and
Screened we set the “samples-per-node” parameter to 1 and the
“bounding-box-scale” parameter to 1.1. (For Wavelet the bounding
box scale is hard-coded at 1 and there is no parameter to adjust the
sampling density.)

6.1 Accuracy

We run three different types of experiments.

Real Scanner Data. To evaluate the accuracy of the different
reconstruction algorithms on real-world data, we gathered several
scanned datasets: the Awakening (10M points), the Stanford Bunny
(0.2M points), the David (11M points), the Lucy (1.0M points),
and the Neptune (2.4M points). For each dataset, we randomly
partitioned the points into two equal-sized subsets: input points
for the reconstruction algorithms, and validation points to measure
point-to-reconstruction distances.

Figure 4a shows reconstructions results for the Neptune and David
models at depth 10. It also shows surface cross-sections overlaid
with the validation points in their vicinity. These images reveal
that the Poisson reconstruction (far left), and to a lesser extent
the SSD reconstruction (center left), over-smooth the data, while
the Wavelet reconstruction (center left) has apparent derivative
discontinuities. In contrast, our screened Poisson approach (far
right) provides a reconstruction that faithfully fits the samples
without introducing noise.

Figure 4b shows quantitative results across all datasets, in the
form of RMS errors, measured using the distances from the
validation points to the reconstructed surface. (We also computed
the maximum error, but found that its sensitivity to individual
outlier points made it an unreliable and unindicative statistic.) As
the figure indicates, the Screened Poisson reconstruction (blue) is
always more accurate than both the original Poisson reconstruction
algorithm (red) and the Wavelet reconstruction (purple), and
generates reconstruction whose RMS errors are comparable to or
smaller than those of the SSD reconstruction (green).

Clean Uniformly Sampled Data. To evaluate reconstruction
accuracy on clean data, we used the approach of Osada et al. [2001]
to generate oriented point sets by uniformly sampling the surfaces
of the Fandisk, Armadillo Man, Dragon, and Raptor models. For
each model, we generated datasets of 100K and 1M points and
reconstructed surfaces from each point set using the four different
reconstruction algorithms.

As an example, Figure 5a shows the reconstructions of the fandisk
and raptor models using 1M point samples at depth 10. Despite
the lack of noise in the input data, the Wavelet reconstruction has
spurious high-frequency detail. Focusing on the sharp edges in the
model, we also observe that the screened Poisson reconstruction
introduces less smoothing, providing a reconstruction that is truer
to the original data than either the original Poisson or the SSD
reconstructions.

Figure 5b plots RMS errors across all models, measured bidirec-
tionally between the original surface and the reconstructed surface
using the Metro tool [Cignoni and Scopigno 1998]. As in the case
of real scanner data, screened Poisson reconstruction always out-
performs the original Poisson and Wavelet reconstructions, and is
comparable to or better than the SSD reconstruction.

Reconstruction Benchmark. We use the benchmark of
Berger et al. [2011] to evaluate the accuracy of the algorithms
under different simulations of scanner error, including nonuniform
sampling, noise, and misalignment. The dataset consists of mul-
tiple virtual scans of implicit surfaces representing the Anchor,
Dancing Children, Daratech, Gargoyle, and Quasimodo models.

As an example, Figure 6a visualizes the error in the reconstructions
of the anchor model from a virtual scan consisting of 210K points
(demarked with a dashed rectangle in Figure 6b) at depth 9. The
error is visualized using a red-green-blue scale, with red signifying
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(a) Depth 10 reconstructions of the Neptune and David models‡. The 2D visualizations in the bottom row show cross-section curves from the reconstructions

of the mustache and the iris, overlaid with adjacent validation points.

(b) For all models, plots of one-sided RMS errors, measured from the evaluation points to the reconstructed surface, as a function of the resolution depth (8,

9, and 10). In these experiments half the points were provided as input to the reconstruction algorithms, and the other half were used for evaluation.

Fig. 4: Experiments of reconstruction from real scanner data

low error and blue signifying high error. The top row shows the
distance from the reconstructed surfaces to the ground-truth, and
the bottom row shows the distance from the input samples to
the reconstructed surfaces. Examining the top row, we note that
only the SSD reconstruction produces a low error surface inside
the cylindrical hole. Looking at the point sets in the bottom row,
we observe that this region does not contain input samples, and
therefore the success of the SSD reconstruction reflects its ability
to better extrapolate the reconstruction into regions of missing
data. However, if we only consider the fit of the reconstructions
to the input point set (bottom row of Figure 6a) we find again
that our screened Poisson reconstruction outperforms both the
original Poisson reconstruction and the Wavelet reconstructions,
and produces a surface whose fit to the input samples is comparable
to that of the SSD reconstruction.

More generally, Figure 6b shows the results of these experiments
with reconstructions computed at depth 9, giving the average dis-
tance from the reconstructions to the original implicit surface (top)
and the average angle between the normals of points on the recon-
struction and the normals of the corresponding points on the im-
plicit surface (bottom), as a function of the number of point samples
in the virtual scan. The results are visualized as scatter plots giving
the ratio of the errors for the Wavelet, SSD, and screened Poisson
reconstructions to the errors of the original Poisson reconstruction.
Thus, values less than one indicate improved accuracy over Poisson
reconstruction.

The results in Figure 6b therefore indicate that SSD reconstructs a
surface that is closest to the original model. Visual analysis as in
Figure 6a reveals that this improved accuracy is primarily due to
the quality of the extrapolated surface in regions of missing data.
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8 • M. Kazhdan and H. Hoppe

(a) Depth 10 reconstructions from 1M point uniformly sampled on the fandisk and raptor surface models‡. Note how the Wavelet reconstruction introduces

high-frequency texture even on the smooth surfaces of the fandisk. The screened Poisson surface reconstruction is the sharpest.

(b) Accuracy of reconstruction techniques on “clean” point sets obtained by uniformly sampling 100K and 1M oriented points from various meshes.

Reconstructions are obtained at depths 8, 9, and 10. Plots show RMS errors, measured in both directions between each reconstruction and original surface.

Fig. 5: Experiments of reconstruction from clean, uniformly sampled data

Thus, measuring distances with respect to the ground-truth model
leads to relatively large errors in occluded surface regions, which
naturally dominate the overall error statistics. This is corroborated
by the angular errors plotted in the bottom row. Since these errors
are formulated in terms of angles between normals, they emphasize
the quality of the high-frequency component of the reconstruction.
As such, they give lower weight in regions of missing data (where
the reconstructions tend to be smooth) – so the comparable quality
of the SSD and screened Poisson reconstructions indicate that they
are of similar quality away from the missing data.

6.2 Computational Efficiency

Table I compares the (wall-clock) running time and memory usage
of all four algorithms in reconstructing surfaces at depths 8, 9, 10,
and 11 from the Neptune and David datasets. All experiments were
run on a laptop with a quad-core Intel Core i7 and 8GB of RAM.

Running Time. The Wavelet reconstruction is fast; its use of com-
pactly supported, orthogonal basis functions lets the reconstruction
algorithm compute the implicit function coefficients through inte-
gration – never requiring the explicit solution of a linear system.

In contrast, the other three techniques use non-orthogonal basis
functions, thus requiring a global system solution. For the origi-
nal and screened Poisson reconstructions, the multigrid solver per-
forms a constant number of conjugate-gradient iterations at each

level, giving linear complexity in the number N of octree nodes.
Thus, increasing the depth by one roughly quadruples the compu-
tation time.4 In contrast, the SSD reconstruction uses conjugate-
gradients to solve for all the coefficients simultaneously, which has
a complexity of O(N1.5), resulting in significantly slower perfor-
mance at higher resolutions.

Interestingly, it might be possible to implement the SSD recon-
struction technique using second-order B-splines as basis func-
tions, just as in the Poisson reconstruction algorithms, and also ben-
efit from a similar multigrid framework. However, we believe that
this may not completely alleviate the performance bottleneck. In
particular, the technique of Calakli and Taubin incorporates a Hes-
sian smoothness term in the linear system. For the same discretiza-
tion complexity, the condition number of the resulting system ma-
trix is square that of the Laplacian matrix used in the Poisson re-
constructions. Consequently, we expect the solver to require more
iterations on large problem sizes.

Table I also highlights the speedup due to our algorithmic
complexity improvements. When setting α = 0, the new algorithm
(shown in brackets) is 2–3 times faster than the original Poisson
reconstruction algorithm. A small portion of this improvement
(×1.1 to ×1.6) is due to multithreaded parallelization.

4Although the octree construction phase is log-linear, the constant tends to

be small so this step does not dominate the running time in practice.
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(a) Visualization of errors for reconstructions of the Anchor model‡. The top rows show the distance of the reconstructed surfaces from the ground-truth

original surface, while the bottom row shows the distance from the input samples to the reconstructions. Errors are visualized using a red-green-blue colormap,

with red corresponding to small error and blue to large.

(b) Reconstruction accuracy as measured by the benchmarks tests of Berger et al. [2011]. For each of the 5 datasets (columns), the two plots show the ratios

of the mean distance (top) and mean normal (bottom) errors of the SSD, Wavelet, and Screened Poisson reconstructions, relative to the original Poisson

reconstruction algorithm. Each symbol is one benchmark test, and the horizontal axis indicates the number of points in that test.

Fig. 6: Results using the reconstruction benchmark of Berger et al. [2011]

Time in seconds Memory in MB Vertices ×106

Model Depth Poisson Wavelet SSD Screened Poisson Wavelet SSD Screened Poisson Wavelet SSD Screened

Neptune

8 10 [13] 3 275 14 113 4 238 133 0.1 0.1 0.1 0.1

9 25 [17] 4 547 20 149 11 455 269 0.2 0.2 0.2 0.2

10 89 [36] 6 3302 44 422 35 1247 604 0.9 0.7 0.9 0.9

11 320 [105] 9 15441 126 1387 118 3495 1622 3.1 1.5 2.9 3.2

David

8 41 [45] 9 492 48 427 11 863 454 0.2 0.2 0.2 0.2

9 108 [66] 12 2355 73 510 38 1724 932 0.8 0.7 0.8 0.9

10 412 [157] 20 19158 182 1498 151 4895 2194 3.4 2.8 3.3 3.5

11 1710 [522] 43 †119119 609 5318 545 >8192 6188 12.8 7.3 11.6 13.3

Table I. : Runtime performance of the different reconstruction techniques on the David and Neptune datasets at depths 8, 9, 10, and 11. The numbers in brackets

are timing results obtained using our method without screening (α = 0) i.e., after the algorithmic improvements of Section 5.
†Since the memory usage of SSD exceeds the available RAM, we report the CPU user time for this experiment rather than the wall-clock time.

Even with the additional overhead of screening (which requires ex-
plicit evaluation of the piecewise polynomial basis functions at sub-

voxel locations and cannot leverage the advantages of homogeneity
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10 • M. Kazhdan and H. Hoppe

used to accelerate the discretization of the Laplacian), our running
times are faster than the original Poisson reconstruction.

Memory Usage. The memory usage of the different reconstruc-
tion algorithms also highlights the cost of formulating the recon-
struction problem in terms of the solution to a linear system. Since
the Poisson and SSD reconstructions define a linear system using
the two-ring neighbors, the system matrix can have as many as 125
entries per row, resulting in a significant overhead for just storing
the matrix. In contrast, the Wavelet reconstruction algorithm does
not need to solve a linear system and avoids the associated memory
overhead.

Reconstruction Resolution. The resolutions of the different re-
constructions are shown in the last four columns of Table I. In
practice, the resolution is determined by the depth of the octree,
the fraction of the unit-cube occupied by the bounding box of the
point set, the isosurfacing algorithm, and (for the Poisson, SSD,
and screened Poisson reconstructions) the sample density threshold
used in adaptive octree refinement. As the table shows, the similarly
set parameters result in reconstructions of similar resolution for the
original Poisson, SSD, and screened Poisson reconstructions.

6.3 Discussion and Limitations

Screening Parameter α . Empirically we have found that a value
of α = 4 works well for many types of datasets. We use this value
for all examples in this paper. One nice property of the screened
Poisson equation (3) is that with sufficient discretization, both its
energy terms (gradient and screening) approach zero for the case
of a uniform, noise-free sampling. Intuitively, the two terms are
compatible for the case of clean data. In contrast, for the SSD
reconstruction approach the smoothness energy only reaches zero
for a planar surface. Because curved surfaces are penalized, the
relative weighting of the different energy terms is important, and
the smoothness parameter may need adjustment depending on the
model geometry and the amount of noise. (See discussion below.)

Over-Fitting. Although the screening of the Poisson equation
helps to more closely fit the input samples, there are circumstances
under which this may lead to undesirable reconstructions. Specifi-
cally, when the input data contains significant amounts of misalign-
ment or noise, the screened Poisson reconstruction will generate a
surface that interpolates these artifacts. Figure 7 shows an example
of this situation for the reconstruction of the Lucy model, with the
results of the original Poisson reconstruction shown on the left and
the results of the screened reconstruction shown on the right. Be-
cause the input scans from the right side of the face are misaligned
(the points in the cross-section at the bottom cluster along two dis-
tinct curves), the screened reconstruction generates a pock-marked
surface that undulates somewhat between the two scans.

This example also highlights a limitation of using the point-to-
surface distance. As shown in Figure 4b, although the screened
Poisson reconstruction has lower visual quality, it still provides a
tighter fit to the data, resulting in RMS errors that are noticeably
smaller than those of the unscreened reconstruction.

Figure 8 shows an example with significantly noisy points, obtained
using a multiview stereo algorithm.In this case, the screening term
accentuates the noise in the reconstructed surface. Note however
that the surface is stable, even over a wide range of α values.
The figure also shows the effect of increasing the samples/node

Fig. 7: Reconstruction of the Lucy model‡. When the input data has

misaligned scans, the screened Poisson reconstruction (right) more tightly

fits the noise, resulting in a qualitatively lower-quality reconstruction than

the one returned by the original Poisson reconstruction (left).

parameter from its default value of 1. The resulting coarsening
of the octree structure helps to reduce reconstruction noise, but
the simultaneous reduction in mesh resolution results in loss of
detail. For this noisy example, the best strategy is to reduce the
screening parameter α while keeping the samples/node parameter
at 1. At an extreme setting α = 0 we obtain an unscreened
Poisson reconstruction as in [Kazhdan et al. 2006]. (The slight
differences between our result with α = 0 and the original Poisson
reconstruction, particularly at the base of the Eagle’s neck, derive
from our use of a conforming octree. Because we introduce
additional leaf nodes near regions of sparse sampling, we obtain
a correspondingly refined triangulation at those locations.)

By comparison, when applying the SSD approach on this noisy
data (Figure 9), it is difficult to find a smoothing parameter
that simultaneously preserves detail and avoids the formation of
spurious geometry (e.g., the ballooning at the tip of the beak).

Comparison with data interpolation. The recent scale-space
meshing of Digne et al. [2011] is more akin to computational
geometry approaches in that it directly interpolates a filtered subset
of the original points.

Figure 10 compares our approach to such an interpolating recon-
struction for a 1.6M point set obtained from a noise-free scan of the
Tanagra statue [Digne et al. 2011]. As the figure shows, introduc-
ing screening improves the quality of the reconstruction, producing
surfaces that more closely resemble the result of scale-space mesh-
ing (right). While interpolation is able to better reproduce sharp
detail in the seal (bottom), it also results in a mesh with more high-
frequency oscillation of the surface normal in the head (top).

7. CONCLUSION

Adding a dualized screening term to the Poisson surface recon-
struction framework significantly improves its geometric fidelity,
while still allowing an efficient multigrid solver. The reconstruction
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Fig. 8: Reconstruction of the noisy Eagle dataset‡ using the original scheme [Kazhdan et al. 2006] and our new algorithm, with various settings of the

screening parameter (α) and samples per node (SPN). (The highlighted results are those with the default parameters used for evaluation in Section 6.1.)

Fig. 9: Reconstruction of the noisy Eagle dataset‡ using the Smoothed Signed Distance reconstruction [Calakli and Taubin 2011] using various settings of the

Hessian weighting parameter (h). (The highlighted results are those with the default parameters used for evaluation in Section 6.1.)

accuracy is comparable to or exceeds that of the Smooth Signed
Distance reconstruction algorithm, yet the processing times are sig-
nificantly faster. Hierarchical clustering of the points and a con-
forming octree structure enables a multigrid algorithm with linear
complexity on the number of input points.

Experiments show that the SSD algorithm is able to better extrapo-
late the surface into regions of missing data. An interesting area for
future work would be to develop a scheme that incorporates both
the Laplacian and bilaplacian operators, such that the bilaplacian
(which has higher cost in terms of convergence rate) is only acti-
vated in the challenging, under-constrained regions of the domain.

Some other avenues for future work include:

—Generalization of the multigrid solver to support full V- and W-
cycles.

—Parallelization of the algorithm for GPU computation.

—Reconstruction of surfaces with boundaries.

—Extension of the algorithm to incorporate additional knowledge
of the scanned surface, such as range maps and silhouettes.

—Adaptive refinement of the octree based on residuals measured
at coarser levels, to allow the output mesh complexity to adapt
not only to sampling density but also to solution quality.

APPENDIX

A. DUALIZED SCREENING

Following the Euler-Lagrange formulation, the function χ mini-

mizes Equation 4 if, for any function D : [0,1]3 → R,

0 = lim
ε→0

E(χ + εD)−E(χ)

ε

⇔ 0 = 〈∇ ·~V −∆χ,D〉[0,1]3 +α〈χ,D〉(w,P).

Thus, setting Ĩ to be the operator defined by

〈Ĩ(F),G〉[0,1]3 = 〈F,G〉(w,P) ∀G,

it follows that χ is a minimizer of the energy if and only if

〈(∆−α Ĩ)χ,D〉[0,1]3 = 〈∇ ·~V ,D〉[0,1]3 , ∀D,
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Fig. 10: Comparison of Poisson reconstruction with the interpolation technique of Digne et al. [2011] for the head (top) and seal (bottom) of the Tanagra

model‡. (The highlighted results are those with the default parameters used for evaluation in Section 6.1.)

i.e., iff χ satisfies the equation

(∆−α Ĩ)χ = ∇ ·~V . (6)

One can interpret Equation 6 as a (dually) screened Poisson
equation. Specifically, the inner-products 〈·, ·〉[0,1]3 and 〈·, ·〉(w,P)

define maps I[0,1]3 and I(w,P) from the space of functions into its

dual, with:
(

I[0,1]3( f )
)

(g) = 〈 f ,g〉[0,1]3
(

I(w,P)( f )
)

(g) = 〈 f ,g〉(w,P)

for all functions f and g.

Using this notation, the operator Ĩ is the composition

Ĩ = I
−1
[0,1]3

◦I(w,P). In traditional filtering applications the

two inner-products are the same, so Ĩ is the identity and we
get a screened Poisson equation. In our case the gradient and
interpolation constraints are defined over different domains and we
require the operator Ĩ to transition between the two.

For infinite-dimensional spaces, it is not always the case that Ĩ
is well defined. However, for finite-dimensional spaces, one
can always define such an operator by choosing a basis and

representing Ĩ by M−1
[0,1]3

◦M(w,P), where M[0,1]3 and M(w,P) are the

mass matrices for the chosen basis, defined with respect to the two
inner-products.5 (Note that the above expression for Ĩ only requires
that the mass-matrix M[0,1]3 be invertible, so the operator is well-

defined even when there are basis functions whose support does not
intersect P .)
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