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Self-assembly holds promise for creating new materials and devices because of its inherent parallelism,

allowing many building blocks to simultaneously organize using preprogrammed interactions. An

important trend in nanoparticle and colloid science is the synthesis of particles with unusual shapes

and/or directional (‘‘patchy’’) interactions, whose anisotropy allows, in principle, assemblies of

unprecedented complexity. However, patchy particles are more prone to long relaxation times during

thermodynamically driven assembly, and there is no a priori way of predicting which particles might be

good assembly candidates. Here we demonstrate a new conceptual approach to predict this information

using sequences of intermediate clusters that appear during assembly. We demonstrate our approach

on a family of model building blocks as well as a real system of CdTe/CdS tetrahedra and find design

rules for engineering the optimized assembly of target structures.

1 Introduction

Given a system of interacting particles, complex structures on

macroscopic length scales can be synthesized via self-assembly

when thermodynamics and kinetics favorably conspire.1–5 As one

example, the wires, sheets, helices, and colloidal crystals of supra-

particles assembled from CdTe/CdS nano-tetrahedra6–8 demon-

strate the rich structural diversity accessible for a single type of

building block. These nanoparticles hold promise for the

assembly of materials with unique photonic, electronic, and

mechanical properties,9 as do colloids, DNA, and DNA-func-

tionalized particles.10–12 Finding the experimental conditions at

which a set of building blocks robustly assembles any one

ordered structure can require considerable effort and some

amount of luck, and there is no guarantee that the assembled

structure will find application. Finding a building block that will

self-assemble a prescribed target structure with narrowly speci-

fied macroscopic properties is even more difficult because each

specification can constrain the building block materials that can

be used, possibly precluding self-assembly in any region of

experimentally realizable state space.

In the case where candidate building blocks for self-assembly

have already been identified it is in principle possible to create

‘‘phase diagrams’’ that map out thermodynamically stable equi-

librium structures as a function of parameter space. In practice

this is not a trivial task and much theoretical work has been

devoted to the development of sophisticated computational

techniques that allow for the equilibrium simulation of complex

building blocks. Standard Monte Carlo (MC) simulation

schemes have been extended in numerous ways to include special

moves that allow for faster equilibration times of complex

building blocks. Volume bias moves, coordinated cluster moves,

and convex polyhedra overlap calculations have enabled the

efficient simulation of patchy colloids, lattice tetrominoes, and

hard tetrahedra.13–17Molecular dynamics (MD) simulations have

also played an integral role in the prediction of self-assembled

structures, and recent developments in GPU hardware archi-

tectures and algorithms have enabled the simulation of block

copolymers, tethered nanoparticles, and arbitrary rigid bodies at

longer time scales than ever before.18–20 Unfortunately, when an

equilibrium solution or simulation of patchy particles fails to

generate an ordered pattern it is not always obvious whether the

culprit is thermodynamics or kinetics. Recently there have been

studies that attempt to quantify kinetic trapping through fluc-

tuation-dissipation ratios,21,22 and through the interplay between

specific and nonspecific interactions,3,5,23 but these methods do

not provide predictive capabilities for thermodynamically stable

structures.

The fact that both thermodynamics and kinetics can prevent

a system of particles from self-assembling is particularly trou-

blesome for experimentalists that search parameter space via

trial-and-error because experiments that fail to assemble do not

provide information about how assembly might be improved. In

this work we propose a methodology (Fig. 1) for the rational

design of building blocks optimized for self-assembly that

focuses on assembly pathway engineering: identifying the traps

that occur as a system assembles so they may be circumvented.

As systems self-assemble we hypothesize that the
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thermodynamically stable intermediate clusters that arise hold

information about their ability to order. These sequences of

intermediate clusters are assembly pathways and we propose

a methodical analysis of them to predict the degree to which

a system of building blocks will assemble a target pattern, which

we refer to as the building block’s assembly propensity for the

pattern. We foresee assembly pathway engineering proceeding as

a collaboration among structural identification, kinetic

measurements, and the assembly pathway analysis described

here. These components are indicated by the red diamonds in

Fig. 1.

Our approach begins with the physical properties and struc-

ture of a product that we aim to create via self-assembly. The

prospective building blocks that could be used are constrained

both by the synthesis capabilities of a particular lab and the

properties of the target product, e.g., metallic nanoparticles

should be avoided if an insulating material is desired. These

building blocks are then screened using a thermodynamic

method to generate stable structures. From the building blocks

whose equilibrium structures are consistent with the target

pattern we identify, via assembly pathway analysis, the traps that

hinder self-assembly. We then modify the building blocks or the

conditions under which they are assembled to optimize assembly,

and finally perform experiments to test assembly rates. In prin-

ciple any of a number of methods including MC or MD simu-

lations could be employed to find thermodynamically stable

structures or the intermediates that arise during assembly. In this

work we use bottom-up building block assembly (BUBBA) for

both.15,24 Briefly, BUBBA is a computational tool that begins

with a single building block and builds successively larger equi-

librium structures hierarchically. To make a cluster of size N,

BUBBA enumerates all possible combinations of pairs of clusters

whose sizes sum to N, where each cluster in the pairing

contributes non-negligibly to the ensemble of clusters for its size.

In this way, BUBBA efficiently generates free-energy minimizing

structures and the stable intermediates that lead to it, which we

hypothesize govern assembly propensity.

The structure of this paper is as follows. First, we define and

describe the computational methods and measurements we

employ for assembly pathway engineering. Second, we consider

model systems of patchy colloids and CdTe/CdS tetrahedra for

which we test elements of our methodology. Third, we motivate

the need for efficient structural screening tools by comparing the

assembly propensities of seven model patchy colloids for a target

structure. We find that assembly propensity can vary substan-

tially from building block to building block, and show that

assembly pathways provide predictive capabilities for assembly

propensity. Fourth, we validate our pathway-based approach for

a real system of CdTe/CdS tetrahedra. Fifth, we show the utility

of BUBBA-informed pathway engineering by demonstrating

ways thermodynamic traps can be avoided and by identifying the

experimental conditions that maximize assembly. Finally, we

discuss the limitations of our approach, highlighting the

distinction between steric kinetic traps and interaction-based

thermodynamic traps, and conclude with suggestions for further

study.

2 Methods

The decision points represented by red diamonds in Fig. 1 can be,

in principle, informed by any of a number of methods including,

but not limited to, wet lab synthesis, Monte Carlo, molecular

dynamics, simulated annealing, or mean field simulations. In this

work we use Monte Carlo computer experiments to determine

whether a target structure is kinetically accessible by a system of

building blocks and we use BUBBA both for the screening of

stable structures and for generating assembly pathways. The

intermediate clusters generated with BUBBA are analyzed with

shape-matching algorithms for consistency with target motifs,

and assembly pathways are compressed into pathway fingerprints

for clarity. Shape matching is also used to measure the degree to

which a target structure has been assembled in Monte Carlo

simulations.

Fig. 1 Assembly pathway engineering algorithm. In this work we use BUBBA with shape matching to identify stable structures and thermodynamic

barriers to assembly, andMC simulations as assembly experiments.24 Perturbation-response methods,21,22 molecular dynamics, and new shape matching

techniques25 will all play integral roles in assembly pathway engineering.
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2.1 Assembly pathways

For building blocks that undergo thermodynamically driven self-

organization, an assembly pathway is a sequence of states that

leads them from an initially disordered configuration to states

that minimize free energy for the system as a whole.23,26,27 These

pathways can easily be generated for patchy particles with

BUBBA, and we demonstrated the tradeoffs between efficiency,

accuracy, and temperature in previous work.24 In this work we

consider pathways terminating atN¼ 10 building blocks and use

a cutoff c ¼ 0.00001 from ref. 24, ensuring enough clusters are

included at each size to represent at least 99.999% of each

partition function. The partition functions indicate which clus-

ters are thermodynamically stable and the connectivities between

partition functions indicate specific thermodynamically stable

assembly pathways. An example assembly pathway generated

with BUBBA for one of the patchy particles we study here is

shown in Fig. 2a. Each blue box and red octagon in Fig. 2a is

a node representing a cluster configuration, which is drawn near

each node. The three numbers in each node represent the cluster’s

size, energy level (1 for lowest energy, 2 for second-lowest, etc.),

and proportion of the partition function (out of 1.0) represented

by that node at that size. The arrows connecting nodes indicate

the cluster at the head can be created by combining the cluster at

the tail with another cluster in the network, and the size of the

arrowhead is proportional to the number of ways this pairing can

be made. The color and shape of each node denotes whether or

not the cluster is consistent (blue box) or inconsistent (red

octagon) with a chosen target pattern, in this case the wide stripe

motif in Fig. 3h.

2.2 Pathway fingerprints

In general, the assembly pathways for a building block at an

arbitrary temperature are not as concise as Fig. 2a. The number

of clusters that make up the partition function for a given N can

grow up to many thousands for even small N, which makes

pathway visualization in the style of Fig. 2a unwieldy. To visu-

alize complicated assembly pathways in a way that makes them

comparable to simple pathways we create assembly pathway

‘‘fingerprints’’ from the pathway data. The pathway fingerprint

in Fig. 2b is an alternative and compact method of visualizing the

cluster weight data from Fig. 2a at the cost of losing detailed path

information. In a pathway fingerprint, each column represents

an approximation of the partition function for clusters of a given

Fig. 2 a. The self-assembly pathways for patchy particle a from Fig. 3 at kBT/3 ¼ 0.6, from N ¼ 1 to N ¼ 10. Nodes indicate the size of a cluster, its

energy level (1 for lowest, 2 for second-lowest, etc.), and its probability compared to clusters of the same size. Clusters are depicted near the nodes that

represent them. Arrows connecting nodes indicate an assembly pathway, and the size of the arrowhead indicates the degeneracy of the pathway. Red

nodes indicate clusters inconsistent with the wide stripe motif (3h). b. Assembly fingerprint created from the same data as in a. Each rectangle in

a column represents a cluster and its height corresponds to its contribution to anN, V, T partition function. The proportion of red in a column indicates

the probability of finding a cluster that is inconsistent with the target motif in an equilibratedN, V, T ensemble. With 100% red columns atN¼ 3, 5, 7, 9

we expect poor assembly of the wide stripe motif because all of these clusters are inconsistent with it.

Fig. 3 a–g. Seven patchy particles from Troisi et al.,13 h. Wide stripe

motif that can be made by tiling a–g, predicted by BUBBA,24 i. Inter-

action energies (units of 3) defined for neighboring subunits.
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size, increasing from one on the left to an arbitrary size on the

right. Each cluster from a pathway becomes a rectangle in the

fingerprint, whose height is proportional to the cluster’s proba-

bility. As in the assembly pathways, target-motif-inconsistent

clusters are indicated in red, and target-motif-consistent clusters

are indicated in blue. To aid in visualization we omit the black

border around a rectangle if the corresponding cluster’s proba-

bility is less than 0.02.

2.3 Monte Carlo

We perform canonical ensemble (constant N, V, T) Monte Carlo

(MC) simulations of patchy particles in order to assess the degree

to which they self-assemble. Here, N ¼ 200, V ¼ 2500 (50 � 50

periodic lattice), and we consider instantaneous quenches to

temperatures that are easily accessible in colloidal experiments.28

All simulation runs are initialized with a random configuration

of patchy particles, and we subsequently attempt 2 � 107 trial

moves, requiring approximately two minutes of real time on

a 2.8GHz Intel Core 2 Duo� processor. We quantify the degree

to which a simulation snapshot assembles the wide stripe motif

using a 2D Gaussian box filter, a standard technique in image

shape matching.25 We define the ‘‘motif match,’’ for the ith

subunit in a simulation snapshot as

mi ¼
1

A

X

w

j¼�w

X

w

k¼�w

dðxi þ j; yi þ kÞe
�
j 2 þ k 2

2s (1)

where w is the box filter width, xi and yi are the coordinates of the

ith subunit, and s controls the width of the Gaussian kernel. We

normalize mi on [0, 1] with

A ¼
X

w

j¼�w

X

w

k¼�w

e
�
j 2 þ k 2

2s (2)

The delta function d(xi + j, yi + k) ¼ 1 if the subunit located at

(xi + j, yi + k) in the simulation snapshot is the same type as the

subunit in the wide stripe motif shifted (j, k) away from a refer-

ence cell, and d(xi + j, yi + k) ¼ 0 otherwise, and will of course

depend upon the orientation of the reference motif relative to the

simulation snapshot. The reference cells of a motif are defined by

their types, positions, and connectivity to other reference cells of

the motif. The motif match for a simulation snapshot is

defined as

M ¼ 1

n

X

n�1

i¼0

maxðmicoÞ (3)

where n is the number of particle subunits, and only orientations

o that maximize mi are included in the sum. Here we use s ¼ 2

and w ¼ 2 which results in M-values greater than 0.7 having

a strong visual similarity to the reference motif, and M < 0.6

indicating a poor match.

3 Models

We demonstrate the generation and analysis of assembly path-

ways for a 2D system of patchy tetrominoes13 and a 3D system of

CdTe/CdS tetrahedra.8 The assembly pathway analysis we

present below is general for on-lattice and off-lattice systems in

2D and 3D as detailed in ref. 24. The seven patchy tetrominoes

(Fig. 3a–g) we consider first are composed of two neutral (gray)

subunits, one positive (red) subunit, and one negative (blue)

subunit, and can rotate and translate on a 2D lattice. These seven

tetrominoes are a subset of patchy tetrominoes studied previ-

ously, and share a common free energy minimizing motif

(Fig. 3h) which was determined at kBT/3 ¼ 0.1 with BUBBA.24

Inter-particle interaction energies are defined to model attrac-

tions and repulsions with relative magnitudes reminiscent of van

der Waals, depletion, solvophobic, and/or charge–charge inter-

actions. When two like-charged subunits share an edge, their

resulting potential energy is U ¼ 93, for opposite charges U ¼
�113, and for a neutral subunit sharing a face with any other

subunit type U ¼ �3.

We next validate the accuracy and utility of assembly pathway

analysis on a system of CdTe/CdS tetrahedra with truncated tips

whose surfaces are coated with thioglycolic acid stabilizers.

Previously synthesized by Tang and Kotov,6 and studied by

Zhang et al.,7 Srivastava et al.,8 and Xia et al.29 CdTe, CdSe, and

CdS tetrahedra coated with DMAET or TGA stabilizers have

been shown to have a rich phase space of self-assembled

morphologies including wires, sheets, ribbons, helices, and

colloidal crystals of spherical supra-particles. This richness arises

from the complicated interactions between building blocks,

including their shapes, van der Waals and hydrophobic attrac-

tions, hydrogen bonding, and electrostatics. This system admits

straightforward analysis with BUBBA because the particle

geometry and strong face-face interactions allow for a dis-

cretization of configuration space that enables iteration over all

possible cluster pairings.

We consider CdTe tetrahedra whose intrinsic dipole moment is

normal to one face as in ref. 8. We model long-range screened

charge–charge interactions as well as charge–dipole and dipole–

dipole interactions between tetrahedra using linear Debye–

H€uckel theory as in Phillies,30 and add a constant surface

potential for each pair of tetrahedral faces that are aligned as in

Zhang et al.7 The cluster degeneracies calculated by BUBBA for

continuous systems require vibrational and rotational partition

functions to be generated.24 We assume the contribution of the

vibrational partition function is identical for clusters of the same

size, a valid assumption for these strongly-interacting particles

that have been observed to fuse after assembly. This leaves the

rotational partition function Qrot ¼ B
ffiffiffi

I
p

=s as the relevant

contributor to entropy where B is a temperature-dependent

constant that is identical for all clusters, I is the determinant of

the inertial tensor, and s is the cluster’s symmetry number.24,31,32

4 Assembly propensity

A system’s ability to self-assemble a thermodynamically stable

target pattern depends upon its path through phase space.26,33

Experimental conditions such as density, temperature, solvent

screening effects, quench rate, etc. all play a crucial role. A

primary goal in self-assembly is the maximization of the

assembly yield, the amount of desired product per unit of raw

materials. It is therefore useful to define the ‘‘assembly propen-

sity’’ as the degree to which the target pattern is achieved under

the most optimal conditions. Given the seven patchy particles

a–g in Fig. 3, which has the highest assembly propensity for the

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2852–2859 | 2855
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wide stripe motif (Fig. 3h)? Just by looking at these particles it is

not obvious that they share the same structure at low tempera-

tures, nor is it obvious this structure minimizes free energy at

higher temperatures. Further, it is not clear why any one of these

particles should self-assemble the target motif in Fig. 3h more

robustly than any other, or which one, if any, is the optimal

candidate.

The average motif matches hMi for patchy particles a–g are

generated using MC simulations and are shown as a function of

temperature in Fig. 4. Each data point is the motif match aver-

aged over the last 5 � 106 trial moves of 100 independent simu-

lations, at 10,000 trial-move increments, with error bars denoting

one standard deviation of the resulting distribution of M values.

We define the self-assembly propensity P as the average value of

hMi at the experimental conditions with the largest hMi. It is
clear from Fig. 4 that the seven particles from Fig. 3 have

substantially different propensities, ranging from 0.48 for

particle c up to 0.78 for particle b. We discern no obvious link

between the shape of a particle’s motif match profile and the

particle’s geometry or interaction anisotropy.

To explain the variance in assembly propensity and the

difference in hMi vs. kBT/3 for the seven patchy particles (Fig. 3a–

g) studied here we consider assembly pathways which we

generate with BUBBA.24 At each stage in the assembly pathway

we use shape matching25 to identify clusters that are inconsistent

with the wide stripe motif. Stages in the assembly pathway that

are dominated by clusters inconsistent with a target motif are

thermodynamic traps and a warning sign that a building block

will not assemble robustly. As a case study we consider the

assembly pathway fingerprints for patchy particles a and b,

shown in Fig. 5 and 6, respectively. By visual inspection of the

pathway fingerprints for these two building blocks, we expect

lower assembly propensity for patchy particle a due to the

prevalence of thermodynamic traps in its assembly pathways.

Further, we see that for patchy particle a at kBT/3 ¼ 3.0 there are

more traps than at kBT/3¼ 0.8, which is consistent with the lower

average motif match measured at this state point (Fig. 5).

5 CdTe tetrahedra

We generate assembly fingerprints for CdTe/CdS tetrahedra to

validate the utility of pathway analysis for an experimentally

realized system. Keeping temperature constant, we use BUBBA

to generate assembly pathways for the tetrahedra as functions of

charge number q, dipole moment magnitude d (in units of

Debye), and surface attraction. Here we constrain the search

space to consider only combinations of neighboring tetrahedra

whose faces are aligned, but allow the dipoles of each tetrahedra

to point out any of the four faces. For particle charge of +1e and

dipole strength 100 we confirm the stability of single bilayer

sheets found in ref. 6 and the double bilayer sheets found in ref. 8

Fig. 4 Average match to the wide stripe motif (Fig. 3h) as a function of

temperature for the seven patchy tetrominoes from Fig. 3a–g. Error bars

are one standard deviations of M averaged over 100 independent simu-

lations for each data point. hMi > 0.7 corresponds to a strong visual

match and hMi < 0.6 to very poor.

Fig. 5 Average wide stripe motif match for patchy particle a. Assembly

pathway fingerprints and representative simulation snapshots are shown

for kBT/3 ¼ 0.8 and kBT/3 ¼ 3.0. Decreased assembly propensity is

correlated to increased proportion of red in an assembly fingerprint.

Fig. 6 Average wide stripe motif match for patchy particle b. Assembly

pathway fingerprints and representative simulation snapshots are shown

for kBT/3 ¼ 0.8 and kBT/3 ¼ 3.0. While the lower temperature assembly

fingerprint appears superior, the shorter relaxation times and predomi-

nance of motif-consistent clusters at kBT/3 ¼ 3.0 allow for better

assembly.

2856 | Soft Matter, 2012, 8, 2852–2859 This journal is ª The Royal Society of Chemistry 2012
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(Fig. 7b) at q ¼ +3e and d ¼ 100. Exploring the case of double-

bilayer ribbons in more detail, we generate the assembly pathway

fingerprint in Fig. 7d in three cpu-hours. For the double bilayer

(Fig. 7a), we consider motif-inconsistent clusters to be all clusters

that have tetrahedra on three or more layers, e.g., Fig. 7c.

A full exploration of pathway sensitivity to charge strength,

dipole strength, and surface charge is beyond the scope of the

present work, but it is worth noting the complexity of the

assembly pathways for these building blocks. At N ¼ 5, over

6000 clusters contribute to the partition function, with no single

cluster having a weight greater than 2%. For N ¼ 6 there are

several clusters that comprise a substantial proportion of the

partition function, with many thousands of assembly pathways

converging to these highest-weighted clusters. It is clear from the

pathway fingerprint that not only are there many ways to

combine clusters into a double bilayer (96% of the 104,396

clusters of size N ¼ 10 are consistent with double bilayers), but

also the proportion of out-of motif clusters at all calculated

cluster sizes is low. This is expected from the ease with which the

double bilayer ribbons are attained in experiments.

6 Screening and designing

The computational efficiency of assembly pathway generation

coupled with structure identification is well suited for the

screening of patchy particles. It can be used to identify the

thermodynamically stable structures for a set of building blocks,

as in ref. 24. After candidate building blocks for a motif are

identified, such as the patchy tetrominoes and wide stripe motif

studied here, assembly pathways can be generated at a range of

experimental conditions to identify those with the greatest

chance for robust assembly. Patchy particle 17 from Troisi et al.

(shown inset in Fig. 8b) exemplifies the utility of screening

temperatures for a building block that assembles a checkerboard

motif. For reduced temperatures greater than kBT/3 ¼ 1.0, it is

clear in Fig. 8a that the majority of clusters generated with

BUBBA forN¼ 3–7 are inconsistent with the energy-minimizing

checkerboard motif, implying that optimal self-assembly should

occur for 0.1 # kBT/3 # 1.0. The motif match profile generated

Fig. 7 a. TEM image of double bilayer ribbons that twist into helices

from ref. 8. Inset shows a high-resolution image of a section of a ribbon

with dots indicating approximate centers of co-planar tetrahedra. b.

Double bilayer motif, N ¼ 100 cluster predicted by BUBBA. c. Example

out-of-motif N ¼ 10 cluster, arrow indicates motif-breaking particle. d.

Assembly pathway fingerprint for double bilayer-forming tetrahedra

from ref. 8 with a charge of +3 and dipole moment of 100. Out-of-motif

clusters have particles on more than two bilayers.

Fig. 8 a. Pathway fingerprints for patchy particle 17 for 0.1 # kBT/3 #

3.0. b. Motif match profile for patchy particle 17 with target motif and

best-assembled snapshot inset. The motif match for this patchy particle is

measured against a checkerboard reference structure that can be seen in

the ordered central regions of the two large clusters in the inset snapshot.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2852–2859 | 2857
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with MC simulations in Fig. 8b confirms this hypothesis. The

motif match jumps from hMi ¼ 0.41 at kBT/3 ¼ 0.8, to 0.57 at

kBT/3 ¼ 0.7, is a maximum with hMi ¼ 0.70 at kBT/3 ¼ 0.6, and

then drops to hMi ¼ 0.60 for kBT/3 ¼ 0.5. Thus, the quick

generation (90 min for the 30 temperatures generated serially

here, compared to 6000 cpu-hours for the MC simulations

optimized with cluster moves) of pathway fingerprints with

BUBBA permits the identification of state space where self-

assembly is optimized. Efficient screening in this way is essential,

as a na€ıve extrapolation of the data with kBT/3 > 1.0 to low

temperature would miss conditions with acceptable assembly.

Using shape-matching to identify motif-inconsistent clusters in

assembly pathways we can determine patterns of traps that

inform our pathway engineering strategies. One common pattern

of trap shared across many of the patchy tetrominoes is the

presence of motif-inconsistent clusters with odd-numbered sizes

(e.g., N ¼ 3, 5, 7, 9,.). Patchy particle a exemplifies this pattern

of traps (Fig. 5). These traps are caused by a single particle

attaching to and breaking the symmetry of a desired cluster. In

the case of patchy particle a, single-particle ‘‘caps’’ prevent

further addition of particles to obtain wide stripes (Fig. 3h). This

suggests that the N ¼ 2 cluster may be a more effective building

block candidate for self-assembly than the original particle

because the same symmetry-breaking traps will be impossible to

form. We perform this computer experiment by conducting

Monte Carlo simulations at the same conditions as in Fig. 5, but

where the 200 copies of particle a have been replaced by 100

copies of the N ¼ 2 ‘‘mesoblock’’ which we denote m2. At the

same temperature where patchy particle a assembles best with

hMi ¼ 0.66, the mesoblock achieves hMi ¼ 0.80.

7 Discussion

We have performed assembly pathway fingerprint analysis for

systems of patchy tetrominoes and truncated tetrahedra and

demonstrated that there is a strong correlation between in-motif

clusters in the assembly pathways of these fingerprints with

favorable assembly propensity. There are three related ways in

which comparisons between fingerprints presented here have not

been perfectly correlated with assembly propensity measured by

MC simulations at the same conditions. The first instance is the

higher assembly propensity for patchy particle b at higher

temperatures (Fig. 6), despite the presence of more motif-

inconsistent clusters. The second is the drop in assembly

propensity for particle 17 of ref. 24 when kBT/3 < 0.6 (Fig. 8)

despite the favorable-looking fingerprints. The third case is the

imperfect assembly in Fig. 9 despite the perfect assembly

fingerprint. All three cases are explained by assembly kinetics.

For patchy particles b and 17, the thermodynamically preferred

clusters generated by BUBBA show that larger proportions of

the partition function are represented by in-motif clusters at low

temperatures. At these low temperatures, however, the relaxation

timescales are too long for robust assembly to occur. As BUBBA

is a thermodynamic method, it does not predict regions of kinetic

trapping, which highlights the important complementary

contribution of the methods developed by Jack, Klotsa, Hagan,

and Chandler.21,22 The imperfect assembly of the mesoblock in

Fig. 9 is also due to assembly kinetics. In this case the timescale of

motif-consistent clusters agglomerating end-on rather than

perpendicular diverges as clusters grow in length. While this is

unfortunate for this particular building block, it also provides

a path forward for improved assembly, as it suggests that

increasing the attraction between grey subunits might facilitate

the wide stripe formation.

8 Conclusion

Through the use of assembly pathways, we have demonstrated

that both model and real patchy particles can be efficiently

screened for assembly propensity. We showed how building

blocks designed to avoid particular barriers might assemble

target patterns with higher propensity. We also showed how

successive steps revealed in the assembly pathways could provide

a blueprint for directed bottom-up assembly. Further, we showed

that the fingerprint visualization of pathways is a useful tool in

identifying thermodynamic conditions (such as temperature) that

maximize self-assembly propensity. The computational efficiency

of generating pathway fingerprints compared to experiments

with unknown relaxation timescales makes it ideal for screening

candidate building blocks and experimental conditions.

Combining pathway-based screening techniques with assembly

kinetics analysis we proposed a methodology for assembly

pathway engineering which proceeds as in Fig. 1. We expect this

method, its extensions, and alternative implementations to play

a central role in the focused development of assembly engi-

neering strategies.

Acknowledgements

This material is based upon work supported by the DOD/DDRE

under Award No. N00244-09-1-0062, the National Science

Foundation Award No. CHE 0624807, and the James S.

McDonnell Foundation 21st Century Science Research Award/

Studying Complex Systems, grant no. 220020139. This research

was made possible with Government support under and awarded

by DoD, Air Force Office of Scientific Research, National

Defense Science and Engineering Graduate (NDSEG)

Fig. 9 RepresentativeMC simulation snapshot for theN¼ 2 mesoblock

made from patchy particle a at kBT/3 ¼ 0.6, the temperature with the

maximum motif match as determined by MC simulations. The assembly

pathway fingerprint at this temperature is inset, showing no thermo-

dynamic traps for clusters with 10 or fewer building blocks.

2858 | Soft Matter, 2012, 8, 2852–2859 This journal is ª The Royal Society of Chemistry 2012

D
o
w

n
lo

ad
ed

 o
n
 1

4
 M

ay
 2

0
1
2

P
u
b
li

sh
ed

 o
n
 0

2
 F

eb
ru

ar
y
 2

0
1
2
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

2
S

M
0
7
1
0
1
K

View Online

http://dx.doi.org/10.1039/c2sm07101k


Fellowship, 32 CFR 168a (EJ). Any opinions, findings, and

conclusions or recommendations expressed in this publication

are those of the author(s) and do not necessarily reflect the views

of the DOD/DDRE. We thank Nicholas Kotov for use of the

experimental images from ref. 8. EJ also thanks Aaron Santos for

helpful discussions about tetrahedra, and Greg van Anders and

Daphne Klotsa for their suggestions for this manuscript.

References

1 G. M. Whitesides and B. Grzybowski, Self-assembly at all scales,
Science, 2002, 295(5564), 2418–2421.

2 Stephen Whitelam, Edward H. Feng, Michael F. Hagan and Phillip
L. Geissler, The role of collective motion in examples of coarsening
and self-assembly, Soft Matter, 2009, 5, 1251–1262.

3 Stephen Whitelam, Control of pathways and yields of protein
crystallization through the interplay of nonspecific and specific
attractions, Phys. Rev. Lett., 2010, 105(8), 088102.

4 Thomas K. Haxton and Stephen Whitelam. Design rules for the self-
assembly of a protein crystal. arXiv:1110.5610v1 [cond-mat.soft], 2011.

5 James Grant, Robert L. Jack and Stephen Whitelam, Analyzing
mechanisms and microscopic reversibility of self-assembly, J. Chem.
Phys., 2011, 135(21), 214505.

6 Zhiyong Tang, Zhenli Zhang, Ying Wang, Sharon C. Glotzer and
Nicholas A. Kotov, Self-assembly of CdTe nanocrystals into free-
floating sheets, Science, 2006, 314(5797), 274–278.

7 Zhenli Zhang, Zhiyong Tang, Nicholas A. Kotov and Sharon
C. Glotzer, Simulations and analysis of self-assembly of CdTe
nanoparticles into wires and sheets,Nano Lett., 2007, 7(6), 1670–1675.

8 Sudhanshu Srivastava, Aaron Santos, Kevin Critchley, Ki-Sub Kim,
Paul Podsiadlo, Kai Sun, Jaebeom Lee, Chuanlai Xu, G. Daniel Lilly,
Sharon C. Glotzer and Nicholas A. Kotov, Light-controlled self-
assembly of semiconductor nanoparticles into twisted ribbons,
Science, 2010, 327(5971), 1355–1359.

9 Weijia Wen, Xianxiang Huang and Ping Sheng, Electrorheological
fluids: structures and mechanisms, Soft Matter, 2008, 4, 200–210.

10 Zhihong Nie, Alla Petukhova and Eugenia Kumacheva, Properties
and emerging applications of self-assembled structures made from
inorganic nanoparticles, Nat. Nanotechnol., 2009, 5(1), 15–25.

11 Fan Li, David P. Josephson and Andreas Stein, Colloidal assembly:
the road from particles to colloidal molecules and crystals, Angew.
Chem., Int. Ed., 2011, 50(2), 360–388.

12 Paul W. K. Rothemund, Folding DNA to create nanoscale shapes
and patterns, Nature, 2006, 440(7082), 297–302.

13 Alessandro Troisi, VanceWong andMark A. Ratner, An agent-based
approach for modeling molecular self-organization, Proc. Natl. Acad.
Sci. U. S. A., 2005, 102(2), 255–260.

14 Stephen Whitelam and Phillip L. Geissler, Avoiding unphysical
kinetic traps in Monte Carlo simulations of strongly attractive
particles, J. Chem. Phys., 2007, 127(15), 154101.

15 Eric Jankowski and Sharon C. Glotzer, A comparison of new
methods for generating energy-minimizing configurations of patchy
particles, J. Chem. Phys., 2009, 131(10), 104104.

16 Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng,
Rolfe G. Petschek, Peter Palffy-Muhoray and Sharon C. Glotzer,
Disordered, quasicrystalline and crystalline phases of densely
packed tetrahedra, Nature, 2009, 462(7274), 773–777.

17 Alexander J. Williamson, Alex W. Wilber, Jonathan P. K. Doye and
Ard A. Louis, Templated self-assembly of patchy particles, Soft
Matter, 2011, 7, 3423–3431.

18 Joshua A. Anderson, Chris D. Lorenz and A. Travesset, General
purpose molecular dynamics simulations fully implemented on
graphics processing units, J. Comput. Phys., 2008, 227(10), 5342–
5359.

19 Carolyn L. Phillips, Christopher R. Iacovella and Sharon C. Glotzer,
Stability of the double gyroid phase to nanoparticle polydispersity in
polymer-tethered nanosphere systems, Soft Matter, 2010, 6, 1693–
1703.

20 Trung Dac Nguyen, Carolyn L. Phillips, Joshua A. Anderson and
Sharon C. Glotzer, Rigid body constraints realized in massively-
parallel molecular dynamics on graphics processing units, Comput.
Phys. Commun., 2011, 182(11), 2307–2313.

21 Robert Jack, Michael F. Hagan and David Chandler, Fluctuation-
dissipation ratios in the dynamics of self-assembly, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2007, 76(2), 021119.

22 Daphne Klotsa and Robert L. Jack, Predicting the self-assembly of
a model colloidal crystal, Soft Matter, 2011, 7, 6294–6303.

23 Stephen Whitelam, Nonclassical assembly pathways of anisotropic
particles, J. Chem. Phys., 2010, 132(19), 194901.

24 Eric Jankowski and Sharon C. Glotzer, Calculation of partition
functions for the self-assembly of patchy particles, J. Phys. Chem.
B, 2011, 115(48), 14321–14326.

25 Aaron S. Keys, Christopher R. Iacovella and Sharon C. Glotzer,
Characterizing structure through shape matching and applications
to self-assembly, Annu. Rev. Condens. Matter Phys., 2011, 2(1),
263–285.

26 Michael F. Hagan and David Chandler, Dynamic pathways for viral
capsid assembly, Biophys. J., 2006, 91(1), 42–54.

27 Jonathan P. K. Doye and Claire P. Massen, Characterizing the
network topology of the energy landscapes of atomic clusters, J.
Chem. Phys., 2005, 122(8), 84105.

28 W. B. Russel, D. A. Saville, and W. R. Schowalter. Colloidal
Dispersions. Cambridge University Press: Cambridge, U.K., 1989.

29 Yunsheng Xia, Trung Dac Nguyen, Ming Yang, Byeongdu Lee,
Aaron Santos, Paul Podsiadlo, Xhiyong Tang, Sharon C. Glotzer
and Nicholas A. Kotov, Self-assembly of self-limiting monodisperse
supraparticles from polydisperse nanoparticles, Nat. Nanotechnol.,
2011, 6(9), 580–587.

30 George D. J. Phillies, Excess chemical potential of dilute solutions of
spherical polyelectrolytes, J. Chem. Phys., 1974, 60(7), 2721–2731.

31 Donald A. McQuarrie. Statistical Mechanics. University Science
Books: Sausalito, CA, 2000.

32 Guangnan Meng, Natalie Arkus, Michael P. Brenner and Vinothan
N. Manoharan, The free-energy landscape of clusters of attractive
hard spheres, Science, 2010, 327(5965), 560–563.

33 Alex W. Wilber, Jonathan P. K. Doye, Ard A. Louis, Eva G. Noya,
MarkA.Miller and PaulineWong, Reversible self-assembly of patchy
particles into monodisperse icosahedral clusters, J. Chem. Phys.,
2007, 127(8), 085106.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 2852–2859 | 2859

D
o
w

n
lo

ad
ed

 o
n
 1

4
 M

ay
 2

0
1
2

P
u
b
li

sh
ed

 o
n
 0

2
 F

eb
ru

ar
y
 2

0
1
2
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

2
S

M
0
7
1
0
1
K

View Online

http://dx.doi.org/10.1039/c2sm07101k

	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering

	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering
	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering


