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The quest for new, promising and indigenous plant growth-promoting rhizobacteria and

a deeper understanding of their relationship with plants are important considerations in

the improvement of phytoremediation. This study focuses on the screening of plant

beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential

(metal solubilization/tolerance/biosorption and effects on growth of Brassica napus

seedlings) to identify suitable rhizobacteria and examine their roles in microbes-

assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated

from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China.

From these strains, 19 isolates that were all resistant to 300 mg·L−1 Cu as well as

300 mg·L−1 Zn, and could simultaneously grow on Dworkin–Foster salt minimal medium

containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those

19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic

acid production, siderophore production, and insoluble phosphate solubilization) were

secondly chosen and further evaluated to identify those with the highest bioremediation

potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp.

FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable

strain owing to its strong capabilities to (1) promote the growth of rape seedlings

(significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%,

and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg·L−1

Cu and 800 mg·L−1 Zn; (3) mobilize the highest concentrations of water-soluble Cu,

Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg·L−1, respectively); and (4) adsorb the

greatest quantities of Cu and Zn (7.53 and 6.61 mg·g−1 dry cell, respectively). Our

findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted

phytoextraction. Moreover, the present study provides a comprehensive method for the

screening of rhizobacteria for phytoremediation of multi-metal-polluted soils, especially

those sewage sludge-amended soils contaminated with Cu/Zn.
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INTRODUCTION

Heavymetal pollution of soils has become a global environmental
concern. Even essential biological trace elements, such as Zn and
Cu, can be toxic or lethal to organisms at high concentrations
(Ouzounidou, 1995). Unlike organic compounds, heavy
metals in soils cannot be mineralized or broken down to
less toxic forms (Chen et al., 2014). A large proportion of
heavy metals are generally bound to organic and inorganic
soil components or exist as insoluble precipitates, and are
thus unavailable for root uptake by field-grown plants
(Raskin et al., 1994). Therefore, developing appropriate
strategies for the remediation of heavy-metal-polluted
soils demands urgent attention from the perspectives of
environmental conservation and human health (Aboushanab
et al., 2006).

Phytoremediation, an emerging, challenging, and solar-
driven in situ technology with lower cost and enhanced
environmental friendliness in comparison to conventional
physicochemical technologies, has received increasing
attention from ecological researchers (Kumar et al., 1995).
However, this plant-based technique is generally time-
consuming, because most hyperaccumulators identified
thus far are generally small-biomass and slow-growing
(Rajkumar and Freitas, 2008a). Moreover, its efficiency is
often limited by the metal bioavailability in soil, plant roots
development, and plant tolerance to a particular metal
(Pilon-Smits, 2005). Thus, developing alternative strategies
that can improve the efficiency of phytoremediation are
necessary.

Several researchers have suggested biotechnological
approaches and proposed to incorporate plant-associated
microorganisms (rhizospheric, endophytic bacteria, and
mycorrhizal fungi) into phytoextraction systems (Rajkumar
and Freitas, 2008a; Ma et al., 2009a; Sessitsch et al., 2013). In
such systems, the plants and rhizosphere are two key factors
that make phytoremediation a viable in situ technology. On
one hand, the plants to be used for remediation of metal-
polluted soils must be qualified with tolerance to at least one
metal, high competitiveness, fast growth, and large biomass
(Glick, 2010). On the other hand, the rhizosphere, as an
important soil-plant interface, provides a complex dynamic
microenvironment where root-associated microorganisms form
unique communities that have a high potential to detoxify
hazardous waste compounds (De Souza et al., 1999; Alford
et al., 2010). Moreover, the particular microbial community
with high activity and large contact area probably acts as a
source of microbial chelates (Kärenlampi et al., 2000). Thus,
the microorganism-assisted phytoremediation potential, as
well as the mechanisms by which rhizobacteria enhance
phytoremediation efficiency, has been attracting increasing
research interest lately.

Among the plant-associated microbes, plant growth-
promoting rhizobacteria (PGPR) are considered a major
component of phytoremediation technology (Glick, 2003).
They have capacity of plant growth-promoting (PGP)
and improving phytoremediation by various mechanisms,

including: fixation of atmospheric nitrogen, utilization of
1-aminocyclopropane-1-carboxylic acid (ACC), production
of siderophores and antipathogenic substances, production of
plant growth regulators, transformation of nutrient elements
(Glick et al., 1999), bacteria-induced metal chelation (Adediran
et al., 2015), and synthesis of cysteine-rich peptides (Adediran
et al., 2016). Thus, inoculation with metal-resistant PGPR,
particularly indigenous PGPR (Kozdrój et al., 2004), can
improve the efficiency of heavy metal phytoremediation (Ma
et al., 2011; Rajkumar et al., 2012). Therefore, researchers
need to isolate and screen competitive and effective PGPR
(Paau, 1989) that are well adapted to the conditions of a
particular site (Sheng and Xia, 2006). Although PGPR play
important roles in phytoremediation strategies, studies on
Cu/Zn-resistant PGPR in this area remain very limited
(Lucy et al., 2004), particularly field studies. Thus, more
laboratory and field studies are needed to advance existing
research.

Sonchus oleraceus is a cosmopolitan weed species native
to Europe and central Asia (Hutchinson et al., 1984) that
grows readily and adapts to diverse environments in many
countries (Holm et al., 1977). In China, S. oleraceus is also
widely distributed as an annual and roadside pioneer plant.
It is one of few species found at disrupted locations, such
as oil well sites in oilfields and barren lands (Xiong et al.,
1997). Furthermore, S. oleraceus is regarded as the most suitable
candidate for the removal of Zn and Cd from soils (Khan et al.,
1998).

Despite numerous reports about rhizobacteria-enhanced
phytoremediation of heavy metals (Sheng and Xia, 2006;
Dell’Amico et al., 2008; Płociniczak et al., 2016), little
information is available about effects Cu/Zn-resistant bacteria
from the rhizosphere of S. oleraceus on plant growth and
heavy metal bioavailability/biosorption in multi-metal-polluted
soils. Thus, the quest for novel, beneficial and indigenous
rhizobacteria among different plant species grown in multi-
metal-polluted environments is very meaningful. In addition,
to assess the potential rhizospheric mechanisms underlying
the effects on plant growth and uptake and translocation of
heavy metals, we explored the biochemical characteristics
[production of indole-3-acetic acid (IAA), ACC deaminase
(ACCD), and siderophores; and solubilization of inorganic
phosphate] of selected bacteria. Furthermore, diverse genera
of PGPR could affect plant growth in different ways, because
the PGP effect could be plant- and/or PGPR-specific. Thus,
our main objectives were to: (1) isolate and preliminarily
screen Cu/Zn-resistant and ACCD-containing bacteria
from the rhizosphere of S. oleraceus grown in multi-metal-
polluted soils; (2) select indigenous PGPR with superior PGP
traits that could effectively increase plant biomass under
unfavorable conditions; and (3) evaluate the bioremediation
potentials of different PGPR (Cu/Zn/Pb/Cd/Fe-solubilization,
Cu/Zn-tolerance/biosorption and effects on the growth of
rape) to identify more-suitable rhizobacteria and examine
the effects of selected bacteria on plant growth and metal
uptake/translocation in Brassica napus via sand culture
experiments.
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MATERIALS AND METHODS

Sampling, Treatment, and
Characterization of Soils and Plants
Soils were randomly sampled from a depth of 0–20 cm in the
Jiading Wastewater Disposal Plant (31◦22′32′′ N, 121◦09′57′′ E),
located at Shanghai, China. The soils used in this study were
mixtures of sewage sludge and waste residue, and contaminated
with multiple heavy metals. Before the experiments commenced,
soil samples pretreatmented were air-dried for 1 month and
sieved (4 mm) to remove as many plant materials, soil
macrofauna, and stones as possible. The soil subsamples were
then passed through a 2-mm stainless steel sieve, and subjected
to physicochemical chatracterization according to standard
methods (Lu, 1999), some of which are listed in Table 1.

Native in situ S. oleraceus plants were also randomly selected
from the same wastewater disposal plant at which the multi-
metal-polluted soils were collected. Soon after returning to the
laboratory, the rhizospheric soils of S. oleraceus (2 cm radius
around the roots) were collected by gently shaking the roots
(Wenzel et al., 2003) to remove loosely attached soils and stored
in a refrigerator at 4◦C until further use.

Isolation and Preliminary Screening of
Cu/Zn-Resistant and ACC-Utilizing
Rhizobacteria
Rhizobacteria were isolated from S. oleraceus according to the
protocol of Jiang et al. (2008). Sixty pure isolates were initially
isolated and stored in 30% (v/v) glycerol at –80◦C until further
analysis (Wei et al., 2009). Viable bacterial populations, including
total and resistant bacteria were counted by the plate count

TABLE 1 | Physicochemical and microbiological properties of the tested

soils.

Parameter Data (means ± SE, n = 3)

Soil texture Sandy loam soil

pH (H2O, 1:2 w/v) 7.71 ± 0.05

Cation exchange capacity (cmol·kg−1) 15.26 ± 0.03

Organic matter (%) 2.63 ± 0.02

Electric conductivity at 25◦C (mS·cm−1) 3.04 ± 0.04

Total N (mg·kg−1) 1620.35 ± 113.00

Total Fe (mg·kg−1) 297.10 ± 0.13

Total Zn (mg·kg−1) 1263.78 ± 0.43

Total Pb (mg·kg−1) 153.26 ± 0.05

Total Ni (mg·kg−1) 65.21 ± 0.02

Total Cr (mg·kg−1) 206.61 ± 0.11

Total Cd (mg·kg−1) 3.03 ± 0.01

Total Hg (mg·kg−1) 0.31 ± 0.03

Total Cu (mg·kg−1) 650.10 ± 0.21

Total As (mg·kg−1) 11.54 ± 0.03

Total cultivable bacterial counta 2.55 ± 3.28 × 1011

Zn-resistant bacterial count 9.63 ± 2.08 × 108

Cu-resistant bacterial count 7.79 ± 7.56 × 109

aExpressed as colony-forming units (CFU) per gram of fresh soil.

method. The CFU/g of fresh soil is presented in Table 1. After
isolation, all isolates were further streaked on two Luria–Bertani
medium (LB) agar plates containing either Zn or Cu (100 to
500 mg·L−1, respectively) and monitored for growth. All plates
were incubated in triplicate at 30◦C for 48 h.

In order to obtain Cu/Zn-resistant PGPR, 46 isolates that were
all simultaneously resistant to 300 mg·L−1 Cu and 300 mg·L−1

Zn were further tested for their ability to grow on Dworkin–
Foster (DF) salt minimal medium containing ACC (denoted
ADF) as a sole nitrogen source (Dworkin and Foster, 1958).
The DF medium containing (NH4)2SO4 (Rajkumar and Freitas,
2008b) (denoted NDF) and without a nitrogen source were used
as controls. We also analyzed the ACCD activity of cell-free
extracts analyzed by quantifying the amount of α-ketobutyrate
according to a modified method of Honma and Shimomura
(1978). After preliminary screening, 19 isolates that were resistant
to both 300 mg·L−1 Cu and 300 mg·L−1 Zn, and simultaneously
growing on ADF were selected for further evaluation of PGP
parameters (secondary screening).

Evaluation of PGP Properties
Synthesis of IAA by the 19 isolates was quantified as described
by Bric et al. (1991), using LB broth supplemented with
0.5 mg·mL−1 L-tryptophan. The IAA concentrations were
calculated using a calibration curve of pure IAA as the
standard (Sigma, USA). Bacterial siderophore production was
detected and quantified by the chrome azurol S (CAS) analytical
method (Schwyn and Neilands, 1987). According to this assay,
the siderophore levels were defined as the A/Ar ratio and
a smaller A/Ar ratio indicated higher siderophore output
(Sheng et al., 2008). The phosphate-solubilizing ability of the
isolates was analyzed in Pikovskaya’s medium (Pikovskaya, 1948)
supplemented with 0.5% tricalcium phosphate. The soluble
phosphate in the supernatant was quantified by the Mo-blue
method (Watanabe and Olsen, 1965). After secondary screening,
10 functional strains with superior PGP traits were selected
for further evaluation of bioremediation potential (the third
screening).

Evaluation of Bioremediation Potential
by Functional Strains
Activation of Soil Metals by Functional Strains

Batch experiments on the effects of the 10 functional isolates
on metal mobility in soil were conducted in triplicate 50-
mL scaled polypropylene centrifuge tubes according to Chen
et al. (2005). Briefly, pure cultures of functional strains were
centrifuged at 8000 rpm for 10 min after 20 h of growth,
washed twice in phosphate buffer (pH 7.0), and re-suspended
in sterile distilled water. One milliliter of each washed bacterial
suspension (OD600 = 1.0 ± 0.05) or sterile water (control) was
added to the 1 g of autoclaved soils. All tubes were weighed,
wrapped in brown paper, and placed on an orbital shaker at
180 rpm and 28◦C. After 1 week, the tubes were weighed again
to compensate for evaporation. Sterile water (10 mL) was then
added to extract water-soluble metals. The soil suspensions were
vibrated at 25◦C for 2 h and centrifuged at 10,000 rpm for
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10 min. The resulting supernatants were filtered through a 0.22-
µm membrane filter for determination of pH and water-soluble
Cu/Zn/Pb/Cd/Fe. The metal concentrations were determined
by inductively coupled plasma-mass spectrometry (ICP-MS,
SPECTRO).

Minimum Inhibitory Concentration (MIC) of Functional

Strains

To check the extent of resistance, we used the secondly selected
isolates to determine the lowest concentration of Cu and Zn that
completely inhibited the growth of bacterial strains, termed as the
minimum inhibitory concentration (MIC). Isolates were streaked
in triplicate on LB agar media supplemented with varying
concentrations (600 to 1000 mg·L−1) of Cu and Zn, respectively.
For each strain and each metal, the lowest concentration that
inhibited visible growth at 28◦C within 3 days was determined.

Metal Biosorption Analyses
The biosorption of Cu and Zn by bacterial cells was evaluated as
described by Hernández et al. (1998) with some modifications.
Bacterial cells obtained from the bacterial cultures (grown in
LB broth at 28◦C, OD600 = 1.0 ± 0.05) were harvested by
centrifugation at 8000 rpm for 20 min and washed twice
with sterile deionized water. The harvested cells were re-
suspended in 150 mg·L−1 of Cu or Zn. An uninoculated
solution was used as the control. After incubation at room
temperature for 10 h, the cells were harvested following
centrifugation and the residualmetal ions in the supernatant were
measured using a flame atomic absorption spectrophotometer
(Varian Spectra model AA240FS; USA). The amount of metal
absorbed by the bacterial cells was calculated by subtracting
the metal concentration in the supernatant from the original
concentration.

In vivo Plant Growth Promotion Assay
Growth promotion of the secondly selected isolates was tested
according to Patten and Glick (2002) with some modifications.
Seeds of B. napus var. Zhongyou-1 were surface-sterilized with
a mixture of absolute ethanol and 30% hydrogen peroxide (1:1,
v/v) for 20 min, and washed twice with sterile distilled water
before being transferred to sterile filter paper in a Petri dish.
Seed sterility was monitored by incubating the seeds on LB agar
at 30◦C and aseptically placed on moistened filter paper. Then
6 mL of each bacterial suspension (OD600 = 0.5 ± 0.02) or sterile
distilled water (uninoculated control) was added to glass Petri
dishes with two-double filter paper. After incubation of closed
Petri dishes for 7 days at 28◦C in the dark, the root length, shoot
length, fresh weight, and number of seedlings that had sprouted
within 3 days were determined. The assay was performed twice
with two dishes (10 seeds per dish) for each treatment. After
the third screening, among the 10 functional strains, S44 with
the highest bioremediation potentials was selected for genetic
identification.

Genetic Identification of S44
Genomic DNA of S44 was extracted as per a previously
reported protocol (Araújo et al., 2002), and used as a

template in 16S rDNA PCR amplification with universal primers
27F (5′-GAGTTTGATCACTGGCTCAG-3′) and 1492R (5′-
TACGGCTACCTTGTTACGACTT-3′) (Byers et al., 1998). PCR
amplification was performed in a DNA Engine Thermal Cycler
(PTC-200, BioRad, USA) under the reaction conditions described
by (Branco et al., 2005). The amplified product was purified with
a DNA Purification Kit and sequenced at HuaDa Biotechnology
Company (Shanghai, China). The partial 16S rDNA sequences
obtained were matched with nucleotide sequences in GenBank
using the BLAST tool1. Neighbor joining phylogenetic trees were
constructed after calculation of a maximum composite likelihood
distance matrix using the MEGA 4.0 software (Tamura et al.,
2007).

Sand Culture Experiment
Based on the results of the third screening, the Acinetobacter
sp. FQ-44 was selected for preliminarily exploring roles of
the plant-rhizobacteria partnership in heavy metal remediation.
Surface-sterilized seeds of B. napus were pregerminated on
sterile filter paper in a Petri dish. After germination (4 days),
uniform seedlings were selected and soaked for 2 h in the
bacterial culture (OD600 of 1.0 ± 0.05) or sterile water (control).
Six seedlings were subsequently transplanted into a plastic pot
(top diameter 85 mm, bottom diameter 65 mm, and height
105 mm) containing sterilized vermiculite and saturated with
sterile half-strength Hoagland’s nutrient solution (Barac et al.,
2004). One week after transplantation, seedlings were thinned
to three per pot and subjected to various concentrations of
Cu (2, 5, and 10 mg/L). Three replicates were conducted for
each treatment. The plantlets were allowed to grow under
greenhouse conditions (25 ± 5◦C, 16:8 day/night regime).
After 45 days, plants were carefully removed from the pots
and root surfaces were immersed in 0.01 M EDTA for
30 min, and then rinsed thoroughly with deionized water to
remove any surface adsorbed metals. Fresh and dry weights
were measured and the concentrations of Cu in roots and
shoots were determined using a flame atomic adsorption
spectrophotometer. The translocation factor (TF) was calculated
as the ratio of metal concentration in the shoots to that in
the roots (Liu et al., 2009) and the bioaccumulation factor
(BCF) was calculated as the ratio of metal contents in the
entire plant to that in the soil (Bu-Olayan and Thomas,
2009).

Statistical Analyses
Results for each treatment were expressed as means ± SD.
Significant differences between parameters were tested using
the post hoc Fisher’s protected least significant difference
(LSD) test after one-way ANOVA. All statistical analyses,
including the Pearson’s correlation analysis, were conducted
using SPSS 18.0 (SPSS Inc., USA). Unless otherwise indicated,
significant level was set at P < 0.05. Graphical analyses
were performed on SigmaPlot 11.0 (Jandel Scientific,
USA).

1www.ncbi.nlm.nih.gov
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FIGURE 1 | Capacity for growth of 19 Cu/Zn-resistant isolates on ADF (A,B). Different small letters denote significant differences between treatments and an

asterisk (∗) represents a significantly greater value on ADF and NDF compared to DF (P < 0.05).

RESULTS AND DISCUSSION

Isolation and Preliminary Screening of
Cu/Zn-Tolerant and ACC-Utilizing
Rhizobacteria
Before preliminary screening and identification, 60 cultivable
isolates that were simultaneously resistant to 50 mg·L−1

of Zn and 50 mg·L−1 Cu, were isolated initially from
the rhizosphere of S. oleraceus and named S1–S60. These
bacterial isolates were autochthonous to the metal-polluted
site and were thus more suitable for in situ phytoremediation
of the multi-metal-polluted soils. As reported, rhizobacteria
isolated from multi-metal-polluted natural environments can
be constitutively or adaptively resistant to increasing metal
concentrations, as they have adapted to such environments (Nies,
2003).

Soil microbes with generally higher metal resistance are
the preferred choice for phytoremediation studies. Our results
indicate that most of the isolates tested were resistant to different
concentrations of Zn and Cu (Supplementary Table S1). Among
all isolates, 34 were simultaneously resistant to 400 mg·L−1 Zn
and 400 mg·L−1 Cu, among which some were even tolerant
of 500 mg·L−1 Zn or Cu; whereas 46 isolates were able to
simultaneously resist 300 mg·L−1 Zn and 300 mg·L−1 Cu.
To obtain more plant beneficial strains, these 46 isolates were
selected for further testing of their ACC utilization ability.

Among those 46 isolates, 19 isolates grew significantly better
on ADF and NDF than on DF (P < 0.05) (Figure 1). Although
these isolates grew well on ADF and NDF, their growth
without a nitrogen source was limited (Figure 1). Thus, these
19 rhizobacteria had the potential to utilize ACC as a sole
nitrogen source. Moreover, they had the ability to grow on
ADF to produce ACCD (Figure 1; Supplementary Table S2),
which was supported by earlier observations that ACC-utilizing

bacteria could generally produce ACCD. As reported, ACC-
utilizing bacteria have been found to facilitate plant growth by
producing ACCD that hydrolyzes the ethylene precursor ACC
into α-ketobutyrate and ammonia (Glick, 2005) in the presence
of salts or heavy metals (Belimov et al., 2005; Zahir et al., 2009).
Consequently, these ACC-utilizing isolates could be important
for PGPR-mediated phytoremediation.

Screening of Functional Strains with
Superior PGP Ability
Various PGP characteristics could contribute to reduced metal
stress and increased growth in their host plants (Ma et al.,
2011; Rajkumar et al., 2012). In our study, all 19 ACC-
utilizing isolates had inherent abilities of IAA production,
siderophore production, and insoluble phosphate solubilization
(Supplementary Table S2). Out of 19 isolates, 10 with superior
PGP traits were selected for statistical analyses (Table 2), because
each had three indices that were all ranked in the top 10.

As shown in Table 2, S44, the best IAA producer
(29.57 mg·L−1) in our study, produced significantly more
IAA than the other nine strains (P < 0.05). As reported similarly,
Enterobacter ludwigii BNM 0357 released about 30 µg IAA
mL−1 (Shoebitz et al., 2009). In addition, the IAA production
abilities of all 10 isolates might be within a reasonable range for
observable PGP effects (Ma et al., 2009b) that might contribute
to increased plant biomass. As reported, a low IAA production
by PGP bacteria promotes primary root elongation, whereas a
high level inhibit primary root growth (Xie et al., 1996). Our rape
inoculation experiments also indicated the 10 moderate IAA
producers were able to increase root length, which was generally
promoted by IAA-producing rhizobacteria (Patten and Glick,
1996). Moreover, Pearson’s correlation analysis also revealed that
IAA was significantly positively correlated with the fresh weight
of seedlings (r = 0.70, P = 0.02).
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TABLE 2 | PGP features of functional strains and pH of solutions in the phosphate solubilization experiment.

Functional

strains

IAA synthesis (mg·L−1) Siderophore production

(A/Ar)
a

Phosphate solubilization

(mg·L−1)b
pH

S21 10.55 ± 0.08d 0.13 ± 0.01ab 53.34 ± 1.29b 6.34 ± 0.18a

S23 6.48 ± 0.24bc 0.29 ± 0.01bcd 34.21 ± 1.06a 7.42 ± 0.03d

S25 7.01 ± 0.58c 0.40 ± 0.09d 36.36 ± 1.41a 6.97 ± 0.10bc

S26 3.45 ± 0.29a 0.25 ± 0.05abcd 35.00 ± 0.96a 7.17 ± 0.23cd

S29 4.42 ± 0.15ab 0.10 ± 0.01a 39.42 ± 1.38a 7.39 ± 0.03d

S30 5.10 ± 0.16abc 0.12 ± 0.05a 35.45 ± 1.06a 7.39 ± 0.07d

S42 20.17 ± 0.26e 0.34 ± 0.09cd 39.76 ± 0.82a 7.52 ± 0.01d

S44 29.57 ± 0.95g 0.29 ± 0.04bcd 74.75 ± 1.48c 6.76 ± 0.03b

S45 25.15 ± 0.56f 0.34 ± 0.02cd 55.38 ± 1.41b 7.19 ± 0.08cd

S57 9.81 ± 0.20d 0.23 ± 0.02abc 55.81 ± 1.55b 7.41 ± 0.01d

Data of columns by the same letter are not significantly different between bacterial treatments according to the Fisher’s protected LSD test (P > 0.05).
aSiderophore production: little, 0.8–1.0; low, 0.6–0.8; moderate, 0.4–0.6; high, 0.2–0.4; very high, 0–0.2.
bConcentration of phosphorus.

TABLE 3 | Correlations between solubilization factors and water-soluble heavy metals.

Correlations Solubilization factors Water-soluble heavy metals

pH Phosphate

solubilization

Siderphores Cu Zn Pb Cd Fe

pH 1.00 −0.10 −0.42 0.47 −0.57 −0.06 −0.51 0.13

Phosphate

solubilization

−0.10 1.00 0.07 0.44 0.50 0.47 0.26 0.54

Siderphores −0.42 0.07 1.00 0.05 0.67 0.45 0.24 .08

Cu 0.47 0.44 0.05 1.00 0.39 0.06 −0.22 0.49

Zn −0.57 0.50 0.67 0.39 1.00 0.31 0.34 0.37

Pb −0.06 0.47 0.45 0.06 0.31 1.00 −0.24 0.00

Cd −0.51 0.26 0.24 −0.22 0.34 −0.24 1.00 0.61

Fe 0.13 0.54 0.08 0.49 0.37 0.00 0.61 1.00

Data of columns are pearson’s correlation coefficient.

FIGURE 2 | Effects of inoculation with 10 isolates on mobilization of Cu (A), Zn (B), Pb (C), Cd (D), and Fe (E) in autoclaved soil. Values are expressed as

means ± SE, n = 9. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; ns, no significant difference. Different letters above the bar indicate significant differences among

treatments at the level of P < 0.05 according to the Fisher’s protected LSD test.
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TABLE 4 | MIC of the secondly selected rhizobacteria.

Metals MIC (mg·L−1)

S21 S23 S25 S26 S29 S30 S42 S44 S45 S57

Zn 400 600 500 700 500 600 800 800 800 700

Cu 600 800 700 900 800 800 1000 1000 1000 800

Siderophores, another important PGPR-released metabolites,
indirectly alleviate heavy metal toxicity by increasing the supply
of iron to plants (Burd et al., 2000), thereby facilitating
plant growth. In our study, siderophore production was
highest in S29 among the 10 isolates, whereas it was
lowest in S25 (Table 2). Furthermore, siderophores were
responsible for the mobilization of insoluble metals such
as Fe (Table 3) and were positively correlated with three
growth parameters (Supplementary Table S3), although this was
not significant (P > 0.05). Our results concurring with the
earlier observations also show that siderophores produced by
rhizosphere microorganisms could supply iron to plants via Fe-
siderophore complexes under iron-limited conditions (Crowley
et al., 1988) and inoculation with a siderophore-producing strain
promotes plant growth (Tripathi et al., 2005).

Another crucial PGP mechanism is phosphate solubilization,
through which microbes enhance P availability to the host
plant and thereby contribute to plant–bacteria interactions and
PGP effects in metal-polluted soils (Zaidi et al., 2006). Our
findings indicate that phosphate solubilization was positively
correlated with all growth parameters (r = 0.45, 0.18, and 0.51
for root length, shoot length, and fresh weight, respectively)
(Supplementary Table S3). Moreover, Rajkumar et al. (2009)
also reported that phosphate solubilization in the rhizosphere
greatly contributes to the PGP effects of bacteria. In addition, the
highest phosphate-solubilizing ability was also observed in S44
(74.75 mg·L−1), which was significantly higher than other nine
isolates (P < 0.05, Table 2).

The foregoing analyses indicate that these isolates were able
to facilitate the growth of B. napus probably through these PGP
traits. Consequently, the screening of soil bacteria with superior
PGP abilities in a multi-metal-polluted environment is one key
step in phytoremediation studies.

Final Choice of S44
Effects of Functional Strains on the Mobility of Soil

Metals

Besides PGP traits, successful phytoremediation also depends
mainly on metal bioavailability in the soil (Shallari et al., 2001).
Therefore, to obtain effective metal-mobilizing strains, we further
evaluated the ability of 10 isolates to increase water-soluble
Cu, Zn, Cd, Pb, and Fe concentrations in soils. As expected,
the presence of bacteria resulted in increased concentrations
of water-extractable Cu, Zn, Pb, Cd, and Fe in autoclaved
soil compared to axenic soil (Figure 2). These results suggest
that the 10 Cu/Zn-resistant isolates had metal-solubilizing
potential in heavy metal-polluted soil, thereby increasing metal
bioavailability. As reported, Soil microorganisms can affect metal

FIGURE 3 | Biosorption of Cu (A) and Zn (B) by secondly selected

isolates. Different letters above the bar indicate significant differences among

treatments at the level of P < 0.05 according to the Fisher’s protected LSD

test.

mobility and availability via the release of siderophores (Braud
et al., 2009) and solubilization of metal phosphates (Aboushanab
et al., 2006). Our results also indicate that siderophore and
phosphate solubilization were both positively correlated with
concentrations of water-soluble Cu, Zn, Pb, Cd, and Fe (Table 3).

Although all 10 isolates had the potential to facilitate the
release of non-labile-phase Cu, Zn, Cd, Pb, and Fe from sterile
soils, their effects actually differed (Figure 2). For example, the
greatest amounts of water-soluble Cu, Zn, Pb, and Fe released
in the soil were all found in S44, which were 16.99, 0.98, 0.08,
3.03 mg·L−1, respectively, but that of water-soluble Cd was
observed in S45. Moreover, inoculation with S44 significantly
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FIGURE 4 | Neighbor joining phylogenetic tree analysis of Acinetobacter sp. FQ-44 with closely related strains from GenBank and relevant reports. The scale

bar represents 0.01 substitutions per site.

TABLE 5 | Growth parameters of Brassica napus L. seedlings in sterile filter paper following infection with 10 isolates.

Functional

strains

Root length

(cm)

Shoot length

(cm)

Fresh weight

(mg)a
Germination

(%)

Vigor indexb

Control 4.19 ± 0.58a 5.58 ± 0.12ab 73.40 ± 0.52a 80.00 7.85 ± 0.09a

S21 5.27 ± 0.66ab 6.44 ± 0.51abc 86.60 ± 1.39abc 82.50 9.63 ± 0.24b

S23 5.59 ± 0.55abc 7.52 ± 0.41c 94.90 ± 1.82bcd 80.00 10.49 ± 0.15bc

S25 5.37 ± 0.72ab 6.73 ± 0.79abc 82.10 ± 2.09ab 85.00 10.29 ± 0.20bc

S26 6.34 ± 0.71bcde 5.26 ± 0.28a 87.90 ± 0.96bc 90.00 10.44 ± 0.24bc

S29 6.37 ± 0.57bcde 7.56 ± 0.59c 97.10 ± 0.78bcd 87.50 12.19 ± 0.15de

S30 7.07 ± 0.34bcde 7.05 ± 0.83bc 93.13 ± 1.94bcd 87.50 12.35 ± 0.23ef

S42 7.37 ± 0.54cde 7.88 ± 0.55c 100.83 ± 1.79cd 77.50 11.82 ± 0.14cde

S44 8.07 ± 0.31e 7.31 ± 0.24c 104.20 ± 1.06d 90.00 13.84 ± 0.11fg

S45 5.84 ± 0.40abcd 6.68 ± 0.47abc 100.10 ± 1.30cd 85.00 10.63 ± 0.12bcd

S57 7.68 ± 0.55de 7.96 ± 0.32c 95.60 ± 1.31bcd 90.00 14.08 ± 0.14h

Values are expressed as means ± SE, n = 10. Different letters in the same column indicate significant differences among treatments at the level of P < 0.05 according to

the Fisher’s protected LSD test.
aFresh weight of seedling.
bVigor index = germination (%) × seedling length (root length + shoot length).

increased the concentrations of water-soluble Cu, Zn, Pb, Cd, and
Fe in soil by 1.88-, 0.44-, 0.71-, 2.50-, and 0.22-fold, respectively,
compared to the control. Furthermore, the soil pH following
inoculation with S44 dropped significantly compared to the
control (P < 0.05; Table 2).

In addition, mobilization characteristics differed among
the metals (Figure 2), which could be explained by the
physicochemical properties of the various metals, metal-microbe

interactions, as well as the unordered competition between
metals. However, some isolates, such as S44 and S45, that
exhibited high mobilization of one metal, were also remarkably
capable of mobilizing other metals.

MIC of Functional Strains
The preliminary resistance results showed that some isolates
were able to grow in higher concentrations of all tested metals.
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Thus, to determine the extent of resistance, we assessed the
Cu and Zn MICs of the secondly selected isolates. Our toxicity
tests show that S26, S42, S44, S45, and S57 tolerated relatively
high levels of Cu and Zn (Table 4). Moreover, among the
10 functional strains, S42, S44, and S45 had the highest Cu
(1000 mg·L−1) and Zn (800 mg·L−1) MICs. This high tolerance
of Cu and Zn could be attributed to the fact that these bacteria
were isolated from the sewage-amended soils containing high
levels of Cu and Zn. However, strain S21 was less tolerant
of Cu (600 mg·L−1) and Zn (400 mg·L−1). In addition, the
present results also indicate that Zn was more toxic to the
isolates than Cu, which was different from some previous
studies (Hassen et al., 1998; Jiang et al., 2008; Guo et al.,
2011).

Metal Biosorption Potential of Secondly
Selected Isolates
With respect to microbial remediation, it is very important
to determine whether selected bacteria have the capacity for
metal uptake. Our results indicate that different isolates exhibited
different capacities for biosorption of the metal ions tested
(Figure 3). Moreover, S44 exhibited the highest potentials to
remove Cu (7.53 mg·g−1 dry cell) and Zn (6.61 mg·g−1 dry
cell), and absorbed significantly more Cu and Zn than the
other nine isolates (P < 0.05). Thus, application of the effective
metal-solubilizing/absorbing S44 would be helpful for improving
microbe-assisted phytoremediation. As reported, the biosorption
capacity of bacteria plays an important role in reducing metal
phytotoxicity by limiting the entry of metal ions into plant
cells, and might contribute to enhanced plant growth in metal-
contaminated soils (Ma et al., 2011). Furthermore, it should be
noted that the biosorption ability for Cu was higher than that for
Zn (Figure 3). One possible explanation could be that Cu (0.72 Å)
with smaller ionic radius might be more rapidly complexed by
bacterial cell wall/membrane compared to Zn (0.88 Å) (Karakagh
et al., 2012). Another explanation probably was that Zn was more
toxic to these isolates than Cu.

Effects of Functional Strains on Rape
Growth
After the 10 representative isolates infecting sterile B. napus L.
seeds, seed germination was neither significantly inhibited nor
stimulated. For example, seed germination after inoculation with
S23 was equal to that of the control (Table 5).

A deeper understanding of plant-microbe interactions is
complicated, but applicable to microbe-assisted phytoreme-
diation. In our study, seeds inoculated with the various isolates
all had longer roots compared to the control (Table 5). Moreover,
the most significant increase in root length was observed with S44
(92.60%, P< 0.05). Although themaximum shoot elongation was
observed with S57, inoculation with S44 significantly increased
shoot length by 31.00% (P < 0.05), compared to the control.
Furthermore, themaximumpromoting effect on fresh weight was
also observed with S44, showing a significant increase by 41.96%
(P < 0.05; Table 5). In addition, the highest seed vigor index
was observed with S57 followed by S44 and S30, all exhibiting

FIGURE 5 | Effects of FQ-44 on dry weight of root and shoot in

Brassica napus cultivated in different concentrations of Cu. Values are

expressed as means ± SE, n = 9, ∗∗∗P < 0.001. Different letters above the

bar indicate significant differences within the same microbial treatments

(control and inoculation) at the level of P < 0.05, according to the Fisher’s

protected LSD test. Cu2, 2 mg/L Cu; Cu5, 5 mg/L Cu; Cu10, 10 mg/L Cu.

significant effects (P < 0.05). The foregoing results indicate that
S44 has higher potential to facilitate the growth of B. napus.

Although the selected isolates showed PGP effects, these
responses were not evaluated in the presence of metal stress,
which would more effectively demonstrate PGPR-mediated
phytoremediation. Of the 10 functional strains, S44 was selected
as the most active strain (tolerance of up to 800 mg·L−1 Zn
and 1000 mg·L−1 Cu, adsorption/solubilization of the largest
quantities of Cu and Zn, the maximum root length and fresh
weight-promoting effects) for molecular identification.

Molecular Identification of Strain S44
S44 was identified as a species of Acinetobacter sp. by 16S rDNA
gene sequencing and was named Acinetobacter sp. FQ-44. The
highest sequence similarity (99%) and the phylogenetic tree in
Figure 4, based on 16S rDNA sequences reveal a relationship
between FQ-44 and other relevant bacteria reported. The 16S
rDNA sequences (1443 bp) of FQ-44 were deposited in GenBank
under accession No. KU206487.
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TABLE 6 | Effects of FQ-44 on accumulation, uptake, BCF, and TF of Cu in B. napus cultivated in the presence of Cu at various concentrations.

Microbial

treatments

Cu

treatments

(mg/L)

Cu root

concentrations

(mg/kg DW)

Cu shoot

concentrations

(mg/kg DW)

TF Cu root

contents

(µg)

Cu shoot

contents

(µg)

BCF

Control 2 74.39 ± 2.61a 51.36 ± 1.34a 0.69 4.15 ± 0.18a 10.14 ± 0.13a 0.48

5 165.14 ± 3.62b 81.32 ± 2.07b 0.49 7.30 ± 0.13b 11.91 ± 0.19b 0.38

10 258.67 ± 4.34c 126.47 ± 3.26c 0.49 9.34 ± 0.33c 12.06 ± 0.30b 0.21

FQ-44 2 77.22 ± 2.93nsA 53.44 ± 1.26nsA 0.69ns 5.47 ± 0.16∗∗∗A 13.53 ± 0.14∗∗∗A 0.63∗∗

5 161.58 ± 3.75nsB 85.78 ± 3.69∗B 0.53∗ 8.89 ± 0.18∗∗∗B 16.47 ± 0.26∗∗∗B 0.50∗∗

10 239.11 ± 4.80∗∗C 155.41 ± 3.25∗∗∗C 0.65∗∗∗ 9.94 ± 0.22nsC 18.26 ± 0.38∗∗∗C 0.28∗

Values are the means ± SE, n = 9. The asterisk (∗) denotes a significant difference compared to the control treatment. nsp > 0.05, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Data of columns indexed by the different letters within the same microbial treatments (control and inoculation) are significantly different according to Fisher’s protected

LSD test (p < 0.05).

Influence of FQ-44 on Growth and Cu
Uptake by B. napus
The plant–bacteria partnership can be applied to increase the
phytoremediation efficiency of soil and water contaminated
with organic and/or inorganic pollutants (Khan et al., 2015).
Therefore, the effects of metal-mobilizing FQ-44 on growth
and metal uptake/translocation by B. napus were evaluated.
As expected, FQ-44 significantly increased the dry weight of
B. napus cultivated in different concentrations of Cu (Figure 5).
In general, inoculation with FQ-44 significantly increased plant
uptake of Cu (Table 6), which is consistent with significant
improvements of BCF of Cu induced by FQ-44. Moreover,
FQ-44 also significantly increased the TF of Cu (P < 0.05,
Table 6), besides the Cu concentration of 2 mg/L. Yoon et al.
(2006) also demonstrated that plants with a greater BCF and
TF have the potential for use in heavy metal phytoextraction.
The above results suggest that FQ-44 can be used to facilitate
the phytoextraction of Cu. Previously, Rojas-Tapias et al.
(2012) also reported that Acinetobacter sp. CC30 significantly
enhanced Cu uptake by sunflowers. Moreover, Jing et al.
(2014) reported that Enterobacter sp. JYX7 and Klebsiella sp.
JYX10 significantly improved Zn uptake by B. napus. Recently,
Płociniczak et al. (2016) also reported that Brevibacterium casei
MH8a colonized white mustard plant tissues and enhanced Cu
and Zn phytoextraction.

Although FQ-44 showed PGP effects on rape and enhanced
phytoextraction of Cu, its colonization and survival properties are
crucial features to evaluate its capacity for promoting sustainable
plant growth and cope with metal stress in contaminated sites
(Ma et al., 2011). Therefore, future studies using pot experiments
containing in situ soils are needed to examine the specific effects
of selected FQ-44 on the growth of host plants, and to determine
whether it has the advantage of rhizosphere colonization.

CONCLUSION

In the present study, the selection of Cu/Zn-resistant FQ-44
isolated from S. oleraceus was evaluated through three
inter-causal screenings. Our results indicate that FQ-44
has potential to facilitate B. napus growth and enhance
phytoextraction of Cu by sand culture experiment, which could

be attributed to beneficial PGP traits; increased concentrations
of water-soluble Cu, Cd, Zn, Pb, and Fe; and tolerance and
adsorption of Cu and Zn that effectively improved microbe-
assisted phytoremediation. Consequently, these advantages
confer bioinoculant properties to FQ-44 that would be helpful
for enhancing phytoremediation efficiency of multi-metal-
polluted soils, particularly Cu/Zn-contaminated soils. Moreover,
the proposed approach to screening in the present study could
be useful for the isolation of effective strains and improvement of
phytoremediation.

Although FQ-44 possessed PGP traits to facilitate B. napus
growth and critical bioremediation potentials, in many cases
PGP bacteria failed to induce the desired effects, when applied
in a natural environment. Further research will address: (1) the
interactions between FQ-44 and host plants; (2) the colonization
potential of FQ-44 and mechanisms contributing to increased
plant biomass and metal uptake/translocation by pot experiment
containing in situ soils; and (3) the roles of FQ-44 in field
phytoremediation experiments.
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