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Background: Platelets (PLT) have a significant effect in promoting cancer

progression and hematogenous metastasis. However, the effect of platelet

activation-related lncRNAs (PLT-related lncRNAs) in gastric cancer (GC) is still

poorly understood. In this study, we screened and validated PLT-related

lncRNAs as potential biomarkers for prognosis and immunotherapy in GC

patients.

Methods:Weobtained relevant datasets from the Cancer Genome Atlas (TCGA)

and Gene Ontology (GO) Resource Database. Pearson correlation analysis was

used to identify PLT-related lncRNAs. By using the univariate, least absolute

shrinkage and selection operator (LASSO) Cox regression analyses, we

constructed the PLT-related lncRNAs model. Kaplan-Meier survival analysis,

univariate, multivariate Cox regression analysis, and nomogram were used to

verify the model. The Gene Set Enrichment Analysis (GSEA), drug screening,

tumor immune microenvironment analysis, epithelial-mesenchymal transition

(EMT), and DNA methylation regulators correlation analysis were performed in

the high- and low-risk groups. Patients were regrouped based on the risk

model, and candidate compounds and immunotherapeutic responses aimed at

GC subgroups were also identified. The expression of seven PLT-related

lncRNAs was validated in clinical medical samples using quantitative reverse

transcription-polymerase chain reaction (qRT-PCR).

Results: In this study, a risk prediction model was established using seven PLT-

related lncRNAs -(AL355574.1, LINC01697, AC002401.4, AC129507.1,

AL513123.1, LINC01094, and AL356417.2), whose expression were validated

in GC patients. Kaplan-Meier survival analysis, the receiver operating

characteristic (ROC) curve analysis, univariate, multivariate Cox regression

analysis verified the accuracy of the model. We screened multiple targeted

drugs for the high-risk patients. Patients in the high-risk group had a poorer
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prognosis since low infiltration of immune killer cells, activation of

immunosuppressive pathways, and poor response to immunotherapy. In

addition, we revealed a close relationship between risk scores and EMT and

DNA methylation regulators. The nomogram based on risk score suggested a

good ability to predict prognosis and high clinical benefits.

Conclusion: Our findings provide new insights into how PLT-related lncRNAs

biomarkers affect prognosis and immunotherapy. Also, these lncRNAs may

become potential biomarkers and therapeutic targets for GC patients.

KEYWORDS

gastric cancer, immunotherapy, platelet, lncRNA, prognosis

Introduction

According to the most recent statistics from the American

Cancer Society, the quantity of new cases and deaths cases of

gastric cancer (GC) still remain a high level, and GC is the

most common malignant tumor of the digestive system (Cao

et al., 2020; Siegel et al., 2021). Although the 5-year survival

rate of patients with early GC can reach more than 90%, due to

the lack of effective biomarkers and specific clinical

appearances, GC patients often present with an advanced-

stage tumor at the time of diagnosis (Song et al., 2017), losing

their chance to undergo surgery (Tan, 2019). Therefore, the

search for new cancer-related prognostic molecular

biomarkers and new targets is still needed to enhance the

individual evaluation and survival rate of GC.

Studies have indicated that platelet (PLT) regulates

tumorigenesis and tumor progression, such as GC, prostate

cancer, lung cancer, breast cancer, and colorectal cancer etc

(Oh et al., 2019; Garmi et al., 2020; Meikle et al., 2020;

Plantureux et al., 2020; Rudzinski et al., 2020; Singla et al.,

2020; Wang et al., 2020). For examples, PLT directly promote

epithelial-mesenchymal transformation (EMT) of malignant

tumors by producing TGF-β, leading to poor prognosis

(Labelle et al., 2011; Heldin et al., 2012; Guo et al., 2019;

Chong et al., 2020). In tumor angiogenesis, PLT can also

produce vascular endothelial growth factor (VEGFR) and

promote angiogenesis, providing oxygen and nutrients to

malignant cells (Sabrkhany et al., 2011). PLT-produced

particles contain a large number of bioactive substances that

promote tumor progression. On the contrary, tumor cells can

also produce a variety of bioactive substances, such as ADP, TL-6,

and TGF-α, to promote PLT activation, and the activated PLT

gather around tumor cells and promote tumor progression and

metastasis, resulting in a vicious cycle (Schlesinger, 2018). In

addition, Zaslavsky et al. found that PLT-generated PD-L1 can

induce tumor cells that do not express PD-L1 to avoid being

cleared by T cells and evade immune surveillance, thus leading to

the progression of malignant tumors (Zaslavsky et al., 2020). All

this evidence indicates that PLT have prognostic and

immunotherapeutic values.

Long non-coding RNAs (lncRNAs) are about 200 nt or more

non-coding protein RNAs, which significantly affect tumor

immunity (Chandra Gupta and Nandan Tripathi, 2017).

Recently, Ye et al. suggested using circulating lncRNAs

between tumor-educated platelets (TEPs) and serum can be

used as a potential diagnostic and discriminative biomarkers

for colorectal cancer (Ye et al., 2022). Bioinformatics research

indicated that the dysregulation of PLT-related genes is involved

in cancer (Xie et al., 2021). Yet, the specific effect of platelet

activation-related lncRNAs (PLT-related lncRNAs) is still

unclear. Exploring the effect and mechanism of PLT-related

lncRNAs in the development and progression of GC may help

predict prognosis and therapy targets.

In this study, we first extracted 14,087 lncRNAs

expression matrix of GC patients from the Cancer Genome

Atlas (TCGA) database, and ninety-four genes related to PLT

activation were extracted from the Gene Ontology (GO)

Resource Database. Then, bioinformatics analysis was

performed to identify PLT-related lncRNAs using

Pearson’s correlation analysis, after which prognostic risk

models were established, and related signaling pathways were

screened. Then, we screened for candidate drugs through the

Connectivity Map (CMap) database. In addition, we explored

the relationship between EMT markers, DNA methylation

regulators, and immunotherapy responses and the risk

model. Finally, we constructed a nomogram that can

predict the overall survival (OS) of GC patients. The study

workflow showed in Figure 1.

Materials and methods

Data and samples collection

A total of 417 cases (375 cases of gastric cancer group and

32 cases of normal tissue) with clinical data and RNA sequencing

dataset were downloaded from the Cancer Genome Atlas

(TCGA). lncRNAs and mRNAs were classified by the

Ensemble Human Genome browser GRCh38.p13. Ten gastric

cancer and adjacent tissue specimens (specimen collection time:
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June 2021 to December 2021) were additionally collected from

Jinan Central Hospital affiliated to Shandong First Medical

University, which had been approved by the Ethics

Committee of Jinan Central Hospital affiliated to Shandong

First Medical University, and all patients had signed informed

consent. Supplementary Table S1 shows the clinicopathological

characteristics of the included patients. Upon collection, fresh

tumor and adjacent normal tissues were snap frozen and stored

at −80°C until they were taken out. The data from TCGA is public

and therefore does not require ethical approval from the relevant

authorities.

Identification of PLT activation-related
lncRNAs

A total of 94 genes related to PLT activation were collected

from the Gene Ontology (GO) Resource database (http://

geneontology.org/). For the purpose of evaluating the

relationship between PLT activation genes and lncRNAs,

Pearson correlation analysis was conducted with R software

(R 4.2.1), and the intersection of lncRNA expression in GC

patients with a correlation coefficient of 0.4 and p value <0.
001 was obtained. A total of 848 lncRNAs associated with PLT

activation and their co-expression networks were obtained using

“limma” package (Supplementary Figure S1) (Ritchie et al.,

2015).

Construction and validation of PLT-
related risk model

We combined lncRNAs expression with survival data using

“limma” packages to obtain a prognostic lncRNAs expression

matrix associated with PLT activation (p < 0.05). Using

“survival” package and pfilter = 0.05, univariate Cox analysis

showed that 18 PLT-related lncRNAs were significantly

correlated with OS (Simon et al., 2011). The “ggpubr”

package was then used for differential analysis to obtain the

related heatmaps of lncRNAs expression levels in normal and

tumor tissues (Whitehead et al., 2019). Lasso regression was

performed on these prognostic lncRNAs, and seven lncRNAs

FIGURE 1
The main process of this study.
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FIGURE 2
Identification of PLT-related lncRNAs in patients with GC. (A)Univariate Cox regression analysis was used to extract the prognostic lncRNAs. (B)
Heatmaps of 18 prognostic lncRNAs expression of patients (***p < 0.001 * *p < 0.01 *p < 0.05). (C) The LASSO coefficient profile of 18 PLT-related
lncRNAs. (D) The LASSO coefficient distributions of OS-related lncRNAs and vertical dashed lines were plotted with the values selected for 10x cross-
validation. (E) The results of qRT-PCR of PLT-related lncRNAs of 10 pairs GC patients.
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associated with PLT in GC were extracted to construct a

prognostic risk model (Simon et al., 2011). After excluding

normal patients and patients with incomplete clinical data,

372 patients with GC were randomly divided into a testing

group and a training group. We used the following algorithm to

calculate the risk score for each patient:

Risk Score � ∑ coef(lncRNA) × expression(lncRNA)

where coef (lncRNA) represents the prognostic lncRNAs coefficient,

and expression (lncRNA) indicates the expression level of lncRNAs

(Huang et al., 2021a). GC patients were divided into high- and low-

risk groups based on the median risk score. Kaplan-Meier survival

analysis used “survival” and “survminer” R package (The R

Foundation for Statistical Computing, Vienna, Austria) to

estimate the survival difference between the two groups. Then we

used the receiver operating characteristic (ROC) curves to evaluate

the accuracy of the model (Kim and Hwang, 2020).

Drug screening in risk model

Based on risk scores, effective medicine was screened using

CMap (http://portals.broadinstitute.org/camp/) to obtain drugs

that reduce risk in high-risk patients (Subramanian et al., 2017).

Enrichment score >0 indicated that drugs couldn promote the

expression of high-risk genes; a score <0, showed that drugs

could suppress the expression of high-risk genes, and p < 0.

05 showed that drugs could be significantly enriched (Gns et al.,

2019). PubChem website (https://pubchem.ncbi.nim.nih.gov/)

was used to obtain the molecular structure of the effective

drugs (Kim et al., 2021).

Gene set enrichment analysis

To reveal Gene expression data by sequencing the degree of

difference between genes in two groups of samples by using theGene

TABLE 1 Distribution of patients’ characteristics.

Entire set Train set Test set

Characteristics Number Percentage Number Percentage Number Percentage

Age

<60 years 111 29.92 57 30.48 54 29.35

≥60 years 257 69.27 128 68.45 129 70.11

Not available 3 0.81 2 1.07 1 0.54

Gender

Female 133 35.85 66 35.29 67 36.41

Male 238 64.15 121 64.71 117 63.59

Grade

Grade 1–2 144 38.81 71 37.96 73 39.67

Grade 3 218 58.76 115 61.5 103 55.98

Not available 9 2.43 1 0.54 8 4.35

Stage

Stage I–II 161 43.4 87 46.52 74 40.22

Stage III–IV 187 50.4 91 48.66 96 52.17

Not available 23 6.2 9 4.82 14 7.61

T

T1–T2 96 25.88 53 28.34 43 23.37

T3–T4 267 72 132 70.59 135 73.37

Not available 8 2.12 2 1.07 6 3.26

M

M0 328 88.41 166 88.77 162 88.04

M1 25 6.74 10 5.35 15 8.15

Not available 18 4.85 11 5.88 7 3.81

N

N0 108 29.11 58 31.02 50 27.17

N1–3 245 66.03 120 64.17 125 67.94

Not available 18 4.86 9 4.81 9 4.89
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Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). GC

patients were divided into high- and low-risk groups based on the

median risk score. For studying the differences in biological

functions between risk groups, the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis was conducted

with GSEA software, and the pathways enriched by high- and low-

risk genes were obtained, respectively. FDR < 0.25 or p < 0.05 were

considered statistically significant.

Estimation of the tumor
microenvironment using the PLT-related
lncRNAs model

Since GSEA results are mostly immune-related, we planned to

analyze the tumor microenvironment (TME) in risk model we

constructed. CIBERSORT was used to count the immune

infiltration statuses of GC patients (Chen et al., 2018). Differences

in the content of 22 types of immune cells of high- and low-risk

groups were analyzed by the “vioplot” R package (Hu, 2020). Then

“ggpubr” package was used to analyze the differences in the TME

scores (Estimate-Scores, Immunity-Scores, and Stromal-Scores) of

patients in different risk groups, and patients with high TME scores

have poorer prognosis (Yoshihara et al., 2013). Exploring the

immunotherapy for the model’s applicability can promoting more

effective immunotherapy strategies. Then, we analyzed the

microsatellite instability (MSI) status (MSS, MSI-H, and MSI-L) of

the high- and low-risk groups. MSI status files are from TCIA (http://

tcia.at). Also, TIDE (http://tide.dfc-i.harvard.edu/) algorithmwas used

to assess the different responses to immune checkpoint inhibitors in

high- and low-risk groups. When the TIDE score increased, tumors

were more likely to have immune escape (Jiang et al., 2018).

Acquisition of DNA methylated regulators
and EMT markers

A 5-methylcytosine (5mC) methylated regulator was used to

assess the correlation between risk models and DNA

methylation. Eleven methylated tuning nodes were obtained

from the literature (Chen et al., 2020). EMT-associated genes

were used to evaluate the relationship between EMT and the risk

model. EMT-related genes were obtained from the EMTome

website (Vasaikar et al., 2021). We selected the top 10 markers

from the EMTome website for which we could find the

expression level for correlation analysis.

Quantitative reverse transcription-
polymerase chain reaction analysis

Total RNA was extracted from 10 gastric cancer patients by

TRIzon method. cDNA synthesis was then performed using reverse

transcription reagents. Quantitative reverse transcription-polymerase

chain reaction (qRT-PCR) was performed using 2× SYBR Green HS

Premix (AG) on Roche 480 instrument with β-actin as an internal

reference. Gene expression levels were calculated using the 2-ΔΔCT
method (Livak and Schmittgen, 2001). Supplementary Table S2

shows the primer sequences used to amplify the seven lncRNAs.

Statistical analysis

R software 4.1.2 andGraphPad Prism 8were used to analyze the

data. The R software package “survival” and “survminer” were used

for univariate Cox proportional risk regression analysis, multivariate

Cox proportional risk regression analysis, and nomogram analysis.

The Wilcoxon rank sum test or Kruskal–Wallis rank sum test was

used to analyze the differences between the two groups; logarithmic

rank testing was used to calculate the statistical difference of OS

between high-and low-risk group. The R software package “glmnet”

was used for lasso Cox proportional regression, and the R package

“survival ROC”was used as the ROC curve (Simon et al., 2011). The

p value <0.05 was considered to be statistically significant.

Results

Identification of PLT-related lncRNA of GC
patients

Figure 1 shows the detailed workflow of the study. Firstly,

94 PLT activation-related genes were extracted from the Gene

Ontology (GO) Resource Database (Supplementary Table S3),

and 14,086 lncRNAs expression matrices were extracted from

GC from the TCGA database. PLT-related lncRNAs were defined

as those that were significantly correlated with one of the 94 PLT-

related genes (|PearsonR| > 0.4 and p < 0.001). PLT-related genes

and lncRNAs co-expression network is shown in Supplementary

Figure S1, and 848 PLT-related lncRNAs were identified

(Supplementary Table S3). Eighteen PLT-related lncRNAs

were significantly correlated with OS by using univariate Cox

regression analysis (Figure 2A). Then, we analyzed the expression

levels of these lncRNAs in GC and corresponding normal tissues

(Figure 2B). The results showed that among the 18 PLT-related

lncRNAs, most lncRNAs (AL355574.1, AC037198.1,

LINC01094, LINC02773, LINC00592, AL139147.1,

AC002401.4, AL356417.2, AC245041.1, LINC02657,

AL139147.1, AC002401.4, AL356417.2, LINC02657,

LINC02657, AL355574.1, AC037198.1, LINC01094,

LINC02773, LINC00592, AL139147.1, AC002401.4,

LINC01711, LINC01614, AL513123.1) were up-regulated and

four lncRNAs (AL161785.1, LINC01697, AC129507.1,

AP001528.1, AC005165.1) were down-regulated in GC

compared to the normal tissues (Figure 2B, p < 0.05). LASSO-

penalized Cox analysis was then performed on the 18 lncRNAs,
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and vertical dashed lines were drawn at the optimal value when

the order of Log(λ) was the least likely deviation for OS-related

adjustment parameters, and seven lncRNAs related to the

prognosis of PLT activation in GC were extracted (Figures

2C,D). These seven PLT-related lncRNAs (AL355574.1,

LINC01697, AC002401.4, AC129507.1, AL513123.1,

LINC01094, AL356417.2) were used to build a risk model to

evaluate the prognostic risk of GC patients.

In addition, we further verified model-related seven lncRNAs

(AL355574.1, LINC01697, AC002401.4, AC129507.1, AL513123.1,

LINC01094, AL356417.2) in GC patient tissues and corresponding

adjacent tissues using qRT-PCR. We observed that the expression

levels of AL355574.1, AC002401.4, LINC01094, and

AL356417.2 were up-regulated in most GC tissues, while

LINC01697 and AC129507.1 were down-regulated (Figure 2E),

which is consistent to the results of TCGA data.

FIGURE 3
Prognostic value of the risk model of the seven PLT-related lncRNAs in the testing set and training set. (A–C) Distribution of PLT-related
lncRNAs model presented based on a training set, testing set, and entire set risk scores. (D–F) Survival time and survival status of low- and high-risk
groups for the training set, testing set and entire set. (G–I)Heat-maps of seven LncRNA expressions in the training set, testing set, and entire set. (J–L)
Kaplan-Meier survival curves of the OS of patients in the training set, testing set, and entire set. (M–O) ROC curve of the training set, testing set,
and entire set.
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Construction and validation of risk model
based on PLT-related lncRNAs

For further testing, the predictive value of the model and the

risk scores for each patient were calculated by using a unified

formula. Patients were divided into testing set and training set for

analysis and validation. Then, based on the median risk score,

patients were divided into high- and low-risk groups. The

distribution of clinical characteristics of patients in each group

is shown in Table 1. The distribution of PLT-related lncRNAs

risk scores in the training set and testing set are shown in Figures

3A,B. There were significant differences in the living conditions

in survival status among different risk groups. Red dots indicate

death and green dots indicate survival. Many cases died in the

high-risk group, while most patients in the low-risk group

survived (Figures 3D,E). Heatmaps showed seven prognostic

FIGURE 4
Correlation Analysis between risk score and Clinicopathological Features. (A,B) Univariate- and multivariate-Cox analyses of clinical
characteristics and risk score with OS of the training set. (C,D)Univariate- andmultivariate-Cox analyses of clinical characteristics and risk score with
OS of the testing set. (E,F) Univariate- and multivariate-Cox analyses of clinical characteristics and risk score with OS of the entire set. (G) Kaplan-
Meier survival curves of the OS of patients between the risk model and clinical characteristics (age, sex, TNM stage, grade, and survival status).
(H) Heat-map of correlation between high- and low-risk and patient clinical characteristics (***p < 0.001 * *p < 0.01 *p < 0.05).
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TABLE 2 The compounds screened that can reduce GC patients’ risk.

Rank Cmap name Mean n Enrichment p

1 heptaminol −0.331 5 −0.842 0.00026

2 etiocholanolone −0.36 6 −0.738 0.00068

3 trimethobenzamide −0.37 5 −0.791 0.00078

4 thapsigargin −0.61 3 −0.893 0.00236

5 sulfamonomethoxine −0.273 4 −0.8 0.0031

6 pheneticillin −0.296 4 −0.777 0.00511

7 amantadine −0.263 4 −0.767 0.00599

8 colistin −0.448 4 −0.764 0.00635

9 3-acetamidocoumarin −0.35 4 −0.762 0.00656

10 alprostadil −0.231 7 −0.578 0.00976

11 N-acetylmuramic acid −0.533 4 −0.715 0.01333

12 Prestwick-1103 −0.45 4 −0.701 0.01671

13 pyrithyldione −0.462 4 −0.677 0.02397

14 vincamine −0.294 6 −0.564 0.02543

15 Prestwick-857 −0.281 4 −0.661 0.02988

16 terazosin −0.332 4 −0.655 0.03284

17 aconitine −0.281 4 −0.648 0.03638

18 indoprofen −0.431 4 −0.639 0.04048

19 acebutolol −0.385 5 −0.577 0.04075

20 2-aminobenzenesulfonamide −0.326 4 −0.631 0.04538

21 nifuroxazide −0.247 4 −0.63 0.04611

22 nimodipine −0.187 4 −0.625 0.0487

FIGURE 5
Pathway Enrichment Analysis. (A) GSEA analysis of the high- and low-risk groups.
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lncRNAs expressions for each patient (Figures 3G,H). Figure 3C

depicts the distribution of risk levels across all samples for the

entire set. The survival status and duration of patients in the

entire set are shown in Figure 3F. The prognostic value

expression criteria for seven PLT-related lncRNAs risk

patterns per patient in the risk model are shown in Figure 3I.

Survival analysis of the training set and testing set showed that

the high-risk group had a significantly lower survival rate than

the low-risk group (Figures 3J,K, p < 0.05). However, the survival

analysis of the entire set showed the same results (Figure 3L).

ROC curve analysis was used to assess the accuracy of the

prognostic model. The results showed that the area under the

ROC curve (AUC) of the training set was 0.716 (Figure 3M), the

AUC of the testing set was 0.655 (Figure 3N), and the entire set

was 0.665 (Figure 3O). The ROC analysis results suggested that

the risk model we constructed has high reliability (AUC>0.5).
Collectively, these results suggested the good performance of the

risk model for survival prediction.

FIGURE 6
Potential role of the risk model in the TME and immunotherapy. (A) The content of 22 immune cells between the high- and low-risk groups. (B)
TME Estimate-Scores, Immunity-Scores, and Stromal-Scores measured between high- and low-risk groups. (C,D) Differences in microsatellite
instability (MSI) between patients in the high- and low-risk groups. (E) Differences in immunotherapy scores between high- and low-risk groups.
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Then, we conducted univariate and multivariate Cox

regression analyses to study whether the prognostic

characteristics were independent risk factors. The

univariate Cox regression hazard ratio (HR) and 95%

confidence interval (CI) of the training set were 2.034 and

1.357–3.049 (p < 0.001); in the testing set, HR was 1.152,95%

CI was 1.087–1.221 (Figures 4A,C). HR and 95% CI of

multivariate Cox regression in the training set were

2.734 and 1.707–4.374 (p < 0.001) respectively; HR was

1.161, 95% CI was 1.092–1.234 (p < 0.001) in the testing

set (Figures 4B,D). For the entire set, we acquired similar

results (Figures 4E,F). This result indicated that the risk model

was an independent prognostic factor that was not correlated

with clinicopathological parameters such as gender, age,

tumor grade, and tumor stage.

Correlation analysis between risk score
and clinicopathological features

Based on the TCGA clinical data, differences in OS stratified

by common clinicopathological features were analyzed between

the low-risk and high-risk groups. In subgroups divided by

gender, age, stage, or tumor stage, the OS of the low-risk

group was significantly better than that of the high-risk group

(Figure 4G and Supplementary Figure S2A). In addition, OS

difference curves were stratified between high-risk and low-risk

groups by age, gender, tumor grade, or TNM stage. Risk and

clinical correlation heatmap showed that risk score is related to

Grade, N (p = 0.0087) and immune score (p < 0.001), but not to

age, gender, and TM stage, Stages (p < 0.05) (Figure 4H and

Supplementary Figure S2B).

FIGURE 7
Correlation analysis of PLT-related lncRNAs with methylation and EMT. (A) Differences of 5mC Regulator expression between patients in the
high- and low-risk groups. (B) Differences of EMT-related gene expression levels among high- and low-risk groups.
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Identification of drugs targeting PLT-
related lncRNAs model

In order to determine the effective drug for the PLT-related

lncRNAs model, we used the CMap drug screening website

(https://portals.broadinstitute.org/cmap/). For enrichment

scores, negative values indicate that the drugs can inhibit the

expression of high-risk genes and improve the survival rate of

patients. Positive values represent that it can promote the

expression of high-risk genes (Gns et al., 2019). Seventy

compounds were screened out (p < 0.05). All screened

compounds could reduce the death risk in high-risk patients,

and thus deserve further analysis in GC patients (Table 2). The

secondary structure and tertiary structure of some drugs are

shown in Supplementary Figure S3.

Pathway enrichment analysis

To further explore the potential molecular mechanism of

PLT-related lncRNAs and study the differences in biological

functions between risk groups, each clinical sample was

divided into high-risk (C2) and low-risk (C1) groups. Then,

KEGG pathway enrichment analysis was performed with

GSEA software. The pathways enriched by high- and low-

risk genes were obtained, respectively. Pathways enriched in

the C2 group mainly included complement and coagulation

cascades, hematopoietic cell lineage, neuroactive ligand-

receptor interaction, ECM receptor interaction, and other

signaling pathways (Supplementary Figure S4). The

pathways enriched in the C1 group mainly included

spliceosome, RNA degradation, RNA polymerase,

spliceosome, neuroactive tRNA biosynthesis, base excised

repair, nucleotide excised repair, homologous

recombination, P53 signaling pathway, et al. (Supplementary

Figure S4). Figure 5 shows the top five pathways with the

highest correlation in the high- and low-risk group. Details of

the GSEA results are listed in Supplementary Tables S4, S5. We

found that the high-risk group had more pathways related to

immunosuppression, such as extracellular matrix (ECM)

receptor interaction, which is a complex network of ECM

molecules (Zeltz et al., 2020).

FIGURE 8
Construction and Assessment of the Novel Nomogram. (A) The nomogram that predicted 1 -, 2 -, and 3-year survival probabilities. (B–D) The
calibration curve for 1 -, 2 -, and 3-year OS.
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TME and immunotherapy response
evaluation using risk model

CIBERSOPT was used to analyze the correlation between

TME and tumor immunotherapy in the PLT-related lncRNA

model. Next, we analyzed the differences of 22 immune cell

subtypes in the high- and low-risk groups (Figure 6A). Lower-

risk patients had higher enrichment levels of immune killer cells.

For example, B cells naive, Plasma cells, T cells follicular helper

T cells regulatory, and Macrophages M0 cells were significantly

increased in the low-risk group (Figure 6A). In addition, we also

validated the correlation of the risk model with immune cells

using other algorithms (Supplementary Figure S5). The results of

the TME scores assessment showed that indicated that the

immune, stromal, and estimate scores of the high-risk group

were higher than the low-risk group (p < 0.05) (Figure 6B).

Besides, more and more studies show that microsatellite

instability (MSI) status affects the TME and patients with

microsatellite instability-high (MSI-H) are more sensitive to

immunotherapy (Lin et al., 2020). Our studies showed that

low-risk scores were associated with MSI-H, which predicted

that low-risk patients are more likely to benefit from

immunotherapy (Figures 6C,D). Furthermore, differences in

TIDE scores between high- and low-risk groups were

obtained, and the results showed high-risk patients had higher

TIDE scores, predicting poorer immunotherapy outcomes

(Figure 6E).

Correlation analysis of PLT-related
lncRNAs with DNA methylation and EMT

DNA methylation and lncRNA regulation are generally

considered to be important factors in cell differentiation and

development (Tang, 2018). Some studies indicated that DNA

methylation at the same locus is associated with PLT activation

variability in well-defined populations (Izzi et al., 2019). DNA

methylation involved in general research mainly refers to the

methylation process that occurs at the 5th-carbon atom of

cytosine in CpG dinucleotides, a product also called 5-

methylcytosine (5mC), which is the earliest methylation type

excavated in eukaryotes (Ye and Li, 2014). As one of the

important epigenetic markers, 5mC has a significant effect on

various physiological and pathological processes (Ye and Li,

2014). Next, we explored whether there is a link between the

risk model and DNA methylation. We analyzed the relationship

between these 5mC regulators (DNMT1, DNMT3A, DNMT3B,

MBD1, MBD2, MBD3, MBD4, MECP2, NEIL1, NTHL1,

SMUG1, TDG, UHRF1, UHRF2, UNG, ZBTB33, ZBTB38, Z

BTB4, TET1, TET2, TET3) in high- and low-risk groups (Chen

et al., 2020). We discovered that most of the regulators were

different between high- and low-risk groups (Figure 7A, p <
0.05), indicating that the risk model we constructed is correlated

with DNA methylation. This result suggests that DNA

methylation is one of the major biological characteristics of

the high-risk group.

PLT could produce TGFβ, a cytokine highly related to EMT,

which has an extremely important role in EMT(13). Therefore,

we tried to explore the correlation between the risk model and

EMT markers. EMT-related genes came from EMTome. Ten

genes (VIM, CDH1, FN1, ZEB1, CDH2, SNAI2, SPARC, SNAI1,

CCN2 and TWIST1) were selected for correlation analysis. We

found that all the EMT-related genes we picked were significantly

correlated with the risk model and the high-risk group patients

had higher EMT gene expression (Figure 7B). The results

indicated a strong correlation between the risk model and

EMT, which may explain the poor prognosis of high-risk groups.

Construction and assessment of the novel
nomogram

We also used 1-year, 2-year, and 3-year calibration charts to

prove that the nomogram was in good agreement with the

prediction of 1-, 2-, and 3-year OS (Figure 8A). Nomogram

including risk grade and clinical risk characteristics were used to

predict the incidence of OS at 1-, 2-, and 3-year. The risk level of

the prognostic model showed outstanding predictive power in

the nomogram compared to clinical factors (Figure 8A). The

observed ratios of 1-year, 2-year, and 3-year OS showed definitive

agreement with the predicted ratios (Figures 8B–D).

Discussion

More and more studies have been conducted on lncRNAs in

recent years, which have an important role in cancer progression

(Chandra Gupta and Nandan Tripathi, 2017). However, there are

few studies on the role of lncRNAs in GC. The study of PLT-

related lncRNAs can provide a new direction for exploring GC

pathogenesis and targeted therapy. It is particularly important to

study the prognostic significance of PLT-related lncRNAs in GC.

Over the years, research on the effect of lncRNAs and PLT in

tumors has gradually become a hot topic in medical research.

Currently, growing evidence suggests that PLT play an

important part in the occurrence and development of GC.

Activated PLT can promote thrombus formation, thereby

accelerating tumor progression (Suzuki-Inoue, 2019).

Therefore, exploring the mechanism of PLT activation in the

progression of GC has an important meaning in improving the

survival rate of GC patients and improving the effect of

immunotherapy. Molecular markers associated with PLT

activation may also have an important role in predicting the

clinical risk and prognosis of GC patients. Xie et al. proposed a

novel PLT-related gene signature as a practical tool for patients

with triple-negative breast cancer (TNBC) with independent
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value in assessing clinical prognosis (Xie et al., 2021). In addition,

there are more and more research on the effect of lncRNAs in

tumor progression, and they have attracted more and more

attention (Li et al., 2016; Wang et al., 2022). A previous study

has shown that TEPs derived lncRNAs occupy an important

position in the diagnosis and treatment of colorectal cancer and

may elucidate the underlying molecular mechanism of PLT-

tumor cell interaction, which may be related to circulating

lncRNAs in the blood (Ye et al., 2021). Therefore, both PLT

and lncRNAs are closely related to the occurrence and

development of GC. Still, there is little research on the role of

PLT-related lncRNAs in the prognosis of GC patients. Xu et al.

established an m6A-related lncRNAs model and confirmed the

model’s important effect in predicting the prognosis of patients

with lung adenocarcinoma (LUAD), providing guidance for the

immunotherapy of patients with LUAD (Xu et al., 2021).

Furthermore, a recent study on the effect of autophagy on GC

constructed a prognostic model containing five autophagy-

related lncRNAs, indicating the key role of autophagy-related

lncRNAs in GC and suggesting that these lncRNAs may be

effective targets for immunotherapy point (Chen et al., 2021a). In

addition, models of ferroptosis-related lncRNAs, necroptosis-

related lncRNAs, and pyroptosis-related lncRNAs have also been

established, providing new targets for the study of the molecular

mechanism, and the immunotherapy of malignant tumors (Song

et al., 2021; Xiao et al., 2021; Zhao et al., 2021). In this study, we

firstly constructed an independent prognostic model based on

PLT-related lncRNAs.

We first extracted and identified 848 PLT -related lncRNAs

from the TCGA database and performed a series of analytical

validations to explore the value of PLT-related lncRNAs in GC

prognosis. We verified the prognostic value of 18 PLT-related

lncRNAs in GC by univariate COX regression analysis. By

univariate COX regression analysis, we verified the prognostic

value of 18 PLT-related lncRNAs in GC. Seven PLT-related

lncRNAs (AL355574.1, LINC01697, AC002401.4, AC129507.1,

AL513123.1, LINC01094, AL356417.2) were identified by

LASSO regression analysis and used to construct the

prognostic model for predicting OS in GC patients.

AL355574.1 was identified as a protective lncRNA associated

with autophagy in GC, which can be used as a promising

therapeutic target for immunotherapy in GC patients (Chen

et al., 2021a). Zhang et al. pointed out that LINC01697, as a

ceRNA, could be used as a biomarker for the prognosis of GC

patients and was up-regulated in GC cells, while its knockdown

can inhibit the proliferation of GC cells (Zhang et al., 2021).

Moreover, Li et al. suggested that LINC01697 as a prognostic

biomarker for oral squamous cell carcinoma (Li et al., 2020a; Zha

et al., 2021). Zha and others showed AC129507.1 as a DElncRNA

was upregulated in GC and significantly associated with the

prognosis of GC patients (Zha et al., 2021). Sun et al. found

that AL513123.1 was upregulated in a high-risk group and could

be used as a DElncRNA closely related to the prognosis of breast

cancer (BRCA) (Sun et al., 2019). In addition, Tuersong et al.

obtained similar results, pointing out that AL513123.1 in BRCA

may be involved in the regulation of the complex ceRNA network

and identified as a potential prognostic biomarker and

therapeutic target for BRCA diagnosis and treatment

(Tuersong et al., 2019). LINC01094 is associated with the

prognosis of ovarian cancer, pancreatic cancer, glioma, and

renal clear cell carcinoma (Xu et al., 2020a; Jiang et al., 2020;

Chen et al., 2021b; Luo et al., 2021; Liu et al., 2022). Li et al. found

that AL356417.2, as an immune-related lncRNA in BRCA, is

closely associated with the prognosis of BRCA and can be used as

a prognostic molecular marker and immunotherapy target for

BRCA patients (Li et al., 2020b). In this study we discovered and

verified AC002401 for the first time. Therefore, the seven PLT-

related lncRNAs obtained in our study may also become the

important biomarkers and therapeutic targets for GC and even

other cancer types.

We divided patients into high- and low-risk groups

according to the risk scores of the model and evaluated the

mechanism of regulating GC progression by GSEA. The GSEA

results indicated that the complement and coagulation pathway

was the most upregulated gene-enriched signaling pathway in a

high-risk group. In addition, immune-related pathways were also

enriched, such as ECM receptor interactions. The complement

system participates in multiple pathological processes such as

thrombotic diseases, immune responses, autoimmune diseases,

and cancer (Afshar-Kharghan, 2017). Firstly, it is involved in

various tumorigenesis and cancer progression stages by

mediating inflammatory responses. Secondly, complement

activation may have a role by modulating T cell response to a

tumor. Markiewski et al. showed that activation of the classical

complement pathway promotes in situ tumor growth in mice

(Markiewski et al., 2008). The immunomodulatory effect of the

classical complement pathway activated in the tumor can

promote tumor growth. In addition, we also noted that the

ECM receptor interaction pathway was significantly enriched

in a high-risk group. The role of ECM has been demonstrated in

several cancers. Bao et al. showed that ECM-related proteins or

genes might be potential biomarkers for breast cancer diagnosis

and treatment (Bao et al., 2019). Studies have also shown that

ECM participates in the invasion and metastasis of GC and

promotes EMT in colorectal cancer (Rahbari et al., 2016; Yan

et al., 2018).

Because the signal pathways enriched in this model are

concentrated on immune-related signal pathways, the

correlation between high- and low-risk groups and TME was

analyzed. It was found that the model was closely related to

immune cell infiltration. CIBERSPOT algorithm was then used

to calculate the correlation of different immune cell infiltration.

We noted that M2 macrophages, monocytes, and dendritic cells

resting had a significantly higher expression in a high-risk group,

which indicates that high-risk patients have higher immune cell

infiltration. As for the low-risk group, we observed more
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infiltration of B cell naive and T cell follicular helper. In addition,

we found higher immune scores, stromal scores, and estimated

scores in the high-risk group. This is consistent with the results of

previous studies that high immune score, stromal score, and

macrophage infiltration are associated with poor prognoses

(Deng et al., 2020). NK cell consumption significantly

promotes cancer metastasis in mice (Shimaoka et al., 2017).

PLT have been found to protect tumor cells from NK cells,

and this effect is mainly due to the transfer of PLT-derived MHC

CLASS I molecules to tumor cells after the interaction between

PLT and tumor cells, which reduces the anti-tumor reactivity of

NK cells and thus avoids immune surveillance (Placke et al.,

2012). MSI analysis showed that MSI-H patients would have a

better immunotherapy prognosis. In conclusion, the

immunotherapy response-related prediction marker showed

that patients in the high-risk group had a better response to

immunotherapy. Based on this analysis, we concluded that the

risk model could contribute to identifying reliable molecular

biomarkers for the immunotherapy of GC.

DNA methylation modification is the most common

covalent modification method. Many recent studies have

confirmed the correlation between methylation

modification and malignancy (Xu et al., 2020b). 5mC is the

only form of DNA methylation found in mammals, and 5mC

methylation regulators are associated with tumor

proliferation and metastasis (Huang et al., 2021b).

Benedetta et al. reported that PLT-endothelial aggregation

receptor 1 (PEAR1), driven by DNA methylation, is a marker

of PLT activation variability (Izzi et al., 2019). However, our

study confirmed a correlation between the risk model and

DNA methylation. Our study found that most DNA

methylation regulators were differentially expressed in

high-risk and low-risk groups. These results showed that

there might be an association between our findings and

DNA methylation, which reflects an important biological

feature of the model. EMT has been shown to play an

important role in tumorigenesis, invasion, and metastasis

(Nieto et al., 2016). This study found that the EMT

markers we selected were differentially expressed in both

high- and low-risk groups. The results indicate a

correlation between the risk model and EMT, reflecting

another important biological feature of the model. These

results suggest that DNA methylation and EMT are

responsible for the poor prognosis of high-risk patients.

However, further experiments are needed to prove the

effect of PLT-related lncRNAs on the prognosis of GC and

related molecular mechanisms. The related signaling

pathways screened out in this study and the effectiveness of

immunotherapy drugs should be further investigated. In this

study, we only analyzed and validated the data in the TCGA

database. Although we have carried out some experimental

verification using the collected specimens, there may still be

deviations and deficiencies. Therefore, the risk model we

constructed needs more external data for verification. We

plan to collect more clinical samples to further validate the

value of these lncRNAs in a future study.

Conclusion

In this study, we constructed a model containing seven

PLT-related lncRNAs. This study provides new clues for

predicting the prognosis of GC patients and may help to

elucidate the process and mechanism of PLT-related

lncRNAs. In addition, small-molecule drugs were found to

target PLT-related lncRNAs, and risk models showed

sensitivity in distinguishing GC patients who benefited from

immunotherapy. Our study further explored the role of PLT-

related lncRNAs in TME, drug screening, and immunotherapy

prediction in GC, providing new directions and therapeutic

targets for further research and clinical practice.
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