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The static polarization function is calculated in two-dimensional graphite and used for the
calculation of the conductivity limited by charged-impurity scattering. The conductivity increases
in proportion to the electron concentration and the mobility remains independent of the Fermi
energy, in qualitative agreement with experiments. The screening increases in proportion to
temperature at sufficiently high temperatures in contrast to the behavior in conventional two-
dimensional systems, leading to the mobility increase proportional to the square of temperature.
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§1. Introduction

Quite recently, an atomically thin graphene, or a
single layer graphite, was fabricated,1−3) and the mag-
netotransport was measured and the integer quantum
Hall effect was observed.4,5) In an effective-mass approx-
imation, an electron in a graphite monolayer is described
by Weyl’s equation for a massless neutrino. Transport
properties in such an exotic electronic structure are
quite intriguing, and the conductivity with/without a
magnetic field including the Hall effect,6−10) quantum
corrections to the conductivity,11,12) and the dynamical
transport9,13) were investigated theoretically. The re-
sults show that the two-dimensional graphite exhibits
various characteristic behaviors different from conven-
tional two-dimensional systems.14) The purpose of this
paper is to study screening effect and roles of charged-
impurity scattering.

The two-dimensional graphite is often called a zero-
gap semiconductor because the density of states vanishes
at zero energy in proportion to the linear power of the en-
ergy. The Boltzmann conductivity if calculated properly
remains independent of the energy for scatterers with
strength independent of the electron concentration.6)

This is a result of the fact that the scattering probability
proportional to the density of states cancels the increase
of the density of states. Because of the vanishing den-
sity of states at zero energy, however, the conductivity
exhibits a singular behavior in its vicinity. A calculation
in a self-consistent Born approximation shows that the
conductivity exhibits a sharp drop to a universal value
∼ e2/π2h̄.6) This behavior was observed recently,4,5)

although the actual value of the conductivity minimum
is larger than predicted.

In addition to this slight difference in the conduc-
tivity dip, the experiments show that the conductivity
does not exhibit a saturation and increases almost in pro-
portion to the electron concentration.4,5) In this paper
we consider charged impurities as a possible candidate
for dominant scatterers in the system and calculate
the corresponding conductivity. Because the screening
effect is known to be of vital importance for charged
impurities, we have to study the static polarization
function. It is revealed that the screening property in the
two-dimensional graphite exhibits behavior significantly

different from that in conventional two-dimensional met-
als.

§2. Screening Effect
2.1 Effective-mass description

In a graphite sheet the conduction and valence
bands consisting of π orbitals cross at K and K’ points of
the Brillouin zone, where the Fermi level is located.15,16)

Electronic states of the π-bands near a K point are
described by the k·p equation:17−20)

H0F (r) = εF (r), (2.1)

with

H0 = γ

(
0 k̂x−iky

k̂x+ik̂y 0

)
= γ(σxk̂x+σyk̂y), (2.2)

where γ is a band parameter, σx and σy are the Pauli
spin matrices, and k̂ = (k̂x, k̂y) = −i�∇ is a wave-vector
operator.

The wave function is written as

Fsk(r) =
1
L

Fsk exp(ik·r), (2.3)

with

Fsk =
1√
2

(
e−iθk

s

)
, (2.4)

where L2 is the area of the system, s=+1 and −1 denote
the conduction and valence bands, respectively, and

kx = k cos θk, ky = k sin θk, k =
√

k2
x+k2

y. (2.5)

The corresponding energy is given by

εsk = s εk, (2.6)

with
εk = γ|k|. (2.7)

The Schrödinger equation for the K’ point is given by
replacing σy by −σy in the above and therefore the
corresponding wave functions are obtained easily in a
similar manner. The density of states is given by

D(ε) = gvgs
|ε|

2πγ2
, (2.8)

with the valley degeneracy gv = 2 due to the K and
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K’ points and the spin degeneracy gs = 2. The energy
dispersion and the density of states are illustrated in Fig.
1.

2.2 Coulomb Interaction

The matrix element for the interaction shown in Fig.
2 is given by

V(s1′k1+q,s1k1)(s2k2,s2′k2+q)

=
2πe2

κ0q
(F †

s1′ ,k1+q ·Fs1,k1)(F
†
s2,k2

·Fs2′ ,k2+q),
(2.9)

with

(F †
sk ·Fs′k′) =

1
2
[exp(iθk−iθk′)+ss′], (2.10)

where κ0 is the static dielectric constant. If we ne-
glect effects of polarization inside the two-dimensional
graphite completely, the screening constant is given by
the average of that of the substrate SiO2, κox = 3.9,
and that of the vacuum due to the image effect,14) i.e.,
κ0 = (κox +1)/2 ≈ 2.5. Actually, we have to consider
contributions of electrons in σ bands and π bands away
from the Fermi level. This contribution is known to be
κ0 ≈ 2.4 in bulk graphite,21) but is not known for the
present system and may not be written as in eq. (2.9).
In spite of this, we shall use eq. (2.9) assuming that κ0

can be larger than that estimated above.

2.3 Polarization Function

The static dielectric function is written as

ε(q) = 1+
2πe2

κ0q
Π(q), (2.11)

where the polarization function is given by

Π(q) = −gvgs

L2

∑
s,s′,k

(fsk−fs′k+q)
|(F †

sk ·Fs′k+q)|2
εsk−εs′k+q

,

(2.12)
where fsk is the Fermi distribution function,

fsk = f(εsk) ≡
[
exp

(εsk−ζ

kBT

)
+1

]−1

, (2.13)

with ζ being the chemical potential, T the temperature,
and kB the Boltzmann constant. Because the system
is isotropic, the polarization function is determined by
q≡|q|, as can easily be proved by the above expression.

First, we define

Π0(q) ≡ −gvgs

L2

∑
s,s′,k

(f0
sk−f0

s′k+q)
|(F †

sk ·Fs′k+q)|2
εsk−εs′k+q

,

(2.14)
where

f0
sk =

{
1 (s=−1);
0 (s=+1). (2.15)

This Π0(q) describes effects of polarization of electrons
in the valence band due to virtual interband transitions

into the conduction band. It is calculated as

Π0(q) = 2gvgs

∫
dk

(2π)2
1
2

1−cos(θk−θk+q)
γ|k|+γ|k+q| =

gvgsq

16γ
.

(2.16)
This result has been obtained previously.22,23)

Because this polarization function is proportional to
q, it’s effect can be incorporated into the renormalization
of the effective dielectric constant κ0 to κ, with

κ

κ0
= 1 + gvgs

π2

4
U0, (2.17)

where the dimensionless interaction parameter U0 is
defined by

U0 =
e2

2πκ0γ
. (2.18)

For the band parameter γ = 6.46 eV·Å, corresponding
to γ = (

√
3/2)γ0a with γ0 = −3.03 eV and a = 2.46

Å, where γ0 is the transfer integral between π orbitals
of nearest-neighbor carbon atoms and a/

√
3 is their

distance, we have U0 =0.3545/κ0. For κ0≈2.5, we have
U0≈0.14, giving κ/κ0≈2.4 or κ≈6.0. Correspondingly,
the renormalized interaction parameter defined by

U =
e2

2πκγ
, (2.19)

becomes U ≈0.06. Effects of interband polarization can
be fully included by using these κ and U instead of κ0

and U0.
In the following we shall confine ourselves to the case

that the Fermi level lies in the conduction band. Define

f̃sk = fsk−f0
sk. (2.20)

Then, we have

Π(q) = −gvgs

L2

∑
s,s′,k

(f̃sk−f̃s′k+q)
|(F †

sk ·Fs′k+q)|2
εsk−εs′k+q

.

(2.21)
This can be rewritten as

Π(q) = −2
gvgs

L2

∑
s,s′,k

f̃sk

|(F †
s,k ·Fs′,k+q)|2
εsk−εs′k+q

. (2.22)

Substituting eq. (2.10) and performing the summation
over s′=±1, we have

Π(q) = −2
gvgs

L2

∑
k

f+(εk)
γ|k|+γ|k+q| cos(θk−θk+q)

γ2|k|2−γ2|k+q|2 ,

(2.23)
with

f+(εk) ≡
∑

s=±1

s f̃sk = f(εk)+f(εk+2ζ). (2.24)

The integration over the direction of q can be performed
easily and we have

Π(q) =
gvgs

2πγ

[ ∫ ∞

0

f+(εk)dk−
∫ q/2

0

f+(εk)

√
1−

(2k

q

)2

dk
]
.

(2.25)
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At the absolute zero of temperature, we have

f+(ε) =
{

1 (ε<εF);
0 (ε>εF). (2.26)

For q<2kF, therefore, we have

Π(q) =
gvgskF

2πγ

(
1−π

4
q

2kF

)
, (2.27)

and for q>2kF, on the other hand, we have

Π(q) =
gvgskF

2πγ

[
1− 1

2

√
1−

(2kF

q

)2

− 1
2

q

2kF
sin−1 2kF

q

]
,

(2.28)
with the Fermi wavenumber kF = εF/γ. At q = 2kF, it
becomes

Π(2kF) =
gvgskF

2πγ

(
1−π

4

)
, (2.29)

and the first derivative is also continuous. This be-
havior is quite different from that in conventional two-
dimensional metals where the polarization function is
constant for q < 2kF and decreases for q > 2kF with a
divergent first derivative at q=2kF.14)

The reason lies in the vanishing Coulomb matrix
element for the backward scattering k → −k as shown
by eq. (2.10). The polarization function is dominated
by virtual transitions between states with similar en-
ergy because of small energy denominator. Such energy
conserving processes are present only for q < 2kF and
disappear suddenly at q=2kF. This singular behavior is
known to be the origin of the large Kohn anomaly in two-
dimensional systems.14) In two-dimensional graphite, the
contributions of energy conserving processes become
weaker with the increase of q even for q < 2kF because
of the decrease of the matrix element for large angle
scattering, leading to the decrease of Π(q) for q < 2kF.
At q = 2kF, the matrix element of energy conserving
processes vanishes identically due to the absence of
backscattering and therefore no strong singular behavior
can appear at q=2kF.

In the long-wavelength limit, the dielectric function
is written as

ε(q) = 1 +
qs

q
, (2.30)

where qs is called the screening constant given by

qs =
2πe2

κ
Π(0). (2.31)

It is easily shown that

Π(0) =
∫ ∞

−∞

(
− ∂f(ε)

∂ε

)
D(ε)dε, (2.32)

which is known as the compressibility sum-rule.
The above results show that the static polarization

function vanishes identically for ε=0 at the absolute zero
of temperature, meaning that the screening is totally
absent to the linear order except for the renormaliza-
tion of the dielectric constant mentioned above. This
corresponds to the inadequate linear screening noted
previously in graphite intercalation compounds.24) When

the Fermi level is away from ε=0 or at nonzero tempera-
tures, however, the linear polarization function does not
vanish and the linear screening is expected to become
appropriate.

Let us consider the case that the Fermi level εF

lies in the conduction band at zero temperature. The
chemical potential ζ is determined by the condition

ns =
1

2πγ2

∫ ∞

0

f−(ε)ε dε =
1
2

ε2
F

2πγ2
. (2.33)

with
f−(ε) = f(ε)−f(ε+2ζ), (2.34)

where ns is the electron concentration. This gives

ζ = εF− π2

6
(kBT )2

εF
+. . . , (2.35)

at low temperatures (kBT �εF), and

ζ ≈ 1
4 ln 2

ε2
F

kBT
. (2.36)

at high temperatures (kBT 	εF).
Correspondingly, the screening constant, i.e., the

long-wavelength polarization function, becomes

Π(0) =
gvgsεF

2πγ2

[
1−π2

6

(kBT

εF

)2

+. . .
]
, (2.37)

at low temperatures and

Π(0) ≈ 2 ln 2
gvgs

2πγ2
kBT. (2.38)

at high temperatures. In conventional systems, the
screening constant at high temperatures (Debye-Hückel)
is proportional to the inverse of temperature. In the
present system, the situation is completely different and
the screening increases in proportion to the temperature.
This is a direct consequence of the linear energy depen-
dence of the density of states and the presence of the
Dirac sea below ε=0.

Figure 3 shows the temperature dependence of the
screening constant, i.e., long-wavelength limit of the po-
larization function, together with the chemical potential.
The screening constant takes a small minimum around
kBT/εF ∼ 0.5 and increases linearly at high tempera-
tures. Figure 4 shows the polarization function as a
function of the wave vector at different temperatures.

§3. Impurity Scattering
3.1 Boltzmann Transport Equation

The Boltzmann transport equation for the distribu-
tion function fE

sk is given by

dk

dt
· ∂fE

sk

∂k

= −
∑
s′

∫
dk′

(2π)2
[fE

sk(1−fE
s′k′)−fE

s′k′(1−fE
sk)]W (s′k′, sk),

(3.1)
with

W (s′k′, sk) =
2π

h̄
〈|Vs′k′,sk|2〉δ(εsk−εs′k′), (3.2)

where Vs′k′,sk is the matrix element of scattering poten-
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tial and 〈· · ·〉 denotes the average over configurations of
scatterers. We shall confine ourselves to the case of elas-
tic scattering and therefore neglect interband processes
(s′ �= s). To the lowest order in the applied electric field
E, we have

fE
sk = f(εsk)+gsk, (3.3)

where f(ε) is the Fermi distribution function and gsk is
the deviation proportional to E. Then, we have

dk

dt
· ∂fE

sk

∂k
= −eE ·vsk

∂f

∂εsk
− e

ch̄
(vsk×B) · ∂gsk

∂k
, (3.4)

where B is the magnetic field perpendicular to the
system and vsk is the velocity given by

vsk =
∂εsk

h̄∂k
=

γ

h̄

sk

|k| . (3.5)

The vector product is defined as v ×B = −v ×B =
B(vy,−vx) for vector v=(vx, vy).

The transport equation is rewritten as

eE ·vsk

(
− ∂f

∂εsk

)
=

e

ch̄
(vsk×B) · ∂gsk

∂k

−
∫

dk′

(2π)2
(gsk−gsk′)

2π

h̄
〈|Vsk′,sk|2〉δ(εsk−εsk′).

(3.6)
Introduce the relaxation time given by

h̄

τ(εsk)
= 2π

∫
dk′

(2π)2
〈|Vsk′,sk|2〉[1−cos(θk−θk′)]δ(εsk−εsk′),

(3.7)
and the cyclotron frequency

ωc(εsk) =
eBv2

cεsk
, (3.8)

with

v ≡ |vsk| =
γ

h̄
. (3.9)

Then, the solution becomes

gsk = −eτ
(
− ∂f

∂εsk

) 1
1+ω2

cτ
2
vsk ·

(
E + ωcτ

B

B
×E

)
,

(3.10)
with ωc = ωc(εsk) and τ = τ(εsk). It should be noted
that the cyclotron frequency diverges in proportion to
the inverse of the energy at zero energy and changes
the signature corresponding to change in the carrier type
from an electron to a hole.

Define

D̄ =
gvgs

2πγ2

∫ (
− ∂f

∂ε

)
|ε|dε, (3.11)

and the average of function p(ε) by

〈p(ε)〉 ≡ 1
D̄

∫ (
− ∂f

∂ε

) gvgs

2πγ2
|ε|p(ε)dε. (3.12)

Then, we have the diagonal conductivity

σxx = σyy =
e2γ2

2h̄2 D̄
〈 τ

1+ω2
cτ

2

〉
, (3.13)

and the Hall conductivity

σxy = −σyx = −e2γ2

2h̄2 D̄
〈 ωcτ

2

1+ω2
cτ

2

〉
. (3.14)

These are essentially the same as the expressions in
conventional semiconductors or metals except that ωc de-
pends strongly on the energy while the velocity remains
independent.

The Hall coefficient is given by

RH = − σyx

B(σ2
xx+σ2

xy)
, (3.15)

and the Hall mobility is given by

μ = c|RH |σ0. (3.16)

At zero temperature in weak magnetic fields, we have

RH = − s

nsec
, (3.17)

with the electron concentration given by eq. (2.33). The
Hall mobility becomes

μ0 =
ev2

εF
τ(εF), (3.18)

and then the conductivity is given by

σ0 = nseμ, (3.19)

as in conventional two-dimensional systems.
As mentioned above, the cyclotron frequency ωc(ε)

diverges at ε = 0 and as will become clear in the
following the relaxation time τ(ε) diverges also. As
a result, the integral over the energy giving the Hall
conductivity in eq. (3.14) and the field-dependent part
of the diagonal conductivity in eq. (3.13) diverges at
ε=0 at nonzero temperatures if we neglect ω2

cτ
2 in the

denominator. Thus, the Hall coefficient and mobility and
the magnetoresistivity can exhibit a singular behavior in
the limit of vanishing magnetic field. As will be shown
below, however, this singularity is weak for charged-
impurity scattering and easily washed out if effects of
a nonzero density of states at ε=0 are considered.6)

3.2 Charged Impurity Scattering

The Fourier transform of the potential of a charged
impurity is given by

V 0
i (q) =

2πe2

κq
. (3.20)

Then the matrix element becomes

(s′k+q|V 0
i |sk) =

2πe2

κq
(F †

s′k+q ·Fsk). (3.21)

In the presence of the screening effect, this is modified
as

(s′k+q|Vi|sk) =
2πe2

κqε(q)
(F †

s′k+q ·Fsk). (3.22)

With the use of eq. (2.10), the transport relaxation time
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for energy ε (ε>0) is given by

h̄

τ(ε)
= 2πniD(ε)

∫ π

0

dθ

π

1
2
(1−cos2 θ)

( 2πe2

κqε(q)

)2

. (3.23)

where ni is the concentration of impurities and q =
2(ε/γ) sin(θ/2) in the integrand. This equation shows
that the probability of backward scattering θ = π van-
ishes identically, which corresponds to the absence of
backscattering in metallic carbon nanotubes.20,25)

The relaxation time can be rewritten as

τ(ε) =
ns

πgvgsni

h̄

|ε|H(ε), (3.24)

with the dimensionless quantity H(ε) defined by

H(ε)−1 =
∫ π

0

dθ

π

1
2
(1−cos2 θ)

( 1
2πU

γq

εF
+gvgsΠ̃(q)

)−2

,

(3.25)
where Π̃(q) is the dimensionless quantity defined by

Π(q) ≡ gvgsεF

2πγ2
Π̃(q). (3.26)

At zero temperature, H0≡H(εF) is independent of
the electron concentration and determined by U alone.
The mobility becomes

μ0 =
e

4π2h̄ni
H0, (3.27)

which is independent of ns. The conductivity becomes

σ0 =
e2

4π2h̄

ns

ni
H0, (3.28)

which is proportional to ns. Figure 5 shows H0 as a
function of U . It is clear that H0 increases in propor-
tion to U−2 for small U and approaches a constant for
sufficiently large U . For U ≈0.06, we have H0≈120.

The temperature dependence of the conductivity for
a fixed electron concentration is shown in Fig. 6. At low
temperatures kBT/εF < 0.5, the conductivity decreases
slightly with temperature because of the decrease of
the screening effect as shown in Figs. 3 and 4. At
sufficiently high temperatures the conductivity increases
roughly in proportion to T 2 because of the increase
of the screening effect and also of the average kinetic
energy. The conductivity takes a shallow minimum
around kBT/εF∼0.5.

Figure 7 shows the diagonal and Hall conductivity
as a function of the effective magnetic field ωc0τ0 at
various temperatures, where ωc0 = ωc(εF) and τ0 =
τ(εF) at zero temperature. We have assumed U = 0.05
(slightly smaller than 0.06 for κ0 = 2.5). Results for
different values of U are qualitatively the same. The
diagonal conductivity exhibits the usual behavior ∝ (1+
ω2

c0τ
2
0 )−1 at sufficiently low temperatures, but its feature

deviates considerably at high temperatures. In fact, the
conductivity decreases with the field rapidly particularly
in the vicinity of zero field because the contribution in the
vicinity of zero energy drops rapidly due to the divergent
cyclotron frequency. In high magnetic fields, on the
other hand, contributions of states with higher energies

with small ωc become important and the conductivity-
decrease becomes slower. The Hall conductivity starts
to decrease when holes start to be populated in the
valence band (kBT/εF ∼ 1) due to the cancellation of
contributions of electrons and holes (two-carrier regime).

Figure 8 shows the inverse of the Hall coefficient. It
exhibits a large field dependence in the low-field regime
at low temperatures due to the contribution of states
near ε=0. At higher temperatures the Hall coefficient is
reduced considerably due to the cancellation of electron
and hole contributions. Figure 9 shows the Hall mobility.
It exhibits a singular increase near zero field again due
to the contribution of states ε=0, but the singularity is
weak and can be smeared out easily by nonzero density
of states at ε = 0. At higher temperatures it is reduced
considerably due to the cancellation of electron and hole
contributions.

§4. Discussion

In the previous calculation of the conductivity,6)

short-range scatterers with amplitude independent of
the electron concentration were assumed. In this case
the scattering probability h̄/τ(εF) is proportional to the
final-state density of states with a coefficient independent
of εF. Because the density of states is proportional
to εF, the relaxation time is inversely proportional to
εF. As a result the mobility is inversely proportional
to ns ∝ ε2

F, leading to the conductivity independent of
the Fermi energy and the electron concentration. For
charged-impurity scattering, the matrix element itself is
proportional to the inverse of the Fermi energy both in
the presence and absence of screening. Consequently,
the low-temperature mobility becomes independent of
the electron concentration and the conductivity increases
in proportion to the electron or hole concentration ns.

Recent experiments seem to indicate that the mo-
bility at low ns decreases rapidly with increasing ns and
nearly converges at a value independent of ns for suffi-
ciently large ns.5) The rapid reduction at low ns is con-
sistent with the singular behavior predicted previously.6)

The observed value at high ns close to μ∼104 cm2/Vs5)

corresponds to the impurity concentration of ni∼4×1011

cm−2. Such amount of impurities are highly likely to
be present on a substrate surface. It is interesting that
this concentration is comparable to the concentration of
charged impurities present in the vicinity of the Si and
SiO2 interface in typical MOSFET’s.14)

The singularity appearing in the magnetoconduc-
tivity in weak magnetic fields at nonzero temperatures
should be removed by nonvanishing density of states in
actual systems with disorder.13) This nonzero density of
states causes a singular drop of the conductivity from the
Boltzmann value to a universal value e2/πh̄ in the vicin-
ity of zero energy.6) The observed minimum conductivity
at zero energy4,5) is 3∼4 times as large as the predicted
conductivity for model short-range scatterers.6) It is
difficult to discuss this conductivity in the vicinity of zero
energy assuming realistic charged-impurity scattering,
because a self-consistent determination of the screening
and the density of states is necessary. Further, the linear
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screening may not be valid near ε≈ 0.24) This problem
is left for a future study.

§5. Summary and Conclusion

The static dielectric function has been calculated in
a monolayer graphite system and shown to be consider-
ably different from that in conventional two-dimensional
systems mainly due to the absence of backward scat-
tering. The result has been used for the calculation of
transport coefficients based on a Boltzmann transport
equation. The mobility limited by charged impurities is
shown to be independent of the electron concentration,
leading to the conductivity proportional to the electron
concentration. This dependence is consistent with recent
experimental results.
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Figure Captions

Fig. 1 A schematic illustration of the dispersion rela-
tion and the density of states of the two-dimensional
graphite.

Fig. 2 The matrix element of the Coulomb interaction
(a) and the diagram of the polarization function (b).

Fig. 3 Calculated temperature dependence of the long-
wavelength dielectric function Π(0) and chemical
potential ζ. The dotted lines denote the approxi-
mate results at zero and high temperatures.

Fig. 4 The polarization function as a function of the
wave vector at different temperatures. It does not
exhibit an apparent singularity at q/kF =2 even at
zero temperature.

Fig. 5 The dimensionless conductivity H(εF) as a
function of the effective Coulomb interaction U at
zero temperature. It is proportional to U−2 for small
U and approaches a constant due to the screening
for large U .

Fig. 6 The conductivity limited by charged-impurity
scattering as a function of the temperature.

Fig. 7 The diagonal and Hall conductivity limited by
charged-impurity scattering as a function of the ef-
fective magnetic field at various temperatures. σ(T )
is the conductivity in the absence of a magnetic field.
ωc0 =ωc(εF). τ0 =τ(εF). U =0.05.

Fig. 8 The inverse of the Hall coefficient limited by
charged-impurity scattering as a function of a mag-
netic field at different temperatures. U =0.05.

Fig. 9 The Hall mobility limited by charged-impurity
scattering as a function of a magnetic field at dif-
ferent temperatures. μ0 is defined in eq. (3.27).
U =0.05.
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