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Screening effects on the electronic structure of the hydrogen molecular ion
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We study the effect that a statically screened Coulomb potential represented by a Debye-Hückel-Yukawa

potential has in the electronic structure of the simplest molecule H2
+ within the Born-Oppenheimer

approximation. The method of solution is based on a two-center partial-wave expansion expressed in confocal

elliptic coordinates using B-spline polynomials. General algorithms for the computation of energies, wave

functions, and dipole and nonadiabatic radial matrix elements are given in detail. As it occurs in atoms, screening

in simple molecules shifts the energies of bound states upwards so that, as screening increases, every bound state

eventually crosses the upper ionization threshold at a critical screening value. The loss of long-range Coulomb

interactions has its effect in the structure of wave functions, and consequently in the dipole and nonadiabatic

matrix elements at intermediate and long internuclear distances, which determine the dynamics in external

electromagnetic fields and collisional processes. Other issues related to a practical solution of the arbitrary

sign problem, as well as the assignment of angular and radial nodes to the variational eigenfunctions, and the

appearance of molecular shape resonances and Borromean states in H2
+ as screening increases, are also addressed

in this work.

DOI: 10.1103/PhysRevA.95.012504

I. INTRODUCTION

Electrostatic screening plays a fundamental role in the de-
scription of plasmas, the structure of many-electron atoms and
molecules, metals, and semiconductors in solid state physics,
and electrochemistry in general. In atoms and molecules,
the shielding of the long-range Coulomb force gives rise to
effects such as pressure ionization (continuum lowering) and
the removal of energy degeneracies. Screening at its most
simple modelization can be described using the Debye-Hückel
approximation [1] which amounts to replace the Coulomb
potential by Yukawa-type potentials (V = qiqje

−λrij /rij ) for
each pair of charged particles {qi,qj } separated by a distance
rij . Here, λ denotes the screening parameter which, for
instance, in the case of weakly coupled plasmas, can be
expressed in terms of the density and temperature of the plasma
[2]. Weak screening mostly affects the long-range part of the
interacting potential, so that highly excited states are more
affected than compact bound states. Strong screening, on the
other hand, can prevent the formation of bound states entirely.

Because of the importance of charge interactions in both
laboratory and astrophysical plasmas, there has been an
increasing interest over the last decades in the study of
screening effects on the electronic structure of atoms as well
as of processes such as photon excitation and ionization,
autoionization, electron-atom and ion-atom collisions under
the influence of a plasma environment (see the review [3] and
references therein). In this respect, some effects in atoms with
screened Coulomb interactions have been recently disclosed,
such as the red-shift of atomic spectral lines, the important
role of low-energy resonances [3,4], and the presence of

*Present address: Max Born Institute, 12489 Berlin, Germany.
†Corresponding author: jose.sanz@udea.edu.co

unexpected Cooper minima in the photoionization spectra
of hydrogenlike atoms and ions, issues that have not been
addressed in molecules so far. Therefore, a more comprehen-
sive study of new emerging effects arising in molecules under
Coulomb screening is pertinent. In the molecular case, only a
few studies have been carried out using Yukawa-type screening
potentials. For instance, there has been a quest for the stability
[5,6] and the presence of Borromean states in the screened
molecular ion H2

+ [7–9], and in screened neutral hydrogen H2

[10]. The relation between screening and electron correlation
in H2 was also studied for the ground state [11].

Screening effects in many-electron molecules can be
incorporated at different levels of sophistication, e.g., from
simple effective nuclear charges (without compromising the
two-center Coulomb potential and its separability) and Yukawa
potentials, to the use of statistical Thomas-Fermi, mean-field
Hartree-Fock and variable screening methods [12], inasmuch
as the independent molecular orbital approximation is applica-
ble. It is worth noting that the introduction of simple Yukawa
interactions in a one-electron molecule brings elements present
in the molecular orbital picture of many-electron molecules,
namely, the lifting of asymptotic degeneracies [in the separated
atoms (SA) and the united atoms (UA) limits], the ubiquitous
presence of avoided crossings between adiabatic energy curves
and the ensuing dynamical couplings, and new diabatic
correlation rules UA ↔ SA. However, their application is
limited since many-body effects that rely on strong electron
correlation can never be accounted for with screeninglike
model potentials and explicit calculations including electron
correlation must be performed.

We present a computational method to study the Yukawa-
screened H2

+ molecule within the Born-Oppenheimer (BO)
approximation, which allows us to calculate energies, wave
functions, and related properties such as dipole (oscillator
strengths) and nonadiabatic couplings. This method allows us
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to uncover some issues yet unreported, like the drastic variation
of energies and wave functions, the lifting of degeneracies
resulting in avoided crossings, the presence of molecular
shape resonances emerging solely from screening, and the
conditions for the appearance of Borromean states within the
BO approximation. All these changes in the molecular struc-
ture dramatically affect the dynamics of collision processes
occurring in Debye plasmas. For instance, photoabsorption
and photoionization cross sections of molecules embedded
in plasmas have not been reported so far, so that the role of
the modified oscillator strengths, molecular shape resonances,
and Cooper minima in shaping the cross-section profiles
is yet unknown. Also, heavy-particle collisions at low and
intermediate velocities in hot dense plasmas can be studied
using the molecular model of atomic collisions [13,14], for
which the previous computation and analysis of UA-SA energy
correlation diagrams and nonadiabatic molecular couplings is
a prerequisite.

The paper is organized as follows: In Sec. II we describe
our theoretical variational approach based on a partial-wave
expansion where the radial function is expressed in terms of
B-splines, providing general expressions for the computation
of matrix elements for the Hamiltonian, dipole interaction,
and nonadiabatic first-derivative radial couplings. In Sec. III
we analyze the results related to changes in the electronic
structure and properties, namely, molecular energies, wave
functions, dipole matrix elements, nonadiabatic couplings,
shape resonances, and Borromean states. We finish with some
conclusions in Sec. IV. We supplement this work with two
Appendixes, that include the implementation of a simple
procedure to extract the nodes of our diagonalized unscreened
wave functions and a method to avoid the well-known
arbitrary sign problem when evaluating molecular couplings.
Atomic units (a.u.) are used throughout unless otherwise
stated.

II. THEORY

Burrau [15] showed that the two-center Coulomb problem
can be separated in the confocal elliptic coordinate system
and several authors have reported the solution in terms of
the two associated coupled differential equations [16–18],
namely, the inner equation for the angular η coordinate and
the outer equation for the radial ξ coordinate. The arrival
of computers made available solutions (energies and wave
functions) with arbitrary precision (see, for instance, [19–21])
and led to a revival of the problem ([13,22,23] and references
therein), including the discovery of an additional dynamical
symmetry that yields another constant of motion in the
two-center Coulomb problem [24]. With respect to the latter
issue, the noncrossing Wigner–von Neumann rule still applies
since curves of similar geometrical symmetry exhibiting real
crossings have in fact different quantum numbers nη and nξ

corresponding to the number of nodes of the eigenstates for
the inner and outer equations, respectively. Screening breaks
down this separability and all its related advantages [e.g.,
an additional constant of motion, factorability of the total
wave function making the computation of matrix elements
simpler, and avoided crossings and the arbitrary sign problem
(discussed in the Appendix)] are not present.

A. Method of solution: Eigenvalue problem

The electronic wave functions ψ(r,R) for the one-
electron diatomic molecule (OEDM) are eigensolutions of the
Schrödinger equation

[Ĥ (r,R) − E]�(r,R) = 0, (1)

with the Hamiltonian given by

Ĥ (r,R) = − 1
2
∇2

r + V̂ (r1,r2; R), (2)

where r is the coordinate vector for the electron, r1 and
r2 are the distances from the electron to nuclei 1 and 2,
respectively, and R is the internuclear distance which acts
as a parameter within the BO approximation. As mentioned
above, the electronic Hamiltonian for the two-center Coulomb
problem, i.e., for V̂ (r1,r2; R) = −Z1/r1 − Z2/r2 + Z1Z2/R,
is separable in confocal elliptic coordinates [15,17]. For the
screened potential in the Yukawa form

V̂ (r1,r2; R) = −
Z1e

−λr1

r1

−
Z2e

−λr2

r2

+
Z1Z2e

−λR

R
, (3)

this separation is no longer possible. However, confocal elliptic
coordinates are still the natural coordinates appropriate to
look for an accurate variational solution of the Schrödinger
equation. In the following, the nuclear repulsion in Eq. (3) is
omitted. Confocal elliptic coordinates are defined as

ξ =
r1 + r2

R
and η =

r1 − r2

R
(4)

with 1 � ξ < ∞ and −1 � η � +1, along with the azimuthal
angle 0 � φ < 2π . In the set of these coordinates the interac-
tion potential (3) reads as

V̂ (ξ,η) =−
2

R(ξ 2 − η2)
[Z1e

− λR
2

(ξ+η)(ξ − η)

+Z2e
− λR

2
(ξ−η)(ξ + η)]. (5)

We adopt a partial-wave expansion for the electronic wave
function �(r,R), where the ξ part is expanded in a basis set in
the form

�m(ξ,η,φ; R) =
ℓmax
∑

ℓ=|m|


ℓ(ξ )�m
ℓ (η)

eimφ

√
2π

;


ℓ(ξ ) =
Nξ
∑

i=1

cm
iℓϕi(ξ ). (6)

In this work, we adopt the basis ϕi(ξ ) = (ξ 2 − 1)|m|/2Bi(ξ ),
where Bi(x) corresponds to a B-spline polynomial [25,26],
and �m

ℓ (η) is a normalized associated Legendre polynomial,
i.e.,

�m
ℓ (η) = (−1)m

[

2ℓ + 1

2

(ℓ − m)!

(ℓ + m)!

]1/2

P m
ℓ (η). (7)

The expansion coefficients cm
iℓ include the required normaliza-

tion that allows for 〈�m|�m〉 = 1. From now on, the label m

will be dropped.
If we replace the ansatz (6) [with the expansion in the basis

ϕi(ξ )] in (1) we arrive to a secular equation with Hamiltonian
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H and overlap S matrices. The Hamiltonian and the overlap
matrix elements have the form

Hiℓ,jℓ′ =
R

4

{[

Kij + m2Cij + ℓ(ℓ + 1)V 0,0
ij

]

δℓℓ′

−RV
1,−λ
ij

[

Z1U
0,−λ
ℓℓ′ + Z2U

0,+λ
ℓℓ′

]

+RV
0,−λ
ij

[

Z2

(

aℓmU
0,+λ
ℓ−1,ℓ′ + aℓ+1,mU

0,+λ
ℓ+1,ℓ′

)

−Z1

(

aℓmU
0,−λ
ℓ−1,ℓ′ + aℓ+1,mU

0,−λ
ℓ+1,ℓ′

)]}

, (8)

and

Siℓ,jℓ′ =
R3

8

[

V
2,0
ij δℓℓ′ − V

0,0
ij U

2,0
ℓℓ′

]

, (9)

where the explicit integrals to be calculated are

Kij =
∫ ∞

1

dξ (ξ 2 − 1)∂ξϕi(ξ )∂ξϕj (ξ ), (10)

Cij =
∫ ∞

1

dξ ϕi(ξ )ϕj (ξ )(ξ 2 − 1)−1, (11)

V
n,±λ
ij =

∫ ∞

1

dξ ξnϕi(ξ )e± λR
2

ξϕj (ξ ), (12)

U
n,±λ
ℓℓ′ =

{

∫ +1

−1
dη ηn�m

ℓ (η)e± λR
2

η�m
ℓ′ (η), λ 	= 0

δℓℓ′ , λ,n = 0
(13)

and with the angular coefficients

aℓm = [(ℓ − m)(ℓ + m)/(2ℓ − 1)(2ℓ + 1)]1/2. (14)

Some angular integrals can be derived in closed form in terms

of the latter angular coefficients, for instance, U
2,0
ℓℓ′ = (a2

ℓm +
a2

ℓ+1,m)δℓℓ′ + aℓmaℓ−1,m δℓ,ℓ+2 + aℓ+1,maℓ+2,m δℓ,ℓ′−2.

Since we choose to use ϕi(ξ ) = (ξ 2 − 1)|m|/2Bi(ξ ) as the
basis function for the radial ξ coordinate, all integrals may be
written directly in terms of B-splines and their derivatives and
they can be readily computed using Gauss-type quadratures.
Indeed, the construction of the Hamiltonian and overlap
matrices in terms of B-splines can be reduced to the evaluation
of three types of ξ -radial integrals

I�m,n,±λ
ij =

∫ ∞

1

dξ (ξ 2 − 1)m+�mξne± λR
2

ξBi(ξ )Bj (ξ ), (15)

J �m,n
ij =

∫ ∞

1

dξ (ξ 2 − 1)m+�mξnBi(ξ )∂ξBj (ξ ), (16)

and

Kij =
∫ ∞

1

dξ (ξ 2 − 1)m+1∂ξBi(ξ )∂ξBj (ξ ), (17)

so that the Hamiltonian and overlap matrix elements can be
expressed in a suitable computational form as

Hiℓ,jℓ′ =
R

4

{[

m2
(

I −1,2,0
ij + I −1,0,0

ij

)

+ m
(

J 0,1
ij + J 0,1

ji

)

+Kij + ℓ(ℓ + 1)I0,0,0
ij

]

δℓℓ′

−R I0,1,−λ
ij

[

Z1U
0,−λ
ℓℓ′ + Z2U

0,+λ
ℓℓ′

]

−R I0,0,−λ
ij

[

Z2

(

aℓmU
0,+λ
ℓ−1,ℓ′ + aℓ+1,mU

0,+λ
ℓ+1,ℓ′

)

−Z1

(

aℓmU
0,−λ
ℓ−1,ℓ′ + aℓ+1,mU

0,−λ
ℓ+1,ℓ′

)]}

, (18)

and

Siℓ,jℓ′ =
R3

8

[

I0,2,0
ij δℓℓ′ − I0,0,0

ij U
2,0
ℓ,ℓ′

]

. (19)

Once the radial and angular basis set is chosen (the size
of the radial ξ box, the number and order of B-splines, and
the maximum value for the expansion in angular momenta),
the Hamiltonian and overlap matrices are built up to solve the
associated generalized eigenvalue problem (H − ES)C = 0
for each fixed value of |m| = 0,1,2, . . . (σ,π,δ, . . .). Accord-
ing to the block structure of the Hamiltonian, by using Nξ

B-splines and Nℓ partial waves (note that ℓ � |m| in the
partial-wave expansion), the dimension of the Hamiltonian
matrix is (NξNℓ)2. For most of the calculations reported in
this work we have achieved convergence by using Nξ = 50 and
Nℓ = 10 for both gerade (even ℓ’s) and ungerade symmetries
(odd ℓ’s). Unlike the unscreened Coulomb case, the analysis of
the nodal structure of screened wave functions does not provide
unambiguous correlations between atomic quantum numbers
in the limits R = 0 and R → ∞, although some quasidiabatic
correlation rules have been prescribed in the past [12,27].
In this work, we also use the same variational expansions
to solve the unscreened Coulomb case (λ = 0) so that we
do not solve the inner and outer one-dimensional equations
with their respective angular and radial nodes. However, in
the unscreened case, the number of radial and angular nodes
associated to each eigenstate can be easily disclosed at each
internuclear distance by a simple inspection of the expansion
coefficients in Eq. (6) (see Appendix for details).

B. Radiative dipole matrix elements

Once the eigenvectors of the generalized eigenvalue prob-
lem are obtained, one may compute the matrix elements of any
operator among them. For instance, the semiclassical treatment
for the interaction of the radiation with the molecule involves
transition matrix elements in the dipole approximation. In
this work, we compute dipole matrix elements among non-
screened and screened H2

+ wave functions, both in the length
gauge rab = (xab,yab,zab) and in the velocity gauge pab =
(px,ab,py,ab,pz,ab) between any two eigenstates �m

a and �m′

b .
For the sake of conciseness, we only give the expressions

for the z-axis component, that in the case of the length gauge
reads as zab = 〈�a|z|�b〉 with z = R

2
ξη (for the origin located

at the midpoint of the internuclear distance). From the ansatz
(6) one readily obtains

zab =
(

R

2

)4

δmamb

∑

ℓℓ′

[

IL
ξ,ℓℓ′J

L
η,ℓℓ′ − JL

ξ,ℓℓ′I
L
η,ℓℓ′

]

,

where

IL
ξ,ℓℓ′ =

Nξ
∑

i,j

ca
iℓc

b
jℓ′I

0,3,0
ij = c

a†
ℓ I

0,3,0cb
ℓ′ , (20)

JL
ξ,ℓℓ′ =

Nξ
∑

i,j

ca
iℓc

b
jℓ′I

0,1,0
i,j = c

a†
ℓ I

0,1,0cb
ℓ′ , (21)
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IL
η,ℓℓ′ =

∫ +1

−1

dη�
ma

ℓ (η)�
mb

ℓ′ (η)η3 (22)

JL
η,ℓℓ′ =

∫ +1

−1

dη�
ma

ℓ (η)�
mb

ℓ′ (η)η. (23)

The angular integrals can be easily reduced to the already
defined angular coefficients aℓm and the computational ex-
pression can be expressed as

zab =
(

R

2

)4
∑

ℓ

aℓma

{

−aℓ−2,ma
aℓ−1,ma

C
0,1,0
ℓ,ℓ−3,+ + C

0,3,0
ℓ,ℓ−1,+

−
(

a2
ℓ−1,ma

+ a2
ℓma

+ a2
ℓ+1,ma

)

C
0,1,0
ℓ,ℓ−1,+

}

δmamb
, (24)

where the terms C
�m,n,λ
ℓ,ℓ′,± are obtained from vector-matrix

multiplications between expansion coefficients vectors in (6)
and the matrices defined in (15) [as follows from (20) and (21)]:

C
�m,n,−λ
ℓ,ℓ′,± = c

a†
ℓ I

�m,n,−λcb
ℓ′ ± c

b†
ℓ I

�m,n,−λca
ℓ′ .

Similarly, in the velocity gauge, the z component reads as
pz,ab = −i〈�a|∂/∂z|�b〉 and, with the z derivative given by
∂
∂z

= 2
R

1
ξ 2−η2 [(ξ 2 − 1)η ∂

∂ξ
+ (1 − η2)ξ ∂

∂η
] in confocal elliptic

coordinates, these matrix elements can be computed using the
algorithm

pz,ab =−i

(

R

2

)2

δmamb

×
∑

ℓ

aℓm

[

Dℓ,ℓ−1 − (ℓ − m − 1)C0,1,0
ℓ,ℓ−1,−

]

, (25)

where Dℓ,ℓ′ comes from the vector-matrix multiplication

Dℓ,ℓ′ = c
a†
ℓ J

1,0cb
ℓ′ − c

b†
ℓ J

1,0ca
ℓ′ ,

where J is the matrix defined in Eq. (16).

C. Nonadiabatic radial couplings

Nonadiabatic radial couplings involve first and second
derivatives with respect to the internuclear distance, i.e.,

Â = d
dR

|r and B̂ = d2

dR2 |r. In terms of a complete basis of
eigenstates, the matrix for the second derivatives can be
obtained from the first derivative matrix elements B = A2 +
dA/dR [13,28]. To obtain such a complete basis of eigenstates
is computationally within reach for H2

+. Thus, we evaluate
here only the first derivative couplings between screened
H2

+ eigenfunctions. The anti-Hermitian operator Â can be
split into in three terms Â = ∂/∂R|ξ,η + ∂ξ/∂R|r ∂/∂ξ |R,η +
∂η/∂R|r ∂/∂η|R,ξ . Although we use variational wave func-
tions, their energy usually has 9 to 10 significant figures
(as compared, for example, to the exact ones in the un-
screened case). After such consideration, the first term in
Â can be obtained from the nondiagonal Hellman-Feynman
theorem, i.e., 〈�a|∂/∂R|ξ,η|�b〉 = −〈�a|∂Ĥ/∂R|�b〉/(Ea −
Eb), which in the screened case reduces to evaluate the matrix
elements of the operator

∂Ĥ

∂R
= −

2

R
Ĥ +

1

R
V̂ +

λ

R
e− λR

2
ξ (Z1e

− λR
2

η + Z2e
+ λR

2
η).

(26)

In terms of our ansatz (6) for the eigenvectors, the computa-
tional algorithm for the matrix elements of the operator (26)
reads as

〈�a|∂Ĥ/∂R|�b〉

= δmamb

{

1

R
c†aVcb + λ

R2

8

∑

ℓ,ℓ′

[(

Z1U
0,−λ
ℓℓ′ + Z2U

0,+λ
ℓ,ℓ′

)

×c
†a
ℓ I

0,2,−λcb
ℓ′ −

(

Z1U
2,−λ
ℓℓ′ + Z2U

2,+λ
ℓ,ℓ′

)

c
†a
ℓ I

0,0,−λcb
ℓ′

]

}

.

(27)

For the second term in the radial coupling operator,
∂ξ/∂R|r∂/∂ξ |R,η, it is required to compute

〈�a|
ξ

R

ξ 2 − 1

ξ 2 − η2

∂

∂ξ
|�b〉 =

R2

16
δmamb

∑

ℓ

c
†a
ℓ [ J

1,1 − J
†1,1

− 3I
0,2,0 + I

0,0,0]cb
ℓ, (28)

whereas for the third term ∂η/∂R|r∂/∂η|R,ξ , the computation
requires the matrix element

〈�a|
η

R

1 − η2

ξ 2 − η2

∂

∂η
|�b〉

=
R2

8
δmamb

{

∑

ℓ

(ℓ + 1)aℓmaℓ−1,mc
b†
ℓ−2 I

0,0,0ca
ℓ

+
∑

ℓ

[

(ℓ + 1)a2
ℓm − ℓa2

ℓ+1,m

]

c
a†
ℓ I

0,0,0cb
ℓ

−
∑

ℓ

(ℓ − 2)aℓmaℓ−1,mc
a†
ℓ I

0,0,0cb
ℓ−2

}

. (29)

We have checked numerically that the collection of the three
terms in the operator Â yields an antisymmetric matrix A. Our
radial couplings for the unscreened case (λ = 0) also compare
very well with those available in the literature [29–31]. It is
well known that nonadiabatic couplings depend on the origin
of the coordinate frame [13,32]. Our radial couplings in this
work are calculated for the origin located at the geometrical
center of the two nuclei (for H2

+ it coincides with the nuclear
center of mass). Corrections to the radial couplings due to a
shift ±δR (with δ ∈ [− 1

2
, + 1

2
]) from the origin at the midpoint

along the internuclear distance Z1OZ2 in the z axis (O →
O ± δR) involve an extra term ∓i δR

R
p̂z, which involves the z

component of the dipole operator in the velocity gauge, whose
evaluation has been treated in the previous Sec. II B.

III. RESULTS

A. Potential energy curves of screened H2
+

In Fig. 1 we plot the variation of the total electronic energies
for the lowest states in H2

+ calculated at the internuclear
distance R = 2 a.u. against λ ∈ [0,1.6] a.u. Electronic states in
H2

+ tend to increase their electronic energy (without nuclear
interaction) monotonically as the screening increases, until
they cross the limit E = 0 a.u.. When the nuclear interaction
is added at a given internuclear distance R, the corresponding
energy curves for highly excited states show a maximum with
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FIG. 1. Electronic energies (plus nuclear repulsion e−λR/R) for

the 15 lowest electronic states of symmetry σg (solid blue lines),

σu (green dashed lines), and πu (red dotted lines) of H2
+ as a

function of the screening parameter λ at the (unscreened) equilibrium

internuclear distance R = 2 a.u. Only the (λ = 0) labels for the three

lowest states 1sσg , 2pσu, and 2pπu are included. The ionization

threshold for screened H2
+ (e−λR/R for R = 2 a.u.) is also included

(black thick-dashed line). The crossings of the energies of the

electronic states with the ionization threshold curve indicate the value

of the screening parameter λ at which the states become unbound.

respect to λ before crossing the upper continuum threshold,
i.e., they do not monotonically increase (see Fig. 1) although,
in other words, the electronic binding energy always decreases
monotonically with λ.

The energy variation with λ slightly depends on the
internuclear distance R for a relatively weak screening (see
Fig. 2). For such weak cases, the screened interaction potential
in Eq. (3) can be expanded in series, and to first order in λ can
simply be written as V̂ (λ = 0) + (Z1 + Z2 − Z1Z2)λ, i.e., the
dominant effect is a linear increase of the molecular energies
with λ. This linear behavior of the electronic energies, En + λ,
in H2

+ (Z1 = Z2 = 1) for weak screening (up to λ = 0.2 a.u.)
is clearly observed in Fig. 1 for deeply bound states such as
1sσg and 2pσu. In this range, λ ∈ [0,0.2] a.u., the energies
of 2pπu and higher-lying excited states are much more
affected by the following term O(λ2) in the series expansion
1
2
(−Z1r1 − Z2r2 + Z1Z2R)λ2, which for H2

+ gives a negative
contribution since 〈r1〉 = 〈r2〉 > R/2. The average value of
〈ri〉i=1,2 also increases with the excitation, so that the energy
profile against λ for highly excited states becomes an inverted
parabola. Notice that Fig. 1 shows some apparent energy
crossings close to the continuum limit, for instance, the lowest
πu (2pπu) and the second lowest σg (2sσg) states. In fact, they
cross the upper threshold at different λ’s, 0.38 and 0.42 a.u.,
respectively, so that they cross each other before meeting the
continuum threshold. The maximum of the inverted parabolas
is approximately given (to second order) by λ = 1

2(〈r1〉−1)
so

that it is connected with the inverse of the spatial extension
of the state. As excitation increases (more diffuse states), the
maximum of the parabola shifts to smaller λ. The concavity
also depends upon the wave-function structure through 〈r1〉,

FIG. 2. Electronic energies (plus nuclear repulsion e−λR/R) for

the three lowest electronic states of H2
+ as a function of the

internuclear distance R, for the unscreened case (λ = 0, with solid

lines) and for a weakly screened case (λ = 0.15 a.u., with dashed

lines). Labels for the unscreened three lowest states 1sσg (blue solid

line), 2pσu (green solid line), and 2pπu (red solid line) are indicated as

well as the ionization threshold (e−λR/R) for λ = 0 (black thick-solid

line) and λ = 0.15 a.u. (black thick-dashed line). Vertical arrows

indicate the energy shift of the four levels at the internuclear distance

R = 2 a.u. due to the screening effect.

so that, in principle, all parabolas could have crossings at
some point. The crossing point of two different energy curves
(which incidentally may coincide with the ionization threshold
curve) depends approximately on the squared root of the ratio
between their energy difference and their 〈r1〉 difference at
λ = 0. Ultimately, it may be that a triple crossing at threshold
happens just by chance.

The unscreened H2
+ molecular ion has an infinite number

of electronic bound states due to the Coulomb potential tail.
However, screening not only makes this number finite, but
it also decreases dramatically with increasing λ. At each
internuclear distance, there is a critical value of λ for each
molecular state at which its energy crosses the ionization limit
e−λR/R and it becomes unbound. For instance, as shown in
Fig. 1 at R = 2 a.u., the 2pπu state no longer exists beyond
λ ∼ 0.4 a.u., the 2pσu state disappears for λ ∼ 0.6 a.u., and
the ground state requires a screening strength λ ∼ 1.7 a.u.
to become unbound. Highly lying states require even smaller
values of the screening strength to become unbound. It is
worth noting that the validity of the Debye-Hückel model of
screening is limited and results for Debye lengths D = 1/λ

shorter than the atomic size must be taken with caution as they
are mostly qualitative.

As an additional illustration, we show in Fig. 2 the
potential energy curves for the three lowest states 1sσg ,
2pσu, and 2pπu for the unscreened case (λ = 0) and a
particular softly screened case (λ = 0.15 a.u.). Note that,
for the sake of simplicity, we keep in this work the same
(although inappropriate) nomenclature for the screened states.
The molecular energies for the screened case are shifted up
approximately by the constant factor λ = 0.15 a.u. Similarly,
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FIG. 3. Detail of the electronic energies (without the nuclear

repulsion term e−λR/R) of unscreened (λ = 0, top panel) and

screened (λ = 0.15 a.u., bottom panel) H2
+ in the region of states

dissociating into H(n = 2) + H+. Notation for unscreened OEDM

states (nℓ|m|g,u) is used in both cases.

the molecular ionization threshold given by e−λR/R (which
eventually leads to a slower Yukawa explosion than the
usual Coulomb one) shifts down by a similar amount. As a
consequence, the molecular continuum lowers.

In order to appreciate more substantial changes in the
electronic energies, one can explore higher excited states
for which the energy behavior against λ strongly departs
from linearity. For instance, we look at the manifold of
molecular states of H2

+ dissociating into H(n = 2) + H+,
which for the unscreened case corresponds to the set
{2pπu,2sσg,3pσu,3dσg,3dπg, and 4f σu}. A detail of the
electronic curves of these states is given in Fig. 3 for the
unscreened case and for a relatively weak screening of
λ = 0.15 a.u. It is worth noticing that (i) as the energies
are shifted up with screening, the state 4f σu correlating to
He+(n = 4) in the united atom (UA) limit in the unscreened
case is no longer bound below R = 10 a.u. (this effect has been

previously termed electron promotion into the continuum as a
mechanism for vacancy production within the quasimolecular
picture of atomic collisions [12]); (ii) the degeneracy of the
levels He+(n = 3) in the UA limit (E = 2/9 a.u.) is lifted to
yield separate He+(3s), He+(3p), and He+(3d) energy levels
with E3s < E3p < E3d , energies that match those obtained
with a separate one-electron atomic code; (iii) degeneracy is
also removed in the separated atom (SA) limit so that one
can distinguish between states that correlate to H(2s) and
H(2p), and (iv) real crossings in unscreened H2

+ transform
into avoided crossings due to the breaking of the dynamical
symmetry associated to the separation constant [24]. Three
anticrossings can be seen in Fig. 3 for λ = 0.15 a.u.: a sharp one
between 2sσg and 3dσg (blue lines) located at R ∼ 4.5 a.u.,
another one between 2sσg and 3sσg (blue lines) located at
R ∼ 1 a.u. [due to the energy splitting of He+(n = 3) at
R = 0], and a diffuse one between 3pσu and 4f σu (green lines)
at R > 12 a.u. The diffuse character of the latter is partly due
to the different SA correlation limits of the two involved states
and, at variance with the Coulomb case, the similarity of the
UA energies for He+(n = 3) and the SA energies for H(n = 2)
due to screening. In addition, the subshell splitting 2s − 2p

at R → ∞ is larger than the Stark splitting at intermediate
distances. The presence and shape of these avoided crossings
may have its effect in the calculation of the coupled vibronic
structure or in collisional phenomena due to the presence of
nonadiabatic couplings among states, which are particularly
large in the region of anticrossings (see below).

B. Borromean states in H2
+

The system H2
+ has already been the target in the quest for

Borromean states [7–9] as a prototypical molecular three-body
system. H+

2 is said to be in a Borromean state if under
given circumstances the three-body system is bound while the
corresponding two-body subsystems (H+ − e− and H+ − H+)
are unbound. Screened interactions among the three parti-
cles may produce such particular situation. The calculations
mentioned previously [7–9] made use of a direct three-body
approach (beyond the BO approximation) using explicitly
correlated coordinates, to obtain accurate solutions for the
lowest molecular levels. The lowest rotation-vibration state
for the 1sσg state corresponds to their computed atomiclike

state 1Se(v = 0,J = 0). They showed that this ground state is
no longer bound beyond λ = 1.37 a.u., whereas the hydrogen
atom has no bound states beyond λ = 1.19 a.u. This fact
indicates the presence of a window 1.19 < λ < 1.37 a.u.
in which Borromean states of H2

+ exist. Without being
exhaustive in our search, we have explored this subject within
the BO approximation, which means to find the critical
screening value for which the molecular energy curve 1sσg

does not support vibrational states anymore.
Recently, Wu et al. [33] have reported the calculation of

vibrational states of screened H2
+, between λ = 0 and 0.71 a.u.

For that purpose, they adapted a molecular multireference
configuration interaction (MRD-CI) code based on Gaussian
basis sets. In order to carry out the integrals for the screened
Coulomb interaction, the Yukawa potential was also expanded
in terms of a few Gaussian functions. They showed that,
since the internuclear equilibrium distance increases, the
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FIG. 4. Potential energy curves (including the nuclear repulsion)

of the ground state 1sσg (solid lines) of screened H2
+ for three

large screening parameters λ = 1.37 a.u. (blue), λ = 1.38 a.u. (red),

λ = 1.39 a.u. (green), and λ = 1.40 a.u. (pink). The curves of

the ground state are drawn until they cross their respective upper

ionization potential curve e−λR/R (dashed curves with the same

scheme of colors for the λ’s, and note that the continuum threshold

shifts down with increasing λ). Whereas the electronic ground state

supports a single vibrational state for λ = 1.37 and 1.38 a.u., this is

not the case for λ = 1.39 and 1.40 a.u., whose potential curves show

a minimum below and above the dissociative threshold at E = 0 a.u.,

respectively.

potential curve widens and simultaneously the dissociation
energy decreases when the screening strength increases, the
number of vibrational states in the range λ ∈ [0,0.71] remains
practically constant around 20. Due to their limitation in
the representation of the molecular Yukawa potential with
Gaussians, they cannot analyze this issue beyond λ = 0.71 a.u.
Our present BO method of solution is superior to that of [33]
in the representation of the screened interactions and we are
not limited to small-λ values. We have checked that their
quasiconservation conjecture does not hold for λ > 0.71 a.u.
and the number of vibrational states supported by the curve
1sσg reduces, up to a critical value λ = 1.38 a.u. for which
only one vibrational state survives with negative energy below
the dissociative ionization limit E = 0 a.u. (see Fig. 4). In fact,
we have used a code based on both large B-splines expansions
and radial boxes to solve the nuclear equation and we find only
one vibrational state with energy Ev=0 = −2.02 × 10−4 a.u.
for λ = 1.37 a.u., also a single vibrational state with energy
Ev=0 = −1.11 × 10−5 a.u. for λ = 1.38 a.u. and, although the
energy curve for λ = 1.39 a.u. displays a minimum below
E = 0 a.u., we were unable to find any supported bound
state. Our value λ = 1.38 a.u. is similar to the upper limit for
the existence of Borromean states predicted by other authors
using methods that go beyond the BO approximation [7–9].
Although, at first sight, it may seem unreasonable to use the
BO approximation to characterize a system with such small
electronic energies, the agreement with previous NBO results
is remarkable.

FIG. 5. Dipole matrix elements (length gauge) between the

ground state 1sσg and the 3pσu and 4f σu states (the states with

energies included in Fig. 3 and wave functions in Fig. 6) as a function

of the internuclear distance for the unscreened case (λ = 0, with solid

lines) and a particular screened case (λ = 0.15 a.u. with dashed lines).

The dipole matrix element 〈1sσg|z|4f σu〉 starts from R = 10 a.u. in

the screened case because 4f σu is unbound below this internuclear

distance (see Fig. 3). Whereas in the unscreened case both σu states

are coupled with the ground state in the SA limit, the dipole coupling

〈1sσg|z|3pσu〉 in the screened case vanishes asymptotically (see text).

C. Radiative dipolar couplings

Dipole couplings (following the computational recipe given
in Sec. II B) can be computed between any two pair of screened
OEDM states, allowed by the same selection rules as for
the unscreened case, namely, the g ↔ u parity rule, and the
�m rule for parallel (0) and perpendicular transitions (±1)
concerning the orientation of the polarization vector with
respect to the internuclear direction. As a particular illustration
of the calculation of dipole couplings, we plot in Fig. 5 the
dipole matrix elements between the ground 1sσg state and the
3pσu and 4f σu states. Note that the latter two states correlate
to H(n = 2) in the SA limit. In the unscreened case, it is
well known that the state 3pσu correlates in the UA limit to
the He+(3p) state and to the Stark combination (due to the
long-range Coulomb interaction)

ψ3pσu
=

1
√

2

[

1
√

2
(φ2s + φ2pz

)(r1) −
1

√
2

(φ2s − φ2pz
)(r2)

]

in the SA limit. Similarly, the state 4f σu tends to He+(4f ) in
the UA limit and to the Stark combination

ψ4f σu
=

1
√

2

[

1
√

2
(φ2s + φ2pz

)(r2) −
1

√
2

(φ2s − φ2pz
)(r1)

]

in the SA limit. This UA-SA correlation for the OEDM
unscreened wave functions is plotted in the upper panels
of Fig. 6 for three selected internuclear distances R = 2,
12, and 25 a.u. Note that r1 (r2) corresponds to electronic
coordinates associated to the lower (upper) nucleus in this
figure. Asymptotic UA and SA values for the dipole matrix
elements with the operator ẑ in the length gauge can be derived
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FIG. 6. Evolution of the wave functions corresponding to states

3pσu (left) and 4f σu (right) of H2
+ for three representative

internuclear distances (R = 2, 12, and 25 a.u.) along the UA-SA

molecular correlation diagram, both in the unscreened (λ = 0) and

a particular screened case (λ = 0.15 a.u.). The wave functions are

drawn as contour plots in the XZ plane where the internuclear

distance R lies along the Z axis. Red shadows indicate areas in

which the wave function is positive valued and blue shaded areas are

those regions with negative values. In the unscreened case (λ = 0),

both states tend to a superposition of Stark states whereas in the

screened case the 3pσu and the 4f σu clearly tend upon dissociation

to spherical 2s and 2pz states, respectively. As quoted in Fig. 3, the

4f σu state is not bound at the internuclear distance R = 2 a.u.

analytically from the above expressions, so that, in the screened
case 〈ψ1sσg

|z|ψ3pσu
〉 goes to 〈φ1s |z|φ3pz

〉He+ = 0.1492 a.u. in

the UA limit and − 1√
2
〈φ1s |z|φ2pz

〉H = −0.5267 a.u. in the SA

limit. Similarly, 〈ψ1sσg
|z|ψ4f σu

〉 starts from 〈φ1s |z|φ4fz
〉He+ =

0 at R = 0 and goes to 1√
2
〈φ1s |z|φ2pz

〉H = 0.5267 a.u. at

R → ∞. In the screened case, explicit computations for the
dipole couplings are required at any distance. For instance,
using a moderate screening value λ = 0.15 a.u., the formation
of Stark states is still robust at intermediate distances (see
lower panels in Fig. 6 for R = 12 a.u.) but eventually these
screened OEDM states tend to spherical states asymptotically
{the 3pσu tends to 1√

2
[φλ

2s(r1) − φλ
2s(r2)] and the 4f σu

tends to 1√
2
[φλ

2pz
(r1) + φλ

2pz
(r2)]} as clearly appreciated in

Fig. 6. In this screened case, in the SA limit, 〈ψλ
1sσg

|z|ψλ
3pσu

〉
clearly vanishes and 〈ψλ

1sσg
|z|ψλ

4f σu
〉 tends to 〈φλ

1s |z|φλ
2pz

〉,
this time evaluated numerically with screened atomic orbitals
(in the unscreened case this matrix element takes the value

〈φ1s |z|φ2pz
〉 = 27

√
2

35 = 0.7449 a.u.). Similar detailed analysis
can be carried out with all electronic states.

In conclusion, whereas unscreened OEDMs are always
g − u coupled at all distances due to the Stark mixing,
screening breaks this Stark mixing and therefore provokes
the damping of the couplings between those OEDMs which
now tend to dipole-uncoupled spherical states. The trend
for couplings and the breaking of energy degeneracies is
analogous to that observed when moving from one-electron
to many-electron molecules. In this direction, our screened
one-electron model may serve as a simple prototype to
analyze some properties expected to appear in many-electron
molecules but at a lower computational cost. Indeed, in the
context of inner-shell vacancy production in the quasimolecu-

FIG. 7. Radial coupling matrix elements between the three

lowest σg states: 1sσg , 2sσg , and 3dσg〈2sσg|∂/∂R|1sσg〉 (in blue),

〈3dσg|∂/∂R|1sσg〉 (in red), and 〈3dσg|∂/∂R|2sσg〉 (in green) for the

unscreened case (λ = 0 a.u., with solid lines) and the screened case

(λ = 0.15 a.u., with dashed lines).

lar model of atomic collisions involving many-electron atoms,
screened molecular orbitals were generated by extending the
Yukawa potentials in (3) to single-electron potentials v(ri) =
−Zi

ri
χ (ri ; α), where universal R-variable screening functions

χ (ri ; α) were adjusted through the effective parameter α to
reproduce Thomas-Fermi potentials in the UA and SA limits
(see, for instance, [12] and references therein).

D. Nonadiabatic radial couplings

The asymptotic values for the radial couplings can be
readily estimated from the LCAO molecular wave func-
tions. For instance, in the unscreened case, the radial cou-
pling value at R → ∞ between the 1sσg and the 3dσg

states, i.e., 〈ψ3dσg
| ∂
∂R

|ψ1sσg
〉, can be obtained by using

(i) ψ1sσg
= 1√

2
[φ1s(r1) + φ1s(r2)] and the Stark combina-

tion ψ3dσg
= 1√

2
[ 1√

2
(φ2s − φ2pz

)(r1) + 1√
2
(φ2s + φ2pz

)(r2)],

(ii) the chain rule ∂
∂R

= ∂z1,2

∂R
∂

∂z1,2
= ± 1

2
∂

∂z1,2
, and (iii) the gauge

relation 〈φ2pz
|pz|φ1s〉 = i(E2p − E1s)〈φ2pz

|z|φ1s〉. By using

〈φ2pz
|z|φ1s〉 = 27

√
2

35 , this radial coupling simply yields 23

34 ∼
0.098765 in agreement with our result at large R in Fig. 7. The
radial coupling 〈ψ2sσg

| ∂
∂R

|ψ1sσg
〉 must have the same asymp-

totic absolute value since ψ2sσg
= 1√

2
[ 1√

2
(φ2s + φ2pz

)(r1) +
1√
2
(φ2s − φ2pz

)(r2)]. Similarly, it can be shown by using

the LCAO wave functions that 〈ψ3dσg
| ∂
∂R

|ψ2sσg
〉 vanishes at

R → ∞.
In contrast, in the screened case, the UA-SA correlation

rules are different [12,14]. The screening produces a similar
effect as in the many-electron case, where the degeneracy at
the SA and UA limits is removed and some real crossings that
appear in the unscreened case appear now as avoided crossings.
The representative case is the pair of screened OEDMs 2sσg

and 3dσg , whose energies show an avoided crossing just below
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R = 5 a.u. for the screening parameter λ = 0.15 a.u. (see
Fig. 3). Following the Barat-Lichten rules [27] or a smooth
topological correlation rule [14], the 2sσg state exchanges its
Stark mixing form with that of the 3dσg state. This Stark mix-
ing is effective only at intermediate internuclear distances, but
eventually (due to the loss of infinite-range Coulomb potential)
the Stark states tend to hydrogenic orbitals (as illustrated in
Fig. 6). In the screened case, the 2sσg molecular orbital tends

to the LCAO combination 1√
2
[φ2s(r1) + φ2s(r2)], whereas the

3dσg orbital tends to the LCAO combination 1√
2
[φ2pz

(r1) −
φ2pz

(r2)]. This leads to an asymptotically vanishing coupling

〈2sσg| ∂
∂R

|1sσg〉 in the screened case. However, the radial

coupling 〈3dσg| ∂
∂R

|1sσg〉 goes to a constant value that depends
on the screening strength λ and asymptotically nonvanishing
couplings must be calculated computationally. Note that the
apparent discontinuities in the radial couplings plotted in
Fig. 7 are due to the presence of avoided crossings between
the screened 2sσg and 3dσg states around R ∼ 4.5 a.u. and
between 2sσg and 3sσg states around R ∼ 1 a.u. (see Fig. 3).

E. Shape resonances in screened H2
+

It is known that, unlike the Coulomb potential, a Yukawa
potential for a single electron atom has shape resonances in
the continuum structure [4]. This means that screened H2

+

must have shape resonances in both the UA (R = 0) and SA
(R → ∞) limits, so that it is pertinent to investigate if such
states can survive beyond those atomic limits. In fact, in the
atomic context, these resonances lie very close to the ionization
threshold and its origin comes from the presence of a relatively
small effective potential barrier.

To explore the presence of these shape resonances in
screened H2

+, we use the stabilization method [34]. This
method aims at evaluating the density of states in selected
regions of the electronic continuum by successive diagonal-
izations of the molecular Hamiltonian with a slightly different
parameter in the basis, like the size of the basis set (number
of B-splines or partial waves) or, in our case, by changing
the size of the electronic radial box. Since these resonances
may appear just slightly above the ionization threshold, the
radial box must be huge in order to obtain a large number of
eigenvalues close to the threshold, i.e., to increase notoriously
the density of states in the discretized lower continuum.

In the inset of Fig. 8, we show a typical stabilization
energy diagram that shows the rapid variation of the continuum
eigenenergies as a function of the UA box length r̃max ∈
[1000,10 000] a.u. (with r̃max = Rξmax/2). However, at E ∼
1.072 × 10−5 a.u., the energy stabilizes indicating the presence
of a discrete state (resonance) lying in the continuum at
this energy. Following the procedure described in [34], one
may obtain the density of states in the neighborhood of the
resonance, which can be fitted to a Lorentz distribution to
extract the energy position and width of the resonance. The
internuclear distance for this calculation is R = 0.01 a.u., i.e.,
close to the UA limit. We have checked that the position and
width obtained with the molecular code at this internuclear
distance compares very well with the corresponding shape
resonance that appears in screened H2

+ (our results compare
well with those obtained with our own one-electron atomic
code based on Slater-type orbitals and with the results in [4]

FIG. 8. Density of states ρQ(E) associated to the lowest σg

shape resonance lying in the electronic continuum slightly above the

ionization threshold E = 0 of screened H2
+ (screening parameter λ =

0.080 110 646̄ a.u., after [4]) close to the UA limit (R = 0.01 a.u.).

The density is calculated from the energy stabilization diagram

(see inset) as obtained from successive diagonalizations of the

Hamiltonian by varying the UA box size r̃max = Rξmax/2 for the

electron radial coordinate from 1000 to 10 000 a.u. Red dots: density

extracted from the discretized energy grid. Blue line: fit of dots to a

Lorentzian distribution.

for ℓ = 2 and λ = 0.080 110 646̄ a.u.). We have followed the
trend of the lowest σg , πg , and δg shape resonances when
the internuclear distance departs from the UA limit. In fact,
the atomic resonance with ℓ = 2 splits into three gerade molec-
ular resonances (σ , π , and δ) since 0 � |m| � ℓ. Figure 9
shows that energies and widths for the σg and πg resonances
decrease with increasing R whereas the δg resonance state
exhibits the opposite behavior. The trend of the resonance
energies agrees with the typical behavior of bound states
in unscreened H2

+ close to the UA limit (in general, ndσg

and ndπg states stabilize for R > 0 and ndδg states increase
their energies for n � 3). Nevertheless, the resonance energies
considered in Fig. 9 are very close to the ionization threshold
(where we must keep in mind that the application of the BO
approximation is doubtful) and running stabilization calcula-
tions for larger internuclear distances is rather cumbersome, so
that we cannot at this point follow the full R correlation of the
atomic shape resonances (present unambiguously at R = 0,
short R, and R → ∞) to assess the survival of these structures
at molecular equilibrium distances. Our conjecture is that some
shape resonances such as σg and πg merge into the lower
continuum threshold and transform into Rydberg molecular
states whereas others such as δg may survive all over the
energy correlation diagram up to R → ∞. Similarly, at large
distances, some Rydberg states may again cross the upper ion-
ization threshold to transform into atomic shape resonances.

The presence of such shape resonances at energies close to
the ionization threshold and short internuclear distances de-
serves some analysis. In the unscreened two-center Coulomb
problem, it is known that for very short internuclear distances

012504-9
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FIG. 9. Evolution of energies E (solid lines, energy scale on

the left y axis) and widths Ŵ (dashed lines, energy scale on the

right y axis) associated to the lowest σg (blue), πg (green), and δg

(red) shape resonances of screened H2
+ (for screening parameter

λ = 0.080 110 646̄ a.u.) as a function of the internuclear distance R

in the region of the united atom (UA) limit.

ξ → 2r/R ≫ 1 and η → cos θ . In addition, for low energy
R2E ≪ 1, and for homonuclear systems, Z1 = Z2 = Z, the
inner angular equation for η simplifies to the differential
equation for associated Legendre polynomials where the
separation constant is simply C = −ℓ(ℓ + 1). Also, the outer
radial equation for ξ can be transformed in an effective
equation by taking u(ξ ) = ξX(ξ ) and letting ξ 2 − 1 ∼ ξ 2, thus
arriving to a Schrödinger equation

[

−
1

2meff

∂2

∂ξ 2
+ Veff(ξ )

]

u(ξ ) = Eu(ξ ), (30)

where meff = R2/4 and

Veff(ξ ) =
1

2meff

[

m2

ξ 2(ξ 2 − 1)
+

ℓ(ℓ + 1)

ξ 2

]

−
2Z

Rξ/2
. (31)

In the presence of screening, the potential for Z1 = Z2 = Z

can be also written as

V̂ (ξ,η) = −
4Ze−λ

Rξ

2

R(ξ 2 − η2)

[

ξ cosh

(

λ
R

2
η

)

+ η sinh

(

λ
R

2
η

)]

.

(32)

For small-R distances and/or small screening parameters,
λR

2
≪ 1, and the potential can be expanded to the lowest order,

leading to V (ξ,η) = − 4Zξe
−λ R

2
ξ

R(ξ 2−η2)
. This approximate potential

keeps the outer (ξ ) and the inner (η) equations separable in
this approximation. Then, following the same steps that led us
to Eq. (31) in the unscreened case, the outer equation for the
ξ coordinate produces an analogous effective potential in the
form

Veff(ξ ) =
1

2meff

[

m2

ξ 2(ξ 2 − 1)
+

ℓ(ℓ + 1)

ξ 2

]

−
2Ze−λ R

2
ξ

Rξ/2
.

(33)

FIG. 10. Unscreened (λ = 0, blue) and screened (λ =
0.080 110 646̄ a.u., red) effective potentials [Eqs. (31) and (33),

respectively] extracted from the outer ξ equation at short internuclear

distances (R = 0.3 a.u.), low continuum energy, and a relatively small

screening parameter λ (see text). The potentials are drawn in terms of

the coordinate r̃ = Rξ/2. Inset: detail of the potential barrier present

in the screened case.

At variance with the effective potential in the unscreened
case, the screened effective potential in (33) produces barrier
potentials for ℓ > 0. As an illustration, we plot both effective
potentials (for λ = 0 and λ ∼ 0.08 a.u.) in Fig. 10, as a
function of the UA electronic coordinate r̃ = Rξ/2, for an
angular momentum ℓ = 2 and a small internuclear distance
R = 0.3 a.u. At first glance, the screening only modifies
the range and depth of the binding potential, but a closer
look at it (see the inset in Fig. 10) reveals that an extended
but small potential barrier develops, which is responsible
for the presence of shape resonances at low energies and
short internuclear distances. This justifies that the molecular
potential tends to produce the known shape resonances in the
UA limit. However, their smooth continuity and survival at
intermediate internuclear distances is yet unclear.

Quite differently, one may wonder how screened OEDMs
promoted above the ionization threshold at given values of
R (the 4f σu state at R = 10 a.u. in Fig. 3 is a prototypical
example) transform when they merge into the molecular
continuum as R decreases. This case is much more interesting
because it deals with true molecular shape resonances at
intermediate internuclear distances. Their presence, in prin-
ciple, should not be surprising since these kinds of shape
resonances already appear as special scattering states in single-
and double-well potentials in one dimension [35]. To make a
full characterization of this kind of molecular shape resonances
in screened potentials is out of the scope of this work and we
only show an illustration here. Figure 11 shows an energy
correlation diagram (using a basis set with the odd partial
waves ℓ = 1, 3, 5, and 7) for the screened 3pσu and 4f σu

states plus a set of continuum discretized states lying above
E = 0 a.u. for λ = 0.15 a.u. It is clearly appreciated that the
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FIG. 11. (Top panel) Energy curves for the screened OEDM

states 3pσu and 4f σu along with a discretized bunch of molecular

continuum states above E = 0 a.u. The screening parameter λ =
0.15 a.u. is used. (Bottom panel) Density of states ρQ(E) associated

to the lowest 4f σu shape resonance lying in the electronic continuum

slightly above the ionization threshold E = 0 a.u. of screened

H2
+ (screening parameter λ = 0.15 a.u.) at internuclear distance

R = 9.5 a.u. The shape is calculated from the energy stabilization

diagram (see inset), obtained from successive diagonalizations of the

Hamiltonian by enlarging the box size r̃max = Rξmax/2 from 200 to

500 a.u. Red dots: density extracted from the discretized energy grid.

Blue line: fit of dots to a Lorentzian distribution.

4f σu state is electronically promoted to the continuum at
R = 10 a.u. and then it is smoothly continued in the molecular
continuum through a series of avoided crossings as R decreases
to approach the UA limit. This is an indication of the survival
of the state as a resonance in the continuum. In order to
support this conclusion and to fully characterize this shape
resonance, one may rely on methods to uncover resonances,
at each fixed internuclear distance. To illustrate this point,
we compute the position and width of the 4f σu resonance at
R = 9.5 a.u. (where the state has already crossed the ionization
threshold) using again the stabilization method. We obtain
(similarly to Fig. 8) the energy stabilization diagram and the
density of states ρQ, whose fit to a Lorentzian function yields
Er = 0.0037 a.u. and Ŵr ∼ 10−4 a.u. for R = 9.5 a.u. (see
Fig. 11). As R gets shorter, the resonance energy is promoted
to higher values and the width is expected to decrease. For
screening values smaller than λ = 0.15 a.u., many other states
in H2

+ will show a similar behavior of promotion to a shape

resonance as R decreases. In contrast, other screened states

(notice 3sσg in Fig. 3) are promoted to the continuum as R

increases, potentially transforming into another series of shape
resonances.

IV. CONCLUSIONS

An efficient computational method for the calculation
of electronic properties in one-electron diatomic molecules,
where Coulomb interactions have been replaced by Yukawa-
type interactions, has been described in detail. Laboratory
and astrophysical weakly coupled plasmas exhibit screened
Coulomb interactions that may affect the structure and dy-
namics of their molecular constituents; in this direction, our
method may find useful applications. We have used a partial-
wave expansion in terms of confocal elliptic coordinates and
B-splines for the radial ξ coordinate, which are better suited
for the computation of both molecular bound and continuum
wave functions. Also, algorithms for the computation of dipole
couplings for radiative dynamics and nonadiabatic radial
couplings for collision dynamics are provided. The method of
solution is very efficient and all computations run in a standard
laptop computer within a few minutes.

Some illustrative results for molecular energies, wave
functions, and their corresponding radiative dipole and nona-
diabatic couplings for H2

+ under screening are discussed. The
calculation of these energies and dipole couplings are required
elements to carry out calculations for the photoionization
spectra. It is known that unscreened H2

+ (unlike unscreened
H) already presents Cooper-type minima in the photoabsorp-
tion cross section [36]. Similarly, multiphoton ionization of
unscreened H2

+ has been the subject of many recent studies
using lasers (see, for instance, [37] with a discussion on Cooper
minima). It will be of interest to understand the evolution of
these zeros in the photoabsorption with increasing screening.
Similarly, nonadiabatic couplings are essential to compute
excitation and charge exchange cross sections in ion-atom
collisions in Debye plasmas [38]. In addition, the introduction
of other adjusted screening functions [12] in the potential may
extend our method in order to obtain (screened) molecular
orbitals in many-electron molecules.

We have also investigated the conditions for the presence
of Borromean states in screened H2

+ within the BO ap-
proximation, obtaining (in spite of the limitations of the BO
approximation for its application with rather small electronic
energies) an upper limit of screening in agreement with
previous non-BO calculations. The presence of molecular
shape resonances in screened H2

+ is reported and analyzed,
also in connection to already known atomic resonances in
both the UA and SA limits. Beyond their intrinsic academic
interest, its experimental detection could be of interest. Those
resonances with u symmetry arising from the promotion to the
continuum at short internuclear distances could in principle be
detected in ultrafast photoionization experiments performed
with prepared screened molecules in their ground state, by
detecting low-energy resonance signals in the subsequent
Yukawa nuclear explosion.

Finally, we have introduced a simple recipe for the solution
of the arbitrary sign problem of variational eigenstates after
diagonalization and a basic rule to assign the number of
ξ -radial and η-angular nodes from their expansion coefficients.
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APPENDIX A: ARBITRARY SIGN

IN THE WAVE FUNCTIONS

It is well known that eigenfunctions obtained from the
diagonalization of the Hamiltonian (projected on a basis set
of real functions) have an arbitrary phase, so that the sign
of the (real) eigenstate is randomly +1 or −1. For atoms
this is mostly irrelevant but for molecules, eigenfunctions
for different values of the nuclear geometry are obtained
by diagonalizing the Hamiltonian at different internuclear
distances R and sometimes by using a slightly different
basis set at each geometry. Each separate R diagonalization
eventually may bring a different phase for the same molecular
state. This has no consequences on the energies but it may
cause sudden jumps in the matrix elements 〈�n|Ô|�n′〉 as a
function of the internuclear distance R. These matrix elements
should therefore be corrected to reflect the smooth R behavior
that would arise if all states were obtained by using a consistent
phase for all R. This is usually known as the arbitrary sign

problem, which has no general formal solution, although some
practical prescriptions have been implemented. Since in this
work we obtain dipolar matrix elements and nonadiabatic
radial couplings between electronic eigenstates of H2

+ coming
from a diagonalization in a basis (note that this is at variance
with the exact eigenstates of unscreened H2

+ for which this
sign problem is absent), we outline here two procedures to
circumvent this problem, at least in H2

+, for which we have
implemented them successfully.

1. Retarded overlap method

Instead of correcting the matrix elements 〈�n|Ô|�n′〉, we
would like to fix the phases for the two contributing wave
functions {�n(r; R),�n′ (r; R)} along R. A way to do it is
to preserve always the same phase, starting from an initial
reference value at a short R distance, by computing the overlap
integral between the same wave function at two close values
of R (see, for instance, [39,40]), i.e.,

Sn(R,R + �R) =
∫

dr �n(r; R)�n(r; R + �R). (A1)

This retarded overlap matrix should give ±1, provided �R is
sufficiently small: if Sn ∼ +1 the phase has not changed, if
Sn ∼ −1 the phase has changed from R to R + �R and then
we proceed to amend this change of phase.

In order to compute this retarded overlap integral with
the same wave function but at different values of R, we
proceed as follows, considering our expansion in confocal
elliptic coordinates. We have the wave functions obtained from
diagonalizations at R and R′,

ψm(ξ,η,φ; R) =
ℓmax
∑

ℓ=|m|


m
ℓ (ξ )�m

ℓ (η)
eimφ

√
2π

, m � 0 (A2)

and

ψm(ξ ′,η′,φ; R′) =
ℓmax
∑

ℓ=|m|


m
ℓ (ξ ′)�m

ℓ (η′)
eimφ

√
2π

, m � 0 (A3)

with {ξ = (r1 + r2)/R, η = (r1 − r2)/R} and {ξ ′ = (r ′
1 +

r ′
2)/R′, η′ = (r ′

1 − r ′
2)/R′} being the confocal elliptic coor-

dinates at R and R′, respectively. Thus, the overlap integral
can be calculated as (we assume the Jacobian volume element
to be taken at R with {ξ,η,φ} coordinates)

S =
ℓmax
∑

ℓ,ℓ′=|m|

R3

8

∫

dξ dη dφ(ξ 2 − η2)

×
m
ℓ (ξ )�m

ℓ (η)
e−imφ

√
2π


m
ℓ′ (ξ

′)�m
ℓ′ (η

′)
eimφ

√
2π

. (A4)

To perform this integral we can transform the coordinates
(ξ ′,η′) in terms of (ξ,η) provided that they represent the
same point in coordinate space for the electron, i.e., (x,y,z) =
(x ′,y ′,z′), according to the formulas

ξ ′(ξ,η) =
r1(ξ,η) + r2(ξ,η)

R′ , η′(ξ,η) =
r1(ξ,η) − r2(ξ,η)

R′ ,

(A5)

where r1,2(ξ,η) can be obtained from Eq. (4). This retarded
overlap method works fine in all our applications, provided
that �R is not too large.

2. Projection onto a reference vector

Here, we refer to a very simple way to fix the phase of a
given eigenvector, using a reference vector in the Hilbert space.
For simplicity, let us assume two vectors {v, r} ∈ R

3, where
v = vx î + vy ĵ + vzk̂ plays the role of our eigenvector obtained
from diagonalization and r is a reference vector chosen at
convenience, for instance, r = î + ĵ + k̂. The scalar product
gives the projection of the eigenvector v over the reference
vector r, i.e., v · r = vx + vy + vz, a scalar whose sign can
be fixed once and for all; for example, the projection of the
eigenvector over the reference vector must be always positive.
Note that this choice of reference vector implies to simply
check the sign of the sum of the expansion coefficients of the
eigenvector.

In the general case of using a nonorthogonal basis {ui}Ni=1

for the expansions with overlap matrix S, the scalar product
reads as

v · r =
∑

i

viui ·
∑

j

rj uj =
∑

i,j

viSij rj .

If, once again, we choose rj = 1 ∀ j , this projection implies
the evaluation v · r =

∑

i(S · v)i . In some occasions the chosen
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basis (like B-splines in our case), although nonorthogonal, only
contains positive-definite functions with minimal support and
thus it has an overlap matrix whose structure is diagonally
banded. In this case, it happens to occur that

∑

i(S · v)i
provides the same projection sign than the more simple
operation

∑

i vi . In fact, this is what we find with our
diagonalized OEDM wave functions expanded in terms of
B-splines: the sum of the expansion coefficients

∑

i,ℓ cm
iℓ in

Eq. (6) provides the quasiprojection onto a reference vector,
and we keep the positive sign for this projection for the same
eigenvector along the R-correlation diagram from R = 0.1 up
to R = 100 a.u. We find that this simple projection method
also works fine for our (screened or unscreened) OEDMs and
it always provides the same sign correction as the retarded
overlap method but at a much lower computational cost.

The extension of this method to more general cases should
be taken with caution since we have learned that our OEDM
eigenvector does smoothly rotate in the Hilbert space for
increasing internuclear distances, and the rotation angle of the
eigenstate in the R interval [0.1,100] a.u. is always under π/2
rad, which reduces the ambiguity in the projection procedure
and the sign choice with respect to the direction of the reference
vector. However, for faster rotations with the nuclear geometry,
the method could be implemented piecewise updating the
reference vector for consecutive segments in the geometry.
In general, this issue should be analyzed for each particular
case (in terms of the basis used both in the one-electron and
the many-electron problem). To our knowledge, this extremely
simple procedure has not been discussed previously.

FIG. 12. Expansion coefficients cn ≡ cm=0
iℓ of the unscreened H2

+

wave function in Eq. (6) for the three lowest kσg states [k = 1, 2,

and 3 which correspond to the 1sσg (blue solid line), 3dσg (green

dashed line), and 2sσg (red dotted line) labels in the UA limit] at

the internuclear distance R = 20 a.u. Vertical dashed lines separate

blocks corresponding to different angular momenta in the partial-

wave expansion from ℓ = 0 to 10. Each ℓ block contains coefficients

corresponding to the radial ξ expansion in terms of Nξ = 25 B-

splines, i.e., i = 1, . . . ,25. The index n then runs within each ℓ block

from ℓ

2
Nξ + 1 to ( ℓ

2
+ 1)Nξ .

APPENDIX B: ANGULAR AND RADIAL NODES

OF UNSCREENED WAVE FUNCTIONS

For any given unscreened OEDM wave function, obtained
from diagonalization of the electronic Hamiltonian using the
variational expansion given in Eq. (6), one may extract the
number of radial nξ and angular nη nodes either by (i) a trivial
simple inspection of the wave function plotted in the plane
(ξ , η) for a given internuclear distance R or (ii) by simply
analyzing the expansion coefficients cm

iℓ. Needless to say, the
second approach does not require the evaluation of the wave
function on a grid.

Here, we explain the second procedure. For instance, in
Fig. 12, we plot the expansion coefficients c0

iℓ for the lowest
unscreened OEDM states of symmetry σg at R = 20 a.u. (i.e.,
1sσg , 3dσg , and 2sσg , although in rigor they must be named
1σg,2σg , and 3σg , respectively) which [from inspection of the
contour plot of the wave function in the (ξ,η) plane] are known
to have radial and angular nodes (nξ ,nη,nφ) = (0,0,0), (0,2,0),
and (1,0,0), respectively. For the 1sσg state, mostly five even

TABLE I. Values of the nodal numbers nξ , nη, and nφ associated

to the confocal elliptic coordinates ξ , η, and φ, with nξ and Nc

obtained from direct inspection of plots of the expansion coefficients

cm
iℓ and with the application of expression (B1) (in all cases quoted

here no = 0). The nodes correspond to the lowest unscreened OEDMs

states for symmetries σg/u, πg/u, and δg/u, evaluated at the internuclear

distance R = 20 a.u. and they are listed, using the UA nomenclature

for OEDMs, according to the energy ordering at this internuclear

distance.

Nodes Eq. (B1)

State nξ nη nφ Nc s

1sσg 0 0 0 0 0

3dσg 0 2 0 1 0

2sσg 1 0 0 0 0

5gσg 0 4 0 2 0

4dσg 1 2 0 1 0

3sσg 2 0 0 0 0

2pσu 0 1 0 0 1

4f σu 0 3 0 1 1

3pσu 1 1 0 0 1

5f σu 1 3 0 1 1

4pσu 2 1 0 0 1

6hσu 0 5 0 2 1

3dπg 0 1 1 0 1

5gπg 0 3 1 1 1

4dπg 1 1 1 0 1

6gπg 1 3 1 1 1

2pπu 0 0 1 0 0

4f πu 0 2 1 1 0

3pπu 1 0 1 0 0

5f πu 1 2 1 1 0

3dδg 0 0 2 0 0

5gδg 0 2 2 1 0

4dδg 1 0 2 0 0

4f δu 0 1 2 0 1

5f δu 1 1 2 0 1

6hδu 0 3 2 1 1
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partial waves (ℓ = 0, 2, 4, 6, and 8) participate significantly
and the ℓ = 2 contribution dominates whereas for the 3dσg

state, the partial waves ℓ = 0 and 4 contribute more than ℓ = 2.
It is worth stressing that for 1sσg all ℓ blocks have the same sign
(positive). Similarly, for 2sσg the leading coefficients within
all ℓ blocks have also the same sign (negative). At variance,
for 3dσg there is a global change of sign from block ℓ = 0
(negative) to block ℓ = 2 (positive) and only this change along
all ℓ blocks. We call Nc this number of global sign changes for
ℓ blocks along the set of expansion coefficients. We find that
the number of angular nodes nη for any state (independently
of its excitation) is given by

nη = 2(Nc + no) + s, (B1)

where Nc is the number of ℓ-block sign inversions, no is
the number of null ℓ blocks before the first nonzero ℓ block
(especially for highly lying states), and s = 0 for even (odd)
|m| and gerade (ungerade) symmetry (σg , πu, δg, . . .) or s = 1
for even (odd) |m| and ungerade (gerade) symmetry (σu,
πg , δu, . . .). Additionally, the number of radial nodes nξ is
simply given by the number of nodes the coefficients curve

cn has within each ℓ block, the latter rule due to the minimal
support property of B-splines. Accordingly, Fig. 12 indicates
that 1sσg and 3dσg have no radial nodes and 2sσg has one
radial node. A simple inspection of this kind of plot for the
expansion coefficients allows us to fully determine and classify
states coming from diagonalization according to their number
of nodes, as shown in Table I for the lowest states in the

symmetries σg/u, πg/u, and δg/u. Mind that the sum of the
expansion coefficients in Appendix A was used to fix the phase
of the state along the energy correlation diagram from UA to
SA limits.

To fully understand these simple rules and to find a
corresponding proof is beyond the scope of this work, but we
believe that this is a property associated to the fact that we are
using (i) positive-definite basis functions (B-splines) for the
ξ coordinate, (ii) orthogonal polynomials for the η expansion
(associated Legendre polynomials), which may relate these
considerations with the fulfillment of a generalized Descartes’
rule for orthogonal polynomials. The well-known Descartes’
rule of signs for polynomials states that “ . . . if the terms of a

single-variable polynomial with real coefficients are ordered

by descending variable exponent, then the number of positive

roots of the polynomial is either equal to the number of sign

differences between consecutive nonzero coefficients, or is

less than it by an even number.” Thus, the number of sign
changes between consecutive coefficients is related to the
number of nodes. The analogy in our case must be understood
for the coefficients accompanying each associated Legendre
polynomial in the partial-wave expansion (6), for a given
angular momentum (which is the sum within each ℓ block, i.e.,

Cℓ =
∑Nξ

i cm
iℓ). Of course, the original Descartes’ rule is based

on the nonorthogonal basis set of monomials {xn}n but a gener-
alization of the rule for general orthogonal polynomials is fea-
sible after the seminal works of Marden [41] and Obreshkoff
(see [42]), so that this connection cannot be disregarded.
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