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Abstract
Type two diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including
memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing
evidence has supported that both diseases share common features, the pathophysiological mechanisms
connecting these two disorders remain to be fully elucidated. Herein, we utilized Drosophila melanogaster
fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify
potential molecular players associated with the memory de�cits induced by HSD. Flies hatched from and
reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for
memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of
memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold-
change (FC) higher than two, we found �ve genes, related to synapse and memory trace formation, that
could be considered strong candidates to underlie the STM de�cits in HSD �ies: Abl tyrosine kinase (Abl),
Bruchpilot (Brp), Minibrain (Mnb), Skaker (Sh), and Gilgamesh (Gish). We also analyzed genes from the
dopamine system, one the most relevant signaling pathways for olfactory memory. Interestingly, the �ies
fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase
(Ddc) genes, signals of a possible dopamine de�ciency. In this work, we present promising “biomarkers”
to investigate molecular networks shared between T2DM and AD.

1. Introduction
Type 2 Diabetes mellitus (T2DM) is the most common form of diabetes, encompassing 90% of the cases
worldwide [1, 2]. Of particular importance, T2DM is frequently associated with a series of
neuropathological effects, such as impairments in psychomotor speed, executive function, attention, and
memory [3]. T2DM shares some similar demographic pro�les and risk features with Alzheimer’s disease
(AD), the most common cause of dementia [4]. However, there is still little knowledge about the shared
molecular markers between the two diseases [5–7]. Alterations in brain insulin signaling seem to be an
important factor involved in the pathophysiology of AD, and could be a link between T2DM and cognitive
impairments found in AD [8, 9]. In addition to glucose homeostasis, insulin modulates other important
pathways in the brain, including the metabolism of the β-amyloid peptide (Aβ) and hyperphosphorylated
tau protein [3, 10, 11]. Downstream insulin signaling also regulates the activation of AKT pathway, which
modulates different transcription factors and modulators, including CREB and HDAC4 [12–14] Of note,
various of these factors regulate the expression of memory associated genes [13, 15].

Experimental organisms have been widely utilized to investigate the potential molecular links between
diabetes and memory impairments. One of the most accurate and reproducible ways to mimic T2DM in
animal models is by the use of high sugar diets (HSD), where the excess of sugar induces hyperglycemia
and insulin resistance in baboons, rodents and alternative organism such as Drosophila melanogaster
[16–19].
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Drosophila melanogaster (D. melanogaster) reared on HSD develops several hallmarks of T2DM,
including increased levels of glucose/trehalose, obesity-like phenotypes, insulin resistance and changes
in insulin-like peptides mRNA levels, renal tubules impairments and even impaired immune responses
[19–24]. D. melanogaster is also an important model for memory studies, particularly by exhibiting a wide
behavioral repertoire and have a brain anatomy already well described in the literature [25–27]. The
ample use of transgenic drosophila and genetic screenings have enabled the discovery of several genes
involved with different types of memory and learning as well as the mapping of related signaling
pathways [28–30].

In a previous work using a transcriptomic approach, we found that adult D. melanogaster hatched and
reared on HSD, for 7 days, presented signi�cant alterations in the transcription of genes involved with
ribosomal biogenesis, energetic processes and muscle development; features with a tight correlation with
T2DM responses [19]. Herein, we intend to �nd out whether HSD affects the short-term memory (STM) of
�ies, and through transcriptome to identify potential players associated with the memory de�cits
generated by the T2DM model. In general, we found that HSD diet caused STM loss and affected the
expression of genes that orchestrate synapses and memory formation, neurogenesis and
neurodegeneration. We believe that these genes, namely Abl, Brp, Mnb, Sh and Gish as well as their
products and related pathways are promising targets to explore the relationship between Diabetes and
AD.

2. Methods

2.1 Fly Stock and experimental design
Flies of the Oregon-R strain were kept in 2.5 x 6.5 cm bottles containing 10 mL standard corn medium,
with relative humidity of 60% and light/dark cycle of 12 h at a constant temperature of 24 ± 1°C. Corn
medium contained 44% coarse and 35% medium corn �our, 11% wheat germ, 8% sucrose, 0.5% milk
powder, 0.5% salt, 0.5% soybean �our, 0.5% rye �our, a pinch of methyl p-hydroxybenzoate antifungal
(Nipagin®) and lyophilized yeast. For experiments, �ies were raised from eggs until adult phase on corn
medium containing or not sucrose 30% (HSD 30%). The choice of sucrose concentration was based in
previous studies from our research group [19, 20]. After hatching in control and HSD 30%, the �ies (0 day
old) from viable larvae were placed in �asks with the respective diets until 7 days. Flies were transferred
to fresh medium every 2 days. Memory and transcriptome analyses were performed in �ies hatching from
and reared on HSD for 7 days (Scheme 1).

2.2 Assays

2.2.1. Aversive Memory Test by association
The aversive association memory test was performed according the methodology described by Préat, T.
(1998) [31], with some modi�cations. The test was carried out with �ies hatched from and reared on
control and HSD 30% diet for 7 days. In ‘Training Phase’, a group of 20 �ies was presented to a
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conditional stimulus in the form of an odor A (3-octanol diluted in mineral oil in a proportion of 1:100),
while received a negative unconditioned stimulus (electric shocks of approximately 75V) for four
minutes. After ten-minutes, the �ies were placed in an apparatus where they could choose to move to the
side with the presence of the previous odor A or with a new odor B (4-methylcyclohexanol diluted in
mineral oil in a proportion of 1:50) in the ‘Testing Phase’. The test was done in the dark, with a red light,
which did not in�uence the distribution of the �ies inside the apparatus. Data were analyzed by a
performance index that takes into account the number of �ies that selected either the side of the
apparatus previously associated with the aversive stimulus (odor A) or the side with the odor B. The
performance index indicates the percentage of �ies from the groups able to achieve a memory of
association between the electric shock and odor A. To note, before the trials, we carried out tests with the
odors A and B to ensure that the �ies had no preference for one of these speci�c odors (data not shown).

2.2.2. Transcriptome analyses
Data of memory genes were taken from a transcriptome previously published by our group (See Loreto et
al., 2021) [19], where the whole-body of 7 days-old adult �ies hatched from and reared on control diet or
HDS-30% were analyzed, using the available Drosophila melanogaster genome (ID:47 in NCBI) as guide.
Through this transcriptome, herein we performed a screening for all genes related to memory in �ies. We
used a list of interest genes (all genes marked as ‘learning or memory’ with GO:0007611 in the FlyBase
dataset) and searched for those that were considered differentially expressed (DEG) in the HSD libraries
compared to the control. The gene transcription quanti�cation was obtained for each RNA-seq by the
RPKM (Reads Per Kilobase Million) method, and RPKM values were used to establish a transcriptional
fold-change (FC) or direct comparison between group libraries. A memory gene was considered DEG
when the HSD group had a change in RPKM values greater than FC = 1 in relation to control. The DEG
was considered 'up-regulated' (up) when there was an increase in expression and 'down-regulated' (down)
when there was a decrease in expression. We also considered those genes that had no expression values
in control libraries and were expressed in HSD libraries as 'activated' genes (Activ.), and the opposite
situation, expression on control and no expression on HSD, as 'repressed' genes (Repr.). Besides, we
analyzed some speci�c genes for discussion that were not marked as ‘learning or memory’ in FlyBase’s
dataset. A table with information of the speci�c genes (Name, symbol, FlyBase ID and Annotation
symbol) is found in the supplemental materials (Supplemental Table 1). DEGs with FC > 2 were analyzed
individually, and classi�ed according to the type of memory they are related in the literature: learning
(LRN), short-term memory (STM), middle-term memory (MTM), long- term memory (LTM), anesthesia-
resistant memory (ARM), spatial orientation memory or neurodegeneration.

2.3. Statistical analysis
The analyses were performed using unpaired t-test for parametric data, and Mann-Whitney’s test for
nonparametric data. Results were expressed as mean ± standard deviation and analyzed using the Graph
Pad Prism software version 8.0. Signi�cant levels were considered when P ≤ 0.05.

3. Results
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3.1 Aversive memory
The effect of HSD 30% intake on memory by association was analyzed by an aversive memory test, in
which �ies were trained to associate a speci�c odor with electric shock. The time interval between
‘Training’ and ‘Testing’ phase was 10 minutes, characterizing a STM, which has at most 60 minutes of
duration [13, 26, 32, 33]. We found that �ies hatched from and reared on HSD 30% presented an impaired
STM (Fig. 1), with a decrease of 50% of performance index in comparison to control values.

3.2 Transcriptomic screening of memory genes
The HSD changed the expression levels of 33,13% of all genes that were reported as ‘learning or memory’
in the FlyBase (Fig. 2), where 57 DEG had a FC > 1 and 14 DEG a FC > 2. A table containing all genes DEG
in HSD reared �ies is found in supplemental Materials (Supplemental Table 2). After, we analyzed only
those with a FC > 2, establishing for each gene the FC level, the type of regulation displayed in relation to
the control and the type of related-memory. Then, we found 6 DEG related to LRN -mushroom body
miniature (mbm), Abl tyrosine kinase (Abl), shaggy (sgg or GSK3), Shaker (Sh), minibrain (mnb) − 3 DEG
related to STM - Sh, bruchpilot (brp) and gilgamesh (gish) − 2 DEG related to MTM- CASK and Cyclic-AMP
response element binding protein B (CrebB) − 5 DEG related to LTM – hopscotch (hop), CASK, Histone
deacetylase 4 (HDAC4), Mob2 and CrebB − 2 DEG related to ARM – CASK and brp - and 2 DEG related to
spatial orientation – Ribosomal protein S6 kinase II (S6kII) and ellipsoid body open (ebo) - (Table 1).

3.3 Learning and STM genes
To better understand the impact of DEG on STM de�cits in HSD treated �ies, we further analyzed the role
of the 14 DEG with a FC > 2, along with the expression levels of genes from related signaling pathways or
regulators of these memory genes. We found that HSD caused an up-regulation of gene Abl (FC = + 3,974,
Fig. 3a), and also a similar up-regulation of genes involved with the Wnt signaling, namely: Cyclin-
dependent kinase 5 (FC = + 1,616), Frizzled (FC = + 3,616), Van Gogh (FC = + 2,1230), Disabled (FC = 
2,1556) and Dishevelled (FC = + 1,9662) (Fig. 3b-f). The expression level of genes Huntingtin and β-
amyloid protein precursor-like did not differ from control (Fig. 3g-h).

Differently, HSD caused a general down-regulation in LRN and/or STM genes related with synaptic
plasticity, such as Bruchpilot (FC=-2,202, Fig. 4a), Minibrain (FC=-2,361, Fig. 4b), Gilgamesh (FC=-2,152,
Fig. 4c), and Shaker (FC=-3,370, Fig. 4d). The Hyperkinectic, a Shaker subunit, was also down-regulated in
HSD �ies when compared to the control (FC=-1,568, Fig. 4e). HSD also up-regulated the Elongater
complex protein 3 (FC = + 1,970) and Histone deacetylase 6 (FC = + 2,716), regulatory genes of Bruchpilot
acetylation (Fig. 4g-h).

3.4 Genes from Dopamine System
Given importance of dopamine signaling in olfactory memory formation, we decided to analyze the
expression of genes involved with dopamine synthesis, binding and transport, namely Ddc (Dopa
descarboxylase), Dop1R1(Dopamine Receptor 1), Dop1R2 (Dopamine Receptor 2), Ple (Tyrosine Kinase),
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and DAT (Dopamine Transporter). Some of these genes had already been listed in our previous screening,
since they were marked as ‘memory or learning’ in FlyBase dataset: the Ddc, and Dop1R1. However, most
of them were not annotated as memory genes (Ple, Dop1R2 and DAT). Now looking for these speci�c
genes, we found that HSD �ies had a down regulation of two genes involved in dopamine synthesis in
relation to the control: the Ple with a FC= -9,81 (Fig. 5a), and Ddc with a FC= -1,5 (Fig. 5b). The genes
involved with binding and transport of dopamine like Dop1R1 (Fig. 5c), Dop1R2 (Fig. 5d) and DAT
isoforms (Fig. 5e-f) were identi�ed as EEG.

4. Discussion
In the last decades a strong connection between diabetes and Alzheimer’s disease (AD) has been
established, with T2DM patients presenting increased risk of developing AD. Although impaired
metabolism, in�ammation, and defective insulin signaling are known as key pathological features of
both diseases, the understanding about the molecular mechanisms shared by the diseases is still elusive.
In this sense, the transcriptomic approaches have contributed successfully to identify molecular
components involved in these signaling networks. With this in mind, here we performed a transcriptomic
screening for genes that could be behind the memory impairments induced by HSD-induced T2DM
model.

First, we investigated whether HSD intake would generate memory de�cits in adult �ies. Then, a
Pavlovian methodology of classical conditioning (negative association) between odor and electric shock
was used to test the STM of �ies. We found that �ies hatched from and reared on HSD diet had memory
loss, presenting performance index values signi�cantly lower than control �ies. Our work is the �rst to
show how a diabetes-like state induced by HSD can impact on STM of adult �ies. A similar work has
been done with an obesity-like state induced by High-Fat diet (HFD) in drosophila, although only LTM was
impaired [34]. In rodents, the diet impacts on memory have been measured through the use of High-Fat
diet (HFD) or Western diets (High-Fat High-sugar diets), with a general concordance that the diets can
lead to memory defects [35–38]. In a previous work, our research group investigated the general changes
induced by HSD in �ies through an ontology analysis, where ‘Memory’, ‘Learning’ or related words did not
appear as enrichment terms [19]. We ponder that ‘memory’ was not an enrichment term probably because
the list of genes marked as ‘learning or memory’ is relatively short to appear in a wider analysis, even if
there was a signi�cant number of DEG among them. However, taking into account the decline of
performance induced by HSD in the memory test, we considered pertinent to examine, from this whole-
transcriptome, the expression of memory-related genes in the �ies. For this, we performed a screening of
all genes annotated as 'learning or memory' in FlyBase dataset within our transcriptome. From 172
memory-related genes found, more than 30% were signi�cantly altered by HSD (57 DEG in total), and
more than 8% were DEG with FC > 2 (14 DEG) (Fig. 2). Then, we highlighted the 14 DEG with FC > 2 as the
most relevant genes from screening, and classi�ed them according to the type of memory to guide the
search for genes with potential function to explain the STM de�cits in HSD-�ies. For a more robust
discussion, we focused on genes that had a combination of pattern of transcription and phenotypic
changes described in literature in similarity to the ones we observed in HSD �ies. This brought to us �ve
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genes that we consider strong candidates to underlie the STM de�cits in HSD �ies: Abl, Brp, Mnb, Sh and
Gish.

One of the most prominent DEGs in our analysis was the Abl, with a high activation pro�le: control
libraries had no detectable expression values for Abl, while HSD exhibited an FC = 3,9. Abl gene encodes a
non-receptor tyrosine kinase that, together with CDK5, participates in signaling pathways associated with
Tau hyperphosphorylation and neurodegeneration, possibly mediated by Aβ42, a hallmark molecule of
Alzheimer's disease [39, 40]. HSD also promoted a signi�cant increase in the CDK5 expression (Fig. 3b),
result that strengthens the link with neurodegeneration (Fig. 3i). In addition to its role in
neurodegeneration, Abl is involved in the formation of αβ and α'β' lobes in the mushroom bodies (MB):
dysregulation of Abl levels by either overexpression or lack of expression causes disorganization of actin
structures and compromises the axonal growth [41]. In line with this, we found previously from this
transcriptome a remarkable down-regulation for Actin (Act88F) in HSD �ies [19], effect that was
associated with a decrease in muscle mass, but that now, as shown here, seems to impact on the correct
formation of the nervous system as well.

We also investigated the expression of genes connected with the activation and regulation of Abl:
huntingtin (Htt) (Fig. 3g), β amyloid protein precursor-like (APPL) (Fig. 3h), and elements from the Wnt
signaling pathway (Fig. 3c-f). Except for APPL and Htt, which were EEG, all elements from the Wnt
pathway were up-regulated by HSD (Fig. 3c-f). These results indicate the potential role of this pathway,
whose over-activation in HSD �ies could be driving the axonal growth defects in MB (Fig. 3i), and
possible memory de�cits.

Looking for other DEGs with FC > 2, we found that the HSD caused a down-regulation on LRN and STM
related genes involved in diverse signaling pathways, but with shared functions on synaptic plasticity and
memory trace formation: Brp, Mnb, Gish and Sh (Fig. 4a-d). Brp encodes a structural protein that anchors
the presynaptic vesicles forming synaptic buttons that can increase in size when Brp is acetylated by
Elp3 or decrease in size when Brp is deacetylated by HDAC6 [42]. In Drosophila, it has been shown that
Brp is primarily required for ARM formation, however; Brp knockdown mutants also show a de�cit in STM
similar to the observed herein in HSD �ies [43]. While Brp was down-regulated by HSD (Fig. 4a),
phenomenon that can be related to memory de�cit, the Brp regulators that function in an antagonistic
way (Elp3 and HDAC6) had the expression increased in HSD �ies (Fig. 4g-h). Then, we hypothesized that
the decreased levels of Brp paired with a possible dysregulation of acetylation caused by the altered
expression of both Elp3 and HDAC6 might lead to a decrease in synaptic plasticity (Fig. 4f).

Another HSD down regulated-gene linked to synaptic plasticity was the Mnb (Fig. 4e). Mnb encodes a
neurogenesis-related protein kinase, ortholog of DYRK1 in humans, that regulates exo- and endocytosis
of synaptic vesicles and reorganizes the cytoskeleton by directly and indirectly interacting with actin and
microtubules, among other functions [44]. Mutant �ies with reduced expression of Mnb present
signi�cant formation defects on the central nervous system, with 40–50% reduction in brain volume and
drastic reduction in cell number [45], and also decreased learning in females [46]. In this way, the Mnb
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downregulation found here in HSD �ies could re�ect not only memory de�cits, but also neuroanatomical
malformation. As its expression is modulated by the PKA/CrebA pathway, regulated by sNPF in
Drosophila, [47], we propose that insulin signaling can be part of the signaling network orchestrated by
Mnb expression in HSD �ies.

In a similar way as Brp and Mnb, Sh was down regulated by HSD (Fig. 5d). It is also involved with
synaptic plasticity, encoding a subunit of a voltage-gated potassium channel that regulates
neurotransmitter release into the synapses [48]. There is evidence that Sh mutant �ies have decreased
STM performance, similar to the effect what we observed herein in HSD �ies [49, 50], and take a longer
habituation time compared to control as well [51]. Sh works along with a modulatory subunit,
Hiperkinectic (Hk), that was also downregulated by HSD (Fig. 5e). Alternatively, changes in both Sh and
Hk expression may indicate disruption in synapsis plasticity, that could contribute to STM de�cits via
decrease of potassium currents in MB neurons (Fig. 4i).

HSD also down regulated the gene Gish (Fig. 4c), a casein kinase preferentially expressed in the MB that
regulates multiple cellular processes and signals in Wnt pathway [52, 53]. Decreased Gish in different
Drosophila strains led to a decrease in memory performance tests, including a de�cit in STM [54]. So, the
down regulation observed in HSD �ies might also be contributing to the de�cits found in STM. In Gish
mutants the calcium in�ux is disrupted in α'β' neurons, [54], which suggests that Gish is more related with
the formation of memory traces in Drosophila, than the synaptic plasticity like brp, mnb and sh.

Other DEGs involved in LRN or STM emerged from this analysis in HSD �ies, but do not appear to be
potential candidates for further investigation. For example, HSD generated a decrease in expression in
Shaggy (sgg) (Table 1), the ortholog of GSK-3β in humans, which is widely recognized as a potential
molecular link between diabetes and Alzheimer's [55]. Usually, its over-expression is linked to deleterious
effects in Drosophila [56][57, 58], which does not explain the phenotype found herein in HSD. Similarly,
the reduced expression of Mushroom body miniature (Mbm) has been associated with phenotypes of
malformation of MB [46, 59], causing de�cits in several types of memory [60–62]. Unfortunately, there is
no record of phenotypic changes when there is an increase in Mbm expression, which to some extent is
similar to the �ndings obtained with �ies raised on HSD (Table 1).

Given the importance of the dopaminergic signaling to the olfactory memory in D. melanogaster, we also
analyzed dopaminergic genes to check possible changes at transcriptional level in HSD �ies (Fig. 5). We
found that the expression of genes related to dopamine synthesis had a signi�cant decrease compared
to the control (Th and Ddc) (Fig. 5a-b), while dopamine receptors and transporters were EEG (both DAT
isoforms and both Dop1-R1 and Dop1-R2) (Fig. 5c-f). Interestingly, Dop1R1 and Ddc have already been
described in our transcriptomic screening for memory genes (Supplemental Table 2), but were considered
EEG or had a low FC. On the other hand, Th was not listed as a ‘memory’ associated gene in FlyBase, but
it has been associated with memory impairment [63]. HSD induced a remarkable down-regulated in Th,
with a FC>-26.105. This result indicates the possible participation of dopamine on the memory alterations
in HSD �ies, probably a dopamine de�ciency, similar how occur in mutants without dopamine [63, 64].



Page 9/20

Changes in dopaminergic system are especially relevant given that the action of dopaminergic neurons is
critical for information processing in MB, and normal olfactory associative learning [65].

5. Conclusion
In this work, we demonstrated that HSD causes STM de�cits in D. melanogaster and changes in the
transcript levels of several memory related genes. Among the DEG, we brought attention to �ve genes that
could be considered strong candidates to underlie STM de�cits in HSD �ies: Abl, Brp, Mnb, Sh and Gish.
As their products are related to the synapses and memory trace formation, they and their regulators
represent promising “biomarkers” to investigate the molecular networks shared between diabetes and
Alzheimer disease. Besides, the down-regulation of Th gene suggests a probable dopamine de�ciency in
HSD �ies, and the participation of dopaminergic system on the memory de�cits induced by sugar diet.
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Figure 1

Effects of HSD diet on �y’s aversive short-term memory by association. The test was accessed in �ies
hatched from and reared on control and/or HDS diet for 7 days. Statistical analyses were done by
Unpaired t test with **p<0.005
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Figure 2

Heat-Map containing the expression values in rpkm of all genes marked as ‘memory or learning’ in
FlyBase dataset in Control (C1, C2 and C3) and HSD libraries (H1, H2 and H3). Proportions of DEG are
also indicated
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Figure 3

Expression values of genes involved with the Abl and Wnt signaling in control and HSD �ies. a) Abl
tyrosine kinase (Abl), isoform I b) Cyclin-dependent kinase 5 (CDK5) Frizzled c) Van Gogh (Vang), isoform
B d) Disabled (Dab) e) Dishevelled (Dsh) f) (Fz), isoform A g) Huntingtin (Htt), isoform A h) β amyloid
protein precursor-like (APPL), isoform F i) Abl signaling on memory through alteration on axonal growth
in MB and neurodegeneration. DEG are represented in red and EEG in grey colors. The �gure was based
on the proposed models of Bothwell and Giniger, 2000 and Marquilly et al, 2021.Statistical analyses were
done by Unpaired t test (* indicates p‹0.05, ** indicates p‹0.002 and *** indicates p‹0.0002)
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Figure 4

Expression values of genes involved with the STM in control and HSD �ies. a) Bruchpilot (Brp), isoform J.
b) Elongater complex protein 3 (Elp3). c) Histone deacetylase 6 (HDAC6), isoform A. d) Gilgamesh (Gish),
isoform P. e) Minibrain (Mnb), isoform H. f) Proposed model of Brp action in control and HSD �ies. g)
Shaker (Sh), isoform T. h) Hyperkinectic (Hk), isoform K. i) Shaker and Hiperkinectic signaling was based
on proposed model of Bushey et al, 2007. Statistical analyses were done by Unpaired t test (* indicates
p‹0.05, ** indicates p‹0.002, *** indicates p‹0.0002 and **** indicates p‹0.0001)



Page 19/20

Figure 5

Expression values of genes involved with the dopamine regulation in control and HSD �ies. a) Pale (Ple,
also known as Tyrosine Hydroxylase [TH]), isoform B b) Dopa Decarboxylase (Ddc), isoform B c)
Dopamine 1-like Receptor-1 (Dop1R1, also known as dumb), isoform D d) Dopamine 1-like Receptor-2
(Dop1R2, also known as damb), isoform A e) Dopamine Transporter (DAT), isoform A and f) Dopamine
Transporter (DAT), isoform B. Statistical analyses were done by Unpaired t test for parametric data and
Mann-Whitney test for nonparametric data (* indicates p‹0.05)
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