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Abstract: The global pandemic COVID-19 is still a cause of a health emergency in several parts of
the world. Apart from standard testing techniques to identify positive cases, auxiliary tools based
on artificial intelligence can help with the identification and containment of the disease. The need
for the development of alternative smart diagnostic tools to combat the COVID-19 pandemic has
become more urgent. In this study, a smart auxiliary framework based on machine learning (ML) is
proposed; it can help medical practitioners in the identification of COVID-19-affected patients, among
others with pneumonia and healthy individuals, and can help in monitoring the status of COVID-19
cases using X-ray images. We investigated the application of transfer-learning (TL) networks and
various feature-selection techniques for improving the classification accuracy of ML classifiers. Three
different TL networks were tested to generate relevant features from images; these TL networks
include AlexNet, ResNet101, and SqueezeNet. The generated relevant features were further refined by
applying feature-selection methods that include iterative neighborhood component analysis (iNCA),
iterative chi-square (iChi2), and iterative maximum relevance–minimum redundancy (iMRMR).
Finally, classification was performed using convolutional neural network (CNN), linear discriminant
analysis (LDA), and support vector machine (SVM) classifiers. Moreover, the study exploited
stationary wavelet (SW) transform to handle the overfitting problem by decomposing each image in
the training set up to three levels. Furthermore, it enhanced the dataset, using various operations as
data-augmentation techniques, including random rotation, translation, and shear operations. The
analysis revealed that the combination of AlexNet, ResNet101, SqueezeNet, iChi2, and SVM was very
effective in the classification of X-ray images, producing a classification accuracy of 99.2%. Similarly,
AlexNet, ResNet101, and SqueezeNet, along with iChi2 and the proposed CNN network, yielded
99.0% accuracy. The results showed that the cascaded feature generator and selection strategies
significantly affected the performance accuracy of the classifier.

Keywords: COVID-19; diagnostic tool; pneumonia; stationary wavelets transformation; transfer learning

1. Introduction

The COVID-19 is a family of viruses that surfaced in China in the last quarter of 2019,
and, within a matter of weeks, it affected so many thousands of lives that the World Health
Organization (WHO) declared it a pandemic [1]. The devastating effect on the well-being of
humankind and the pandemic’s complex non-linear nature has made it difficult to analyze
the outbreak [2]. Up to today, more than 560 million COVID-19 positive cases have been
detected, while 6.37 million humans have lost their lives. Presently, there are two common
methods to diagnose COVID-19: taking samples from the respiratory tract for a kind of
viral nucleic acid testing called reverse transcription–polymerase chain reaction (RT-PCR)
and analyzing chest radiography imaging. However, RT-PCR requires a sophisticated and
specialized laboratory with hi-tech machines that can cost up to USD 90,000 [3]. Besides
being expensive, RT-PCR testing has a low positivity rate (63%), with high requirements for
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procedural and computing time [4]. Contrarily, testing through chest radiography imaging
is cheaper, as it does not require the installation of machinery on a large scale due to high
availability and easy accessibility in most parts of world [5]. Expert radiologists infer
the diagnosis using chest radiography imaging, such as X-ray or computed tomography
(CT) imaging, wherein the presence of COVID-19 is inferred by subtle visual signals. This
method has gained popularity as a potent alternative. However, it requires additional
radiologists, considering the high reproduction number of the COVID-19 virus [6], to
analyze the results and reach a conclusion. Thus, to manage and control this pandemic, the
immediate and meticulous screening of individuals is of great significance.

In last two decades, ML-based tools have shown promising results in screening and
diagnosing several diseases. For instance, authors provided a decision support system to
predict diabetes in individuals using various ML classifiers [7]. Similarly, researchers in [8]
exploited random forest (RF), k-nearest neighbor (kNN), and naïve Bayes (NB) to detect
breast cancer in patients. In addition, deep learning approaches have been successfully
deployed in the domain of medical imaging, such as [9], wherein authors developed a TL-
based multipurpose diagnostic system to diagnose pediatric pneumonia and some retinal
diseases using chest X-ray images and optical coherence tomographic imaging, respectively.
Besides ML techniques, computer vision (CV) experts incorporated feature-extraction
and image-filtering techniques to enhance system performance in terms of accuracy and
computational time. Others, such as [10], investigated principal component analysis (PCA)
with a variant of the artificial neural network (ANN) to analyze and identify Parkinson’s
disease. Similarly, authors in [11] performed brain tumor classification using wavelet
transformation as the feature extractor and SVM as the classifier.

Recently, several artificial-intelligence-based frameworks have been developed to
manage the COVID-19 pandemic from different perspectives. Experts in [12] presented
a deep-learning-based COVID-19 pneumonia diagnostic tool to distinguish COVID-19
pneumonia from negative cases by utilizing 10,182 chest X-ray radiography images. A
textural image-characterization-techniques-based scheme has been proposed in [13] to
analyze three ML classifiers (kNN, RF, and SVM) for the identification of COVID-19
positive cases. Their developed scheme achieved 99% accuracy on a test set and 91.3%
accuracy on a training set for super-pixel-based histone image characterization. Researchers
in [14] classified COVID-19 positive cases by proposing a discrete-wavelet-transform-based
neurowavelet capsule network that first minimized the noise present in X-ray images and
then performed training for classification. They managed to obtain precision of 99.7%,
sensitivity of 99.2%, and accuracy of 99.6%. Another study [15] introduced a deep CNN-
based inception model to identify COVID-19 cases by incorporating a Gaussian smoothing
filter to enhance image quality and a glowworm swarm optimizer (GSO) for the fine tuning
of the hyperparameters. They succeeded in securing 94.29% accuracy and a 93.94% f1-score.

Besides suggesting a single-disease diagnostic tool, computer scientists introduced
multi-disease diagnostic systems. For instance, authors in [16] proposed a lung segmenta-
tion approach to present a multi-disease diagnostic tool by training a customized CNN-
based model to identify tuberculosis, lung opacities, and cancer. Likewise, for the COVID-19
pandemic, researchers in [17] used 6330 images to train 12 well-established pre-trained
CNN-based models for discriminating four classes (several pneumonia types including
COVID-19). Despite considerable amount of image samples, the system secured an 84.46%
average f1-score. A few pre-trained models (Xception, InceptionV3, and ResNeXt) were
compared in [18] to identify normal, COVID-19-positive, and pneumonia cases using X-ray
images. They obtained an overall accuracy of 86% and a sensitivity of 78%. Another
study [19] investigated ResNet50 and VGG16 to classify normal, viral pneumonia and
COVID-19 by utilizing 15,153 X-ray images. Their fine-tuned ResNet50 model succeeded in
attaining 91.39% accuracy, whereas VGG16 reached the mark of 89.34% accuracy. A more
detailed comparison of various studies to manage the COVID-19 pandemic can be found
in [1].
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As previously published well-established studies hardly attained effective perfor-
mance in distinguishing COVID-19 cases from other pneumonia and healthy cases, there-
fore, to overcome the pandemic, auxiliary methods and techniques for the screening of
pneumonia cases need further investigation. In addition to viral nucleic acid testing used in
COVID-19 case identification, schemes based on artificial intelligence can be exploited for
early diagnosis and monitoring. In this study, we investigated a new framework based on
TL networks as a feature generator; several feature-selection techniques; and ML classifiers
to identify COVID-19, other (viral/bacterial) pneumonia, and normal cases, using X-ray
images with high accuracy (see Figure 1).
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Figure 1. Workflow of the proposed system.

In the first phase of this study, X-ray images from three different online sources are
gathered, which are then augmented for the better generalization of the proposed model by
exploiting stationary wavelet transform and various other techniques, such as the random
translation, rotation, and shearing of images. In the second stage, three pre-trained TL
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models (AlexNet, ResNet101, and SqueezeNet) separately extracted the most-relevant
1000 features from each image. The scheme then merges these features to form a vector of
3000 features. In the third stage, three iterative feature-selection techniques were employed
separately to select the most-optimal features for better classification. Lastly, one deep-
learning-based framework and two ML classifiers are investigated to perform classification
using optimal features.

This study contributes to the research community in the following manner:

• Outlines the prior studies (in detail) related to the identification of COVID-19 and
other pneumonia from images.

• Introduces stationary wavelet transform as a data-augmentation technique to handle
overfitting issues.

• Investigates the impact of different TL-based networks (AlexNet, ResNet101, and
SqueezeNet) in diagnosing three clinical states (normal, other pneumonia, and
COVID-19-positive).

• Assesses the significance of incorporating iNCA, iChi2, and iMRMR as feature-
selection techniques in ML-based diagnostic tool.

• Analyzes the effect of various combinational schemes of feature-generation and feature-
extraction techniques in the proposed model.

• Examines the performance and provides comparative analyses of each combinational
scheme in terms of performance accuracy, F1-score, precision, and recall.

• Presents a simple but highly accurate ML-based model that can be used with other
conventional clinical COVID-19 testing to remove false-alarm probability.

• Provides analysis to indicate that the proposed scheme outperformed prior studies
by securing 99.2% accuracy while segregating COVID-19-positive cases from other
pneumonia and normal ones.

The order of the remaining sections of this study is as follows. Section 2 outlines the
dataset collection and technical background of the frameworks, techniques, and classifiers
used for this study. Section 3 presents the detailed results and performance analysis, while
Section 4 illustrates the comparison with previous studies. The paper ends with concluding
remarks in Section 5.

2. Materials and Methods

The below passages present the overview of data collection and its description, as
well as exploratory analysis, collectively with in-depth discussion about the selection
and architecture design of pre-trained feature-generation frameworks, feature-selection
methods and ML-based disease-identification classifiers adopted for this proposed lung-
disease segregation system. In particular, it focuses on data-augmentation techniques, TL
models, iterative feature selectors, and ML algorithms used for image data enhancement,
the generation of useful features, the automatic selection of optimal features, and disease
classification, respectively.

2.1. Description of Dataset and Augmentation Approach

The dataset used for this study was created by modifying several publicly available
benchmark image repositories to facilitate the evaluation and training of the proposed
model. The generated dataset that will be referred as PeN-CoVx throughout this study
is a combination of 12,282 images of lungs collected from CRD (COVID-19 Radiography
Database|Kaggle: https://www.kaggle.com/tawsifurrahman/covid19-radiography-data
base) (accessed on 25 March 2022), CIDC (GitHub COVID-19 Image Data Collection: https:
//github.com/ieee8023/covid-chestxray-dataset) (accessed on 25 March 2022), and CXIP
(chest X-ray images (pneumonia)|Kaggle: https://www.kaggle.com/paultimothymooney
/chest-xray-pneumonia) (accessed on 25 March 2022). In particular, this research collected
the correct data for each class (normal, pneumonia, and COVID-19+) from three different
repositories to form PeN-CoVx dataset to avoid overfitting issues. It takes advantage of the
below-mentioned types of patient cases:

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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• 4094 randomly selected X-ray images of normal healthy patients from the CRD dataset,
• 3616 X-ray images of confirmed COVID-19-positive cases from the CRD dataset,
• 478 X-ray images of confirmed COVID-19-positive cases from the CIDC dataset,
• 4094 randomly selected X-ray images of viral and bacterial pneumonia-affected pa-

tients from the CXIP dataset.

The idea of easily accessible and open source data inspired the preference of the CRD,
CIDC, and CXIP datasets to form PeN-CoVx. As the COVID-19 pandemic recently surfaced,
a noticeable trend shows a “skewed dataset” for COVID-19 cases, though significantly,
enough repositories are publicly available having radiography images of normal and viral
or bacterial pneumonia-affected patients to compare to COVID-19-infection cases. Like
ML models, deep-learning-based classification frameworks require a huge number of
uniform data for proper model training to avoid challenges such as overfitting. In order
to resolve such issues, this research employed various pre-processing techniques and a
data-augmentation approach by exploiting stationary wavelets.

The course of the collection stage revealed that PeN-CoVx has images of various sizes;
therefore, to maintain uniformity in size, each image was resized to 256 × 256 × 3 in the pre-
processing stage. Before proceeding to data enhancement, the PeN-CoVx dataset was divided
into training, validation, and testing sets with ratios of 60%, 25%, and 15%, respectively.

2.2. SW as Augmentation Approach

Besides using rotational and shear operation to extend the training set, this study
exploited SW to perform data augmentation by decomposing images of training set up to
three levels. Researchers in [20] introduced a non-sampling wavelet transformation called
stationary wavelet transform with the capability of determining a more precise estimation
of continuous wavelet transform by decamping a sample image into several levels. Besides
this, it also possesses translational invariance and redundancy features.

The stationary wavelet decomposes an image based on the number of levels and the
matrices’ dimensionality of the normalized input image. Assuming n as the number of
decomposition levels, then SW transformation will produce 3-dimensional arrays for a
2-dimensional normalized matrix:

CSW−2D = [Ver(:, :, 1 : n); Hor(:, :, 1 : n); Dia(:, :, 1 : n); App(:, :, n)], (1)

where Ver refers to the vertical coefficient; Hor represents the horizontal coefficient, and Dia
denotes the diagonal coefficient, while App refers to the approximation coefficient for SW
of n-levels. Similarly, for the 3-dimensional normalized image matrix (h × w × 3), then SW
transformation will produce a coefficient with 4-dimensional arrays (h × w × 3 × n) for
n-levels as in Equation (2) [20,21].

CSW−3D = [Ver(:, :, 1 : 3, 1 : n); Hor(:, :, 1 : 3, 1 : n); Dia(:, :, 1 : 3, 1 : n); App(:, :, 1 : 3, n)], (2)

The present study exploited SW transformation for three levels of wavelet decom-
position. Later, the decomposed images are randomly translated, rotated, and sheared
to further enhance the PeN-CoVx training set. The experimental setup details about SW
transformation and preprocessing steps can be found in the next section of this study.

2.3. Feature Generation Using Pre-Trained Frameworks

This section outlines the CNN-based TL models used to extract relevant features from
the PeN-CoVx dataset.

2.3.1. AlexNet

Back in 2012, Alex Krizhevsky and a handful of researchers presented a new landscape
in the field of CV that demolished prior ideas by producing a seismic shift in resolving
image classification tasks with AlexNet [22]. It was the winning entry in ILSVRC 2012
by solving an image classification problem for a dataset containing 1.4 million images of



Healthcare 2022, 10, 1313 6 of 17

1000 classes. AlexNet has deep architecture, composed of 650,000 neurons that contribute to
62.3 million training parameters. However, it incorporated dropouts [23] and ReLU instead
of regularization and tanh to deal with issues such as overfitting and linearity, respectively.
Moreover, it also utilized overlap pooling to reduce network size but introduced padding
to prevent a drastic reduction in the size of the feature map.

It encompasses eight layers (three fully connected layers and five convolutional layers,
CLs). The input layer in the network accepts an image with a size of 227 × 227. Next, the
first CL has 96 filters with a size of 11 × 11 and stride 4, while the second CL has 256 filters
but each with a size of 5 × 5 and stride 1. Furthermore, padding of 2 is utilized to handle
the size of the feature maps. An overlapping max-pooling layer of 3 × 3 size with stride 2
follows each of these CLs. The rest of the CLs have 384 filters of size 3 × 3 with stride and
padding of 1, except the last CL, which has 256 filters. The network extracts more features
as the number of filters increases in deeper layers, and simultaneously, the feature map
shape decreases as the filter size declines. It then has three fully connected layers, each
having 4096 neurons except the last, which has 1000. A dropout of 0.5 is performed before
and after the first fully connected layer to avoid overfitting.

2.3.2. ResNet101

The prior deeper networks generally led to a degradation problem at the time of
convergence, thus researchers suggested a residual network (ResNet) [24] to deal with
such complications at ILSVRC 2015 competitions. Similarly, it outperformed other models
while securing better generalization performance on COCO detection and segmentation
in the Common Objects in Context (COCO 2015) competition. Prior to ResNet, deep
learning researchers were developing deep networks by stacking more layers to extract
complex features in order to attain high accuracy, but as the network converged, it faced a
degradation problem. The increase in network depth, first, saturated the accuracy value,
which then swiftly degraded due to the vanishing gradient effect. Reference [24] addressed
the issue by introducing the ResNet framework, which stacks multiple CLs like any other
deep network, but at the same time, it establishes identity connections between different
layers. Besides numerous variants of ResNet, this study exploited ResNet101 because of its
better performance on the problem at hand compared to the other variants described in the
next section of this study. It mitigated the vanishing gradient effect and covariate shift problem
through the incorporation of identity connection and batch normalization, respectively.

The ResNet101 architecture consists of four stages. It accepts an instance (input
image), having a size of 224 × 224 × 3 in the case of this study, and passes it to the first
CL (7 × 7 kernel) and then to the max- pooling (MP) layer with a kernel size of 3 × 3.
The resultant is then fed to the first stage, which has three residual blocks with identity
connections between them. Each block has three CLs of 64, 64, and 256 kernels, respectively.
The second, third, and fourth stages have four, twenty-three, and three blocks, and each
block has three CLs of different kernel sizes. After every network stage, the input size
decline while the channel width doubles. Lastly, an average-pooling layer (AP) is placed,
followed by a dense layer with a thousand neurons.

2.3.3. SqueezeNet

In 2016, scientists at Stanford University and the University of California proposed a
replacement for AlexNet, called SqueezeNet [25]. The devised compact network performs
three times faster than AlexNet due to reduced parameters, as it replaces 3 × 3 filters with
1 × 1 filters to capture relationships among its channels. In addition, they used squeeze
layers that reduces input channels to 3 × 3 filters. These strategies judiciously decrease the
number of parameters in a CNN while pursuing the preservation of accuracy. Besides this,
researchers introduced delayed down sampling in the network to attain large activation
maps that maximizes the accuracy on a defined budget of parameters.

A fire module acts as a building block in the SqueezeNet architecture and is composed
of expand and squeeze layers. The output of squeeze layers, each having a convolutional
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filter of size 1 × 1, is passed to the expand layer that contains 3 × 3 and 1 × 1 convolutional
filters. The network contains eight fire modules, a global average-pooling layer, three
max-pooling layers, and two standalone convolutional layers. Unlike other state-of-the-art
networks, SqueezeNet does not have any dense layer.

The SqueezeNet has variants based on its architecture. Inspired by ResNet, the
SqueezeNet architecture has several bypass connections to increase the filters. This study
exploited SqueezeNet with a deep compression approach that uses 1 × 1 convolutional
filters as the complex bypass connection designed in [25].

2.4. Feature-Selection Techniques

Feature selection is a crucial task in ML, as it has numerous options available but must
choose useful features to design an efficient network. This study exploited three different
feature-selection techniques, described below.

2.4.1. Iterative Neighborhood Component Analysis (iNCA)

NCA is a technique to identify and segregate multivariate data by learning a distance
metric [26]. It linearly transforms the original features to maximize classification perfor-
mance. Functionally, it uses stochastic nearest neighbors (SNN) to differentiate the objective
function by considering the whole transformed set instead of the k-nearest neighbors (kNN)
at each transformed point for leave-one-out classification.

Instead of picking a fixed number of kNNs and taking a majority vote, it randomly
picks a single neighbor point and determines the expected votes for each class. So each
point i chooses another point j probabilistically by exploiting the softmax of the Euclidean
distance between these two points using [26]:

pij =
exp

(
−di,j

)
∑k 6=i exp(−di,k)

, pi = 0, (3)

where di,j refers to the Euclidean distance between a neighboring point and the LOO point.
Thus, for better classification, NCA aims to maximize the objective function that can be
defined as:

f (A) = ∑i∑j∈Si
pij = ∑i

pi, (4)

where Si is the set of nearest neighbors.

2.4.2. Iterative Chi-Square (iChi2)

Chi2 is a statistical technique used to analyze the dependency of events. Chi2 deter-
mines the deviation between the observed count, O, and the expected count, E, for data on
two variables, using the following:

x2
f r = ∑ (Oi + Ei)

2

Ei
, (5)

where fr refers to the degree of freedom. As in feature selection, the objective is to consider
features that highly depend on the response, which can be achieved with a higher value of
Chi2, if O is not close to E. Thus, a lower Chi2 value indicates that features are independent,
while a higher value suggests that those representations are response-reliant and can be
considered to train the model.

2.4.3. Iterative Maximum Relevance–Minimum Redundancy (iMRMR)

Feature-selection algorithms can be classified into two groups, namely all relevant and
minimal-optimal. Generally, all-relevant-based algorithms give individual assessment for
each feature as they find statistical dependency with target variable. However, such tech-
niques might be too indulgent in cases of many features with high redundancy. Therefore,
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ref. [27] discovered and proved that the iMRMR technique can achieve maximum accuracy
even when selecting fewer features out of thousands for predicting a disease.

It works iteratively to identify an optimal set of features by calculating the iMRMR
score for each feature using:

xi( f ) =
Rev( f | TV)

Reu ( f | f eatures selected until i− 1)
, (6)

where f, Rev, Reu, and TV refer to features under consideration, relevance, redundancy, and
target variable, respectively. The feature that attains the highest score at the ith iteration
is selected. In fact, it chooses a feature that has less redundancy with regard to features
chosen at previous iteration, i − 1, but has higher relevance with regard to the target
variable. Researchers suggested multiple variants of MRMR for discrete and continuous
variables, but this study exploited a combine F-test with correlation using a quotient (FCQ)
based on its popularity for various classification models in terms of robust accuracy and
computational time.

2.5. Models for Classification
2.5.1. Convolutional Neural Network

CNN is a widely used deep learning classification tool that has multiple perceptron
layers placed next to each other in a sequence [28]. It is a chain of simple layers con-
nected together to implement a form of progressive data distillation, by taking the input,
transforming it to a meaningful representation, and predicting the final output. It usually
encompasses three main forms of layers: convolutional, dense, and pooling layers. CL acts
as a core component that consists of neurons in one layer allied with limited neurons of the
neighboring layers, which shares weights having similar characteristics.

The relevant features are fed to CL (hidden layers) as an input feature map in a matrix
or vector structure. The network determines a weight, w, for every connection between
neurons of the CL and neurons from the first layer (input layer). According to first layer,
the model then determines ‘a’ (weighted sums of all activations):

w0,0a(0)0 + w0.1a(0)1 + . . . w0,na(0)n (7)

A function (such as σ sigmoid) is used to normalize the resultant, and the neuron
activation is adjusted through the inclusion of appropriate bias, ‘b’, to represent the second
neuron of the first hidden layer. In the same way, the network determines the weights and
biases of every hidden layer to produce activation maps. Later, a pooling layer plays the
role of a fuzzy filter by gradually downscaling the feature dimensionality to subsequently
reduce computational cost. Lastly, a fully connected layer combines all the extracted
representations of the preceding layers for classification.

2.5.2. Linear Discriminant Analysis

Unlike logistic regression, the LDA traditional classification algorithm models differ-
ences in multi-classes by projecting data low dimensional-space. It determines the statistical
properties from data to form a new axis of lower dimensional space that reduces intra-class
variation while keeping greater differences in the means of classes. It calculates the mean
value of each input x for every class:

mz =
1
nz

∑
i

xi, (8)

where nz is the number of instances within class z. It determines the variance across all
classes using:

v2 =
1

n− c∑
i

(xi −m)2, (9)
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where c equates to the number of classes. Lastly, it uses Bayes theorem to determine the
probability for the new input set.

2.5.3. Support Vector Machine (SVM)

SVM is widely adopted as a discriminative classifier to deal with linear as well as non-
linear tasks. In order to correctly classify instances, it aims to define a decision boundary
that maximizes the separating distance between the training data. Thus, it incorporates
the first feature, known as the maximal margin classifier. It tries to find support vectors,
instances located on the edge of class-descriptors, so that it can appropriately tag the
samples into two classes. It is achieved by dividing the 2-dimensional space with a line
such that data points falling on the left side of boundary are segregated into a different class
than the ones on the other side. This division can be achieved with an infinite number of
lines, but what makes SVM outstanding compared to the others (like k-nearest neighbors)
is its ability to discover the best optimal possible separation line that has maximum margin
between support vectors. This separating line is also known as a hyperplane if it is
for a more-than-3-dimensional space by performing a dot product (kernel trick) on the
transformed input vector.

A linear kernel is defined by the dot product of data X (which is to be categorized)
with weight vector w (which the user wants to minimize) and the addition of a linearly
estimated coefficient, b:

Kernel Function (X) = wTX + b. (10)

The most used kernel for non-linear data is RBF, which computes distances between
specific features with all others to generate new features. Therefore, this study used
Gaussian RBF, which can be defined for X1 and X2 data by:

Kernel Function (X1, X2) = e(−γ∗ ‖X1−X2‖2). (11)

3. Experimental Results and Analysis

The aim of this study is to design an efficient diagnostic tool that can accurately
classify X-ray images of human lungs as COVID-19-infected, pneumonia or normal by
enhancing a dataset using stationary wavelet transformation, generating relevant features
via TL models, selecting optimal representations, and finally classifying using ML-based
classifiers. In order to segregate the three best pre-trained TL models for feature generation,
this study first tested several TL state-of-the-art networks with seven various ML and
deep learning classifiers, tabulated in Table 1. Numerous experiments were conducted,
wherein each TL network extracted useful features from images of the PeN-CoVx dataset;
these images were later fed to the given classifiers for the diagnosis of the three clinical
states. Table 1 puts forth the classification accuracies attained by CNN, DT, KNN, LDA,
LR, NB, RF, and SVM against each pre-trained TL model on the PeN-CoVx dataset. Table 1
evidently shows that CNN, LDA, and SVM outperformed other classifiers (DT, KNN,
LR, and RF) by effectively utilizing the features generated by TL networks. Similarly,
AlexNet, ResNet101, and SqueezeNet successfully generated the most relevant features
compared to other networks for the problem at hand, therefore; this research exploited
AlexNet, ResNet101, and SqueezeNet as feature generators and CNN, LDA, and SVM for
classification in the proposed scheme.

The PeN-CoVx dataset gathered for this research contained 4094 X-ray images for
each clinical state (normal, COVID-19+, other pneumonia) and was further split into 60%
training, 25% validation, and 15% testing sets, as listed in Table 2. As limited training
dataset can lead to overfitting problem in TL-based models, this research employed various
pre-processing techniques and data-augmentation approaches by exploiting SW transform,
random rotation, translation, and shear operations. For this reason, the images are first
normalized before decomposing them into various levels of stationary wavelets.
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Table 1. Comparison analysis of pre-trained transferred models as feature-extractor and machine-
learning-classification algorithms.

Feature-Generation Models
Classification Accuracy (%)

CNN DT KNN LDA LR RF SVM

AlexNet 95.6 90.7 88.8 95.0 91.9 90.4 95.9
DenseNet-121 95.0 90.4 87.5 94.8 91.9 91.0 94.8
DenseNet-169 95.1 91.0 89.5 95.1 92.0 91.0 95.3
DenseNet-201 95.1 90.1 87.6 94.5 90.7 88.9 95.3
DenseNet-263 94.8 88.8 85.0 93.8 90.1 87.5 95.0

EfficientNet-B0 92.9 86.6 8.9 90.7 86.6 86.8 91.5
GoogleNet 93.5 90.1 82.2 92.5 87.1 88.8 92.5

InceptionNetV3 95.0 91.0 83.1 93.3 87.3 89.3 95.1
MobileNetV2 90.2 87.5 80.1 89.9 85.0 87.5 90.1

ResNet18 90.7 88.8 82.2 90.7 86.7 85.0 90.6
ResNet50 92.5 86.6 82.6 91.9 87.1 85.5 92.9

ResNet101 96.1 91.9 85.0 95.9 90.7 87.8 96.1
ResNet152 95.1 91.2 85.3 95.0 90.7 90.4 95.3

SqueezeNet 96.1 93.5 85.0 96.1 91.5 92.2 96.6
VGG16 93.5 90.1 84.4 91.9 88.6 91.9 93.0
VGG19 92.9 90.7 83.1 92.9 88.6 91.5 92.5

XceptionNet 91.0 87.5 80.5 88.8 87.5 86.8 91.0
CNN: convolutional neural network; DT: decision tree; KNN: k-nearest neighbors; LDA: linear discriminant
analysis; LR: logistic regression; RF: random forest; SVM: support vector machine.

Table 2. Data set information.

Clinical State
Number of Instances

Training Set without Augmentation Training Set with Augmentation Validation Set Testing Set

Normal 2456 22,104 1024 614
Other pneumonia 2456 22,104 1024 614

COVID-19+ 2456 22,104 1024 614

Total 7368 66,312 3072 1842

In the data-augmentation phase, the normalized PeN-CoVx images were decomposed
to three levels using SWT. For this proposed study, each normalized image passed through
several high-pass and low-pass filters. It exploited Daubechies’s (db2) orthogonal filter
to decompose 2-D SW. For first-level decomposition, it determined the detail coefficients
(Ver1, Hor1, and Dia1) and the approximate coefficient (App1) of high and low frequencies,
respectively. Similarly, for next-level decomposition, it determined the detail coefficients
(Ver2, Hor2, and Dia2) and the approximate coefficient (App2) of high and low frequencies,
respectively. Likewise, the SWT data-augmentation phase produced three images for each
corresponding image in the training set. Table 3 tabulates the detailed output coefficient
for each level in 2-D SW.

Table 3. Output coefficient for each level in 2-D stationary wavelet (SW) transform.

Decomposition Level Down Sampling Approximate Coefficient
(Low Frequency)

Detail Coefficient
(High Frequency)

1 Yes (by 2) App1 Ver1, Hor1, Dia1
2 - App2 Ver2, Hor2, Dia2
3 - App3 Ver3, Hor3, Dia3

App: approximate coefficient (image); Ver: vertical coefficient; Hor: horizontal coefficient; Dia: diagonal coefficient
of the SW transformed image.
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In order to enhance the training dataset further, techniques including shear, ran-
dom translation, and rotation were applied to each wavelet-decomposed image. Table 4
represents the parametric details of augmentation techniques exploited to overcome the
overfitting problem. As a result, the number of images for each clinical state in training set
was increased nine times; thus, the training data now contains 22,104 images for each class
(normal, pneumonia, COVID-19+).

Table 4. Parametric values of data-augmentation techniques.

Augmentation Technique Parametric

Translation −10, 10
Rotation −90, 90

Shear −30, 30

Later, three pre-trained TL models (described in the previous section) utilized these
augmented training datasets to extract the 3000 most-relevant features for better classifica-
tion. Before feeding images to the TL model, the size of the images was adjusted according
to the input layer of each TL model. Each TL model (AlexNet, ResNet101, SqueezeNet)
generated 1000 features for each image, which were then merged as shown in Algorithm 1.
Thus, the merging accumulated 66,312 × 3000 features for all of the training sets.

Algorithm 1. Pseudo code of the proposed scheme.

Proposed Algorithm
01 ImP = Load (PeN-CoVx) // Read PeN-CoVx image dataset
02 ImNorm = (ImP – min(ImP)) / (max(ImP) – min(ImP)) // Normalize images within range [0, 1]
03 ImSWC = CSW(ImNorm) // Data augmentation: 3-levels decomposition by stationary wavelet transformation
04 ImAug = DataAugmentation(ImSWC) // Performing random rotation, translation, and shear operation
05 for i = 1 to size-of ImAug do // Loop to extract relevant features for each image using transfer-learning model
06 fg1 = AlexNet(ImAug) // Extract 1000 features via AlexNet
07 fg2 = ResNet101(ImAug) // Extract 1000 features via ResNet101
08 fg3 = SqueezeNet(ImAug) // Extract 1000 features via SqueezeNet
09 for j = 1 to 3 do // Loop to merge extracted feature
10 X(i, 1000 × j + 1: 1000 × (j + 1)) = fgj // merge extracted features
11 end for loop // end loop to merge extracted feature
12 end for loop
13 fs1 = iNCA(X, Y) // Determine optimal features via iterative Neighborhood Component Analysis
14 fs2 = iChi2(X, Y) // Determine optimal features via iterative Chi-square
15 fs3 = iMRMR(X, Y) // Determine optimal features via iterative Maximum Relevance Minimum Redundancy
16 PLk = CNN(fsk, Y, 3) // Predict clinical-state using optimal features by Convolutional Neural Network
17 PLk = LDA(fsk, Y, 3) // Predict clinical-state using optimal features by Linear Discriminant Analysis
18 PLk = SVM(fsk, Y, 3) // Predict clinical-state using optimal features by Support Vector Machine

Subsequently, the merged features were fed separately to three different feature-
selection algorithms (iNCA, IChi2, and iMRMR). These feature selectors select optimal
features to form vector by defining the upper and lower bound of the determined indices.
Moreover, the feature-selection scheme iteratively calculates loss against each feature and
finally selects features having low loss value as optimal features. Thus, iNCA, iChi2, and
iMRMR successfully obtained 1588, 1620, and 1468 optimal features, respectively, that will
contribute decisively in the classification of the three clinical states.

Lastly, one deep learning (CNN)- and two ML (LDA and SVM)-based classifiers were
trained separately with 10-fold cross-validation for each optimal feature set obtained by
iNCA, iChi2, and iMRMR. Later, each model was evaluated on an unseen test data set
composed of 614 images of each class. As each classifier was trained separately for each
iNCA feature vector, this study computed nine different classification schemes overall. For
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a better comparison, this study evaluated all trained models with the metrics accuracy,
F1-score, recall, and precision.

After extensive trials, the most suitable CNN architecture was devised, having a few
CLs and a fully connected layer. This CNN architecture contained three CLs with ReLU,
stride of 1, and kernel size of 2. The first, second, and last CL had 256, 128, and 64 filter
sizes, respectively. Averaging pooling followed the first and second CL for dimensionality
reduction. Lastly, a fully connected layer with three neurons was utilized to classify an X-
ray image into one of three-clinical states. Table 5 represents the classification performance
achieved by CNN against each feature-selection technique.

Table 5. Performance metrics for the convolutional neural network against each feature-selection technique.

Feature Selector Statistics Precision Recall F1-Score Accuracy

iNCA
Minimum 98.536 98.534 98.535 98.534
Maximum 99.078 99.077 99.077 99.077
Average 98.810 98.806 98.808 98.806

iChi2
Minimum 98.915 98.914 98.914 98.914
Maximum 99.133 99.132 99.132 99.131
Average 99.026 99.023 99.024 99.023

iMRMR
Minimum 98.489 98.154 98.322 98.154
Maximum 98.914 98.914 98.914 98.914
Average 98.535 98.534 98.534 98.534

iNCA: iterative neighborhood component analysis; iChi2: iterative chi-square; iMRMR: iterative maximum
relevance–minimum redundancy.

Similarly, for each optimal feature set obtained from feature selectors, a separate LDA
model was trained over 10-fold cross-validation. The model was trained by setting the
gamma value as null with a linear discriminant type. Table 6 represents the classification
performance achieved by LDA against each feature-selection technique.

Table 6. Performance metrics for linear discriminant analysis against each feature-selection technique.

Feature Selector Statistics Precision Recall F1-Score Accuracy

iNCA
Minimum 97.790 97.768 97.779 97.774
Maximum 98.752 98.751 98.751 98.751
Average 98.271 98.263 98.267 98.263

iChi2
Minimum 97.674 97.666 97.670 97.666
Maximum 98.207 98.209 98.208 98.208
Average 97.535 97.515 97.525 97.515

iMRMR
Minimum 96.526 96.526 96.526 96.526
Maximum 97.927 97.720 97.724 97.720
Average 97.124 97.123 97.123 97.123

iNCA: iterative neighborhood component analysis; iChi2: iterative chi-square; iMRMR: iterative maximum
relevance–minimum redundancy.

Another ML classifier, SVM was separately trained over 10-fold cross-validation for
each optimal feature set. RBF was used as a kernel function with auto scaling to classify the
input X-ray image into three clinical states. Table 7 represents the classification performance
achieved by SVM against each feature-selection technique.
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Table 7. Performance metrics for the support vector machine against each feature-selection technique.

Feature Selector Statistics Precision Recall F1-Score Accuracy

iNCA
Minimum 98.756 98.751 98.754 98.751
Maximum 99.191 99.186 99.189 99.186
Average 98.969 98.969 98.969 98.969

iChi2
Minimum 99.024 99.023 99.023 99.023
Maximum 99.462 99.457 99.460 99.457
Average 99.241 99.240 99.241 99.240

iMRMR
Minimum 98.534 98.534 98.534 98.534
Maximum 99.078 99.077 99.078 99.077
Average 98.806 98.806 98.806 98.806

iNCA: iterative neighborhood component analysis; iChi2: iterative chi-square; iMRMR: iterative maximum
relevance–minimum redundancy.

4. Discussion

Besides analyzing the performance of the proposed scheme using accuracy, precision,
sensitivity, and f1-score, we also determined the error of omission (see Table 8). This
measures the false negatives of each classifier for all classes against each feature-selection
technique to represent the fraction of samples belonging to a class but predicted to be in a
different class. It is noteworthy that all proposed combinational schemes have less error
of omission for COVID-19 cases than other classes (pneumonia and healthy individuals),
except CNN with iNCA. The structural combination (CNN and iNCA) performed well
for pneumonia classification, as it obtained only 0.81% error of omission. However, SVM
with iChi2 outperformed all other schemes, as it has low error of omission on average for
all classes.

Table 8. Comparing the error of omission of the convolutional neural network (CNN), linear dis-
criminant analysis (LDA), and support vector machine (SVM) for each class against the exploited
feature-selection techniques.

Feature Selector Class Label
Error of Omission (%)

CNN LDA SVM

iNCA
Normal 1.63 2.12 1.14

Pneumonia 0.81 1.63 1.14
COVID-19 1.14 1.47 0.81

iChi2
Normal 1.14 2.12 0.98

Pneumonia 0.98 2.44 0.65
COVID-19 0.81 1.63 0.65

iMRMR
Normal 1.47 3.09 1.30

Pneumonia 1.79 3.26 1.30
COVID-19 1.14 2.28 0.98

iNCA: iterative neighborhood component analysis; iChi2: iterative chi-square; iMRMR: iterative maximum
relevance–minimum redundancy.

Experts had developed numerous diagnostic tools to manage infectious diseases
efficiently that can handle several class-classification tasks. For instance, ref. [29] blended
conservative smoothing filtering, PCA, and SVM to secure 99.93% accuracy; however, it
only segregated COVID-19-positive cases from negative cases. Contrarily, for a three-class
classification task, ref. [30] used ResNet50 as the feature-extraction technique, with a SVM,
to attain 95.33% accuracy. Similarly, ref. [31] exploited ResNet152 with various classifiers to
reach an overall accuracy of 97.70% using X-ray images. Table 9 presents a comparative
analysis of the proposed study with prior works.
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Table 9. Comparative analysis of the proposed study with prior works.

Study Techniques Accuracy (%)

[30] ResNet50 feature extractor with SVM 95.33
[31] SMOTE and ResNet152 with XGBoost and random forest 97.70
[32] Customized CNN-based network 84.22
[33] VGG-16-based scheme 97.0
[34] Customized Xception Net 95.0
[35] CNN with transfer multireceptive feature optimizer 95.1
[36] Cascaded ResNet50V2 and Xception Net 91.4
[37] Customized CNN-based model 93.30
[38] Pre-trained deep learning models with GAN 85.2

Proposed SWT + (AlexNet, ResNet101, and SqueezeNet) + iChi2 + SVM 99.24
SVM: support vector machine; CNN: convolutional neural network; GAN generative adversarial network; SWT:
stationary wavelet transform; iChi2: iterative chi-square.

This study suggested a robust smart diagnostic tool based on a modern TL frame-
work and iterative feature-selector techniques to rapidly screen and accurately diagnose
COVID-19, healthy individuals and other pneumonia using radiography images. It tested
various TL networks and finally selected three TL architectures (AlexNet, ResNet101, and
SqueezeNet) to generate the most-relevant features from radiography images. Later, it
employed three feature-selection techniques (iNCA, iChi2, and iMRMR) and analyzed their
effects on the proposed deep-learning-based CNN framework, LDA, and SVM classifiers
to classify COVID-19+, other pneumonia, and healthy cases.

For this experimental task, 12,282 radiography images were examined, of which 4094
belonged to COVID-19 infected patients and 4094 belonged to other pneumonia cases,
while the rest pertained to normal patients or healthy humans. Extensive experiments
were performed to ensure that the proposed model scheme generalized well using 10-fold
cross-validation to cater to unseen data and does not perform overfitting or underfitting.
By practicing feature generators (AlexNet, ResNet101, and SqueezeNet) along iChi2 with
SVM, the network achieved an overall accuracy of 99.2% with minimal computational
time. Likewise, combinations of feature generators with iChi2 and CNN also achieved
99.0%. Evidently, the proposed scheme ((AlexNet, ResNet101, SqueezeNet) + iChi2 + SVM)
surpassed prior studies.

Contrary to previously well-established studies that utilized fewer samples of COVID-19
cases for training, this proposed study analyzed 4094 X-ray images labeled as COVID-19
positive and also practiced stationary-wavelet-transform-based data augmentation and
the k-fold validation method to prevent overfitting. Undoubtedly, prior studies adopted
pre-trained networks as a base classifier without implementing any feature generator and
selector technique together. In contrast, this work is composed of various TL-based feature
generators and several iterative feature-selector techniques that eliminates redundant
features and significantly affects the accuracy of the proposed diagnosis decision-making
system. Unlike previous studies, the experimental work of this study showed that selecting
a relatively shallow network even produced optimal results with less computational time
when trained with an augmented data set. Such schemes can be exploited for tasks
discussed in [39,40] to manage health services more efficiently.

5. Conclusions

The recent outbreak of coronavirus disease has severely affected more than 560 million
individuals around the globe, causing more than 6.3 million deaths to date. Besides smart
diagnostic tools, presently, the only standard practiced to identify COVID-19 positive cases
is by taking samples of the respiratory tract through viral nucleic acid testing. In this
paper, we investigated a framework for COVID-19 and other viral/bacterial pneumonia
identification from X-ray images by employing a combination of TL models (AlexNet,
ResNet101, and SqueezeNet) as a feature generator, feature selectors (iNCA, iChi2, iMRMR),
and ML classifiers. The TL networks were helpful for generating the relevant features
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from X-ray images; the features were refined by applying a feature-selection approach
using iNCA, iChi2, and iMRMR. The feature-selection process not only helped identify
highly discriminative features, but it also reduced the processing speed for training the
classifiers by removing unwanted or redundant features. Finally, CNN, LDA, and SVM
were investigated for the detection of COVID- 19-positive cases among viral/bacterial
pneumonia and normal cases. In addition to this, the study exploited stationary wavelet
transform to enhance a limited training dataset by decomposing each training image up
to three levels. Furthermore, it also incorporated random rotation, translation, and shear
to augment the data set by a factor of nine. The results presented in this study indicate
that the proposed scheme can be used as a smart diagnostic tool for the identification and
monitoring of COVID-19 cases, as well as other pneumonia cases, as it achieved an overall
accuracy of 99.24%. The results indicated that using a combination of computer vision
and deep learning techniques on X-ray images of lungs can help with the identification of
COVID-19 cases to reduce the burden on healthcare workers in the time of the pandemic.
In the future, the integration of clinical results along with radiography imaging can be
exploited for the better detection and diagnosis of COVID-19-positive cases, with the
addition of tuberculosis and lung cancer.
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