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Abstract 

The development of resistant varieties is a promising strategy for bacterial spot disease (Xanthomonas 

axonopodis pv. passiflorae-Xap) and passion fruit woodiness disease (PWD; Cowpea aphid-borne mosaic 

virus-CABMV) control in sour passion fruit (Passiflora edulis Sims). This study aimed at evaluating the reaction 

of 12 sour passion fruit half-sib progenies to both mechanically inoculated Xap and CABMV, under protected 

cultivation. The bacterial spot and PWD severity degrees observed reveal the existence of variability within 

progenies. MAR20#2005 and BRS GA1 revealed the lowest bacterial disease severity scores while MAR20#41, 

MAR20#2005, and Rosa Intenso 1 showed the lowest PWD severity scores. MAR20#41 presented the lowest 

disease incidence in all evaluations, demonstrating a slow increase in the number of plants with symptoms over 

time. Also, MAR20#41 stood out as the progeny with the greatest number of plants presenting resistance to 

PWD at the end of the study. Among the progenies selected, MAR20#2005 was the most promising for 

presenting the lowest severity scores for both bacterial spot and PWD.  

Keywords: Cowpea aphid-borne mosaic virus, disease resistance, genetic breeding, Passiflora edulis Sims, 

Xanthomonas axonopodis pv. passiflorae 

1. Introduction 

Bacterial spot disease, caused by Xanthomonas axonopodis pv. passiflorae (Xap), is one of the major disease 

limiting yield in sour passion fruit (Passiflora edulis Sims) orchards. The pathogen infects leaves and fruits, 

causing expressive damage especially in the hot and humid seasons (Junqueira, Sussel, Junqueira, Zacaroni, & 

Braga, 2016). Infection occurs through natural openings and mechanical injuries. In the leaves, the disease starts 

with small, translucent, and soaked lesions which subsequently become necrotic, with a reddish-brown color 

(Peruch, Colariccio, & Schroeder, 2011). In addition, a chlorotic halo may also surround lesions (Junqueira et al., 

2016). As disease severity increase, leaf drop increase, and yield is reduced. Xap may reach the vascular bundles, 

resulting in a systemic invasion of the whole plant, which causes plant drought and death in susceptible cultivars 

(Peruch et al., 2011; Junqueira et al., 2016).  

Also, passion fruit woodiness disease (PWD), caused by Cowpea aphid-borne mosaic virus (CABMV), is the 

most important viral-induced disease of sour passion worldwide (Nascimento et al., 2006). Plants affected with 

PWD have both yield and lifespan reduced. In some regions, the passion fruit cultivation may be unfeasible due 

to the destructive potential of the disease (Carvalho, Lorencetti, & Benin, 2015). Diseased plants produce small, 

woody, and deformed fruits, which became unmarketable. Leaves display severe mosaic, hardening, distortion, 

and puckering due to the different growth rates of the infected tissue (Nascimento et al., 2006).  

The development of resistant passion fruit varieties is a promising strategy for bacterial spot and PWD control. 

Several sour passion fruit genotypes have demonstrated resistance to bacterial spot disease (Viana, Pires, Peixoto, 

Junqueira, & Blum, 2014a), but nowadays, there are no reports on resistant Passiflora edulis genotypes to PWD 

(Santos et al., 2015). Naturally occurring multiple resistance to numerous pathogens have been recorded for a 

few crops (Melo et al., 2008; Neder, Pinto, Melo, Lepre, & Peixouto, 2010; Wisser et al., 2011). However, 

multiple pathogen reaction studies are limited for sour passion fruit (Costa et al., 2018a, 2018b). Most studies 

performed for this crop under protected cultivation are focused on mechanical inoculation of a single pathogen 
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(Fuhrmann et al., 2014; Viana et al., 2014a, 2014b). Nevertheless, reaction to a single disease does not reflect 

what is observed under field conditions, since multiple diseases affect simultaneously the plants under that 

circumstance. In this context, the objective of this study was to evaluate the reaction of 12 sour passion fruit 

half-sib progenies to mechanically inoculated Xap and CABMV, under protected conditions. 

2. Method 

2.1 Site Characteristics 

The experiment was performed under protected cultivation, between January and May 2015, at the Experiment 

Station of the University of Brasilia (UnB; 16o S and 48o W, 1010 m above sea level), located in Brasilia, DF, 

Brazil. The climate of the region is tropical seasonal (Aw) according to the Köppen classification (Alvares, Stape, 

Sentelhas, Gonçalves, & Sparovek, 2013), presenting two well defined seasons: the hot and rainy (October to April) 

and the cold and dry (May to September). The minimum and maximum temperatures registered during the studied 

period were 14 and 30 oC, respectively. Minimum relative humidity of 61% and maximum relative humidity of 

82% were recorded.  

2.2 Plant Material and Disease Evaluations 

The genotypes were developed by UnB and the Brazilian Agricultural Research Corporation (Embrapa) and 

were selected based on disease resistance, fruit quality and yield. The half-sib progenies were obtained and the 

processes of seedling management isolate collection, pathogen inoculation, and disease evaluation were 

performed as described by Costa et al. (2018a).  

The experiment consisted of inoculating with Xap sour passion fruit plants on 30 January 2015, in the wet season, 

followed by inoculation with CABMV on 18 May 2015, in the dry season, on the same plants. Bacteria 

inoculation was performed using the UnB-1392 Xap strain. The inoculation was performed with the aid of four 

needles which were simultaneously immersed in the bacterial suspension (~1 × 106 CFU mL-1) and then used to 

perforate the adaxial leaf surface of three leaves per plant. After inoculation, plants were kept in a humid 

chamber for 72 h. Disease incidence (% plants infected) and disease severity (% total leaf area with necrotic 

lesions) were assessed at 7-day intervals after disease symptoms were first detected. The first of five evaluations 

was performed 12 days after inoculation. A 0 to 5 scale was used for bacterial spot severity assessment, as 

follows: 0—no symptoms; 1—1 to 10% of total leaf area with necrotic lesion; 2—11 to 25% of total leaf area 

with necrotic lesion; 3—26 to 50% of total leaf area with necrotic lesion; 4—more than 50% of total leaf area 

with necrotic lesion; and 5—leaf drop (Costa et al., 2018a). Based on the mean disease severity (DS) scores 

obtained from this scale plants were classified, according to the resistance reaction, as: resistant (R), 0 ≤ DS < 1; 

moderately resistant (MR), 1 ≤ DS < 2; moderately susceptible (MS), 2 ≤ DS < 3; susceptible (S), 3 ≤ DS < 4; 

and highly susceptible (HS), DS ≥ 4 (Viana et al., 2014a). Plants were pruned at the end of the bacterial spot 

disease assessments and fertilized every two weeks with urea (0.1 g plant-1 at each fertilization event), until 

CABMV inoculation.  

The CABMV isolate was collected from sour passion fruit plants at Núcleo Rural Pipiripau, Planaltina, DF. 

Inoculation was mechanically performed in three young leaves per plant by light friction of the adaxial leaf 

surface with a vegetable extract obtained from the maceration of the leaves showing severe symptoms of 

CABMV infection, such as mosaic, leaf deformations, and leaf blade wrinkling. Disease incidence (% of plants 

infected) and disease severity (leaf symptoms) were recorded at a 7-day interval after disease symptoms were 

first detected. The first of five evaluations was performed 21 days after inoculation. A 1 to 4 scale was used for 

PWD severity assessment, as follows: 1—no symptoms; 2—mild mosaic and no leaf deformation; 3—mild 

mosaic, leaf blade wrinkling, and deformation; 4 – severe mosaic, leaf blade wrinkling, and deformation (Viana 

et al., 2014b). Based on the DS obtained from this scale, plants were classified, according to the resistance 

reaction, as: R, 1 ≤ DS ≤ 1.5; MS, 1.5 < DS ≤ 2.5; S, 2.5 < DS ≤ 3.5; HS, 3.5 < DS ≤ 4 (Costa et al., 2018a).  

2.3 Experimental Design and Data Analysis 

The experiment was carried out as a randomized block design with subdivided parcels comprised of 12 

treatments (progenies), four repetitions, six replications per progeny, and five evaluations. Interactions between 

progenies and evaluation date were evaluated by analysis of variance. Disease severity and incidence heritability, 

genetic and environmental coefficient of variation ratio (GCV/ECV), and phenotypic correlations between 

disease severity and incidence were calculated. Correlation intensity was classified as suggested by Carvalho et 

al. (2004): r = 0 (null); 0 < |r| ≤ 0.30 (weak); 0.30 < |r| ≤ 0.60 (medium); 0.60 < |r| ≤ 0.90 (strong); 0.90 < |r| ≤ 1 

(very strong); and |r| = 1 (perfect). The area under the disease progress curve (AUDPC) was calculated as an 

attempt to differentiate progenies regarding their resistance to bacterial spot and PWD using DS score data 
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collected in the five evaluation dates (Campbell & Madden, 1990). All means were grouped by the Scott-Knott´s 

test (P ≤ 0.05) and analyses were performed using Genes software (v. 1990.2017.37). 

3. Results and Discussion 

Bacterial spot severity and incidence assessments did not identify any difference among progenies (P > 0.05). All 

progenies reached scores above 3.0 and were classified as susceptible, according to the mean number obtained 

from the grading scale (Table 1). Despite the lack of difference among progenies, it is important to emphasize 

that MAR20#2005 (3.5) and BRS GA1 (3.6) revealed severity scores 10.3 and 7.7%, respectively, lower than 

FB200 (3.9). Genotype susceptibility was also observed in other studies when a distinct Xap strain (UnB-1393) 

was inoculated on sour passion fruit plants using the same bacterial suspension concentration in the wet (Costa et 

al., 2018a) and dry (Nogueira, 2016; Costa et al., 2018b) seasons. However, lower severity scores and progeny × 

evaluation date interaction were recorded during the dry season both by Nogueira (2016) and Costa et al. (2018b) 

for progenies of the same genotypes evaluated in this study. This information reflects the influence of 

environmental conditions on the response of genotypes to pathogen inoculation. Consequently, it indicates the 

need for performing disease severity evaluations all year long as a strategy for accurate selection of resistant 

materials.  

Differences were verified among evaluations one to four (P ≤ 0.01), indicating an increase in bacterial spot 

severity with time. At the fifth evaluation, disease severity had already achieved its maximum and did not differ 

from the fourth evaluation for any progeny (Table 1).  

 

Table 1. Bacterial spot disease severity (DSE and DS) and resistance reaction (RR) in sour passion fruit 

(Passiflora edulis Sims) mechanically inoculated with Xanthomonas axonopodis pv. passiflorae, in Brasilia, DF, 

Brazil 

Progeny 
Severity at each evaluation date (DSE) 

DS RR 
E1 E2 E3 E4 E5 

FB200 1.0  3.9 4.7  5.0  5.0  3.9 a S 

Rosa Intenso 1 1.0  3.3 4.2  4.7  5.0  3.7 a S 

MAR20#39 1.0  3.7  4.5  4.9  5.0  3.8 a S 

UnB2015-2 1.3  3.5  4.4  4.8  4.9  3.8 a S 

Rosa Intenso 2 1.1  3.2  4.6  4.8  5.0  3.7 a S 

MAR20#41 1.1  3.3  4.4  4.8  4.9  3.7 a S 

MAR20#2005 1.0  2.9  4.2  4.8  4.9  3.5 a S 

Rubi Gigante 2 1.1  3.5  4.4  4.7  4.8  3.7 a S 

MAR20#24 1.1  3.5  4.5  4.7  4.8 3.7 a S 

AR2 1.1  3.3  4.4  4.8  4.9  3.7 a S 

EC-3-0 1.1  3.0  4.4  5.0  5.0 3.7 a S 

BRS GA1 1.0 3.2  4.3  4.7  4.9  3.6 a S 

Mean 1.1 D 3.4 C 4.4 B 4.8 A 4.9 A   

Note. E = Evaluations; DS = Mean severity scores of five evaluations. Different letters indicate a significant 

difference (Scott-Knott´s test, P ≤ 0.05).  

 

Progenies presented high disease incidence early at evaluation one (97.8%). Consequently, differences could 

only be detected between the first two evaluations (P ≤ 0.01). Progenies showed 100.0% disease incidence at 

evaluation two, except for MAR20#24 (98.4%), which achieved 100.0% incidence later during evaluation four 

(Table 2). 
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Table 2. Bacterial spot disease incidence (DIE and DI; %) in sour passion fruit (Passiflora edulis Sims) 

mechanically inoculated with Xanthomonas axonopodis pv. passiflorae, in Brasilia, DF, Brazil 

Progeny 
Incidence at each evaluation date (DIE) 

DI  
E1 E2 E3 E4 E5 

FB200 100.0  100.0  100.0  100.0  100.0  100.0 a 

Rosa Intenso 1 97.1  100.0  100.0  100.0  100.0  99.4 a 

MAR20#39 98.3  100.0  100.0  100.0  100.0  99.7 a 

UnB2015-2 100.0  100.0 100.0  100.0  100.0  100.0 a 

Rosa Intenso 2 98.3  100.0 100.0  100.0  100.0  99.7 a 

MAR20#41 100.0  100.0  100.0  100.0  100.0  100.0 a 

MAR20#2005 95.4  100.0  100.0  100.0 100.0  99.1 a 

Rubi Gigante 2 100.0 100.0  100.0  100.0  100.0  100.0 a 

MAR20#24 94.1  98.4  98.4  100.0  100.0 98.2 a 

AR2 95.8  100.0  100.0  100.0  100.0  99.2 a 

EC-3-0 97.2 100.0  100.0  100.0  100.0  99.4 a 

BRS GA1 97.1  100.0  100.0  100.0  100.0  99.4 a 

Mean 97.8 B 99.9 A 99.9 A 100.0 A 100.0 A  

Note. E = Evaluations; DI = Mean incidence scores of five evaluations. Different letters indicate a significant 

difference (Scott-Knott´s test, P ≤ 0.05). 

 

PWD severity assessments did not identify any difference among progenies (P > 0.05) and they were classified 

as moderately susceptible, in accordance with the mean number obtained from the grading scale (Table 3). These 

findings are corroborated by Nogueira (2016), who also recorded moderate susceptibility of progenies Rosa 

Intenso, MAR20#41, EC-3-0, and BRS GA1 when inoculated with a distinct CABMV isolate (UnB-Fal) in the 

same season of this study. Although no differences were detected, progeny MAR20#41 (1.6) exhibited 30.4% 

less severity while progenies MAR20#2005 (1.9) and Rosa Intenso 1 (1.9) presented 17.4% less severity than 

AR2 (2.3) and MAR20#39 (2.3). These results demonstrate that such plant materials present a slightly greater 

resistance to PWD. After five evaluations, plants presenting resistance to PWD could be observed in all 

progenies. MAR20#41 stood out as the progeny with the greatest number of resistant plants at the end of the 

study (60.0%) This data is supported by Costa et al. (2018b), who recently recorded 63.0% of resistant plants at 

the end of five weeks of evaluation when MAR20#41 was inoculated with the isolate UnB-Fal in a distinct 

season.  

 

Table 3. Passion fruit woodiness disease (PWD) severity (DSE and DS), resistance reaction (RR), and 

percentage of resistant plants (%RP) in sour passion fruit (Passiflora edulis Sims) mechanically inoculated with 

Cowpea aphid-borne mosaic virus (CABMV), in Brasilia, DF, Brazil 

Progeny 
Severity at each evaluation date (DSE) 

DS RR %RP 
E1 E2 E3 E4 E5 

FB200 1.7 1.9 2.1 2.2 2.3 2.0 a MS 15.0 

Rosa Intenso 1 1.4 1.8 2.1 2.2 2.2 1.9 a MS 26.3 

MAR20#39 1.7 2.3 2.3 2.5 2.5 2.3 a MS 23.8 

UnB2015-2 1.6 1.8 2.3 2.5 2.5 2.1 a MS 20.0 

Rosa Intenso 2 1.5 1.7 2.1 2.3 2.3 2.0 a MS 20.0 

MAR20#41 1.2 1.5 1.8 1.9 2.0 1.6 a MS 60.0 

MAR20#2005 1.3 1.7 2.1 2.2 2.1 1.9 a MS 4.6 

Rubi Gigante 2 1.4 2.0 2.3 2.4 2.4 2.1 a MS 13.0 

MAR20#24 1.8 2.1 2.3 2.3 2.4 2.2 a MS 10.5 

AR2 1.9 2.2 2.4 2.5 2.5 2.3 a MS 10.0 

EC-3-0 1.3 1.6 2.2 2.3 2.3 2.0 a MS 16.7 

BRS GA1 1.5 1.9 2.4 2.5 2.6 2.2 a MS 4.4 

Mean 1.5 D 1.9 C 2.2 B 2.3 A 2.4 A    

Note. E = Evaluations; DS = Mean severity scores of five evaluations; %RP = Percentage of resistant plants at 

the end of the study, 49 days after inoculation. Different lowercase letters within columns and uppercase letters 

within rows indicate significant differences (Scott-Knott’s test, P ≤ 0.05).  
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Differentiating genotypes for disease resistance is often found to be difficult since variability to disease 

resistance in sour passion fruit is low (Junqueira, Anjos, Silva, Chaves, & Gomes, 2003). Thus, several studies 

have indicated greater variability for disease resistance within progenies than among progenies (Junqueira et al., 

2003; Fuhrmann et al., 2014; Costa et al., 2018b). In this context, statistical and genetics data become useful 

tools during genotype selection with focus on disease resistance. Therefore, any marginal difference among and 

within progenies is valuable in providing information for resistance selection and must not be disregarded 

(Fuhrmann et al., 2014).  

Despite the influence of environmental conditions, recent studies (Nogueira, 2016; Costa et al., 2018a, 2018b) 

have demonstrated the superior performance of BRS GA1, MAR20#41, MAR20#2005, and Rosa Intenso 

progenies, which have shown lower bacterial spot and PWD severities in both wet and dry seasons or resistant 

plants at the end of a series of evaluations. These results have been used as tools to support and guide continuous 

selection and improvement of promising genotypes which are currently used as parents in intra and interspecific 

crossings. The use of resistant genotypes as parents in interspecific crosses can be considered strategic in the 

introgression of resistance genes into the desired genotypes. Furhmann et al. (2014), for example, recorded high 

resistance to different isolates of X. axonopodis pv. passiflorae in genotypes obtained from crossing the 

commercial P. edulis flavicarpa with the wild species P. setacea and P. caerulea. Similarly, Bellon (2014) 

reported lower disease severity scores in interspecific hybrids than in commercial cultivars when genotypes 

resulting from crossing P. edulis flavicarpa x P. setacea and P. edulis flavicarpa x P. caerulea were tested for 

resistance to PWD. The main objective of our passion fruit breeding program is to accomplish multiple disease 

resistance. Thus, the results here reported indicate the potential of such genotypes in order to achieve this goal 

regarding bacterial spot and PWD. 

An interaction between progenies and evaluation dates was observed for PWD incidence (P ≤ 0.01) (Table 4). 

MAR20#41 presented the lowest disease incidence in all evaluations, demonstrating a slow increase in the 

number of plants with symptoms over time. In contrast, MAR20#2005, EC-3-0, and BRS GA1 exhibited a low 

percentage of plants with symptoms in the first evaluation, but quickly achieved high incidence scores on 

assessment three. Since no immune P. edulis genotype has been detected to date, it is expected that disease 

severity and incidence increase over time, ultimately reaching 100% incidence. Nonetheless, it is likely that 

plants with greater resistance degree could have PWD symptom expression delayed. Hence, along with severity 

assessments, evaluations of PWD incidence over time could be useful in screening for disease resistance in early 

disease development stages.  

 

Table 4. Passion fruit woodiness disease (PWD) incidence (DIE; %) in sour passion fruit (Passiflora edulis Sims) 

mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV), in Brasilia, DF, Brazil 

Progeny 
Incidence at each evaluation date (DIE) 

E1 E2 E3 E4 E5 

FB200 65.0 aA 70.0 aA 80.0 aA 85.0 aA 85.0 aA 

Rosa Intenso 1 44.2 aB 55.4 bB 72.1 aA 72.1 bA 72.1 bA 

MAR20#39 49.6 aB 77.5 aA 77.5 aA 82.5 aA 82.5 aA 

UnB2015-2 46.7 aB 46.7 bB 81.7 aA 86.7 aA 86.7 aA 

Rosa Intenso 2 43.8 aB 47.9 bB 79.2 aA 83.3 aA 83.3 aA 

MAR20#41 15.0 bB 25.0 cB 40.0 bA 55.0 bA 60.0 bA 

MAR20#2005 27.1 bC 54.2 bB 95.8 bA 95.8 aA 95.8 aA 

Rubi Gigante 2 35.0 bB 65.8 aA 86.7 aA 86.7 aA 86.7 aA 

MAR20#24 60.0 aB 81.7 aA 86.7 aA 90.8 aA 95.8 aA 

AR2 62.1 aA 76.3 aA 85.4 aA 85.4 aA 85.4 aA 

EC-3-0 23.3 bB 42.1 bB 85.4 aA 95.8 aA 95.8 aA 

BRS GA1 39.2 bB 55.8 bB 95.8 aA 95.8 aA 95.8 aA 

Note. E = Evaluations; DI = Mean incidence scores of five evaluations. Different lowercase letters within 

columns and uppercase letters within rows indicate significant differences (Scott-Knott’s test, P ≤ 0.05).  

 

Such evaluations are especially important when PWD severity and incidence are positively and strongly 

correlated, as observed in this study (0.83; P ≤ 0.01). Strong correlations between disease severity and incidence 

demonstrate that greater disease incidence is related to higher severity scores. Such correlations have also been 
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reported for PWD and bacterial spot in several studies (Viana et al., 2014b; Nogueira, 2016; Costa et al., 2018b). 

Therefore, such analyses are of great importance during plant selection. Moreover, Costa et al. (2018a) reported 

a contrasting response from progenies regarding bacterial spot and PWD. The authors found that progenies with 

greater resistance to bacterial spot showed greater susceptibility to PWD. Our study evaluated plant response to 

distinct isolates used by those authors when inoculated in the same dates from that experiment. However, no 

correlation was recorded between bacterial spot and PWD when Xap was inoculated before CABMV. Hence, 

further studies are necessary in order to better understand plants response to different diseases and possible 

existing correlations between bacterial spot and PWD.  

Low heritability value was observed for bacterial spot incidence (14.0%); medium magnitude values were 

identified for PWD severity (45.6%) and AUDPC of PWD (39.8%); and high heritability estimate was detected 

for PWD incidence (59.2%). Heritability is a measurement of how much of the phenotypic variation is due to 

genotypic variation (Falconer & Mackay, 1996). It expresses the correlation between phenotype and genotype 

allowing one to understand if the differences detected present a genetic background and if selection will provide 

gains in genetic breeding programs (Silva, Pio Viana, Amaral, Gonçalves, & Reis, 2012). Traits presenting 

medium magnitude of heritability estimates do not entail on inefficient selection. Contrariwise, these traits can 

be improved.  However, gains per cycle will be lower as they will be moderately inherited (Assunção, Krause, 

Dallacort, Santos, & Neves, 2015). 

AUDPC is a useful measurement of disease intensity over time. It entails repeated disease assessments and 

allows for characterization of plant-pathogen-environment interactions (Simko & Piepho, 2012). In this study, 

AUDPC was calculated for disease severity. However, no differences were found among progenies for bacterial 

spot and PWD.  

GCV/ECV was only 0.2 for bacterial spot incidence; 0.5, 0.6, and 0.4 for PWD severity, incidence, and AUDPC, 

respectively. Overall, these data indicate that there is low genetic variability within progenies and/or 

environmental conditions were not favorable for selection since the environmental variance was greater than the 

genotypic variance. High ECV values do not necessarily mean experimental imprecision, since they may 

indicate that the trait under study is of polygenic inheritance and, as a result, is highly affected by the 

environment. In situations like this, the use of more elaborate breeding methods, such as the ones based on 

family performance, are more suitable for obtaining satisfactory gains during selection (Silva et al., 2012). 

4. Conclusion 

The bacterial spot and PWD severity and incidence degrees observed in this study reveal the existence of 

variability within progenies. MAR20#2005 and BRS GA1 stood out as the progenies with the lowest bacterial 

spot severity scores. MAR20#41, MAR20#2005, and Rosa Intenso 1 were selected as the progenies with the 

lowest PWD severity scores. MAR20#41 also exhibited the highest number of plants presenting resistance to the 

PWD at the end of five evaluations. For that reason, MAR20#41 was selected as the most promising progeny to 

be used in the breeding programs with focus on PWD resistance. MAR20#2005 was selected as the most 

promising progeny to be used in breeding programs with emphasis on disease resistance due to its superior 

performance to both bacterial spot and PWD. The selected progenies will be cloned and, again, assessed for 

bacterial spot and PWD resistance at different seasons, providing means of following up with the breeding 

program on disease resistance. 
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