Screening the Cucumber Germplasm Collection for Combining Ability for Yield

Todd C. Wehner^{1,2} and Nischit V. Shetty²

Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

Raymond L. Clark³

U.S. Department of Agriculture Regional Plant Introduction Station, Ames, IA 50011

Additional index words. Cucumis sativus, fruiting, germplasm evaluation, vegetable breeding, fruit number

Abstract. Cucumber (Cucumis sativus L.) plant introduction (PI) accessions from the regional PI station at Ames, Iowa were evaluated in open-field production for singleharvest yield at Clinton, N.C. and Ames, Iowa. Check cultivars and experimental inbreds were also tested for comparison with the PI accessions (the three groups hereafter collectively referred to as cultigens). In order to make the evaluation more uniform for all cultigens regardless of sex expression and fruit size, all were crossed with Gy 14, a gynoecious pickling cucumber inbred used commonly in the production of commercial hybrids. The resulting 761 gynoecious hybrids were tested for early, total, and marketable yield using recommended cultural practices. Results were obtained for 725 cultigens at both locations. Significant differences were observed among cultigens for all traits evaluated. Differences between the two locations were also significant for total yield, corrected total yield, and percentage of early fruit. The interaction of cultigen and location was significant for standardized total yield and standardized corrected total yield. The highest yielding hybrids at both locations were produced using the following cultigens as male (paternal) parents: PI 422185, PI 390253, PI 175120, PI 173889, PI 267087, PI 175686, PI 178888, PI 385967, PI 458851, and PI 171601. The highest and lowest yielding paternal parents from the germplasm screening study were retested, along with check cultigens in a multiple-harvest trial at Clinton, N.C. Cultigens were evaluated directly, rather than as hybrids with Gy 14, and fruit number, fruit weight, and sex expression were recorded. Most cultigens performed as expected for the yield traits in the retest study. The exceptions were 'Wautoma' and PI 339250, which were among the low and high yielders in the first test, but were ranked as medium and low, respectively, in the retest study.

Cucumber is thought to have originated in India (Harlan, 1975), with domestication occurring later throughout Europe. Breeding for yield has been one of the important objectives of many cucumber breeding programs since the 1900s (Wehner, 1989). Yield of pickling cucumber has been improved by incorporating disease resistance into culti-

cultural practices (Cargill et al., 1975). Increased yield has also resulted from improvement of qualitative traits such as gynoecious sex expression and uniform green fruit color (improved percentage of marketable fruit) (Wehner, 1989). However, improvement in yield in recent

vars (Peterson, 1975) and using improved

years has been limited. Additional yield improvement might be achieved by identifying new sources of germplasm for high yield. The cucumber germplasm collection is a good place to find new sources of high yielding cultigens because no previous work has been done on screening the collection for yield. However, measurement of vield in a diverse array of cucumber cultigens can be difficult. Yield is usually measured as fruit number, weight, or value per unit area or per plant. Fruit number was more stable than fruit weight or fruit value for yield measurement in a once-over harvest trial of cucumber (Ells and McSav, 1981) and had a higher heritability (0.17) than fruit weight (0.02) (Smith and Lower, 1978).

Large-plot, multiple-harvest trials in multiple years, locations, seasons, and repli-

cations would be ideal for yield measurement. However, it would be nearly impossible to include >700 cultigens in such trials. Single harvest trials are efficient for yield measurement, but introduce the problem of the optimum time to harvest each plot for maximum yield. Miller and Hughes (1969) reported that harvesting when 14% to 31% of the fruits in a plot were oversized (>51 mm diameter for pickling cucumber and >60 mm diameter for fresh market cucumber) was optimum for maximum value in once-over harvest for 'Piccadilly' and 'Southern Cross' gynoecious hybrids in North Carolina. Chen et al. (1975), using a computer simulation, reported that plots harvested at 10% oversized fruit stage gave an optimum yield for 'Piccadilly' hybrid under North Carolina conditions. Colwell and O'Sullivan (1981) reported that the optimum harvest stage to maximize yield for 'Femcap' and 'Greenstar' gynoecious hybrids occurred when 5% to 15% of the fruit in a plot were oversized.

Small-plot trials are efficient, but plots should not be too small. Yield of cultivars in single-plant hills was poorly correlated with large, replicated plots harvested several times (Wehner, 1986; Wehner and Miller, 1984). In addition, greenhouse evaluation of yield, based on fruit number of single plants, was not correlated (r = 0.09-0.15) with yield in field trials (Nerson et al., 1987). Once-over harvest trials with three replications are optimum for determining which cucumber cultigens should be tested further in multiple-harvest trials (Wehner, 1986; Wehner and Miller, 1984). A plot size of 1.2 m \times 1.5 m was found to be optimum for yield evaluation of pickling cucumber when paraquat (1,1'-dimethyl-4,4'bipyridinium ion) was used to simulate onceover harvest (Swallow and Wehner, 1986). In cucumber, small-plot, single-harvest trials were more efficient than large-plot, multiple-harvest trials (Wehner, 1986, 1989; Wehner and Miller, 1987).

Swallow and Wehner (1989) suggested that maximum information (1/variance) was obtained by allocating test plots of cucumber cultigens over different seasons and years rather than different locations and replications. However, use of locations and replications was less expensive than use of seasons and years. Field evaluation at the Clinton location was more efficient than at three other locations tested in North Carolina (Wehner, 1987a).

The >700 cultigens in the U.S. Dept. of Agriculture (USDA) cucumber germplasm collection range from androecious to monoecious to gynoecious. Thus, measuring yield of a diverse set of cultigens in a single-harvest trial is difficult, even though that method is the most efficient. Some of the cultigens are highly staminate in flowering habit, so will not produce much fruit. Even so, androecious cultigens might have useful genes for yield. For that reason, we crossed each cultigen with Gy 14 to make gynoecious hybrids. In that way, yield of all cultigens from the germplasm collection could be expressed in a gynoecious background with the potential to set fruit at many nodes. By measuring the combining

Received for publication 7 Sept. 1999. Accepted for publication 14 Feb. 2000. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service (NCARS) of the products named, nor criticism of similar ones not mentioned. Research funded in part by a grant from the North Carolina Pickle Producers Association. We gratefully acknowledge the technical assistance of R.R. Horton, Jr. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked *advertisement* solely to indicate this fact.

¹To whom requests for reprints should be addressed. E-mail address: todd_wehner@ncsu.edu

²Professor and Graduate Research Assistant, respectively.

³Research Leader (retired).

Table 1. Fruit yield traits (yield in 1000 fruit/ha)^z for the cucumber germplasm collection tested at two locations for combining ability with Gy 14 (cultigens ranked by standardized corrected total fruit number over both locations).

		В	oth loca	tions				Iow	a				l	North Carol	ina	
		Std.	Corr.	Std. corr.	Early		Std.	Corr.	Std. corr.	Early		Std.	Corr.	Std. corr.	Early	Marketable
Cultigen	Total	total	Total	total	(%)	Total	total	Total	total	(%)	Total	total	Total	total	(%)	(%)
							High yi	elding n	iale parent	s						
PI 422185	91	97	171	167	0						91	97	171	167	0	98
PI 390253	104	119	147	166	39	22	79	39	139	100	131	132	183	175	19	91
PI 175120	87	145	114	160	55	36	151	36	138	100	138	139	192	182	11	93
PI 173889	88	153	104	157	65	41	1/1	41	156	100	135	136	168	159	30	95
PI 26/08/	81	151	80	157	15	44	183	54 29	202	100	118	119	118	112	50 25	99
PI 178888	80 96	149	104	150	58	20 24	103	30	149	100	133	1/15	169	162	20	95
PI 385967	27	120	38	150	100	24	103	38	150	100	145	145	109	102	29	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PI 458851	55	117	92	150	52	37	155	43	159	100	73	78	141	141	4	100
PI 171601	110	123	130	149	44	19	69	39	137	100	140	141	160	153	26	96
Polaris	51	107	63	149	67	25	98	44	162	100	102	125	102	121	0	89
PI 427090	109	110	153	147	7						109	110	153	147	7	77
PI 226461	82	138	101	146	58	34	143	34	132	100	131	132	169	161	16	99
PI 169397	92	148	94	145	68	35	146	38	148	100	149	150	149	143	37	96
PI 171610	74	117	83	145	59	27	114	45	175	100	120	121	120	116	19	97
PI 370019	20	82	37	145	100	20	82	37	145	100						
PI 169380	88	140	91	145	68	32	134	39	152	100	143	145	143	138	36	95
PI 391568	41	113	51	144	70	32	130	47	177	100	59	81	59	78	9	91
PI 370022	37	155	37	143	100	37	155	37	143	100						
PI 1/96/8	49	120	57	141	50	43	186	59	228	100	56	22	56	54	0	100
	70	105	70	100		25	C	heck/Cu	ltivars	100	100	100	100	117	10	00
Regal	78	135	78	126	55	35	148	35	135	100	122	123	122	117	10	99
Gy 4	12	101	19 77	122	59	24	90	42	157	100	104	104	104	110	32 15	97
Carypso Dasher II	76	124	76	113	51	32 28	133	32 28	122	100	113	115	113	110	15	97
Sprint 440	76	109	76	103	31 41	28	109	28	109	100	105	108	105	103	5	95
M 21	71	109	70	103	46	25	102	25	94	74	117	115	117	103	17	97
Gv 5	58	91	62	100	65	20	85	28	108	100	97	97	97	92	30	96
Gy 2	62	103	62	96	62	25	107	25	98	100	99	99	99	94	24	91
SMR 58	53	89	53	84	50	23	96	23	89	100	82	82	82	80	0	96
Sumter	47	87	48	84	52	25	105	26	100	100	69	69	70	67	3	96
Addis	36	79	40	79	50	28	116	28	108	100	43	42	52	50	0	87
Wautoma	32	70	33	72	49	22	92	25	97	90	43	44	43	42	0	100
M 27	46	48	46	47	40	6	13	6	17	100	72	71	72	68	0	96
WI 2757	13	24	16	36	41	8	39	15	67	81	16	14	16	14	0	100
Marketmore	16	34	16	33	42	12	50	12	49	70	20	18	20	18	0	100
							Low yie	elding m	ale parent	\$		• •				
PI 357856	25	45	28	54	45	16	70	23	94	100	30	29	30	28	9	100
PI 183127	21	58	21	54	50	23	100	23	92	100	18	16	18	1/	0	100
PI 458855	30	49 25	42	53 50	52	14	48	14	46	100	50 27	49	60 25	27	3	89 70
Magnolia	32	54	30	51	50	14	40	23		100	32	20 54	33	51	0	79 67
PI 379283	22	43	31	50	0						22	43	31	50	0	100
PI 370447	11	36	14	45	67	12	38	16	53	100	11	32	11	30	Ő	100
PI 183056	12	44	12	44	50	26	108	26	104	100	4	2	4	3	0	100
PI 379284	28	44	28	42	40	16	58	16	55	100	36	35	36	34	0	100
PI 379282	25	36	31	42	40	13	43	13	42	100	32	31	44	42	0	95
PI 432874	22	37	26	39	56	16	53	16	49	100	24	29	31	34	33	83
Stono	12	38	12	38	100	12	38	12	38	100						
Cubit	18	28	18	28	50	15	48	15	45	100	22	9	22	11	0	100
PI 368554	14	23	15	25	35	6	30	7	36	88	20	18	20	18	0	87
PI 357853	6	14	9	25	50	8	24	15	56	100	5	9	5	9	0	100
PI 368559	12	18	13	23	40	11	38	15	57	100	13	100	13	12	10	100
Mean	01	20	05	21	58	24	100	20	100	100	100	100	105	100	15	93
LSD	21	29 26	24	31 20	5 17	9 24	27 17	11	20	9	41	4/	40	4/	20	11
Range	110	141	16/	20 144	100	24 38	172	∠ / 52	211	30	20 166	170	102	183	63	0 80
Range/ISD	6	5	7	5	20	4	6	5	211	3	4	4	4	4	3	7
	0	5	,	5	20	,	0	F	0	5	т	7	т	т	5	,
Cultigen	3 8**	<u>4</u> 9**	3 2**	4 0**	6 1**	⊿**	8**	1' rafi 3**	03 8**	Δ^{**}	3**	2**	3**	2**	3**	3**
Location	42.0**	2 0 ^{NS}	38.9**	2. 2 ^{NS}	210 0**	т	0	5	0	Ŧ	5	-	5	-	5	5
Cult. \times loc.	2.6**	1.8**	2.3**	1.8^{**}	1.7**											

²Data are means of three replications per location.

^{NS, *, **}Nonsignificant or significant at $\hat{P} \le 0.05$ or 0.01 level, respectively.

ability of yield, we would be able to identify cultigens that contributed useful, dominant genes for yield to their hybrid.

A disadvantage of measuring yield of the germplasm collection as combining ability with a gynoecious tester is that cultigens with recessive genes for yield would not perform as well. Therefore, cultigens that rank high in this evaluation of combining ability for yield would be excellent choices for use in a breeding program for yield, but cultigens that do not rank high might also be excellent choices. Therefore, low performers should be retested for yield using methods other than combining ability. In the breeding program at North Carolina State Univ., we intend to measure yield of the cucumber germplasm collection using a threestage process. First, testing of all available cultigens using combining ability with a gynoecious tester in small-plot, single-harvest trials. Second, testing of all available cultigens for yield *per se* in small-plot, single-harvest trials after treating the plants with ethrel (2-chloroethylphosphonic acid) to increase gynoecious sex expression. Third, evaluation of the high-yielding cultigens from the previous two stages using large-plot, multiple-harvest trials in multiple seasons and years. This study deals with the first stage of that process. The objective of this study was to evaluate all available cucumber cultigens for combining ability for yield at two locations using a gynoecious tester. Identification of the highest yielders was followed by a retest of performance *per se* to verify performance for use in yield improvement in breeding programs for commercial cultivars.

Materials and Methods

All experiments were conducted at the Horticultural Crops Research Station, Clinton, N.C., and the Regional Plant Introduction Station, Ames, Iowa. The experiments were

Table 2. Correlations among fruit yield traits for the cucumber germplasm collection tested at two locations.

		Both	locations				Iow	/a				N	North Carolin	na	
	Std.	Corr.	Std. Corr.	Early		Std.	Corr.	Std. Corr.	Early		Std.	Corr.	Std. Corr.	Early	Marketable
Cultigen	total	total	total	(%)	Total	total	total	total	(%)	Total	total	total	total	(%)	(%)
						Bo	th locat	ions							
Total	0.81	0.92	0.73	-0.14	0.44	0.43	0.30	0.31	0.13	0.92	0.91	0.87	0.86	0.44	0.04
Standardized total		0.69	0.86	0.26	0.76	0.77	0.54	0.56	0.16	0.85	0.86	0.78	0.78	0.47	0.12
Corrected total			0.79	-0.27	0.40	0.39	0.39	0.39	0.14	0.77	0.77	0.89	0.89	0.37	0.00
Standardized corrected	total			0.15	0.67	0.66	0.72	0.74	0.17	0.73	0.75	0.81	0.83	0.37	0.06
Early yield (%)					0.17	0.19	0.05	0.08	0.10	0.26	0.26	0.16	0.15	0.63	0.15
							Iowa								
Total						0.99	0.76	0.76	0.17	0.33	0.33	0.32	0.32	0.25	0.14
Standardized total							0.73	0.75	0.16	0.34	0.34	0.32	0.32	0.26	0.15
Corrected total								0.99	0.16	0.18	0.19	0.21	0.22	0.14	0.08
Standardized corrected	total								0.15	0.19	0.21	0.21	0.23	0.16	0.10
Early yield (%)										0.10	0.10	0.12	0.12	0.08	0.04
						Not	rth Card	olina							
Total											0.99	0.91	0.90	0.51	0.05
Standardized total												0.90	0.91	0.49	0.05
Corrected total													0.42	0.02	0.02
Standardized corrected	total													0.16	0.16
Early yield (%)															0.16

Table 3. Mean sandardized corrected yield (1000 fruit/ha) for 761 cucumber cultigens tested at two locations (cultigens ranked by average yield at both locations.

Fruit yieldy Cultigen name Seed sourcez North Carolinaz Iowaz PI 422185 167 Czechoslovakia PI 390253 Japan 175 139 PI 175120 182 India 138 PI 173889 India 159 156 PI 267087 USSR 112 202 PI 175686 Turkey 162 149 PI 178888 Turkey 162 137 PI 385967 150 Kenya PI 458851 USSR 141 159 Turkey 153 137 PI 171601 Polaris NSSL 121 162 PI 427090 P.R. China 147 ---PI 226461 Iran 161 132 PI 169397 Turkey 143 148 PI 171610 Turkey 116 175 PI 370019 India 145 ---PI 169380 138 152 Turkey PI 391568 P.R. China 177 78 143 PI 370022 India ---PI 179678 India 54 228 140 140 PI 401732 Puerto Rico PI 344445 Iran 139 140 PI 169391 Turkey 152 118 PI 174172 Turkey 150 128 PI 342950 Denmark 145 133 PI 280096 USSR 138 139

Table 3. Continued.

		Fruit yield ^y				
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z			
PI 344442	Iran	173	86			
PI 172846	Turkey	149	127			
PI 205995	Sweden	132	146			
PI 263083	P.R. China	122	151			
PI 390953	USSR	88	152			
Ansansky	NSSL	136				
Producer	NSSL	144	127			
PI 354952	Denmark	108	162			
PI 418963	P.R. China	141	127			
PI 308916	USSR	116	151			
PI 288992	Hungary	130	137			
PI 357855	Yugoslavia	103	163			
PI 167134	Turkey	147	118			
PI 175690	Turkey	125	140			
PI 222244	Iran	115	149			
PI 175696	Turkey	132	132			
PI 113334	P.R. China	130	134			
Shamrock Resistant	NSSL	173	91			
PI 183231	Egypt	151	113			
Pixie	NSSL	130	133			
PI 263047	USSR	131	132			
PI 169393	Turkey	127	136			
PI 419108	P.R. China	134	128			
PI 169378	Turkey	135	127			
PI 285605	Poland	133	128			
PI 226510	Iran	125	135			
PI 436648	P.R. China	112	147			
PI 279465	Japan	121	155			

Table 3. Continued.

Table 3. Continued.

		Fruit yield	d ^y		
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z	Cultigen nar	ne Seed source ^z
PI 137844	Iran	146	112	PI 422173	Czechoslovakia
PI 105340 DI 422872	P.R. China P.R. China	129	129	PI 264668	Germany
PI 478365	P R China	123	138	PI 195490 PI 330247	Turkey
PI 175693	Turkev	123	130	PI 196289	India
PI 118279	Brazil	136	121	PI 355052	Israel
PI 181753	Syria	141	116	PI 478367	P.R. China
PI 222243	Iran	127	130	Texas Long	NSSL
PI 360939	Netherlands	105	163	PI 267942	Japan
PI 419010	P.R. China	134	120	PI 169385	Turkey
PI 179676	India	88	168	PI 169403	Turkey
PI 104950 PI 171607	Turkey	130	123	PSI DI 262080	NSSL
PI 466922	USSR	132	123	PI 205080 PI 181010	Suria
PI 206425	Turkey	138	117	PI 478364	PR China
PI 339250	Turkey	151	103	PI 175694	Turkey
PI 169304	Turkey	159	95	PI 284699	Sweden
Long of Keschmet	NSSL	100	136	PI 109484	Turkey
PI 422176	Czechoslovakia	122	133	PI 169328	Turkey
PI 288237	Egypt	125	128	PI 422167	Czechoslovakia
PI 114339	Japan	118	134	PI 264230	France
PI 279408 DI 165400	Japan India	90	130	PI 234517	U.SS.C.
PI 271328	India	117	133	PI 422184 DI 314426	LISSP
PI 271326	India	104	148	PI 188749	Egynt
Snows Pickling	NSSL	111	141	PI 227664	Iran
PI 164951	Turkey	123	128	PI 200815	Burma
PI 422191	Czechoslovakia	148	92	PI 179921	India
Regal	Check ^x	117	135	PI 344349	Turkey
PI 211988	Iran	111	140	PI 181756	Lebanon
PI 275410	Netherlands	118	133	PI 357862	Yugoslavia
PI 432875 PI 171613	P.K. Unina	120	124	PI 1/2852 DI 102407	Turkey
PI 390247	Ianan	125		PI 195497 PI 422177	Czechoslovakia
PI 342951	Denmark	123	126	PI 432892	P.R. China
PI 172843	Turkey	148	101	Sunny South	NSSL
PI 432889	P.R. China	149	87	PI 285607	Poland
PI 271754	Netherlands	127	121	PI 390252	Japan
PI 221440	Afghanistan	117	129	PI 176517	Turkey
PI 432848	P.R. China	132	115	PI 182188	Turkey
PI 326594	Hungary	128	119	PI 169395	Turkey
PI 2/1/33 PI 160308	Turkey	119	120	PI 351139 DI 174177	USSK
PI 177359	Turkey	120	121	PI 339241	Turkey
PI 211982	Iran	118	127	PI 181942	Svria
PI 169392	Turkey	130	115	PI 269481	Pakistan
PI 175683	Turkey	141	104	PI 105263	Turkey
PI 432850	P.R. China	123	122	PI 169401	Turkey
Gy 4	Check ^x	99	157	PI 357841	Yugoslavia
PI 400270	Japan	145	87	PI 451975	Canada
PI 283900 DI 204567	Czecnoslovakia	123	121	PI 137856	Iran
PI 204307 PI 16/810	India	122	122	PI 48/424 DI 175605	P.K. Unina Turkov
PI 172841	Turkey	123	120	PI 267943	Ianan
PI 422168	Czechoslovakia	117	128	PI 176521	Turkey
PI 177364	Iraq	164	79	Calypso	Check ^x
PI 302443	P.R. China	131	112	PI 174167	Turkey
PI 204568	Turkey	119	124	PI 181940	Syria
PI 326597	Hungary	129	114	PI 248778	Iran
PI 174166	Turkey	118	124	PI 285603	Poland
PI 422179	Czechoslovakia	109	157	PI 183677	Turkey
Tiny Dill	NSSL	134	107	PI 137846	Iran
PI 249301 PI 220860	Korea	110	131	PI 13/85/	Chuster NSSI
PI 356809	USSR	130	111	Early Green PI 432865	DR China
PI 458852	USSR	136	98	PI 135345	Afghanistan
PI 285609	Poland	121		PI 264228	France
PI 137836	Iran	142	99	PI 422174	Czechoslovakia
PI 174170	Turkey	125	115	PI 227209	Japan
PI 103049	P.R. China	124	117	PI 267741	Japan
PI 227207	Japan	115	125	PI 164816	India
PI 432894	P.R. China	129	111	PI 419079	P.R. China
PI 176951 DI 262074	Turkey	125	115	PI 137848	Iran
F1 2029/4 PI 165500	India	122	118	PI 109482	D D China
11103309	mana	92	148	PI 092806	P.K. China

Fruit yield^y North Carolina^z

Iowa^z

conducted using recommended horticultural practices (Hughes et al., 1983; Schultheis, 1990). Fertilizer was incorporated before planting at a rate of 90N–39P–74K kg·ha⁻¹, with an additional 34 kg·ha⁻¹ N applied at the vine tip-over stage. Curbit[®] [(ethalfluralin *N*-ethyl-*N*-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine)] was applied for weed control. Irrigation was applied when needed for a total (irrigation plus rainfall) of 25 to 40 mm per week. 'Sumter' pollenizer was planted on the sides of the plots to provide pollen.

Plots were disease free through once-over harvest stage (26 June) when oversized fruit averaged 15% across all the plots in the field. Although the usual index for yield evaluation for testing populations in our breeding pro-

Table 3. Continued.

gram is 10%, we used a 15% index in this study to allow late-flowering cultigens to produce fruit.

Cultural practices. In North Carolina, seeds were planted on raised, shaped beds 1.5 m apart. Plots were 1.2 m $\log \times 1.5$ m wide with 1.2-m alleys at each end. Guard rows were planted on the outside of the field, and at the end of each row. Plots were planted with 14 seeds on 12 May and thinned to a uniform stand of 10 plants per plot on 29 May.

In Iowa, seeds were planted in beds 1.5 m apart. Plots were 6.0 m long and 1.5 m wide with 1.5-m alleys at each end. Guard rows were planted on the outside of the field, and at the end of each row using 'Sumter' as a pollenizer. The plots were planted with 25

seeds on 12 May and thinned to a uniform stand of 20 plants per plot.

Cultigens evaluated. In this experiment, 761 cultigens (746 PI accessions and 15 check cultivars and breeding lines) were evaluated. Accessions designated with a PI number were obtained from the USDA germplasm collection in Ames, Iowa. Cultigens with an NSSL seed source were obtained from the National Seed Storage Laboratory in Fort Collins, Colo. The cultigens originated from 44 different countries. Countries with the most cultigens were Turkey (166), the People's Republic of China (P.R. China) (85), Iran (64), the former Yugoslavia (63), India (47), Japan (44), the former Soviet Union (USSR)(37), the former Czechoslovakia (27), The Netherlands (19), United States (16), and

		Fruit yield	d ^y
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z
PI 483344	Korea	35	192
PI 263046	USSR	105	122
Dasher II	Check ^x	118	109
PI 209064	U.SOhio	104	123
PI 264667	Germany	141	85
PI 414157	U.S.–Ore.	96	125
PI 171602	Turkey	116	110
PI 288238	Egypt	114	113
PI 324239	Sweden	120	106
PI 344434	Iran	109	117
PI 458849	USSR	130	95
PI 285606	Poland	120	106
PI 169384	Turkey	113	
PI 172845	Turkey	127	98
PI 436672	P.R. China	106	122
PI 212233	Japan	110	115
PI 181874	Syria	105	120
PI 356832	Netherlands	108	116
PI 176957	Turkey	109	115
PI 109481	Turkey	113	112
PI 172849	Turkey	108	116
PI 289698	Australia	114	111
PI 422171	Czechoslovakia	96	136
PI 169396	Turkev	100	124
PI 435946	USSR	112	113
PI 171604	Turkey	112	113
PI 167389	Turkey	110	114
PI 174174	Turkey	115	109
PI 263048	USSR	106	117
PI 255938	Netherlands	131	92
PI 209068	U.SOhio	110	113
PI 379278	Yugoslavia	103	125
PI 264665	Germany	109	114
PI 267746	India	116	107
PI 172847	Turkey	117	106
Clinton	N.C. State Univ	110	114
PI 392292	USSR	103	125
PI 176525	Turkev	137	86
PI 422172	Czechoslovakia	97	154
PI 255933	Netherlands	122	100
PI 172848	Turkey	116	105
PI 211977	Iran	110	112
PI 171612	Turkey	116	106
PI 211962	Iran	94	127
PI 344351	Turkey	106	115
Boston Pickling	NSSL	94	136
PI 419183	P.R. China	138	92
PI 263082	P.R. China	113	108
PI 390258	Japan	78	143
PI 308915	USSR	110	111
Robin	NSSI	46	142
PI 178886	Turkey	113	107
	runcy	115	107

		Fruit yield	ly.
Cultigen name	e Seed source ^z	North Carolina ^z	Iowa ^z
PI 279464	Japan	115	105
PI 224668	Korea	80	141
PI 432883	P.R. China	113	107
PI 172844	Turkey	108	112
PI 344353	Turkey	112	108
PI 390259	Japan	83	138
PI 343452	USSR	122	98
PI 169394	Turkey	114	106
PI 271331	India	103	116
PI 137853	Iran	120	99
PI 279463	Japan	107	113
PI 483342	Korea	105	116
PI 182190	Turkey	108	111
PI 436609	P.R. China	113	107
PI 418962	P.R. China	108	111
PI 391570	P.R. China		109
PI 339246	Turkey	126	92
PI 264664	Germany	95	124
PI 175689	Turkey	117	101
PI 344350	Turkey	100	118
PI 321006	Taiwan	113	104
PI 390269	Japan	97	121
PI 355053	Iran	101	117
PI 211978	Iran	132	85
Staygreen	NSSL	101	120
PI 419136	P.R. China	122	96
PI 368548	Yugoslavia	84	145
PI 419017	P.R. China	123	87
PI 182192	Turkey	110	107
PI 137835	Iran	117	100
PI 169388	Turkey	106	112
PI 369717	Poland	111	104
PI 173892	India	95	122
PI 357850	Yugoslavia	115	102
Giant White A	Arnstadt NSSL		108
PI 106063	P.R. China	107	110
PI 390255	Japan	90	127
PI 257494	Iran	112	105
PI 283899	Czechoslovakia	104	112
PI 209065	U.SOhio	107	108
PI 175680	Turkey	107	108
PI 263084	P.R. China	126	90
PR 39	NSSL	69	146
PI 257286	Spain	106	109
PI 432864	P.R. China	80	150
PI 357851	Yugoslavia	98	117
PI 211117	Israel	113	102
PI 211980	Iran	107	108
PI 209069	U.SOhio	95	119
PI 357858	Yugoslavia	113	99
PI 288990	Hungary	90	124
PI 288996	Hungary	116	98

Table 3. Continued.

Table 3. Continued.

		Fruit yiel	ld ^y	
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z	Cultigen name Seed so
PI 288995	Hungary	95	120	PI 321010 Taiwan
PI 376063	Israel	119	89	PI 227208 Japan
PI 171605	Turkey	77	137	PI 357839 Yugoslav
PI 401734	Puerto Rico	123	91	PI 172851 Turkey
PI 288993	Hungary	108	106	PI 269480 Pakista
PI 172838	Turkey	122	92	PI 343451 USSR
PI 432853	P.R. China	108	105	Arlington Wt. Spine NSSL
PI 169319	Turkey	112	101	PI 174164 Turkey
PI 169350	Turkey	110	103	PI 274902 Great Brit
PI 175679	Turkey	117	96	Sprint 440 Check'
PI 172842	Turkey	105	108	PI 137847 Iran
PI 267747	U.S.–Okla.	118	95	PI 264229 France
PI 167197	Turkey	134	79	PI 432861 P.R. Chi
PI 419214	Hong Kong	121	91	PI 173674 Turkey
PI 183224	Egypt	125	88	PI 217644 India
PI 212985	India	107	105	PI 293923 U.S.–S.C
PI 246930	Afghanistan	110	103	PI 164734 India
PI 435947	USSR	89	132	PI 169353 Turkey
PI 267743	P.R. China	98	115	PI 176519 Turkey
PI 167050	Turkey	99	111	PI 344444 Iran
PI 164670	India	83	129	PI 176952 Turkey
PR 27	NSSL	92	120	PI 344439 Iran
PI 264226	France	86	126	PI 204569 Turkey
PI 422198	Czechoslovakia	78	134	PI 176516 Turkey
PI 321007	Taiwan	103	109	PI 183445 India
PI 281448	Korea	99	113	PI 171600 Turkey
PI 489754	P.R. China	124	78	PI 390256 Japan
PI 357842	Yugoslavia	100	111	PI 167198 Turkey
PI 165046	Turkey	114	100	PI 432866 P.R. Chi
Chicago Pickling	NSSL	118	82	PI 169315 Turkey
PI 338235	Turkey	98	113	PI 171611 Turkey
PI 390267	Japan	114	93	PI 293432 Lebano
Nappa 63	NSSL	92	119	PI 326595 Hungar
PI 357852	Yugoslavia	101	110	PI 285608 Poland
PI 211983	Iran	101	110	PI 172840 Turkey
PI 267745	Brazil	88	122	PI 422190 Czechoslov
PI 275412	Netherlands	111	100	PI 228344 Iran
PI 344435	Iran	113	93	National Pickling NSSL
PI 368550	Yugoslavia	78	133	PI 489752 P.R. Chi
PI 211985	Iran	115	95	PI 182189 Turkey
PI 169386	Turkey	110	101	PI 432886 P.R. Chi
PI 206043	Puerto Rico	97	113	PI 458847 USSR
PI 357838	Yugoslavia	73	137	PI 357859 Yugoslay
PI 164952	Turkey	122	88	PI 220790 Afghanist
PI 251520	Iran	100	110	M 21 Check ^x
PI 292010	Israel	100	107	PI 304803 U.SN.Y
PI 432877	P R China	93	129	PI 419041 PR Chi
PI 206954	Turkey	105	12)	PI 192940 P.R. Chi
PI 306179	Poland	98	112	PI 2110/3 Iran
Farliest of All	NSSI	03	112	$\frac{11211945}{211945} \qquad 11an}{\text{PL}482464} \qquad 7 \text{imbabu}$
DI 419064	D.D. China	109	100	Model NSSI
DI 422170	Czechoslovakia	02	117	DI 422188 Czechoslov
DI 257486	D.D. China	102	106	DI 170262 Turkov
PI 237460 DI 160277	P.K. China	105	100	PI 1/9205 TURKey DI 211075 Iron
PI 109577	Turkey	80 110	129	PI 211975 ITall PI 222022 Conside
PI 1/9200	Turkey	110	99	PI 255952 Callada DI 127945 June
PI 262990	Netherlands	110	99	PI 13/845 Iran
PI 3/2898	Netherlands	83	147	PI 169402 Turkey
PI 267197	P.R. China	115	94	PI 339244 Turkey
PI 432870	P.R. China	134	74	PI 163221 India
PI 344067	Turkey	126	82	PI 176953 Turkey
PI 419009	P.R. China	104	105	PI 368556 Yugoslav
PI 171609	Turkey	89	119	PI 344348 Turkey
PI 249550	Iran	99	109	PI 326598 Hungar
Favor II	NSSL	98	110	Gy 5 Check ³
PI 177363	Syria	112	96	PI 356833 Great Brit
PI 226509	Iran	105	103	Palmetto NSSL
PI 432878	P.R. China		104	Straight 8 NSSL
PI 169383	Turkey	120	87	PI 227210 Japan
PI 169382	Turkey	102	105	PI 391573 P.R. Chi
PI 169389	Turkey	112	95	PI 227013 Iran
PI 197086	India	99	108	PI 222782 Iran
PI 229309	Iran	108	99	PI 167079 Turkey
PI 171606	Turkev	109	98	PI 261609 Spain
PI 176522	Turkey	100	105	PI 263079 USSR
PI 339245	Turkev	104	102	PI 267086 USSR

Afghanistan (14). The cultigens designated as checks were tested as the cultigens *per se* (not their F_1 with Gy 14).

The 761 cultigens consisted of PI accessions, obsolete cultivars, current cultivars, and experimental inbreds and hybrids. In order to produce gynoecious hybrids, the cultigens were crossed with Gy 14, a popular, publicly-released, gynoecious pickling cucumber inbred. All crosses were made by hand at the Horticultural Science greenhouses, Raleigh, during the previous year. The hybrids could then be evaluated for yield regardless of sex expression of the male parent. In order to represent each cultigen properly, each hybrid was made up from a mixture of seeds obtained by crossing several plants of each accession with Gy 14.

Traits measured. Data were collected as plot means, and consisted of number of plants

per plot, and number of early, total, and cull fruit per plot in both locations. Early fruit were the number of oversized fruit at harvest (>51 mm diameter for pickles and >60 mm for slicing cucumber). The number of marketable fruit was calculated as total fruit minus culls. Cull fruits were misshapen (crooked or nubbined). Data for marketable fruits were not recorded in Iowa.

Data analysis. The experiment was a randomized complete-block design with 761 cultigens and three replications at two locations. Data were analyzed using GLM and CORR procedures of SAS (SAS Institute, Cary, N.C.). Yield traits were expressed as thousands of fruit/ha for ease of comparison of yield over locations, and with previously published studies.

The data were analyzed using actual yield and corrected yield for both locations. Plots with a stand count (plant number) of <50% of the expected 20 plants were eliminated from the statistical analysis. Plots with stand counts ranging from 50% to 75% were corrected according to Cramer and Wehner (1998), using the formula: corrected yield = (total yield/stand count) \times 20. The corrected yield and total yield were then standardized to a mean of 100 and a sp of 30 (a sp of 30 would give a range of 0 to 200 if individuals were within three sp of the mean) for each location and replication using the STANDARD procedure of SAS. Standardization permitted comparison of cultigens when some plots were missing from locations or replications. The most useful traits are those where the range/LSD is large. If the range/LSD is small (<1), then the best cultigen cannot be statistically separated from the worst cultigen in the test.

Table	3.	Continued
	~ •	Communea

le	3.	Continued.	

Table	3.	Continued.

		Fruit yield	1 ^y	
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z	Ci
PI 211979	Iran	87	111	PI
PI 163214	India	94	103	PI
PI 169352	Turkey	95	102	PI
PI 169400	Turkey	89	108	PI
PI 222987	Iran	94	103	PI
PI 357847	Yugoslavia	94	103	PI
PI 177360	Turkey	101	96	PI
PI 390241	Japan	76	121	PI
PI 169351	Turkey	93	104	PI
PI 288994	Hungary	89	107	Ea
PI 458848	USSR	82	145	PI
PI 379285	Yugoslavia	101	93	PI
PI 222986	Iran	96	100	PI
PI 220791	Afghanistan	87	114	PI
PI 401733	Puerto Rico	76	105	PI
PI 306785	Canada	112	83	PI
PI 436610	P.R. China	116	88	PI
PI 292012	Israel	92	106	PI
PI 414158	U.SHawaii	100	93	PI
PI 458846	USSR	101	91	PI
PI 172839	Turkey	95	99	PI
PI 355055	Iran	99	95	PI
PI 304805	U.SN.Y.	66	128	PI
PI 368558	Yugoslavia	128	66	PI
PI 339248	Turkey	103	91	PI
PI 275411	Netherlands	120	73	PI
PI 255936	Netherlands	100	94	PI
PI 251519	Iran	90	103	PI
PI 292011	Israel	97	96	PI
PI 220171	Afghanistan	103	87	PI
PI 167358	Turkey	110	83	PI
PI 357863	Yugoslavia	103	87	PI
PI 344441	Iran	106	87	PI
PI 174173	Turkey	109	84	PI
PI 277741	Netherlands	108	85	PI
Gy 2	Check ^x	94	98	Y
PI 390952	USSR	104	88	PI
PI 176956	Turkey	94	98	PI
PI 432860	P.R. China	99	92	PI
PI 422186	Czechoslovakia	105	87	PI
PI 222783	Iran	94	98	PI
PI 137839	Iran	85	106	PI
PI 263081	P.R. China	94	97	PI
PI 135123	New Zealand	85	106	PI
PI 200818	Burma	87	105	PI
PI 344347	Turkey	110	81	PI
PI 176524	Turkey	89	101	PI
PI 414159	U.SHawaii	79	111	PI
PI 178884	Turkev	114	75	PI
PI 165506	India	80	110	PI
PI 174160	Turkev	96	94	PI
	Turkey	20	74	11

		Fruit yield	l ^y
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z
1 432862	P.R. China	92	99
PI 419135	P.R. China	110	72
PI 267744	P.R. China	91	98
1 432857	P.R. China	86	103
PI 206955	Turkey	110	79
PI 296387	Iran	67	122
PI 267088	USSR	94	94
1 223437	Afghanistan	89	99
PI 436673	P.R. China	110	79
arly Fortune	NSSL	97	91
PI 326596	Hungary	96	92
PI 357844	Yugoslavia	105	83
T 212599	Afghanistan	107	74
1 390248	Japan	97	87
1 373918	England	89	100
1 357846	Yugoslavia		94
PI 169387	Turkey	98	89
1 390239	Japan	75	121
PI 167043	India	101	86
1 432858	P.R. China	97	90
PI 264666	Germany	94	92
I 169390	Turkey	83	103
PI 167052	Turkey	89	97
PI 264231	France	99	87
PI 164173	India	88	98
PI 344433	Iran	91	95
PI 390251	Japan	41	118
PI 357865	Yugoslavia	107	78
PI 422182	Czechoslovakia	101	84
PI 368551	Yugoslavia	96	87
PI 338234	Turkey	102	83
PI 211984	Iran	85	99
PI 344432	Iran	88	97
PI 211589	Afghanistan	104	81
PI 370448	Yugoslavia	97	84
ork State Pickle	NSSL	94	86
PI 175691	Turkey	104	84
PI 390250	Japan	82	108
PI 227235	Iran	85	99
YI 217946	Pakistan	91	93
PI 255935	Netherlands	113	71
YI 344443	Iran	109	74
PI 321011	Taiwan	96	87
PI 267935	Japan	100	84
PI 319216	Un. Arab. Repub.	101	82
PI 321009	Taiwan	94	88
PI 422181	Czechoslovakia	70	123
PI 165029	Turkey	93	90
YI 164284	India	84	98
PI 135122	New Zealand	81	101
PI 283902	Czechoslovakia	101	81

Table 3. Continued.

Fruit yieldy

Iowa^z

77

81

97

83

81

98 97

74 87

Table 3. Continued.

		Fruit yiel	dy			Fruit yie
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z	Cultigen name	Seed source ^z	North Carolina ^z
PI 222099	Afghanistan	94	88	Everbearing	NSSI	70
PI 204692	Turkey	104	78	PI 357837	Yugoslavia	89
PI 179259	Turkey	115	67	PI 285610	Poland	86
PI 283901	Czechoslovakia	74	108	PI 368557	Yugoslavia	83
PI 279467	Japan	70	112	PI 419078	P.R. China	72
PI 164743	India	90	92	PI 137851	Iran	83
PI 169381	Turkey	78	104	PI 357849	Yugoslavia	72
PI 257487	P.R. China	84	100	PI 458853	USSR	41
PI 163217	India	97	84	PI 432863	P.R. China	80
PI 357868	Yugoslavia	78	102	PI 211967	Iran	79
PI 222985	Iran	84	94	PI 269482	Pakistan	85
PI 35/80/ DI 176054	Y ugoslavia	82	98	PI 432890 DI 422851	P.R. China	91
PI 170934 DI 220780	Afghanistan	07	83	PI 452651 DI 432803	P.R. China P.P. China	86
PI 175681	Turkey	80	100	PI 4326508	P R China	86
PI 432867	P.R. China	92	87	PI 358814	Malaysia	74
PI 285604	Poland	102	77	Muronium	NSSL	78
PI 390265	Japan	76	103	PI 368560	Yugoslavia	68
PI 357857	Yugoslavia	104	79	PI 175950	Turkey	70
PI 458850	ŬSSR	108	80	PI 202801	Syria	81
PI 176924	Turkey	93	86	PI 267742	P.R. China	70
PI 390261	Japan	45	133	PI 175692	Turkey	112
PI 339243	Turkey	68	110	Delicatesse	NSSL	67
PI 390240	Japan	48	151	PI 390954	USSR	79
PI 204690	Turkey	101	77	PI 207476	Afghanistan	90
PI 255937	Netherlands	75	99	PI 176526	Turkey	91
PI 163213	India	89	89	PI 357832	Yugoslavia	110
PI 390262	Japan	101	70	Davis Perfect	NSSL	
PI 390264	Japan Dalam d	65	112	PI 3/258/	Netherlands	88
PI 500180 DI 100275	Poland	07	110	PI 432888 DI 212050	P.K. China	54
PI 109275 DI 368540	Vugoslavia	84	93 80	PI 212039 DI 432850	P P China	32
PI 171608	Turkey	97	80	PI 432639	Rhutan	90
PI 209067	US-Ohio	88		PI 263078	USSR	
PI 357845	Yugoslavia	91	85	Addis	Check ^x	50
PI 458856	USSR	92	83	PI 169334	Turkey	84
PI 271334	India	96	76	PI 206953	Turkey	88
PI 197085	India	72	104	PI 422196	Czechoslovakia	76
PI 422169	Czechoslovakia	63	113	White Wonder	NSSL	56
PI 357836	Yugoslavia	90	87	PI 390245	Japan	47
PI 422200	Czechoslovakia	68	101	PI 279466	Japan	84
PI 209066	U.SOhio	49	125	Delcrow	NSSL	73
PI 176523	Turkey	90	84	MR 200	NSSL	86
PI 288991	Hungary	85	89	PI 357831	Yugoslavia	62
PI 109483	Turkey	73	101	PI 344438	Iran	70
PI 35/834	Yugoslavia	80	94	Shogoin DI 422805	NSSL D.D. China	79
PI 288332	India D.D. China	/8	95	PI 432895	P.R. China	102
PI 4326/9 DI 177261	P.K. Unina Turkov	04	70	PI 197088 Rodlanda	Austrolio	09 47
PI 26/227	France	94	70	PI 390257	Janan	47
PI 2/0562	Thailand	51	123	PI 390266	Japan	40
PI 250147	Pakistan	96	77	PI 163223	India	70
PI 218199	Lebanon	90	83	PI 390260	Japan	56
PI 321008	Taiwan	97	79	PI 344440	Iran	62
PI 391569	P.R. China	95	81	PI 481614	Bhutan	
PI 173893	India	73	95	PI 255934	Netherlands	77
PI 178887	Turkey	89	82	PI 357860	Yugoslavia	73
PI 296120	Egypt	97	75	PI 344352	Turkey	66
PI 357840	Yugoslavia	62	101	PI 390244	Japan	56
PI 220169	Afghanistan	80	92	PI 357830	Yugoslavia	49
PI 338236	Turkey	71	100	PI 222720	Iran	63
PI 261608	Spain	84	87	PI 357864	Yugoslavia	3
PI 197087	India	72	99	Wautoma	Check ^x	42
PI 218036	Iran	100	63	PI 296121	Egypt	52
PI 390246	Japan	54	132	PI 357854	Y ugoslavia	64
r1 181/32 DI 21/425	Syria	108	62 70	PI 203049	USSK DD China	56 10
FI 314423 DI 211086	USSK	89 01	/8	F1 418989 DI 269552	P.K. Unina Vugoslavia	19
SMR 58	Checkx	04 80	00 80	F1 300332 DI 368555	Tugoslavia Vugoslavia	22
PI 2238/1	Philippines	0U Q1	09 77	FI JUOJJJ WS Davis Parfact	NSSI	52 79
PI 478366	P.R. China	92	72	PI 432855	P.R. China	90
Gv 14	Check ^x	86	81	PI 211728	Afghanistan	75
PI 357833	Yugoslavia	62	106	PI 214049	India	65
Sumter	Check ^x	67	100	PI 432885	P.R. China	51
		÷ ·				

Retest. Eight high-yielding and four lowyielding cultigens were retested along with four checks at the Horticultural Crops Experiment Station, Clinton, in 1989. In the retest, the cultigens *per se* were tested rather than their hybrids with Gy 14. Seeds were planted on raised, shaped beds 1.5 m apart. Plots were 1.2 m long \times 1.5 m wide with 1.2-m alleys at each end. The guard rows were planted on the outside of the field, and at the end of each row using 'Sumter' as a monoecious pollinizer.

The experiment was a randomized complete-block design with 16 cultigens and eight replications. Plots were harvested six times (twice each week for 3 weeks) during Spring 1989, number and weight of marketable and cull fruit were recorded. Plant stand and flower count data were taken 3 and 5 weeks after planting. Number of pistillate and staminate nodes at the first five nodes of five plants were counted on each plot. Data were analyzed using the GLM procedure of SAS.

Results and Discussion

The cultigens produced hybrids differing significantly for all the traits evaluated (Table 1). We detected significant differences between the two locations for total yield, corrected total yield, and percentage of early fruit. Cultigen×location interaction was significant (P < 0.01) for all the traits that were evaluated at both locations. The location effect was removed by standardizing the data to form standardized total and standardized corrected total yield.

The traits that were most reliable over both locations were total yield, corrected total yield, standardized total yield, and standardized corrected total yield. Correction for plant stand improved the data by reducing the CV relative to that for corrected total yield. Therefore, data are presented as the standardized corrected total yield for all cultigens over both locations. In the analysis of variance, mean squares for location and cultigen by location interaction were highly significant, so standardized corrected total yields for cultigens were reported for each location, rather than the mean standardized corrected total yields over both locations. This was consistent with the findings of Wehner (1987b) who reported that genotype and environment were important sources of variation for yield in once-over harvest trials.

The cultigen mean square was significant for all traits evaluated, indicating that some cultigens yielded significantly more than others. The corrected yield had a better (smaller) CV, and a better (larger) range/LSD than did total yield. Therefore, we decided to choose corrected total yield over total yield (Table 1). An additional benefit was that corrected total yield took into consideration the differences in plant stand. We decided to present yield as standardized corrected total because it had a better (lower) CV, better (lower) LSD, and a better (higher) range/LSD than did corrected total yield. The other advantage of using standardized corrected total yield was that it permitted comparison of cultigens even when some were missing from some replications.

We observed highly significant differences for location and location by cultigen interaction for percentage of early fruit (Table 1). The percentage of early fruit for Iowa had a mean of 100, a range of 30, and a range/LSD of 3. The percentage of early fruit for North Carolina had a mean of 15, a range of 63, and range/LSD of 3. Marketable yield was recorded only in North Carolina.

In general, correlations between locations for the yield traits were low (Table 2); r values for total yield, standardized total yield, corrected total yield, and standardized corrected total yield were 0.33, 0.34, 0.21, and 0.23, respectively. Although the correlations for standardized corrected total yield were slightly lower than those for total and standardized total yield, standardized corrected yield was more useful because it was corrected for both plant stand and location.

Standardized corrected total yield, which was the only trait reported for the 761 gynoecious hybrids, differed significantly in North Carolina and Iowa (Table 3). Several PI accessions produced high-yielding hybrids with Gy 14. There were 284 cultigens whose hybrids yielded more than the standard check 'Calypso'. Thus, yield might be improved by using the high performing cultigens identified in this study. The highest yielding hybrids at both locations were produced using the following paternal parents: PI 422185, PI 390253, PI 175120, PI 173889, PI 267087, PI 175686, PI 178888, PI 385967, PI 458851, and PI 171601. The highest yielding hybrids at North Carolina were produced using the following paternal parents: PI 175120, PI 390253, PI 344442, 'Shamrock', PI 422185, PI 177364, PI 175686, PI 178888, PI 226461, and PI 173889. The highest yielding hybrids at Iowa were produced using the following paternal parents: PI 179678, PI 267087, PI 483344, PI 391568, PI 171610, PI 432873, PI 422174, PI 179676. PI 360939, and PI 357855.

A majority of the cultigens that were classified as high or low yielders in the germ-

Table	3.	Continued

		Fruit yield	Fruit yield ^y			
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z			
PI 422180	Czechoslovakia	20	117			
PI 206952	Turkey	103	33			
Pacer	Harris-Moran	19	117			
PI 372893	Netherlands	66	70			
PI 379280	Yugoslavia	72	64			
PI 205181	Turkey	50	84			
PI 344437	Iran	86	54			
PI 432896	P.R. China	58	82			
PI 271327	India	40	93			
PI 357843	Yugoslavia	59	72			
PI 481617	Bhutan	-1	99			
PI 279469	Japan	44	86			
PI 212896	India	8	122			
PI 422192	Czechoslovakia	64	66			
PI 379287	Yugoslavia	51	78			
PI 265887	Netherlands	62	67			
PI 489753	P.R. China	68	59			
PI 390268	Japan	55	70			
PI 357869	Yugoslavia	60	65			
PI 432871	P.R. China	49	88			
PI 368553	Yugoslavia	34	89			
PI 357848	Yugoslavia	51	72			
PI 175111	India	43	83			
PI 357835	Yugoslavia	51	65			
PI 175688	Turkey	33	92			
PI 370449	Yugoslavia	49	68			
PI 379281	Yugoslavia	53	61			
PI 390951	ŬSSR	25	99			
PI 357856	Yugoslavia	28	94			

Table 3. Continued.

		Fruit yieldy			
Cultigen name	Seed source ^z	North Carolina ^z	Iowa ^z		
PI 183127	India	17	92		
PI 458855	USSR	57	46		
PI 370450	Yugoslavia	33	80		
Magnolia	NSSL	51			
PI 379283	Yugoslavia	50			
M 27	Check ^x	68	17		
PI 370447	Yugoslavia	30	53		
PI 183056	India	3	104		
PI 379284	Yugoslavia	34	55		
PI 379282	Yugoslavia	42	42		
PI 432874	P.R. China	34	49		
Stono	NSSL		38		
WI 2757	Check ^x	14	67		
Marketmore 76	Check ^x	18	49		
Cubit	NSSL	11	45		
PI 368554	Yugoslavia	18	36		
PI 357853	Yugoslavia	9	56		
PI 368559	Yugoslavia	12	57		
Mean		100	100		
lsd (5%)		47	27		
CV		29	17		
Range		183	172		
Range/LSD		4	6		

^zSome countries listed as the origin of some accessions (e.g., Czechoslovakia, USSR, Yugoslavia) now no longer exist as political units.

^yData are means of three replications.

^xFor the checks, yield was measured *per se*, rather than as combining ability with Gy 14.

Table 4. Fruit yield traits^z for the 17 cultigens retested at Clinton, N.C. (cultigens ranked by total fruit number).

			Total fruit/ha		Fruit		Nodes ^y	
	Seed	Yield	No.	Wt	Marketable	Cull	Pistillate	Staminate
Cultigen	source	class	(1000s)	(Mg)	(%)	(%)	(%)	(%)
PI 169397	Turkey	High	915	67	84	16	6	89
Producer	NSSL	High	662	58	91	9	29	66
Regal	Harris Moran	Check	646	74	91	9	73	21
Poinsett 76	Petoseed	Check	615	66	87	13	37	49
PI 342950	Denmark	High	600	40	90	10	9	86
PI 175696	Turkey	High	586	74	83	17	7	90
Wautoma	USDA-Wisc.	Low	512	45	95	5	1	92
PI 174172	Turkey	High	508	51	86	14	5	87
Wis. SMR 18	Northrup King	Check	484	54	87	13	8	85
PI 178888	Turkey	High	458	49	80	20	7	87
PI 206425	Turkey	High	430	33	94	6	0	90
Pacer	Harris Moran	Low	382	30	91	9	10	77
Marketmore 76	Asgrow Seed	Check	355	21	89	11	1	89
PI 339250	Turkey	High	348	60	81	19	12	84
PI 357853	Yugoslavia	Low	274	25	91	9	0	90
Mean			518	50	88	12	14	79
cv (%)			47	90	7	49	55	1
lsd (5%)			244	17	6	6	8	10
Range			641	53	15	15	73	71
Range/LSD			3	3	3	3	9	7

^zData are means of eight replications.

^yNodes not pistillate or staminate were barren.

plasm screening study ranked as predicted in the retest (Table 4), despite the fact that the retest was conducted using the cultigens *per se* and not combining ability with Gy 14. Two exceptions were 'Wautoma' and PI 339250, which were low or high yielding when crossed with Gy 14 in the germplasm screening, but were ranked at the middle and bottom in the retest study, respectively. Thus, yield of a cultigen tested as a gynoecious hybrid (in the germplasm screening), is similar to yield of the cultigen *per se* with few exceptions

Once-over harvest yield might be improved using the highest yielding cultigens crossed to inbreds such as Gy 14. The top yielding cultigens could also be intercrossed to form a population from which to develop high yielding inbreds. A useful future study would be to screen the germplasm collection using ethrel to convert all cultigens to a gynoecious form for yield testing.

Literature Cited

- Cargill, B.F., D.E. Marshall, and J.H. Levin. 1975. Harvesting cucumbers mechanically. Mich. State Univ. Ext. Bul. 859.
- Chen, L.H., C.H. Miller, and R.S. Sowell. 1975. Simulation models for harvesting of pickling cucumbers. J. Amer. Soc. Hort. Sci. 100:176– 179.
- Colwell, H.T.M. and J. O'Sullivan. 1981. Economics of harvest timing for once over harvesting of cucumbers. J. Amer. Soc. Hort. Sci. 106:163– 167.
- Cramer, C.S. and T.C. Wehner. 1998. Stand correction methods for cucumber fruit yield. Cucurbit Genet. Coop. Rpt. 21:18–20.
- Ells, J.E. and A.E. McSay. 1981. Yield comparisons of pickling cucumber cultivar trials for onceover harvesting. HortScience 16:187–189.
- Harlan, J.R. 1975. Crops and man. Amer. Soc. Agron., Madison, Wis.
- Hughes, G.R., C.W. Averre, and K.A. Sorensen. 1983. Growing pickling cucumbers in North Carolina. N.C. Agr. Ext. Serv. Bul. No. AG-315.

- Miller, C.H. and G.R. Hughes. 1969. Harvest indices for pickling cucumbers in once-over harvest systems. J. Amer. Soc. Hort. Sci. 94:485– 487.
- Nerson, H., H.S. Paris, Z. Karchi, A. Govers, M. Edelstein, and Y. Burger. 1987. Comparison of fruit-set concentration of pickling cucumbers under greenhouse and field conditions. Cucurbit Genet. Coop. Rpt. 10:2–3.
- Peterson, C.E. 1975. Plant introductions in the improvement of vegetable cultivars. HortScience 10:575–579.
- Schultheis, J.R. 1990. Pickling cucumbers. North Carolina State Agr. Ext. Hort. Inform. Leaflet No. 14–A.
- Smith, O.S. and R.L. Lower. 1978. Field plot techniques for selecting increased once-over harvest yields in pickling cucumbers. J. Amer. Soc. Hort. Sci. 103:92–94.
- Swallow, W.H. and T.C. Wehner. 1986. Optimum plot size for measurement of yield in multiple and once over harvest trials of pickling and fresh market cucumbers. Euphytica 35:493– 501.
- Swallow, W.H. and T.C. Wehner. 1989. Optimum allocation of plots to years, seasons, locations, and replications, and its applications to onceover harvest cucumber trials. Euphytica 43:59– 68.
- Wehner, T.C. 1989. Breeding for improved yield in cucumber. Plant Breed. Rev. (ed.) J. Janick. Vol. 6:323–359.
- Wehner, T.C. 1987a. Value of 12 season-location combinations for cucumber yield trials in North Carolina. Cucurbit Genet. Coop. Rpt. 6:38–39.
- Wehner, T.C. 1987b. Genotype–environment interaction for cucumber yield in 23 North Carolina environments. Cucurbit Genet. Coop. Rpt. 10:25–26.
- Wehner, T.C. 1986. Efficiency of three single-harvest tests for evaluation of yield in pickling cucumber. Euphytica 35:493–501.
- Wehner, T.C. and C.H. Miller. 1987. Optimum plant density for multiple-harvest yield of determinate cucumbers. Cucurbit Genet. Coop. Rpt. 10:29–30.
- Wehner, T.C. and C.H. Miller. 1984. Efficiency of single-harvest methods for measurement of yield in fresh-market cucumbers. J. Amer. Soc. Hort. Sci. 109:659–664.
- Wehner, T.C., T.J. Monaco, and A.R. Bonanno. 1984. Chemical defoliation of cucumber vines for simulation of once-over harvest in small-plot yield trials. HortScience 19:671–673.