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Abstract After three decades of computational multibody system (MBS) dynamics, current

research is centered at the development of compact and user-friendly yet computationally

efficient formulations for the analysis of complex MBS. The key to this is a holistic geomet-

ric approach to the kinematics modeling observing that the general motion of rigid bodies

and the relative motion due to technical joints are screw motions. Moreover, screw theory

provides the geometric setting and Lie group theory the analytic foundation for an intu-

itive and compact MBS modeling. The inherent frame invariance of this modeling approach

gives rise to very efficient recursive O(n) algorithms, for which the so-called “spatial op-

erator algebra” is one example, and allows for use of readily available geometric data. In

this paper, three variants for describing the configuration of tree-topology MBS in terms

of relative coordinates, that is, joint variables, are presented: the standard formulation using

body-fixed joint frames, a formulation without joint frames, and a formulation without either

joint or body-fixed reference frames. This allows for describing the MBS kinematics without

introducing joint reference frames and therewith rendering the use of restrictive modeling

convention, such as Denavit–Hartenberg parameters, redundant. Four different definitions

of twists are recalled, and the corresponding recursive expressions are derived. The corre-

sponding Jacobians and their factorization are derived. The aim of this paper is to motivate

the use of Lie group modeling and to provide a review of different formulations for the

kinematics of tree-topology MBS in terms of relative (joint) coordinates from the unifying

perspective of screw and Lie group theory.
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1 Introduction

Computational multibody system (MBS) dynamics aims at mathematical formulations and

efficient computational algorithms for the kinetic analysis of complex mechanical systems.

At the same time the modeling process is supposed to be intuitive and user friendly. More-

over, the efficiency of MBS algorithms and the complexity of the actual modeling process

is largely determined by the way the kinematics is described. This concerns the core issues

of representing rigid body motions and describing the kinematics of technical joints. Both

issues can be addressed with concepts of screw and Lie group theory.

Spatial MBS perform complicated motions, and in general rigid bodies perform screw

motions that form a Lie group. Although the theory of screw motions is well understood,

screw theory has almost completely been ignored for MBS modeling with only a few ex-

ceptions. The latter can be grouped into two classes. The first class uses of the fact that the

velocity of a rigid body is a screw, referred to as the twist. The propagation of twists within

an MBS is thus described as a frame transformation of screw coordinates. This gave rise to

the so-called “spatial vector” formulation introduced in [23, 24] and to the so-called “spa-

tial operator algebra”, which was formalized in [64] and used for O(n) forward dynamics

algorithms, for example, in [25, 32, 33, 38, 63, 65]. Screw notations are also used in the

formulations presented in [5, 36, 37, 74]. Further MBS formulations were reported that use

screw notations uncommon for the MBS community [26]. All these approaches only exploit

the algebraic properties of screws as far as relevant for a compact handling of velocities,

accelerations, wrenches, and inertia. The second class goes one step further by recogniz-

ing that finite motions form the Lie group SE(3) with the screw algebra as its Lie algebra

se(3). Moreover, screw theory provides the geometric setting and Lie group theory the an-

alytic foundation for an intuitive and efficient modeling of rigid body mechanisms. Some

of the first publications reporting Lie group formulations of the kinematics of an open kine-

matic chain are [15, 28, 29] and [19, 20]. In this context the term product of exponentials

(POE) is being used since Brockett used it in [15]. Unfortunately, these publications have

not reached the MBS community, presumably because of the used mathematical concepts

that differ from classical MBS formalisms. The basic concept is the exponential mapping

that determines the finite relative motion of two adjacent bodies connected by a lower pair

joint in terms of a screw associated with the joint. The product of the exponential mappings

for all consecutive joints determines the overall motion of the chain. Within this formula-

tion, twists are naturally represented as screws, and joint motions are described in terms of

screw coordinates.

Motivated by [15], Lie group formulations for MBS dynamics were reported in a few

publications, for example, [44, 46, 56–60]. It should be mentioned that the basic elements

of a screw formulation for MBS dynamics were already presented in [39] but did not receive

due attention.

A crucial feature of these geometric approaches is their frame invariance, which allows

for arbitrary representations of screws and for freely assigning reference frames, which dras-

tically simplify the kinematics modeling and also provide a direct link to CAD models.

Moreover, the POE, and thus the kinematics, can even be formulated without the use of

any joint frame, which basically resembles the “zero reference” formulation reported for

a robotic arm in [27]. On the other hand, classical approaches to the description of joint

kinematics are the Denavit–Hartenberg (DH) [3, 22, 35] (in its different forms) and the

Sheth–Uicker two-frame convention [69]. Such two-frame conventions are used in most of

the current MBS dynamics simulations packages that use relative coordinates. The Lie group

description, on the other hand, not only allows for arbitrary placement of joint frames but

makes them dispensable altogether.
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The benefits of geometric modeling have been recognized already in robotics. Recently,

at least in robotics, the text books [40, 52, 67] have reached a wider audience. Modern ap-

proaches to robotics make extensive use of screw and Lie group theoretical concepts. This

is, also supported by the Universal Robot Description Format (URDF) that is used, for in-

stance, in the Robot Operating System (ROS), rather than DH parameters. In MBS dynamics

the benefits of geometric mechanics are slowly being recognized. Interestingly, this mainly

applies to the modeling of MBS with flexible bodies undergoing large deformations [8, 72].

This is not surprising since geometrically exact formulations require correct modeling of the

finite kinematics of a continua. The displacement field of a Cosserat beam, for instance, is a

proper motion in E3 and thus modeled as motion in SE(3). This is an extension of the origi-

nal work on geometrically exact beams and shells by Simo [70, 71], where the displacement

field is modeled on SO(3) × R3. Another topic where Lie group theory is recently applied

in MBS dynamics is the time integration. To this end, Lie group integration schemes were

modified and applied to MBS models in absolute coordinate formulation [17], where the

motions of individual bodies are described as a general screw motion that are constrained

according to the interconnecting joints. It shall be remarked that, despite the current trend

to emphasize the use of Lie group (basic) concepts, the basics formulations for nonlinear

flexible MBS were already reported by Borri et al. [10–12].

The aim of this paper is to provide a comprehensive summary of the basic concepts for

modeling MBS in terms of relative coordinates using joint screws and to relate them to

existing formulations that are scattered throughout the literature. Without loss of general-

ity the concepts are introduced for a kinematic chain within an MBS with arbitrary topol-

ogy [34, 45]. It is also the aim to show that MBS can be modeled in a user-friendly way

without having to follow restrictive modeling conventions and that this gives rise to O(n)

formulations. The latter are not the topic of this paper.

The paper is organized as follows. In Sect. 2, the MBS configuration is described in terms

of joint variables, used as generalized coordinates, with the joint geometry parameterized by

joint screw coordinates. This classical approach of using body-fixed joint frames to describe

relative configurations is extended to a formulation that does not involve joint frames. The

corresponding relations for the MBS velocity are derived in Sect. 3. A formulation is intro-

duced for each of the four different definitions of rigid body twists found in the literature.

The latter are called the body-fixed, spatial, hybrid, and mixed twists. They differ by the ref-

erence point used to measure the velocity and by the frame in which the angular and transla-

tional velocities are resolved. The different twist representations are introduced in Sect. A.2.

Recursive relations for the respective Jacobians are derived, and the computational aspects

are discussed with emphasize on their decomposition. The presented formulation allows for

an efficient modeling of the MBS kinematics in terms of readily available geometric data.

Throughout the paper, only a few basic concepts from Lie group theory are required, which

are summarized in Appendix A. The used nomenclature is summarized in Appendix B.

As for all Lie group formulations, the biggest hurdle for a reader (who may be already

be familiar with MBS formulations) is the notation. The reader not familiar with screws and

Lie group modeling may want to consult Sect. A.1 before reading Sect. 2 and Sect. A.2

before reading Sect. 3. This paper is aimed to provide a reference and cannot replace an

introductory textbook like [40, 52, 67]. A beginner is recommended to consult [40]. Yet

there is no text book that treats the topic from an MBS perspective. Readers not interested

in the derivations could simply use the main relations that are displayed with a black bor-

der.
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Table 1 n-dimensional motion subgroups of SE(3)

n Subgroup Motion

1 R 1-dim. translation along some axis

1 SO(2) 1-dim. rotation about arbitrary fixed axis

1 Hp screw motion about arbitrary axis with finite pitch

2 R2 2-dim. planar translation

2 SO(2)⋉R translation along arbitrary axis & rotation along this axis

3 R3 spatial translations

3 SO(3) spatial rotations about arbitrary fixed point

3 Hp ⋉R2 translation in a plane + screw motion ⊥ to this plane (pitch h)

3 SO(2)⋉R2 = SE(2) planar motions

4 SO(2)⋉R3 = SE(2)⋉R spatial translations + rotation about axis with fixed orientation
(Schönflies motion)

6 SE(3) spatial motion

2 Configuration of a kinematic chain

In this section the kinematics modeling using joint screw coordinates is presented. For sim-

plicity, a single open kinematic chain is considered comprising n moving bodies intercon-

nected by n 1-DOF lower pair joints. To simplify the formulation, but without loosing gen-

erality, higher-DOF joints are modeled as combination of 1-DOF lower pair joints. Bodies

and joints are labeled with the same indices i = 1, . . . , n, whereas the ground is indexed

with 0. With the sequential numbering of bodies and joints of the kinematic chain, joint i

connects body i to its predecessor body i − 1. A body-fixed reference frame (BFR) Fi is

attached to body i of the MBS. The body is then kinematically represented by this BFR.

2.1 Joint kinematics

It has been the standard approach in MBS modeling to represent higher-DOF joints by com-

bination of 1-DOF lower pair joints, that is, using either revolute, prismatic, or screw joints.

This will be adopted in the following although this is not the way in which MBS models

are implemented in practice, but it simplifies the introduction of the presented approach

without compromising its generality. The justification of this approach is that most techni-

cal joints are so-called lower kinematic pairs (also called Reuleaux pairs) characterized by

surface contact [61, 62], that is, they are the mechanical generators of motion subgroups of

SE(3) [67]. However, not all motion subgroups are generated by lower pairs. The 10 sub-

groups are listed in Table 1. So-called “macro joints” are frequently used in MBS modeling

to generate motion subgroups by combination of lower pairs. Table 2 shows the correspon-

dence of motion subgroups with lower pairs and macro joints. Missing in this list are joints

relevant for MBS modeling such as universal/hook and constant velocity joints since they

are not lower kinematic pairs. They can be modeled by combination of lower pair joints.

The classical approach to describe joint kinematics is to introduce an additional pair of

body-fixed joint frames (JFR) for each joint (Fig. 1) [74]. Denote by Ji−1,i the JFR for joint

i on body i − 1 and by Ji,i the JFR on body i. The relative motion of adjacent bodies is

represented by the frame transformation between the respective JFRs that can be described

in terms of screw coordinates (Sect. A.1).
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Table 2 Mechanical generators of the n-dimensional subgroups of SE(3). A motion subgroup can be gener-
ated by a lower pair or by a “macro joint”, i.e., a combination of joints with smaller DOF

n Subgroup Lower pair Macro joint

1 R Prismatic joint ×
1 SO(2) Revolute joint ×
1 Hp Screw joint ×
2 R2 × combination of two nonparallel prismatic joints

2 SO(2)⋉R Cylindrical joint ×
3 R3 × combination of three nonparallel prismatic joints

3 SO(3) Spherical joint ×
3 Hp ⋉R2 × planar joint + screw joint with axis normal to plane

3 SO(2)⋉R2 = SE(2) Planar joint ×
4 SO(2)⋉R3 = SE(2)⋉R × planar joint + prismatic joint with axis normal to plane

6 SE(3) × “free joint”

Fig. 1 Description of the
kinematics of joint i connecting
body i with its predecessor body
i − 1. A body-fixed JFR Ji,i is
introduced on body i, and
Ji−1,i , on body i − 1,
respectively. A revolute joint is
shown as an example

Lower pair 1-DOF joints restrict the interconnected bodies so to perform screw motions

with a certain pitch h. Revolute joints have pitch h = 0, and prismatic joints have pitch

h = ∞, whereas proper screw joints have a nonzero finite pitch. Denote by

i−1Zi =
(

i−1ei
i−1zi × i−1ei + i−1eihi

)
(1)

the unit screw coordinate vector of joint i expressed in the JFR Ji−1,i on body i − 1, where
i−1zi is the position vector of a point on the joint axis measured in the JFR Ji−1,i , and i−1ei

is the unit vector along the joint axis resolved in JFR Ji−1,i .

Assumption 1 It is assumed throughout the paper that the two JFRs coincide in the refer-

ence configuration qi = 0. This assumption can be easily relaxed if required.

Denote with qi the joint variable (angle, translation). With Assumption 1, the configu-

ration of the JFR Ji,i on body i relative to the JFR Ji−1,i on body i − 1 is given by the

exponential in (69) as Di(qi) := exp(i−1Ziqi).
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Fig. 2 Definition of body-fixed RFR Fi and JFR Ji,i and Ji−1,i for joint i

Remark 1 It is a common practice to locate the JFRs with their origins at the joint axis (as

in Fig. 2), so that z = 0. Then the joint screw coordinates for the three types of 1-DOF joints

are

Zrevolute =
(

e

0

)
, Zscrew =

(
e

eh

)
, Zprismatic =

(
0

e

)
. (2)

2.2 Recursive kinematics using body-fixed joint frames

The absolute configuration of body i, that is, the configuration of its BFR Fi relative to the

inertial frame (IFR) F0 is represented by Ci ∈ SE(3). The relative configuration of body i

relative to body i −1 is Ci−1,i := C−1
i−1Ci . The configuration of a rigid body in the kinematic

chain can be determined recursively by successive combination of the relative configurations

of adjacent bodies as Ci = C0,1C1,2 · · ·Ci−1,i .

For joint i, denote by Si−1,i the constant transformation from JFR Ji−1,i to the RFR

Fi−1 on body i − 1, and by Si,i the constant transformation from JFR Ji,i to the RFR Fi

on body i (Fig. 2). Then the relative configuration is Ci−1,i = Si−1,iDi(qi)S
−1
i,i . Denote by

q ∈ Vn the vector of joint variables that serve as generalized coordinates of the MBS. The

joint space manifold is Vn =RnP ×TnR for an MBS model comprising nP prismatic and nR

revolute/screw joints (nP + nR = n).

The absolute configuration (i.e. relative to the IFR) of body i in the chain is

Ci(q) = S0,1D1(q1)S
−1
1,1 · S1,2D2(q2)S

−1
2,2 · . . . · Si−1,iDi(qi)S

−1
i,i . (3)

This formulation requires the following modeling steps:

– Introduction of body-fixed JFR Ji,i at body i with relative configuration Si,i ;

– Introduction of body-fixed JFR Ji−1,i at body i − 1 with relative configurations Si−1,i ;

– The screw coordinate vector i−1Zi of joint i represented in JFR Ji−1,i at body i − 1.

Expression (3) is the standard MBS formulation for the kinematics of an open chain in

terms of relative coordinates, that is, joint angles or translations. For 1-DOF joints, the JFR

is usually oriented so that its 3-axis points along the joint axis (as in Fig. 2). Then the screw
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coordinates are i−1Zi = (0,0,1− si,0,0, si +hi(1− si))
T , where si = 1 for prismatic joint,

and si = 0 for a screw joint with finite pitch hi (for revolute joints, hi = 0).

Remark 2 The matrix Ci is used to represent the configuration of body i; hence the sym-

bol. Frequently, the symbol Ti is used [40, 74], which refers to the fact that these matrices

describe the transformation of point coordinates (Sect. A.1).

Remark 3 It is important to emphasize that the Lie group formulation (3) is merely another

approach to the standard matrix formulation of MBS kinematics aiming at compact expres-

sions that simplify the implementation without compromising the efficiency. It also includes

various conventions used to describe the joint kinematics. An excellent overview of classi-

cal matrix methods (also with emphasis on how they can be employed for synthesis) can

be found in [74]. For instance, Si−1,i and Si,i can be parameterized in terms of the constant

part of the Denavit–Hartenberg (DH) parameters [74]. Formulation (3) in particular resem-

bles the Sheth–Uicker convention (which was introduced to eliminate the ambiguity of the

DH parameters) [69, 74]. In that notation the matrices Si−1,i and Si,i are called the shape

matrices of joint i. However, the Sheth–Uicker convention still presumes certain alignment

of joint axes. For example, a revolute axis is supposed to be parallel to the 3-axis of the

JFRs. A recent discussion of these notations can be found in [9]. An expression similar to

(3) was also presented in [54], where no restriction on the joint axis is imposed. A recursive

formulation of the MBS motion equations using homogeneous transformation matrices was

also presented in [36, 37].

Remark 4 (Multi-DOF joints) The description for 1-DOF joints in terms of a screw co-

ordinate vector Zi can be generalized to joints with more than one DOF. For a joint with

DOF ν, the relative configuration of the JFRs can alternatively be described in terms

of ν joint variables qi1 , . . . , qiν by Di(qi1 , . . . , qiν ) := exp(i−1Zi1qi1 + · · · + i−1Ziν qiν ) or

Di(qi1 , . . . , qiν ) := exp(i−1Zi1qi1) · . . . ·exp(i−1Ziν qiν ). For a spherical joint, for instance, the

variables in the first form are the components of the rotation axis times angle in (64), and in

the second form, these are three angles corresponding to the order of 1-DOF rotations (e.g.

Euler-angles). For lower pair joints, in the first case, qi1 , . . . , qiν are canonical coordinates

of the first kind on the joint motion subgroup, and in the second case, they are canonical

coordinates of the second kind [52]. The Zi1 , . . . ,Ziν form a basis on the subalgebra of the

motion subgroup generated by the joint.

2.3 Recursive kinematics without body-fixed joint frames

The introduction of joint frames is a tedious step within the MBS kinematics modeling.

Moreover, it is desirable to minimize the data required to formulate the kinematic relations.

In this regard the frame invariance of screws is beneficial.

The two constant transformations from the JFR to the BFR on the respective body can

be summarized using (76) as

Ci−1,i(qi) = Si−1,iDi(qi)S
−1
i,i = Si−1,1S−1

i,i Si,iDi(qi)S
−1
i,i = Bi exp

(
iXiqi

)
, (4)

so that the relative configuration splits into only one constant and a variable part. The con-

stant part Bi := Si−1,iS
−1
i,i = Ci−1,i(0) is the reference configuration of body i with respect

to body i − 1 when qi = 0. The variable part is now given in terms of the constant screw
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Fig. 3 Description of the kinematics of joint i without body-fixed JFRs in the zero-reference relative config-
uration with qi = 0. The vector xi is used when the joint screw coordinates are represented in the BFR Fi on
body i, and x̄i−1,i is used when the joint screw coordinates are represented in the BFR Fi−1 on body i − 1

coordinate vector of joint i represented in BFR Fi :

iXi = AdSi,i

i−1Zi =
(

iei
ixi,i × iei + hi

iei

)
. (5)

The matrix AdSi,i
defined in (73) transforms screw coordinates represented in Ji,i−1 to those

represented in Fi according to their relative configuration described by Si,i .

As indicated in Fig. 3, here iei is the unit vector along the axis of joint i resolved in

the BFR Fi , and ixi,i is the position vector of a point on the axis of joint i, measured and

resolved in Fi . This is indeed the same screw as in (1) but expressed in the BFR on body i.

The joint screw can alternatively be represented in Fi−1. Then

Ci−1,i(qi) = Si,i−1Di(qi)S
−1
i,i = Si,i−1Di(qi)S

−1
i,i−1Si,i−1S−1

i,i = exp
(
i−1X̄iqi

)
Bi (6)

with the joint screw coordinate vector

i−1X̄i = AdSi−1,i

i−1Zi = AdBi

iXi =
(

i−1ei
i−1x̄i−1,i × i−1ei + i−1eihi

)
, (7)

now expressed in the BFR Fi−1 at body i − 1, where i−1x̄i−1,i is the position vector of a

point on the axis of joint i measured in Fi−1.

Successive combination of the relative configurations yields

Ci(q) = B1 exp
(

1X1q1

)
· B2 exp

(
2X2q2

)
· . . . · Bi exp

(
iXiqi

)

= exp
(

0X̄1q1

)
B1 · exp

(
1X̄2q2

)
B2 · . . . · exp

(
i−1X̄iqi

)
Bi . (8)

The first form of (8) was reported [60], and both forms in [56, 57]. It will be called the

body-fixed Product-of-Exponentials (POE) formula in body-fixed description since the joint

kinematics is expressed by exponentials of joint screws. It seems to be more convenient to

work with the screw coordinates iXi . Also in [5], two variants of the kinematic description

of a serial chain were presented using a BFR on body i − 1 or i, respectively.



Screw theory in MBS kinematics 45

Fig. 4 Description of the kinematics of joint i with respect to the spatial IFR in the zero-reference configu-
ration with q = 0

In summary, this body-fixed POE formulation does not require introduction of JFRs. It

only requires the following readily available information:

– The relative reference configuration Bi of the adjacent bodies connected by joint i for

qi = 0;

– The screw coordinates iXi of joint i represented in the BFR Fi at body i, or alternatively

the screw coordinates i−1X̄i represented in the BFR Fi−1 at body i − 1.

The form (8) simplifies the expression for the joint kinematics. Its main advantage is that

it only involves the reference configuration Bi of BFRs.

2.4 Recursive kinematics without body-fixed joint frames and screw coordinates

Thanks to the frame invariance, the joint screw coordinates can even be described in the

spatial IFR, that is, without reference to any body-fixed frames. To this end, (8) is written as

Ci(q) = B1 exp
(

1X1q1

)
B−1

1

· B1B2 exp
(

2X2q2

)
B−1

2 B−1
1

· . . . · B1 · · ·Bi exp
(
iXiqi

)
B−1

i · · ·B−1
1 B1 · · ·Bi . (9)

Relation (76) yields B exp(qX̂)B−1 = exp(qBX̂B−1) = exp(qAdBX), so that

Ci(q) = exp(Y1q1) · exp(Y2q2) · . . . · exp(Yiqi)Ai . (10)

Here

Ai := B1 · · ·Bi = Ci(0) =
(

Ri(0) ri(0)

0 1

)
(11)

is the absolute reference configuration (i.e. relative to IFR) of body i, and

Yj = AdAj

j Xj =
(

ej

yj × ej + hj ej

)
(12)
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Fig. 5 Model of the RCM
mechanism disclosed in [77]. The
model was create with the MBS
tool Alaska

is the screw coordinate vector of joint j represented in the IFR F0 in the reference con-

figuration with q = 0 (Fig. 4). The direction unit vector ej and the position vector yj of a

point on the joint axis are expressed in the IFR F0 (the leading superscript “0” omitted). The

transformation (12) relates the body-fixed to the spatial representation of joint screw in the

reference configuration. The product of the exp mappings in (10) describes the motion of

an RFR on body i, which at q = 0 coincides with the IFR relative to the IFR. The relation

to the actual BFR is achieved by the subsequent transformation Ai . Such a “zero reference”

formulation has been first reported by Gupta [27] in terms of frame transformation matrices

and was latter introduced by Brockett [15] as the POE formula for robotic manipulators.

Formulation (10) was then used in [16] for MBS modeling. It should be remarked that in

the classical literature on screws, the spatial representation of a screw is denoted by the

symbol “$” [31, 66].

All data required for this spatial POE formulation is represented in the spatial IFR:

– Absolute reference configurations Ai = Ci(0), that is, the reference configuration of body

i with respect to the IFR F0 for q = 0.

– Joint screw coordinates Yi ≡ 0Y0
i in spatial representations, that is, measured and resolved

in the IFR F0 for q = 0.

The result (10) is remarkable since it allows for formulating the MBS kinematics without

body-fixed joint frames. From a modeling perspective this has proven very useful since no

joint transformations Si,i,Si−1,i or Bi are needed. Only the absolute reference configura-

tions Ai with respect to the IFR and the reference screw coordinates (12), that is, ei and pi ,

resolved in the IFR, are required. This is in particular advantageous when processing CAD

data. Moreover, if in the reference (construction) configuration the RFR of the bodies coin-

cide with the IFR (global CAD reference system), that is, all parts are designed with respect

to the same RFR, then Ai = I and Yj = j Xj .

2.5 Example

Figure 5 shows a surgical device that consists of a robot arm and a remote center of motion

(RCM) mechanism. This was disclosed in the patent [77]. The robot arm consisting of bodies

1, 2, 3 is used to position the RCM mechanism consisting of bodies 4 and 5. The surgical

instrument is mounted in the socket at the remote end of body 5. The axes of joints 4 and 5

and of the instrument intersect at one point. This allows the instrument to freely pivot around

an incision point.

The reference configuration is shown in Fig. 5. The IFR is located at the base of the mech-

anism. The joint screw coordinates in spatial representation are determined by the geometric
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Fig. 6 Description of the geometry of the RCM mechanism

parameters shown in Fig. 6. The position vectors yi and unit vectors ei in (12) are

y1 = (0,0,0)T , y2 = (−d2,0,0)T , y3 = (d3,0,0)T , y4 = (d4,0, h4)
T ,

y5 = (d5,0,0)T , e1 = e2 = e3 = e5 = (0,0,1)T , e4 = (−(1/
√

2,0,1/
√

2)T .

Since any point on the joint axes can be used, the 3-components in yi , i = 1,2,3,5, are set

to zero. An arbitrary point on the axis of joint 4 is chosen as indicated. Thus the joint screw

coordinates (12) are

Y1 = (0,0,1,0,0,0)T , Y2 =
(
{0,0,1,0, d2,0

)T
, Y3 = (0,0,1,0,−d3,0)T ,

Y4 = (−1
√

2,0,1/
√

2,0,−d4/
√

2 − h4/
√

2,0)T , Y5 = (0,0,1,0,−d5,0)T .

The reference configurations (11) of the bodies are determined by

R1(0) = R2(0) = R3(0) = R5(0) = I, R4(0) =

⎛
⎝

1/
√

2 0 −1/
√

2

0 1 0

1/
√

2 0 1/
√

2

⎞
⎠ ,

r1(0) = (−x1,0, z1)
T , r2(0) = (−x2,0,−z2)

T , r3(0) = (x3,0, z3)
T ,

r4(0) = (x4,0, z4)
T , r5(0) = (x5,0, z5)

T .

Therewith the configuration of all bodies are determined by the POE (10). For instance,

C3(q) =

⎛
⎜⎜⎝

c123 −s123 0 −d2c1 + (d2 + d3)c12 + (x3 − d3)c123

s123 c123 0 −d2s1 + (d2 + d3)s12 + (x3 − d3)s123

0 0 1 z3

0 0 0 1

⎞
⎟⎟⎠
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Fig. 7 Description of the instantaneous kinematics of a kinematic chain

with c123 := cos(q1 + q2 + q3) etc. The expressions for C4(q) and C5(q) are rather compli-

cated and are omitted here.

Instead of deducing them from the geometry in Fig. 6, the body-fixed representation of

the joint screw coordinates can be determined by relation (12). This yields

1X1 = (0,0,1,0,−x1,0)T , 2X2 = (0,0,1,0, d2 − x2,0)T ,

3X3 = (0,0,1,0,−d3 + x3,0)T ,

4X4 = (0,0,1,0,−d4/
√

2 − h4/
√

2 + x4/
√

2 + z4/
√

2,0)T ,

5X5 = (0,0,1,0,−d5 + x5,0)T .

This example shows the simplicity of the approach.

3 Velocity of a kinematic chain

In this section, recursive relations are derived for the four forms of twists introduced in

Sect. A.2, namely the body-fixed, spatial, hybrid, and mixed twists [18].

3.1 Body-fixed representation of rigid body twists

3.1.1 Body-fixed twists

The body-fixed twist of body i, denoted Vb
i = (ωb

i ,vb
i )

T , is the aggregate of the angular

velocity ωb
i := iωi of its BFR and the translational velocity vb

i := ivi of its origin relative to

the IFR (Sect. A.2). The twist of body i in a kinematic chain is the sum of twists of the joints

connecting it to the ground. Represented (measured and resolved) in its BFR Fi (Fig. 7), this

is

Vb
i = q̇1

(
ie1

ibi,1 × ie1 + ie1h1

)
+ q̇2

(
ie2

ibi,2 × ie2 + ie2h2

)
+ · · · + q̇i

(
iei

ibi,i × iei + ieihi

)
.

(13)
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Here ibi,j is the instantaneous position vector of a point on the axis of joint j measured in

the BFR Fi , and iej is the unit vector along the axis resolved in the BFR. The instantaneous

joint screw coordinates in (13) are configuration dependent and related to the joint screws

(5) and (12) (deduced from reference configuration) by a frame transformation.

3.1.2 Body-fixed Jacobian and recursive relations

The body-fixed twist is determined by (80) in terms of the configuration C(t). Using (4) and

(77), from Ci = Ci−1Ci−1,i there follows the recursive relation (notice that C−1
i−1,i = Ci,i−1 =

C−1
i Ci−1)

Vb
i = AdCi,i−1

Vb
i−1 + iXi q̇i = Ad−1

Bi exp(iXiqi )
Vb

i−1 + iXi q̇i . (14)

The frame transformations due to the relative motions Ci,i−1 of adjacent bodies propagate

the twists within the kinematic chain. The first term on the right-hand side of (14) is the twist

of body i − 1 represented in the BFR Fi on body i, and the second term is the additional

contribution from joint i.

The configuration Ci of body i depends on the joint variables qj , j ≤ i. The body-fixed

twist (80) can thus be expressed as V̂b
i = ∑

j≤i Ĵb
i,j q̇j where Ĵb

i,j := C−1
i

∂

∂qj Ci . The POE (8),

together with (77) and (76), yields

C−1
i

∂

∂qj

Ci

= exp
(
−iX̂iqi

)
B−1

i · · · exp
(
−j+1X̂j+1qj+1

)
B−1

j+1
j X̂j exp

(
j+1X̂j+1qj+1

)
· · · exp

(
iX̂iqi

)

= C−1
i Cj

j X̂j C−1
j Ci = AdCi,j

(
j X̂j

)
, j ≤ i. (15)

Using (12), this yields the following relations:

Jb
i,j = AdCi,j

j Xj

= Ad
Ci,j A−1

j
Yj

= AdCi,j Sj,j

j−1Zj , j ≤ i. (16)

The Jb
i,j are the screw coordinate vectors in (13) obtained via a frame transformation (73) of

j Xj in (5), or Yj in (12), to the current configuration. The body-fixed twist is hence

Vb
i =

∑

j≤i

Jb
i,j q̇j = J

b
i q̇. (17)

The 6 × n matrix

J
b
i =

(
Jb

i,1, . . . ,Jb
i,i,0 . . . ,0

)
(18)

is called the geometric body-fixed Jacobian of body i [52]. It is the central object in all for-

mulations that use body-fixed twists and Lie group formulations [46, 56, 57, 60]. The geo-

metric Jacobian appears in the literature under different names. For instance, in [41, 42, 46],

it is called the “kinematic basic function (KBF)” since it is the pivotal object for (recursive)

evaluation of MBS kinematics.
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Expression (16) gives rise to the recursive relation

Jb
i,j =

{
AdCi,i−1

Jb
i−1,j , j < i,

iXi, j = i.
(19)

This is essentially another form of recursion (14) using (17).

Remark 5 (Dependence on joint variables) With (8), respectively (10), it is clear that
the Jacobian Jb

i of body i can only depend on q1, . . . , qi . Moreover, noting in (16) that
Ci,j = C−1

i Cj is independent from q1, it follows that Jb
i depends on q2, . . . , qi , that is, it is

independent from the first joint in the chain. This is obvious from a kinematic perspective
since Vb

i is the sum of twists of the preceding bodies in the chain expressed in the BFR on
body i. This only depends on the configuration of the bodies relative to body i but not on
the absolute configuration of the overall chain, which is determined by q1.

Remark 6 (Required data) The second form in (16) in conjunction with (10) allows for
computation of the body-fixed Jacobian without introducing body-fixed JFRs. The only in-
formation needed is the joint screw coordinates Yj represented in the IFR and the reference
configurations Aj .

Remark 7 (Change of reference frame) When another BFR on body i is used, which is
related to the original BFR by S ∈ SE(3), its configuration is given by C′

i = CiS. The cor-
responding body-fixed twist follows from (80) as V̂′b

i = C′−1
i Ċ′

i = S−1C−1
i ĊiS = Ad−1

S (V̂b
i )

and, in vector form,

V′b
i = Ad−1

S Vb
i . (20)

On the other hand, the body-fixed twist is invariant under a change of IFR, which is given by
C′

i = SCi . Body-fixed twists are therefore called left-invariant vector fields on SE(3) since
left multiplication of Ci with any S ∈ SE(3) does not affect Vb

i .

Remark 8 (Application of body-fixed representation) The recursive relations for body-fixed
twist and Jacobian are the basis for the MBS dynamics algorithms in [1, 2, 7, 25, 30, 38,
39, 56, 57, 60, 75]. In [1, 2] the adjoint transformation matrix in (14) was called the “shift
matrix”, and Xi was called the “motion map matrix”. However, the geometric background
was rarely exploited as in [56, 57, 60] and [39]. Remarkably, Liu [39] already presented all
relevant formulations in terms of screws.

3.1.3 Body-fixed system Jacobian and its decomposition

The body-fixed twists are summarized in the overall twist vector V
b = (Vb

1, . . . ,Vb
n)

T . Re-
cursion (14) can then be written in the matrix form

V
b = D

b
V

b + X
bq̇ (21)

with

D
b :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

AdC2,1
0 0 · · ·

0 AdC3.2
0

...
...

. . .
. . .

0 0 · · · AdCn,n−1
0

⎞
⎟⎟⎟⎟⎟⎠

, X
b := diag

(
1X1, . . . ,

nXn

)
. (22)
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On the other hand, the recursive expression for the Jacobian (19) reads in the matrix form

V
b = J

bq̇ = A
b
X

bq̇, (23)

where the 6n × n matrix J
b = A

b
X

b is the system Jacobian in body-fixed representation, and

A
b :=

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0

AdC2,1
I 0 · · · 0

AdC3,1
AdC3,2

I 0
...

...
. . .

. . .

AdCn,1
AdCn,2

· · · AdCn,n−1
I

⎞
⎟⎟⎟⎟⎟⎠

(24)

is the screw transformation matrix. Comparing (21) and (23) shows that A
b = (I − D

b)−1. In

fact, D
b is nilpotent so that the von-Neumann series

A
b =

(
I − D

b
)−1 = I + D

b +
(
D

b
)2 + · · · +

(
D

b
)n

(25)

terminates with (Db)n+1 = 0. That is, Ab is the 1-resolvent of D
b, which is the fundamental

point of departure for many O(n) algorithms. Moreover, (25) is another form of the recursive

coordinate transformations. Hence the inverse (Ab)−1 = (I − D
b).

Remark 9 (Overall inverse kinematics solution) The above result allows for a simple trans-

formation from body-fixed velocities to the corresponding joint rates. When the twists of all

bodies are given, (23) is an overdetermined linear system in q̇. It has a unique solution as

long as the twists are consistent with the kinematics. Premultiplication of (23) with (I − D
b)

followed by (Xb)T and ((Xb)T
X

b)−1 yields

q̇ =
((

X
b
)T

X
b
)−1(

X
b
)T (

I − D
b
)
V

b. (26)

The n×n diagonal matrix (XbT
X

b)−1 = diag(1/‖1X1‖2, . . . ,1/‖nXn‖2) has full rank. Due to

the block diagonal structure, this yields the solutions q̇i = iX
T

i (Vb
i − AdCi,i−1

Vb
i−1)/‖iXi‖2

for the individual joints. This is indeed the projection of the relative twist of body i with

respect to body i − 1 onto the axis of joint i. It is an exact solution of the inverse kinematics

for the overall MBS, presuming that the twists are compatible, that is, satisfy (14). If this is

not the case, (26) is the unique pseudoinverse solution of system (23) of 6n equations for

the n unknowns q̇i minimizing the residual error. This can be considered as the generalized

inverse kinematics problem: given desired twists of all individual links, find the joint rates

that best reproduce these twists. This can be applied, for instance, to the inverse kinematics

of human body models processing motion capture data (estimated position and orientation

of body segments) and when noisy data is processed.

Although solution (26) seems straightforward, it should be remarked that there is no

frame invariant inner product on se(3), that is, no norm of screws that is invariant under a

change of reference frame can be defined [67]. The correctness of (26) follows by regarding

the transposed joint screw coordinates as coscrews, and iX
T

i
iXi is the pairing of screw and

coscrew coordinates rather than an inner product.
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3.2 Spatial representation of rigid body twists

3.2.1 Spatial twists

A representation of the body twist, which is less common in MBS modeling but frequently

used in mechanism theory, is the so-called spatial twist, denoted Vs
i = (ωs

i ,vs
i)

T . This is the

twist of body i represented in the IFR. It consists of the angular velocity of the BFR of body

i measured and resolved in the IFR and of the translational velocity vs
i := ṙi −ωs

i × ri of the

(possibly imaginary) point on the body that is momentarily traveling through the origin of

the IFR measured and resolved in the IFR (Sect. A.2). With the notation in Fig. 7, the spatial

twist of body i is geometrically readily constructed as

Vs
i = q̇1

(
e1

s1 × e1 + h1e1

)
+ q̇2

(
e2

s2 × e2 + h2e2

)
+ · · · + q̇i

(
ei

si × ei + hiei

)
, (27)

where sj is the position vector of a point on the joint axis j expressed in the IFR. The

screw coordinates in (27) are configuration dependent. They are equal to Yj in the reference

configuration q = 0, where si = yi .

3.2.2 Spatial Jacobian and recursive relations

To derive an analytic expression, using the POE, definition (80) of the spatial twist is ap-

plied. As apparent from (27), the nonvanishing instantaneous joint screws are identical for

all bodies. This is clear since the IFR is the only reference frame involved. The spatial twist

can thus be expressed as Vs
i = ∑

j≤i Js
j q̇j with Ĵs

j := ∂

∂qj CiC
−1
i . Using the POE, a straight-

forward derivation analogous to (15) yields

Js
j = AdCj

j Xj

= Ad
Cj A−1

j
Yj

= AdCj Sj,j

j−1Zj , j ≤ i. (28)

The Js
j is the instantaneous screw coordinate vector of joint j in (27) in spatial representa-

tion, that is, represented in the IFR. The matrix

J
s
i =

(
Js

1, . . . ,Js
i ,0, . . . ,0

)
(29)

is called the spatial Jacobian of body i. The relations (27) and (28) yield the following

recursive expression for the spatial twists of bodies in a kinematic chain:

Vs
i = Vs

i−1 + Js
i q̇i . (30)

Remark 10 The spatial representation has remarkable advantages. The velocity recursion

(30) is the simplest possible since the twists of individual bodies can simply be added with-

out any coordinate transformation. An important observation is that Js
j is intrinsic to joint j .

The nonzero screw vectors in the Jacobian (29) are thus the same for all bodies. This is a

consequence of using a single spatial reference frame.
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3.2.3 Spatial system Jacobian and its decomposition

The overall spatial twist V
s = (Vs

1, . . . ,Vs
n)

T of the kinematic chain is determined as

V
s = J

sq̇, (31)

where the spatial system Jacobian possesses the factorizations

J
s = A

s
Y

s = A
sb

X
b = A

sh
X

h. (32)

Therein it is Y
s = diag(Y1, . . . ,Yn), X

h in (44), and

A
sb :=

⎛
⎜⎜⎜⎜⎜⎝

AdC1
0 0 0

AdC1
AdC2

0 0

AdC1
AdC2

0 0
...

...
. . .

. . .
...

AdC1
AdC2

· · · AdCn−1
AdCn

⎞
⎟⎟⎟⎟⎟⎠

,

A
sh :=

⎛
⎜⎜⎜⎜⎜⎝

Adr1
0 0 0

Adr1
Adr2

0 0

Adr1
Adr2

0 0
...

...
. . .

. . .

Adr1
Adr2

· · · Adrn−1
Adrn

⎞
⎟⎟⎟⎟⎟⎠

A
s := A

sb diag
(
Ad−1

A1
, . . . ,Ad−1

An

)
.

(33)

All nonzero entries in a column of these matrices are identical. Hence the construction of

these matrices only requires determination of the n entries in the last row that are copied

into the upper triangular block matrix. The factorization (32) gives rise to an expression for

its inverse. Noting that A
sb = diag(AdC1

, . . . ,AdCn)A
b, the relation for the inverse of A

b in

terms of matrix D
b in (22) yields

(
A

sb
)−1 =

(
I − D

b
)

diag(AdC1
, . . . ,AdCn)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ad−1
C1

0 0 0

−AdC2
Ad−1

C2
0 0

0 −AdC3
Ad−1

C3
0

...
...

. . .
. . .

...

0 0 · · · −AdCn Ad−1
Cn

⎞
⎟⎟⎟⎟⎟⎟⎠

(34)

and (As)−1 accordingly.

Remark 11 (Dependence on joint variables) Similarly to the body-fixed twist, since Js
i =

AdCi

iXi = AdCi−1
AdBi exp iXiqi

iXi = AdCi−1
iXi is independent from qi , it follows that the

spatial Jacobian of body i only depends on q1, . . . , qi−1. Indeed, the motion of joint i does

not change its screw axis about which body i is moving.

Remark 12 (Change of reference frame) The spatial twist is called a right-invariant vector

field on SE(3) because it does not change when Ci is postmultiplied by any S ∈ SE(3),
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representing a change of body-fixed RFR. Under a change of IFR according to C′
i = SCi ,

the spatial twists transform as

V′s
i = AdSVs

i . (35)

Remark 13 (Application of spatial representation) The spatial twist is used almost exclu-

sively in mechanism kinematics (often without mentioning it) but is becoming accepted for

MBS modeling since it was introduced in [23, 24]. For kinematic analysis of mechanisms,

it is common practice to (instantaneously) locate the global reference frame so that it coin-

cides with the frame where kinetostatic properties (twists, wrenches) are observed, usually

at the end-effector. For a serial robotic manipulator, the end-effector frame is located at the

terminal link of the chain, so that An = I, and Vs
n is then the spatial end-effector twist. From

their definition it follows that the spatial and hybrid twist (see next section) of body i are

numerically identical when the BFR Fi overlaps with the IFR F0.

The most prominent use of the spatial representation in dynamics is the O(n) forward

dynamics method by Featherstone [23, 24]. This has not yet been widely applied in MBS

dynamics. This may be due to use of an uncommon choice of reference point (the IFR origin)

at which the spatial entities are measured, so that results and interaction wrenches must be

transformed to body-fixed reference frames. The spatial representation of twists must not

be confused with the “spatial vector” notation proposed in [23, 24]. The latter is a general

expression of twists as 6-vectors (like body-fixed and spatial) but without reference to a

particular frame in which the components are resolved. This allows for abstract derivation

of kinematic relations, but these relations must eventually be resolved in a particular frame,

and this eventually determines the computational effort.

A notable application of the spatial twist is the modeling and numerical integration of

nonlinear elastic MBS, where it is called the base pole velocity [10] or fixed pole ve-

locity [13], and the intrinsic coupling of translational and angular velocity (according to

the screw motion) was discussed. The corresponding momentum balance and conservation

properties are discussed in [11, 12] (see also [50]).

Remark 14 As in Remark 9, relation (34) gives rise to an overall inverse kinematics solution.

For given spatial twists Vs
i , this reads in components as q̇i = iX

T

i Ad−1
Ci

(Vs
i − Vs

i−1)/‖iXi‖2.

3.3 Hybrid form of rigid body twists

3.3.1 Hybrid twists

In various applications, it is beneficial to measure the twist of a body in the body-fixed BFR

but resolve it in the IFR. This is commonly referred to as the hybrid twist [18, 52], denoted

Vh
i = (ωs

i , ṙi)
T . The geometric construction (Fig. 7) yields

Vh
i = q̇1

(
e1

bi,1 × e1 + h1e1

)
+ q̇2

(
e2

bi,2 × e2 + h2e2

)
+ · · · + q̇i

(
ei

bi,i × ei + hiei

)
. (36)

As in (13), bi,j is the position vector of a point on the axis of joint j measured from the BFR

Fi of body i, and ej is the unit vector along the axis, but now expressed in the IFR F0. This

was originally introduced in [76] and [78] and is used in various O(n) dynamics algorithms

(Remark 15).
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3.3.2 Hybrid Jacobian and recursive relations

The hybrid twist is merely the body-fixed twist resolved in the IFR. Using (75), this trans-

formation is Vh
i = AdRi

Vb
i where Ri is the rotation matrix of body i. Then (17) leads to

Vh
i =

∑

j≤i

Jh
i,j q̇j = J

h
i q̇ (37)

with the columns Jh
i,j := AdRi

Jb
i,j of the hybrid Jacobian J

h
i = (Jh

i,1, . . . ,Jh
i,i,0 . . . ,0). The

recursive expressions (19) and (14) remain valid when all screw coordinate vectors are re-

solved in the IFR. The joint screw coordinates are then configuration dependent. The screw

coordinate vector of joint j measured in the BFR Fj on body j and resolved in the IFR F0

is related to (5) via

0X
j

j = AdRj

j Xj =
(

ej

xj,j × ej + hj ej

)
. (38)

As in (5), the position vector xj,j of a point on the axis of joint j is measured from the BFR

Fj but now resolved in the IFR. The relations AdCi
= Adri

AdRi
and ri,j = rj − ri lead to

AdRi
Jb

i,j = AdRi
AdCi,j

j Xj = AdRi
AdCi,j

Ad−1
Rj

0X
j

j = AdRi
Ad−1

Ci
AdCj

Ad−1
Rj

0X
j

j

= Ad−1
ri

Adrj

0X
j

j = Ad−ri
Adrj

0X
j

j = Adrj −ri

0X
j

j = Adri,j

0X
j

j . (39)

Therewith the columns of the hybrid Jacobian of body i are

Jh
i,j = Adri,j

0X
j

j , j ≤ i. (40)

The Jh
i,j is the instantaneous screw coordinate of joint j in (36) measured at BFR on body i

and resolved in the IFR. In the hybrid form, all vectors are resolved in the IFR. That is, the

screw coordinates 0X
j

j depend on the current configuration q even though the joint axis is

constant within body j . The hybrid twist is resolved in the IFR. Since the screw coordinates
0X

j

j are already resolved in the IFR, the transformation to the current configuration, to de-

termine the instantaneous joint screws Jh
i,j (q), only requires translations of origins. This is

obtained by shifting the reference point according to ri,j , which is why the matrix Adri,j
is

also called the “shift dyad” [21]. This is not a frame transformation.

Relation (40) gives rise to the recursive relation for the hybrid Jacobian

Jh
i,j =

{
Adri,i−1

Jh
i−1,j , j < i,

0Xi
i, j = i.

(41)

and, analogously to (14), for the hybrid twists,

Vh
i = Adri,i−1

Vh
i−1 + 0Xi

i q̇
i . (42)

The advantage of the hybrid form over the body-fixed is that (41) only involves the relative

displacement ri,i−1 in contrast to the complete relative configuration Ci,i−1 in (19). It must be

recalled, however, that the vectors ej and rj,j must be transformed to the IFR. Furthermore,

when formulating equations of motion, the inertia properties of the body must be resolved

in the IFR so that they become configuration dependent [50].
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Remark 15 (Application of hybrid representation) The hybrid form was used in [76] for

forward kinematics calculation of serial manipulators and in [4, 5] to compute the motion

equations and the inverse dynamics solution. It is used in many recursive O(n) forward

dynamics algorithms such as [6, 38, 53, 54, 64], where relations (42) and (40) play a central

role. In the so-called “spatial operator algebra” [64], hybrid screw entities are called “spatial

vectors”. The hybrid form is deemed computationally efficient since the transformations

only involve translations. The actual configuration of the chain is not discussed in these

publications, but it enters via the vectors ei(q) and ri(q), respectively di,j (q). In [38] the

inverse transformation Ad−1
ri,j

was denoted by j Xi (not to be confused with (5)), and the

screw coordinate vector 0X
j

j in (38) by φj . In [64], Ad−1
ri,j

was denoted by φT
i,j , and 0X

j

j with

HT
j . The transposed matrices appear since they arise from the transformation of wrenches.

3.3.3 Hybrid system Jacobian and its decomposition

The hybrid system Jacobian, which determines the overall hybrid twist vector V
h =

(Vh
1, . . . ,Vh

n)
T according to

V
h = J

hq̇ = A
h
X

hq̇, (43)

is decomposed in terms of

A
h :=

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0

Adr2,1
I 0 0

Adr3,1
Adr3,2

I 0
...

...
. . .

. . .

Adrn,1
Adrn,2

· · · Adrn,n−1
I

⎞
⎟⎟⎟⎟⎟⎠

, X
h := diag

(
0X1

1, . . . ,
0Xn

n

)
. (44)

In analogy to (25), A
h can be resolved as power series using the relation A

h = (I − T
h)−1

with the 6n × 6n matrix

T
h :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

Adr2,1
0 0

0 Adr3,2
0

...
...

. . .
. . .

0 0 · · · Adrn,n−1
0

⎞
⎟⎟⎟⎟⎟⎠

. (45)

This leads to the inverse (Ah)−1 = (I − T
h) and a solution q̇ of (43) of the form (26).

3.4 Mixed form of rigid body twists

3.4.1 Mixed twists

When formulating the Newton–Euler equations of rigid bodies, it can be beneficial to use the

body-fixed angular velocity and the translational velocity measured at the body-fixed BFR

but resolved in the IFR. This is called the mixed twist denoted by Vm
i = (ωb

i , ṙi)
T . It is used in

MBS dynamics modeling [68], basically because when using the mixed twist, the Newton–

Euler equations with respect to the COM are decoupled and because the body-fixed inertia

tensor is constant (see also the companion paper [50]). The mixed twist is readily found as

Vm
i = q̇1

(
ie1

bi,1 × e1 + e1h1

)
+ q̇2

(
ie2

bi,2 × e2 + e2h2

)
+· · ·+ q̇i

(
iei

bi,i × ei + eihi

)
. (46)
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As in (36), ej is the unit vector along the axis of joint j measured and resolved in the IFR F0,

and bi,j is the position vector of a point on the axis measured in the BFR Fi of body i and

resolved in the IFR. The mixed twist is related to the body-fixed, spatial, and hybrid form

via

Vm
i =

(
I 0

0 Ri

)
Vb

i =
(

RT
i 0

0 I

)
Vh

i =
(

RT
i 0

−̃ri I

)
Vs

i . (47)

3.4.2 Mixed Jacobian and recursive relations

Expression (46) is written as

Vm
i =

∑

j≤i

Jm
i,j q̇j = J

m
i q̇, (48)

where the mixed Jacobian of body i is introduced as

J
m
i =

(
Jm

i,1, . . . ,Jm
i,i,0 . . . ,0

)
. (49)

The elements in the instantaneous joint screw coordinate vectors Jm
i,j in (46) are not consis-

tently resolved in one frame. Rather iej is resolved in BFR Fi , and ej in the IFR. The mixed

Jacobian can thus not be derived via frame transformations. Starting from the body-fixed

Jacobian yields

Jm
i,j =

(
RT

i 0

r̃i,j I

)
0X

j

j , j ≤ i, (50)

where 0X
j

j are the screw coordinates of joint j measured in frame Fj and resolved in the

IFR, given in (38). The difference to (40) is that the angular and translational part are re-

solved in different frames. Expression (50) can be written in the recursive form

Jm
i,j =

⎧
⎪⎪⎨
⎪⎪⎩

(
Ri,i−1 0

r̃i,i−1Ri I

)
Jh

i−1,j , j < i,

(
RT

i 0

0 I

)
0Xi

i, j = i.

(51)

This directly translates to a recursive relation for the mixed twists within a kinematic

chain

Vm
i =

(
Ri,i−1 0

r̃i,i−1Ri I

)
Vm

i−1 + Jm
i,i q̇i . (52)

3.4.3 Mixed system Jacobian and its decomposition

The overall mixed twist vector V
m = (Vm

1 , . . . ,Vm
n )T can be expressed in terms of the system

Jacobian J
m as

V
m = J

mq̇ = A
m

X
mq̇ (53)

with X
m := X

h and the matrix A
m as in (44) but with the Adri,j

replaced by the matrix in

(50). This allows for a closed-form inversion of A
m analogous to that of A

h.
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Table 3 Transformation of the different representations of twists and joint screw coordinates

Vs
i

Vb
i

Vh
i

Vm
i

Vs
i

I AdCi
(54) Adri

(58) (47)

Vb
i

Ad−1
Ci

I Ad
RT

i
(47)

Vh
i

Ad−ri
AdRi

(55) I (47)

Vm
i

(47) (47) (47) I

Yi
0Xi

i
iXi

Yi I Adri
(57) AdAi

(12)
0Xi

i
Ad−ri

I AdRi
(56)

iXi Ad−1
Ai

Ad
RT

i
I

3.5 Relation of different forms

The introduced twists are related by certain (not necessarily frame) transformations, and it

is occasionally desirable to switch between them. From their definitions in (80) it is clear

that body-fixed and spatial twists, and thus the corresponding Jacobians, are related by

Vs
i = AdCi

Vb
i , J

s
i = AdCi

J
b
i . (54)

Evaluating this in the reference configuration q = 0 leads to the relation of joint screw

coordinates (12). The body-fixed twist is related to its hybrid version by a coordinate trans-

formation determined by the rotation Ri matrix, aligning the body frame with the IFR,

Vh
i =

(
Ri 0

0 Ri

)
Vb

i = AdRi
Vb

i . (55)

Transformation (55) applies to a general hybrid screw and in particular to the joint screws

(5) and (38) and Jacobians (16) and (40):

0X
j

j = AdRj

j Xj , J
h
i = AdRi

J
b
i . (56)

Combining (56) and (12) yields the relation of hybrid and spatial versions of joint screws

Yj = Adri

0X
j

j (57)

with the current position vector ri of body i in Ci . From (54) and (55) it follows that

Vs
i = AdCi

Ad−1
Ri

Vh
i = Adri

Vh
i (58)

and thus

Js
j = Adri

Jh
i,j , j ≤ i. (59)

This describes the change of reference point from the BFR of body i to the IFR. The trans-

formations between the different forms of twists and joint screws are summarized in Table 3.

It should be finally mentioned that the screw coordinates iXi and 0Xi
i are just different

coordinates for the same geometric object, namely of the instantaneous joint screw of joint i

measured in the BFR at body i but resolved either in this BFR or in the IFR. The vector Yi on

the other hand is a snapshot of the joint screw coordinates of joint i in spatial representation

at the reference q = 0.

Remark 16 (Computational efficiency) It is clear from (14), (30), (42), and (52) that the

number of numerical operations differ between the four different representations of twists.
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This allows for selecting the most efficient one when a kinematic analysis is envisaged. In

[55] the problem of determining the twists of the terminal body in a kinematic chain (robot

end-effector) was analyzed for body-fixed, spatial, and hybrid forms. This study suggests

that the spatial representation is computationally most efficient. A conclusive analysis of all

four forms has not yet been reported. Moreover, the general situation includes the dynamic

analysis. This was partly addressed in [73, 79].

3.6 Example (continued)

The Jacobian in body-fixed and spatial representation is determined for the example in

Sect. 2.5. The instantaneous screw coordinates in body-fixed representation are readily

found with (16). For instance, the instantaneous screw coordinate vector of joint 1 expressed

in the body-fixed frame on body 3 is

Jb
3,1 = Ad

C3,1A−1
1

Y1 = AdC3,1

1X1

= (
0,0,1, (d2 + d3)s2 + (x1 + x3 − d3)s23, d2 − x1 − (d2 + d3)c2 + (d3 − x1 − x3)c23,0

)T
.

Proceeding analogously for the other joints yields the body-fixed Jacobian of body 3 as

J
b
3(q) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
1 1 1 0 0

(d2 + d3)s2 + (x1 + x3 − d3)s23 s3(x2 + x3 − d2 − d3) 0 0 0
d2 − x1 − (d2 + d3)c2 + (d3 − x1 − x3)c23 c3(d2 + d3 − x2 − x3) − d3 − x2 x3 − d3 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The body-fixed twist of body 3 is therewith Vb
3 = J

b
3(q)q̇. Again details for body 4 and 5 are

omitted because of space limitation.

The spatial representation of the screw coordinates of joint 1, . . . ,4, for instance, is found

with (28):

Js
1(q) = (0,0,1,0,0,0)T ,

Js
2(q) = (0,0,1,−d2s1, d2c1,0)T ,

Js
3(q) =

(
0,0,1, (d2 + d3)s23 − d2s1, d2c1 − (d2 + d3)c12,0

)T
,

Js
4(q) = 1√

2

(
−c123,−s123,1, (d2 + d3)s12 − d2s1 + (d4 + h4 − d3)s123,

d2c1 − (d2 + d3)c12 + (d3 − d4 − h4)c123, d2s23 − (d2 + d3)s3

)T
.

That for joint 5 is omitted again. These Js
i constitute the spatial Jacobians J

s
i in (29).

4 Conclusions and outlook

Screw and Lie group theory gives rise to compact formulations of the equations govern-

ing the MBS kinematics in terms of relative (joint) coordinates. This is beneficial for the

actual modeling process and for the implementation of MBS algorithms and their computa-

tional properties. The frame invariance of these concepts allows for expressing the relevant
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modeling objects as suited best for a particular application. In particular, the MBS kine-

matics can be formulated without introduction of body-fixed joint frames. This is a central

result that gives rise to maximal flexibility as opposed to the use of modeling conventions

like Denavit–Hartenberg parameters. These results have been published over the last two

decades, but they have not been presented within a uniform MBS framework. In this pa-

per, screw and Lie group theory has been employed to provide such a framework. Decisive

for the computational efficiency is the actual representation of rigid body twists and accel-

erations. Four commonly used forms were recalled, and the recursive algorithms for MBS

kinematics where presented. The corresponding recursive algorithms for evaluation of the

motion equations are presented in the accompanying paper [50].

The reader used to work with the classical body-fixed twists should be able to directly

apply the presented modeling paradigm for MBS kinematics using relation (10) to determine

the body configurations and (16) to determine the Jacobian while having the freedom to

choose arbitrary BFR and IFR. This applies likewise to the spatial, hybrid, and mixed twists.

The full potential of Lie group formulations is yet to be explored in future research. This

regards the modeling steps and the computational properties, in particular, given a current

trend in computational MBS dynamics to put more emphasis on user-friendly modeling and

on tailored simulation codes. A forthcoming paper will address MBS with general topology.

To this end, the loop closure constraints are formulated in the form of a POE. Redundant

loop constraints are still a major challenge. It is already known that the loop constraints

can be concisely formulated in terms of joint screws, but even more that they can be re-

duced to a nonredundant constraint system by means of simple operations on the joint screw

system [47].
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Appendix A: Rigid body motions and the Lie group SE(3)

For an introduction to screws and to the motion Lie group SE(3), the reader is referred to

the text books [5, 40, 52, 67].

A.1 Finite rigid body motions as frame transformations—SE(3)

A frame {Oi; 
ei,1, 
ei,2, 
ei,3} consists of a point Oi ∈ E3 (its origin) and a basis triad

{
ei,1, 
ei,2, 
ei,3} with 
ei,k ∈ E3, in which vectors are resolved. A change of basis from

{
ei,1, 
ei,2, 
ei,3} to {
ej,1, 
ej,2, 
ej,3} is a coordinate transformation from coordinates resolved

in {
ei,1, 
ei,2, 
ei,3} to coordinates resolved in {
ej,1, 
ej,2, 
ej,3}. A frame transformation from

{Oi; 
ei,1, 
ei,2, 
ei,3} to {Oj ; 
ej,1, 
ej,2, 
ej,3} is a coordinate transformation together with a

change of origin from Oi to Oj . When a vector is resolved in a frame according to


r = ir1
ei,1 + ir2
ei,2 + ir3
ei,3}, its component vector is denoted by ir = (ir1,
ir2,

ir3)
T ∈ R3.

The leading superscript indicates the frame in which it is resolved.

A rigid body is kinematically represented by a body-fixed reference frame (BFR). Denote

the BFR of body i by Fi = {Ωi, 
ei,1, 
ei,2, 
ei,3}. Its motion is thus described as the relative
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motion of the BFR with respect to a global inertial frame (IFR) F0 = {O, 
e1, 
e2, 
e3}. The

location of Fi is described by its global position vector 
r = OΩi . When resolved in the

IFR F0, its coordinate vector is 0ri ∈ R3. The orientation is described by a rotation matrix

R0,i ∈ SO(3) that transforms coordinates of a vector x resolved in the BFR to its coordinates

when resolved in the IFR according to 0x = R0,i
ix. In the following, the index 0 is omitted,

that is, x is the coordinate vector resolved in the IFR.

If ib ∈ R3 is the position vector of a point P of the body resolved in the BFR, then the

position vector of point P measured and resolved in IFR is s = r+Ri
ib. This transformation

can be written compactly using homogenous point coordinates:

(
s

1

)
=

(
Ri ri

0 1

)(
ib

1

)
. (60)

This is a frame transformation, that is, it describes the transformation due to the rotation and

the displacement of the origin of the reference frame. Since this holds for any point of the

rigid body, the matrix

Ci =
(

Ri ri

0 1

)
∈ SE(3) (61)

describes the configuration of the BFR Fi with respect to the IFR, which is referred to as the

absolute configuration of Fi (as it refers to the global IFR). For simplicity, the configuration

is alternatively denoted by the pair Ci = (Ri, ri). SE(3) is the group of isometric orientation-

preserving transformations of Euclidean spaces. It is commonly represented as the matrix

group with elements as in (60). The inverse of the transformation (61) is

C−1
i =

(
RT

i −RT
i ri

0 1

)
=

(
Ri −Riri

0 1

)
, (62)

respectively C−1
i = (RT

i ,−RT
i ri). Let C ′ and C ′′ be two frame transformations. The product

C ′ ·C ′′ = (R′R′′, r′ +R′r′′), respectively C′ ·C′′, describes the overall frame transformation.

Now consider two bodies, that is, two RFRs Fi and Fj , and denote their absolute con-

figuration with Ci and Cj , respectively. The relative configuration of body j w.r.t. body i

is

Ci,j = C−1
i Cj =

(
RT

i Rj RT
i (rj − ri)

0 1

)
=

(
Ri,j

1ri,j

0 1

)
(63)

with the relative rotation matrix Ri,j and the relative displacement vector ri,j := rj − ri

resolved in the RFR Fi on body i. The configuration of body j is then expressed in terms

of the configuration of body i and the relative configuration as Cj = CiCi,j . Analogously,

Cj,i = C−1
j Ci is the relative configuration of body i with respect to body j . Clearly, Cj,i =

C−1
i,j . As a particular case, the absolute configuration of body i is Ci = C0,i = C−1

0 Ci with

C0 = I.

Throughout the paper, an SE(3) matrix is always considered to represent the relative

configuration of two frames (also, Ci is the configuration of body i relative to the IFR).

Rotation matrices form the three-dimensional special orthogonal group, denoted SO(3).

This is a Lie group, which means that for any rotation matrix, there is a unique inverse and

that there is a smooth parameterization. A smooth canonical parameterization is the descrip-

tion in terms of axis and angle. Moreover, Euler’s theorem states that any finite rotation can

be achieved by a rotation about an axis. Let e ∈R3 be the unit vector along the rotation axis,
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ϕ the rotation angle, and denote by ξ := eϕ the “scaled rotation axis”. The corresponding

rotation matrix is R(ϕ, e) = exp ξ̃ with

exp ξ̃ = I + sin‖ξ‖
‖ξ‖ ξ̃ + 1 − cos‖ξ‖

‖ξ‖2
ξ̃

2
(64)

= I + sinc‖ξ ‖̃ξ + 1

2
sinc2 ‖ξ‖

2
ξ̃

2
(65)

= I + sin ϕ̃e + (1 − cosϕ)̃e2, (66)

where ξ̃ ∈ so(3) denotes the skew symmetric matrix associated with the vector ξ . This is

known as the Euler–Rodrigues formula [5, 43]. The rotation matrix (64) takes a frame from

its initial to its final orientation, where the rotation vector e is resolved in its initial orien-

tation. If the rotation matrix is considered to transform coordinates from different frames,

Fi and Fj , then Ri,j = exp i ξ̃ , where the axis is resolved in Fi .

The important concept here is that of the exp mapping. In (64), this is the matrix exponen-

tial mapping a skew symmetric matrix to a rotation matrix. Moreover, the skew symmetric

3 × 3 matrices form the Lie algebra denoted so(3). Being a Lie algebra, it is a vector space

equipped with the Lie bracket, in this case the matrix commutator [x̃, ỹ] = x̃ỹ − ỹx̃. This

can be expressed [̃x, ỹ] = x̃ × y, which means that so(3) is isomorphic to the vector space

R3 equipped with the cross product. Elements of so(3) can thus be represented as 3-vectors

via x̃ ∈ so(3) ↔ x ∈R3.

The frame transformations form the special Euclidean group SE(3) = SO(3)⋉R3, more

precisely, the group of isometric and orientation-preserving transformations of Euclidean

spaces. A typical element is represented as a matrix (61). The multiplication of these ma-

trices, respectively the transformation (60), reveals that SE(3) is the semidirect product

of the rotation group SO(3) and the translation group R3. This may not seem important

but it has consequences for the constraint satisfaction when integrating MBS models de-

scribed in absolute coordinates [48, 49]. SE(3) is a six-dimensional Lie group, so that it

possesses a smooth parameterization, and for any element, there is an inverse. Chasles’ the-

orem [5, 52, 67] states that any finite rigid body displacement (i.e. frame transformation)

can be achieved by a screw motion, that is, a rotation about a constant axis together with a

translation along this axis determined by the pitch.

Consider a body performing a screw motion. Let ie be the unit vector along the screw

axis, and p be the position vector of an arbitrary point on that axis (Fig. 8), both resolved in

the body-fixed frame Fi . The vector of unit screw coordinates corresponding to this motion

is

iXi =
(

ie
ip × ie + ieh

)
, (67)

where h is the pitch of the screw [14, 51, 52]. In classical screw theory, literature screws are

denoted by the symbol “$”. The vector (ie, ip × ie)T , that is, setting h = 0, are the Plücker

coordinates of the line along the screw axis. Geometrically, a screw is determined by the

Plücker coordinates of the line along the screw axis and the pitch.

The screw motion with rotation angle ϕ, taking the body from its initial configuration

Bi to the final configuration B∗
i , is determined by the matrix exponential exp(iX̂iϕ) of the

matrix iX̂i defined as

X =
(

e

p × e + eh

)
∈R6 ↔ X̂ =

(
ẽ p × e + eh

0 0

)
∈ se(3). (68)
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Fig. 8 Screw motion of a rigid
body represented by a body-fixed
frame Fi

Fig. 9 Frame transformation of
screw coordinates according to

S1,2 = (R1,2, 1d1,2)

The exponential mapping admits the closed-form expression

exp(ϕX̂) =
(

exp(ϕ̃e) (I − exp(ϕ̃e))p + ϕhe

0 1

)
for h = ∞, (69)

where ϕ is the rotation angle, and for pure translations, that is, infinite pitch,

exp(ϕX̂) =
(

I ϕe

0 1

)
for h = ∞, (70)

where ϕ is the translation variable. The exp mapping describes the frame transformation of a

body-fixed frame from its final configuration to its initial configuration due to a screw motion

where the screw coordinates are represented in the initial configuration. This is applicable to

general frame transformations. Let iXi be the screw coordinates associated with the relative

screw motion of body j with respect to body i. The configuration of the body-fixed frame

Fj relative to Fi is Ci,j = exp(iX̂iϕ), assuming that Fj and Fi initially overlap.

Notice the direction in which the frame transformation is indicated in Fig. 8. The arc

points toward the frame in which the screw coordinates are expressed.

Matrices of the form shown in (68) obviously play a key role since they give rise to

frame transformations via the exp mapping. They form the Lie algebra se(3). To any matrix

X̂ ∈ se(3), there corresponds a unique vector X = (ξ ,η)T ∈ R6 via the isomorphism (68).

For simplicity, also the notation exp(Xϕ) is used instead of exp(X̂ϕ).

Screws are geometric objects, thus frame invariant, and can be represented in any refer-

ence frame. Consider two frames F1 and F2 (Fig. 9), and let 2X2 = (2e, 2p2 × 2e + 2eh)T

be screw coordinates measured and resolved in frame F2. That is, 2e is the unit vector along

the axis resolved in F2, and 2p2 is the position vector O2P of point P on the axis resolved
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in F2. Let S1,2 = (R1,2,
1d1,2) be the transformation from F2 to F1. Then the screw coordi-

nate vector measured and resolved in F1 is determined by 1X̂1 = S1,2
2X̂2S−1

1,2 = AdS1,2
(2X̂2),

which reads in vector notation

1X1 =
(

1e
1p1 × 1e + 1eh

)
=

(
R1,2 0

1d̃1,2R1,2 R1,2

)(
2e

2p2 × 2e + 2eh

)
= AdS1,2

2X2, (71)

where 1p1 = R1,2
2p2 + 1d1,2 is the position vector O1P of the point P on the screw axis

measured and resolved in F1. The transformation

AdC(X̂) = CX̂C−1 (72)

with a general frame transformation C ∈ SE(3) is called the adjoined transformation

[40, 52, 67]. In vector notion, this is

AdC =
(

R 0

r̃R R

)
. (73)

The terminology stems from the fact that C ∈ SE(3) describes a frame transformation,

whereas AdC describes the corresponding transformation of screw coordinates that belong

to se(3). It thus equally describes rigid body motions. It is used, for instance, in [8], where

AdC is called the “motion tensor”, and in [10], where it is referred to as a “configuration

tensor” (denoted by C). If Ci,j is the configuration of body j relative to body i, then AdCi,j

transforms the coordinates of a screw represented in BFR on body j to its coordinate repre-

sentation in the BFR on body i.

For the product of transformations, it holds

AdC′C′′ = AdC′AdC′′ . (74)

For compactness, with slight abuse of notation, the following notation is used:

AdR =
(

R 0

0 R

)
for C = (R,0), Adr =

(
I 0

r̃ I

)
for C = (I, r). (75)

This allows for splitting the frame transformation (73) into the change of reference point

followed by the change of basis as AdC = AdrAdR.

A useful relation is that, for any X̂ ∈ se(3) and S ∈ SE(3),

S exp(X̂)S−1 = exp
(
SX̂S−1

)
= exp

(
AdS(X̂)

)
. (76)

For constant X, the derivative of the exponential is

∂

∂t
exp(tX̂) = X̂ exp(tX̂) = exp(tX̂)X̂. (77)

Notation The coordinate representation of a screw requires (1) a reference point from

which the point on the screw axis is measured and (2) a reference frame in which the vectors

are resolved. The reference point is commonly the origin of a frame. These are indicated

by the leading and trailing superscripts, respectively. In (71), they were identical, but, in

general, iXj = (ie, ipj × ie + ieh)T is the screw coordinate vector measured from the origin

of Fj and resolved in Fi . As apparent from (71), only screws measured and resolved in the

same frame (i = j ) are related by frame transformations. For simplifying the notation, when

i = j , the simplified notation iX is used. The screw is then said to be represented in Fi .
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A.2 Twists as instantaneous screw motions—se(3)

The angular and translational velocities of a rigid body are summarized in the vector V =
(ω,v)T , called the rigid body twist. This is a screw and can hence be written as a matrix of

the form (68):

V̂ =
(

ω̃ v

0 0

)
. (78)

A general definition of twists requires specification of (1) the body of which the twist is

measured, (2) the point at which the velocity is measured, and (3) the frame in which the

velocity vectors are resolved. To this end, the following notion is used:

kV
j

i =
(

kωi

kv
j

i

)
,

i is the index of the “object” of which the twist is measured,

j is the index of the frame in which the twist is measured,

k is the index of the frame in which the vectors are resolved.

(79)

This is the twist of body i measured in Fj and resolved in Fk . More precisely, kωi is the

angular velocity of frame Fi measured and resolved in Fk . Due to the translation invariance

of the angular velocities, it is independent from Fj . The vector kv
j

i is the translational veloc-

ity of the point on body i that is instantaneously traveling trough the origin of Fj resolved

in Fk .

When j = k, the simplified notation kVi is used. A twist (and generally a screw) is said

to be represented in frame Fk if it is measured and resolved in this frame, for example,
kVi is represented in frame k. The body-fixed and spatial representation of twists are most

commonly used. The attribute “body-fixed” indicates that the frame in which the velocity is

measured and resolved is the body-fixed RFR, that is, i = j = k. “Spatial” is used when the

velocities are measured and resolved in the IFR, that is, j = k = 0. To further simplify the

notation, the body-fixed and spatial twists of body i are denoted by Vb
i = (ωb

i ,vb
i )

T := iVi
i

and Vs
i = (ωs

i ,vs
i)

T := 0V0
i , respectively. The index 0 is omitted throughout the paper. For a

body whose motion is described by Ci(t) according to (61), these are defined analytically

by

V̂b
i =

(
ω̃b

i vb
i

0 0

)
= C−1

i Ċi, V̂s
i =

(
ω̃s

i vs
i

0 0

)
= ĊiC

−1
i . (80)

Therein ω̃b
i = RT

i Ṙi and ω̃s
i = ṘiR

T
i define the body-fixed and spatial angular velocities.

The vector vb
i = RT

i ṙi is the body-fixed translational velocity, that is, the velocity of the

origin of Fi measured in the IFR F0 and resolved in Fi . The spatial translational velocity

vs
i = ṙi + ri ×ωs

i is the velocity of the point of the body that is momentarily passing through

the origin of the IFR F0 resolved in the IFR.

Twists represented in different frames transform as screws according to (73). Let 1V1
i =

(1ωi,
1v1

i )
T be the twist of body i represented in a frame F1. Let S21 = (R21,

2r21) be the

frame transformation from F1 to another frame F2. Then 2V2
i = AdS21

1V1
i is the twist of

body i represented in F2. This is 2V2
i = (2ωi,

2v2
i )

T , where 2v2
i = 2v1

i + 2r21 × 2ωi is the

translational velocity of the point of body i traveling through the origin of F2, with 2v1
i =

R21
1v1

i and 2ωi = R21
1ωi . The twist is represented, that is, measured and resolved, in F2.

The vector components can be resolved in yet another frame F3. If R32 is the rotation matrix

of this change of coordinates, then 3V2
i = AdR32

2V2
i with (75) is the twist measured in F2 but

resolved in F3: 3V2
i = (3ωi,

3v2
i )

T with 3ωi = R32
2ωi and 3v2

i = R32
2v2

i = 3v1
i + 3r21 × 3ωi .

This is indeed not a frame transformation but rather a coordinate transformation. Only if



66 A. Müller

Table 4 Summary of the
reference point at which the
translational velocity is measured
and the frame in which the
angular respectively translational
velocity is resolved

Reference point
is origin of

Frame to resolve
angular velocity

Frame to resolve
translational velocity

Vs
i

IFR IFR IFR

Vb
i

BFR BFR BFR

Vh
i

BFR IFR IFR

Vm
i

BFR BFR IFR

twists are measured and resolved in the same frame, like body-fixed and spatial twists, then

the screw coordinate transformation is a frame transformation. In particular, Vs
i = AdCi

Vb
i .

The relative twist of body j with respect to body i, that is, the twist of Fi represented

in Fj , is readily defined as j V̂i = Ċj,iC
−1
j,i . With (63) and (72), this is

j V̂i = d

dt

(
C−1

j Ci

)
C−1

i Cj = C−1
j ĊiC

−1
i Cj − C−1

j Ċj C−1
j Cj

= Ad−1
Cj

(
V̂s

i − V̂s
j

)
= Ad−1

Cj

(
V̂s

i

)
− V̂b

j . (81)

This is the difference of the twists of the two bodies represented in the BFR at body j .

There are yet two further forms of twist used in MBS kinematics. In the hybrid form,

denoted by Vh
i = (ωs

i , ṙi)
T = 0Vi

i , the twist of body i is measured in the body-fixed frame

Fi but resolved in the IFR F0. The mixed form of twists, denoted Vm
i = (ωb

i , ṙi)
T , uses the

body-fixed angular velocity ωb
i and the translational velocity ṙi . The two forms are related by

Vm
i =

(
RT

i 0

0 I

)
Vh

i =
(

I 0

0 Ri

)
Vb

i =
(

RT
i 0

−̃ri I

)
Vs

i . (82)

These transformations are apparently not frame transformations (which would be described

by the adjoint mapping). The definition of twists are summarized in Table 4.

Remark 17 It should be remarked that also the hybrid and mixed twists can be derived ana-

lytically by left and right trivialization, as in (80), if rigid body motions are not considered

to be elements of SE(3). To this end, the direct product group SO(3) ×R3 is used as config-

uration space of a rigid body: C = (R, r) ∈ SO(3) ×R3. The multiplication in this group is

C1 · C2 = (R1R2, r1 + r2). This is clearly not a frame transformation. The hybrid and mixed

twists then are Vm = C−1 · Ċ = (ωb, ṙ) and Vh = Ċ · C−1 = (ωs, ṙ) ∈ so(3) ×R3. It must be

emphasized that the direct product group does not represent screw motions. Even though it

is occasionally used to model MBS and also in Lie group integration schemes.

Appendix B: Nomenclature

Symbols:

F0 Inertial reference frame (IFR)

Fi Body-fixed reference frame (BFR) of body i

Ji,i Body-fixed joint frame (JFR) for joint i at body i joint i connects body i

with its predecessor body i − 1

Ji−1,i JFR for joint i at body i − 1
ir Coordinate representation of a vector resolved in BFR on body i. The index

is omitted if this is the IFR: r ≡ 0r
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Ri Rotation matrix from BFR Fi at body i to IFR F0

Ri,j Rotation matrix transforming coordinates resolved in BFR Fj to coordinates

resolved in Fi

ri Position vector of origin of BFR Fi at body i resolved in IFR F0

ri,j Position vector from origin of BFR Fi to origin of BFR Fj

x̃ skew symmetric matrix associated with the vector x ∈R3

Ci = (Ri, ri) Absolute configuration of body i. This is denoted in matrix form by Ci

Ci,j = C−1
i Cj Relative configuration of body j w.r.t. body i

kv
j

i Translational velocity of body i measured at origin of BFR Fj , resolved in

BFR Fk

vb
i ≡ ivi

i Body-fixed representation of the translational velocity of body i

vs
i ≡ 0v0

i Spatial representation of the translational velocity of body i
kωi Angular velocity of body i measured and resolved in BFR Fk

ωb
i ≡ iωi Body-fixed representation of the angular velocity of body i

ωs
i ≡ 0ωi Spatial representation of the angular velocity of body i

kV
j

i Twist of (RFR of) body i measured in Fj and resolved in Fk

Vb
i ≡ iVi

i Body-fixed representation of the twist of body i

Vs
i ≡ 0V0

i Spatial representation of the twist of body i

Vh
i ≡ 0Vi

i Hybrid form of the twist of body i

V
b Vector of system twists in body-fixed representation

V
s Vector of system twists in spatial representation

V
h Vector of system twists in hybrid representation

V
m Vector of system twists in mixed representation

AdR Screw transformation associated with C = (R,0)

Adr Screw transformation associated with C = (I, r)

AdCi,j
Transformation matrix transforming screw coordinates represented in Fj to

screw coordinates represented in Fi

X̂ ∈ se(3) 4 × 4 matrix associated with the screw coordinate vectors X ∈ R6

SE(3) Special Euclidean group in three dimensions, Lie group of rigid body mo-

tions

se(3) Lie algebra of SE(3), algebra of screws

q ∈Vn Joint coordinate vector

Vn Configuration space

Joint screw coordinates The introduction of joint screw coordinates requires specifica-

tion of a frame in which the screw is measured and a frame where the coordinates are solved.

To this end, the following notation for screw coordinates is used:

kX
j

i ,

i—index of joint,

j—index of frame in which the joint screw is measured,

k—index of frame in which the coordinates are resolved.

A screw is said to be represented in frame j if j = k. To simplify the notation, the following

short hand notation is used: j Xi := j X
j

i , Xi := 0Xi
0.

i−1Zi Constant screw coordinate vector of joint i represented in JFR Ji−1,i at body i − 1,

determined in the reference configuration q = 0
iXi Constant screw coordinate vector of joint i represented in BFR Fi at body i, deter-

mined in the reference configuration q = 0
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i−1X̄i Constant screw coordinate vector of joint i represented in BFR Fi−1 at body i − 1,

determined in the reference configuration q = 0

Yi Constant screw coordinate vector of joint i represented in IFR F0, determined in the

reference configuration q = 0
0Xi

i Instantaneous screw coordinate vector of joint i measured in BFR Fi but resolved in

IFR F0

Representations of the velocity of rigid body i

Body-fixed twist: Vb
i =

(
ωb

i

vb
i

)
, with ω̃b

i := iω̃i = RT
i Ṙi,vb

i := ivi
i = RT

i ṙi

Twist represented in BFR Fi , i.e., measured and resolved in Fi

Spatial twist: Vs
i =

(
ωs

i

vs
i

)
, with ω̃s

i := 0ω̃i = ṘiR
T
i ,vs

i := 0v0
i = ṙi − ω̃s

iri

Twist represented in IFR F0, i.e., measured and resolved in F0

Hybrid twist: Vh
i =

(
ωs

i

ṙi

)

Twist measured in BFR Fi but resolved in IFR F0

Mixed twist: Vm
i =

(
ωb

i

ṙi

)

Angular velocity is measured and resolved in BFR Fi .

Translational velocity is measured in BFR Fi but resolved in IFR F0.
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