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Abstract. Cooperative peer-to-peer (p2p) applications are designed to share the
resources of participating computers for the common good of all users. However,
users do not necessarily have an incentive to donate resources to the system if
they can use the system’s services for free. In this paper, we describe Scrivener,
a fully decentralized system that ensures fair sharing of bandwidth in coopera-
tive content distribution networks. We show how participating nodes, tracking
only first-hand observed behavior of their peers, can detect when their peers are
behaving selfishly and refuse to provide them service. Simulation results show
that our mechanisms effectively limit the quality of service received by auser to
a level that is proportional to the amount of resources contributed by that user,
while incurring modest overhead.

1 Introduction

This paper concerns itself with the fair sharing of resources in cooperative peer-to-
peer (p2p) systems. In such a system, participating nodes are expected to contribute a
fraction of their resources in exchange for access to a service provided by the system.
Clearly, if participants fail to contribute enough resources to offset the load imposed by
all users, then the system’s stability and usability may be in danger.

Experience with file-sharing systems like Gnutella and KaZaA shows that many
users may choose to consume the system’s services without providing any of their own
resources for the use of others [2]. The problem is that participants have no naturalin-
centiveto provide services to their peers if it is not somehow required of them. Users
more closely resemble economically “rational” agents who are willing to follow the
protocol only if that behavior maximizes the node’s “utility” from the p2p network. If
there is no immediate penalty for selfish behavior, then nodes will behave selfishly, and
the p2p system will fail. Economic theory calls these users “free riders” or “freeload-
ers,” and the resulting scenario “the tragedy of the commons” [21].

Ideally, we would like to design a system where nodes, actingin their own best in-
terest, behave collectively to maximize the common welfare. Designing such a system
without a centralized authority that has complete knowledge of the system becomes
a distributed algorithmic mechanism design (DAMD) problem[12]. DAMD is a cur-
rent area of study that combines computational tractability in theoretical computer sci-
ence with incentive-compatible mechanism design in the economics literature. It pro-
vides a useful framework for considering p2p systems [27,28,33]. This paper considers
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incentives-based mechanisms that ensure fair sharing, focusing on cooperative systems
where network bandwidth is the contented resource.

One way to enforce fairness is to have, for each node in the system, a set of other
nodes account for that node’s actions and approve requests according to the system’s
policy. KARMA [36] is an example of such a system. However, coordinating the actions
of this auditor set requires both cryptographic operationsand additional communication
everytime a peer issues or responds to a request. This can add substantial overhead and
latency to the system. Moreover, this approach introduces the additional problem of
how to incentivize the auditor set to perform its function correctly [36].

Instead, we hypothesize that a normal p2p node, monitoring the behavior of its over-
lay neighbors, will have sufficient information to locally identify and discourage selfish
behavior. When nodes give preferential service to peers who follow the rules, rational
agents will choose to follow the rules to receive better services. An early example of
a p2p system built in this fashion is BitTorrent [7], where nodes employ a “tit-for-tat”
policy, preferring to transmit content to other nodes who are willing to return the fa-
vor. BitTorrent focuses on the case where all peers are interested in the same content,
e.g., different blocks of a large software distribution. Thus, it is common that two peers
simultaneously have a block that is of interest to the other,enabling a “clean swap.”

In this paper, we are attempting to solve the more general problem of a content dis-
tribution system where peers are interested in obtaining objects from a large collection,
consisting of both popular and unpopular objects. In this setting, a simultaneous swap
of content is rarely possible. Instead, it is necessary to maintain a history of interac-
tions (in terms of credit and debt) with a peer to make decisions concerning the peer in
the future. Moreover, the good will accumulated by a BitTorrent node is lost when that
node completes downloading the object and leaves the system. BitTorrent nodes have
no incentive to stay around and help their peers. In our system, we wish to encourage
such behavior by allowing peers to accumulate credit that can be redeemed at a later
time, for possibly unrelated content.

The remainder of this paper is structured as follows. Section 2 describes the model
and the goals of our system. In Section 3, we present the design of Scrivener, a sys-
tem that enforces fair bandwidth sharing in a cooperative content distribution system.
Section 4 describes the implementation of Scrivener in the context of an existing con-
tent distribution system. We present simulation results inSection 5. Finally, Section 6
discusses related work and Section 7 concludes.

2 System model and goals

We consider cooperative content distribution systems where participants wish to obtain
content stored on other participants’ computers. Content is assumed to be published by
its owner and disseminated into the system for distribution. We assume that, at least for
popular objects, the owner has insufficient bandwidth to service every possible request
and wishes to leverage the bandwidth available among other nodes in the system.

The set of participating nodes is assumed to form an overlay network. Scrivener
is based on mechanisms that in principle can be applied to both unstructured [17, 23]
and structured overlay networks [30, 34], as long as they meet the following minimal
requirements: (1) Each node in the overlay communicates directly with only a bounded
(i.e., constant or logarithmic in the size of the overlay) number of overlayneighbors;
(2) the overlay has a mechanism to discover new overlay neighbors; and, (3) the overlay
supports a search primitive that discovers, when given a valid content identifier, one or
more overlay paths to a node that stores content associated with that identifier.



We further assume that node identifiers cannot be created anddiscarded freely. The
mechanisms we will describe are all based on observing whichnodes have behaved
properly and which have not. If nodes could misbehave under one identity, only to
discard it and assume another identity, then there would be no incentive for proper be-
havior. Such “Sybil attacks” [11] are a fundamental issue inoverlay networks and a
host of different attacks become possible unless nodeIds are somehow controlled. For
the purposes of our research, we require an external solution to Sybil attacks. For ex-
ample, Castro et al. [6] address this by requiring a trusted authority to issue certificates
that bind a nodeId to a public key; they also describe a weaker, decentralized approach
to issuing such certificates. Since we are primarily interested in supporting systems
for the distribution of legal content, maintaining user anonymity is not a design goal
of Scrivener. If, however, an anonymity-preserving defense against Sybil attacks was
available, Scrivener might still be applicable.

2.1 Attack model

The adversarial model assumed by Scrivener is limited to simple freeloadingbehavior,
whose only objective is to obtain service without contributing an equivalent fair share
of bandwidth to the system. This is in contrast to more general maliciousbehavior,
where the objective of the attacker may include obtaining unauthorized access to con-
tent, corrupting or censoring content, or denying or degrading service to other users.
Mechanisms to prevent or mitigate such behavior (e.g., sealed and self-certifying con-
tent [15], content entanglement [37], Castro et al. [6]’s secure routing primitive) may
be employed to complement Scrivener. Most p2p systems are already engineered to be
robust against traffic loss due to network failures. In the extreme case of a node re-
fusing to properly forward low-level traffic, that nodes’ neighbors could flag the node
as unresponsive and would likely remove the node from the network. As such, we are
primarily concerned withapplication layerfreeloading, where the application’s goal is
the sharing and distribution of content of varying size and popularity.

It is useful to consider freeloading separately from more general malicious behavior,
particularly when in many systems it is much easier to freeload than to mount a mali-
cious attack. In KaZaA [23], for example, a client configuredto have minimum upload
bandwidth and turning off the super-peer flag suffices to freeload. A malicious attack,
on the other hand, would require considerable technical expertise. Thus, the fraction of
users who have the motivation and ability to freeload is likely to far exceed the fraction
of users that are intent and able to mount a malicious attack.

Accordingly, the two threats call for different mechanisms. A defense against freeload-
ing must be effective and efficient even when a large fractionof participants attempt to
freeload. A defense against malicious behavior can, and often must, assume that ma-
licious behavior is limited to a small minority of users. We expect that a production
content distribution system would include both types of mechanisms. For the remain-
der of this paper, we will focus exclusively on detecting andpreventing freeloading.

2.2 Goals

Scrivener’s goal is to achieve fair sharing of bandwidth in content distribution systems.
The key aspects of this goal are summarized below.

– Fairness. The system must ensure that participants receive a qualityof service that
is proportional to the amount of bandwidth they are actuallycontributing to the
system. Furthermore, no participant should be permitted toperpetually consume



resources in excess of their contributions at the expense ofanother participant. This
provides an incentive for nodes not to freeload.

– Low overhead. The overhead imposed by the mechanisms used should be mod-
est. Moreover, the marginal cost related to ensuring fairness when downloading an
object should be low, to ensure efficiency despite small object sizes.

– Robustness. The system should retain the above properties even in the presence of
large numbers of freeloaders and in the presence of modest churn.

3 Design

Fundamentally, Scrivener is based on the idea of a pairwise exchange of content be-
tween overlay participants. This is similar in spirit to BitTorrent, where participants ex-
change content fragments “tit-for-tat.” However, unlike BitTorrent, Scrivener considers
the general case of a content distribution system where participants with different inter-
ests choose from a large set of content objects. In such a system, it is unlikely that two
overlay neighbors are simultaneously interested in each other’s content, which would
enable a “clean swap.” Making pairwise exchange work in a general content distribution
network presents several challenges. The basic concepts ofScrivener include:

Relationships: A Scrivener node maintains a relationship with each of its overlay neigh-
bors. Each of the two nodes involved in a relationship maintains a credit and a confi-
dence value for the other node, defined below. These values are maintained in persistent
storage and are remembered even as a node departs and subsequently rejoins the over-
lay. The values are maintained and used only locally to a given node.

Credit: Credit is the difference between the amount of data sent to and the amount of
data received from the peer.1 Negative values of credit are calleddebt.

Confidence: The positive confidence value for the neighbor is calculated according to
an additive increase, multiplicative decrease policy, based on the success or failure of
content requests that were forwarded to the neighbor. The confidence value is used in
deciding how to forward requests during content search and it is used to compute the
credit limit (defined below) granted to the neighbor node.

Building on these core ideas, easily applicable to any p2p content distribution sys-
tem, we can invent a number of mechanisms:

Maintaining credit / debt:To enable non-simultaneous pairwise swapping, each Scrivener
node maintains a record of credit / debt with each of its overlay neighbors. We wish to
enable a nodeA to obtain content from another nodeB, even whenA may not currently
have any content of interest toB. A can repay the resulting debt toB at a future time,
whenB happens to be interested in some content held byA. A node honors requests
from a peer if and only if that peer is in good standing, i.e., the peer’s debt is below a
certain limit.

Limiting generosity:To bootstrap the system, one node must be willing to extend a loan
to another node with which it has had no prior relationship. However, such loans must
not enable freeloading. A Scrivener nodeA grants a small initial credit to each nodeB
thatA has chosen to initiate a relationship with. However, nodeB does not necessarily
grantA any credit in return. AsA andB interact and respond to each other’s requests,
the confidence among the peers, and thus the amount of credit granted, can increase
over time.

1 We assume here that the cost of transferring an object is equal to the size of the object in bytes.
It is equally possible to define certain objects as more valuable than others.



Limiting relationships:Each node initiates relationships with only a limited number of
peers, typically the neighbors chosen by the overlay network. This limits the amount of
state maintained by each node and it limits the total credit anode grants its peers.
Transitive trading:What if a node wishes to obtain a content object not held by any
of its overlay neighbors? We need a mechanism that allows a node to use the credit it
has with its neighbors to obtain content from a more distant node that has the desired
content, but with which it does not have a pre-existing relationship. Transitive trading
is such a mechanism. Performing a transitive trade involvesfinding a path from the
requester to a content holder such that each node along the path is in good standing
with the subsequent node. Then, the content holder sends thecontent to the requester,
and each node along the path credits the subsequent node.

3.1 Relationships

Each Scrivener node maintains relationships with a small number of other nodes, typi-
cally its overlay neighbors, as selected by the overlay protocol. More precisely, any two
nodes in the overlay network form a relationship if and only if at least one of them has
the other in its overlay neighbor table. A Scrivener nodeA grants a small initial confi-
dence value (and thus a small credit limit) to any node thatA has chosen as a neighbor,
but it assigns an initial confidence of zero (and thus no credit) to any node that has
invited A to be a neighbor. This prevents freeloaders from obtaining alarge credit limit
by initiating many relationships with many nodes, perhaps pretending that its normal
neighbors have failed.2

The small initial credit limit allows neighbors chosen byA to request content from
A, and it allowsA to request content from legitimate nodes who have chosenA as a
neighbor. As content is exchanged, the parties gain more confidence in each other and
gradually grant each other larger credit limits. Our schemeputs newcomers at a dis-
advantage; they need to initiate relationships, forcing them to grant credit and offer
service while receiving little in return initially. This isthe price for defending against
freeloaders in any reputation-based system. However, as wewill show, the initial sac-
rifice is rewarded quickly as the node establishes confidenceand gains credit with its
neighbors.

When a Scrivener nodeA finds that one of its neighborsB has accumulated debt in
excess of its credit limit, it ceases to accept requests fromB. Regardless,A continues
to make requests toB in order to giveB the opportunity to pay back its debt. Likewise,
A may find that the confidence value of one of its neighborsB goes to zero, perhaps
becauseB has repeatedly failed to fulfill requests fromA even thoughA is in good
standing withB. In this case,A ceases to make requests viaB or to accept requests from
B. FromA’s perspective,B might as well not be a part of the overlay network.A then
uses existing mechanisms provided by the overlay network toreplaceB with a different,
and hopefully more cooperative, neighbor.

In principle, a Scrivener node must maintain a record of its past overlay neighbors
indefinitely. Erasing a negative record would amount to forgiving debt, and would en-
able freeloading. In practice, it is acceptable to delete records of nodes that have been
offline for long periods, perhaps a year, thus seriously inconveniencing freeloaders who

2 Overlay network systems are generally engineered to assume a high rateof node failure and
include elaborate mechanisms to locate previously unknown nodes and form new relationships
in order to preserve important invariants, including the degree of node-to-node connectivity
and of file replication. As a result, we need to limit the benefits automatically granted to a
node solely because it happens to be a peer.



wish to exploit the resulting loophole. Storing a year’s worth of records is reasonable
as these records are very compact: only a nodeId and two integer values, the credit and
confidence values, are required. Such concise records couldeasily scale to track the
millions of neighbors that a node might see in a year’s time.

Note also that due to the pairwise relationships, freeloader cannot benefit from col-
lusion. While colluding freeloaders may be able to convince legitimate nodes to shift
credit from one freeloader to another, the total credit willbe unchanged.

3.2 Confidence

Scrivener nodes keep a confidence estimate for each of their overlay neighbors. The
confidence value serves two purposes: (1) it determines the magnitude of the credit
limit granted to a neighbor and (2) it can be used to bias overlay routing decisions
towards cooperative neighbors.

The confidence assigned by a node to its neighbor is based on the history of their re-
lationship. The confidence estimate has the following properties: (1) As nodes exchange
content, the confidence increases slowly; (2) The confidencedrops rapidly once a neigh-
bor starts to misbehave; (3) The confidence is bounded to limit the damage caused by a
node that plays by the rules for an extended period and then starts to freeload. An addi-
tive increase, multiplicative decrease (AIMD) strategy offers a simple implementation
of these properties.

3.3 Transitive trade

In p2p content distribution systems with a large content set, the odds are small that a
desired object can be found on an immediate overlay neighborof the node wishing to
fetch that object. We need a way for nodes to trade their credits and debts with one
another, and we would like to avoid the overhead of digital cash or other cryptographic
schemes. Instead, we designed an incremental trading strategy we calltransitive trade,
which works by identifying acredit pathfrom a source node to a node that has the
desired object. In a credit path, each node in the path eitherhas credit with the next
node, or its debt is below the next node’s credit limit. We describe a scheme to locate
such paths in Section 4.3.

Conceivably, once we have identified a credit path, we could rearrange all the credits
in the path such that the destination node now owes somethingnot to its predecessor in
the route, but instead to the source of the route. This is illustrated in Figure 1. A series
of debts, whereB owesA, C owesB, and so forth untilZ owes its predecessor could all
be replaced with a direct debt fromZ to A. Z can now cancel this debt by providingA
with the desired content.

To make debt swapping work, we need a protocol that is robust against any node in
the trading chain cheating. For example, a node could attempt to cancel a debt that it
owes without giving up the debt owed to it by the successor in the trading chain. Rather
than resorting to a complex cryptographic commitment protocol, we take a straightfor-
ward, incremental approach. The protocol is depicted in Figure 2.
1: Credit path discovery: A first routes a “path discovery” message (PD) towardsZ. As
a side effect,A “pays” B for this message,B paysC, and so forth untilZ is paid. At the
same time, each node reduces its confidence in its successor as if the request had failed
(even though it may be working perfectly well). This design avoids the need to maintain
timeouts to detect and react to failures. The credit path discovery might fail for a number
of reasons, ranging from a freeloader dropping the message to network failures (see
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Section 4.3). The effect is that every node that forwarded the request will have reduced
confidence in its successor. Furthermore, the last node in the chain effectively keeps the
credit originally transfered fromA.
2a: Object exists: Upon receiving the request,Z transmits a confirmation message
(ACK) directly toA. A now routes a request message (REQ) for a chunk of the content
object along the existing credit path, paying for the chunk as a side-effect of the mes-
sage transmission.Z transmits the requested object chunk directly toA. A repeats this
step until it has obtained the last chunk of the object. A finalmessage, announcingA’s
success, causes each node to adjust the confidence value of its successor to compensate
for the reduction in step (1), plus an additional confidence gained as a result of the trade.
2b: Object does not exist: Upon receiving the request,Z routes a “does not exist”
message (DNE) along the reverse credit path. The message contains the addresses of the
complete set of nodes that would store replicas of the content if it existed. Intermediate
nodes can contact a member of this set to verify that the object does not exist. If they
are convinced that the object really does not exist, they restore the confidence of the
successor node to compensate for the reduction taken in step(1).

Each participating node has an incentive to follow each of the protocol steps: Node
A wants to receive all the chunks, nodeZ wants to be credited for transmitting all the
chunks, and all nodes wish to maintain the confidence of theirpredecessors along the
credit path. When a nodedefectsfrom the protocol at some stage, it can collect credit
without providing the corresponding service. However, theprice is a drop in the con-
fidence of the node’s predecessor. Also, the damage is limited to the size of a single
chunk, which can be made appropriately small.

In general, for any failure, the clientA is charged for at most a single chunk – a
modest loss. The charge can be interpreted as the price for imposing load on the overlay
by issuing a request that could not be satisfied. Such a chargealso discourages flooding
requests into the system; the client must pay for each and every request it makes. The
client can minimize the loss associated with a failure when it begins with a small chunk
and gradually increases the request size as its confidence inthe path increases.

Over the long term, transitive trading tends to balance credit and debt among a
node’s overlay neighbors, maximizing the chances that the node will be able to obtain
content in the future. Moreover, participation in a transitive trade is beneficial because
it increases the confidence of each node along the path in its successor.

At the same time, nodes have a disincentive to refuse participation in a transitive
trade. Such a refusal leads the predecessor along the creditpath to reduce its confidence



in the node. While the failure of a neighbor adversely affectsa node, if it happens
repeatedly, the node quickly reduces its confidence in that neighbor, and avoids routing
messages through that neighbor in the future. As a result, failing nodes are avoided by
the neighbors and become isolated.

It is important that nodes are not penalized for being off-line. When a node is off-
line, other nodes merely suspend their relationship with the node until it returns. A
related question is whether a node has an incentive to swap credit from an established
neighbor to a newcomer as part of a transitive trade. In practice, having credit with a
large and diverse set of neighbors maximizes the chances that a node will be able to
successfully locate a credit path for a future request.

3.4 Caching

In general, objects in a content distribution system have a highly skewed popularity
distribution [20]3. To avoid load imbalances as a result of such skew, caching isused
in these systems to dynamically adjust the number of nodes serving a content object
according to its popularity. Typically, once a node has obtained some content for itself,
it serves the content to other interested clients from its local cache. Thus, popular objects
tend to be replicated widely.

In Scrivener, dynamic caching is required to address an additional form of im-
balance caused by skewed popularity. Without caching, nodes serving popular objects
would tend to accumulate a huge amount of credit. Nodes that serve less popular objects
would tend to accumulate debt and lack the “earning potential” to ever repay the debt.
Our simulations (see Section 5) will demonstrate this effect in action and show how
caching addresses the problem. Moreover, nodes have an incentive to cache objects,
because it increases their earning potential. Caching popular objects allows a node to
earn the credit needed to satisfy its own future needs.

4 Implementation

In this section, we describe an implementation of our Scrivener prototype. We chose
to implement our prototype using FreePastry, a structured overlay network with a dis-
tributed hash table service called PAST [13, 30, 31]. Scrivener uses only the key-based
routing (KBR) API [9] exported by FreePastry [13]. Thus, ourimplementation will also
work with any structured overlay that supports this interface, e.g., Chord [34].

4.1 Background

Pastry is a structured p2p overlay network that provides a KBR service. In such over-
lays, every node and every object is assigned a unique identifier randomly chosen from a
large id space, referred to as anodeIdandkey, respectively. Given a message and a key,
Pastry can route the message to the live node whose nodeId is numerically closest to the
key in less than log2b N hops, whereN is the number of nodes in the network andb is
the routing base, usually set to 4. Castro et al. [6] describetechniques that make Pastry
robust to collusions of a minority of malicious nodes in the overlay who attempt to com-
promise the overlay. These techniques are complementary tothe techniques described

3 This is not a problem for BitTorrent, since every user attempts to get the same object, and the
popularity of each block is identical.



in this paper and can be used in conjunction with Scrivener ifmalicious participants
(rather than mere freeloaders) are a threat.

PAST provides a distributed hash table (DHT) abstraction on top of Pastry. Each
stored item in PAST is given a key (hereafter referred to as the handle), and replicas
of an object are stored at thek live nodes whose nodeIds are the numerically closest to
the object’s handle (these nodes are called areplica set). PAST maintains the invariant
that the object is replicated onk nodes, regardless of node addition or failure. If a node
in the replica set is out of space, the object will be divertedto a node close in nodeId
space but not in the replica set, and stored there temporarily. The handle is built from a
cryptographically secure hash (e.g., SHA-1) applied to thedata being stored. As such,
the handle has sufficient information for the holder of the handle to verify that the
content obtained from PAST is authentic.

4.2 Node bootstrapping

Recall that when a new node joins the system, it has no credit or debt. To earn credit, it
needs to obtain some initial content that it can then serve toother nodes. In our prototype
implementation, PAST’s normal content placement and replication policy provides a
node with its initial set of content objects.

When a PAST node joins the system, it isrequired to store a set of objects based
on its position in the identifier space. The node obtains these initial objects from its
neighbors in the id space for free; they form the new node’s initial content offering and
allow it to acquire credit with its overlay neighbors, whichforward requests for these
objects to the node as part of PAST’s normal lookup operation. Our simulation results
show that this simple mechanism suffices for a node to quicklybootstrap itself.

4.3 Finding credit paths

A key implementation issue is how to efficiently discover credit paths. The Pastry rout-
ing primitive finds an overlay path to a node that stores the requested content object,
given the object’s identifier. Finding a credit path introduces the additional constraint
that each node along the path must be in good standing with itssuccessor.

Our prototype uses a randomized, greedy algorithm to discover credit paths. To
determine the next hop, a Scrivener node first selects the setof neighbors that satisfy the
Pastry routing constraint. These nodes either have identifiers that match the requested
object handle in a longer prefix than the present node’s id, ortheir id matches as long a
prefix as the present node’s id but is numerically closer to the object handle. Forwarding
the request to a node in this set guarantees that the route is loop-free and will end at a
node that has the desired content, assuming the content exists in the overlay.

Next, we subtract from the candidate set any neighboring nodes where the present
node is not in good standing. These neighbors would refuse requests from the present
node because it had exceeded its credit limit. Because all ofthe information used by
nodes to rate their neighbors is available equally to both parties, nodes can easily track
their standing with their neighbors.

Among the set of remaining candidate nodes, we make a biased random choice,
based on the following criteria:

– Length of the neighbor’s prefix match with the object handle. Choosing a neighbor
with higher prefix match than the present node reduces the latency and path length,
and therefore also increases the chance to find a working path.



– Confidence in the neighbor. Neighbors with higher confidence values have been
more helpful in the past, and are thus more likely to be helpful this time.

– Amount of credit with the neighbor. Choosing neighbors with higher credit helps
the present node to balance credit and debt and therefore increases flexibility in
handling future requests.

Scrivener strongly biases the forwarding choice toward neighbors with a prefix
match (minimizing the number of overlay routing hops), while also trying to balance
credit and debt, and gives preference to neighbors with highconfidence values. More
precisely, letR denote the remaining set of candidate nodes. Scrivener assigns ascore
to each nodex in setR, which is calculated as score(x) = è (x) · t(x) · [c(x)−cmin +1],
where`(x) ≥ 0 is the number of additional digits that the neighborx shares with the
object handle relative to the present node,c(x) andt(x) are the credit and confidence
value of neighborx, andcmin = mini∈R c(i). Then the probability that peerx is chosen
is its score divided by the total score of all candidate peers, i.e., score(x)/∑i∈R score(i).
The quality of a node’s prefix match figures exponentially in its score to give a signif-
icantly greater weight to shorter routes. Note also that both confidence and credit/debt
are measured in the same units, i.e., the number of objects orbytes transferred.

Our randomized, greedy algorithm is not guaranteed to discover a credit path even
if one exists. A request could end up at a node that has no neighbor that satisfies the
Pastry routing constraints and with which the node is in goodstanding. In such cases,
the request cannot be forwarded on and the client will need toretry the request through
a different neighbor.

Our simulations shows that the success rate is very high and the number of retries
typically necessary to discover a credit path is very low in practice. There are sev-
eral reasons for this. First, the Pastry overlay is richly connected and many redundant
paths exist between a client and a node holding the required content. Second, dynamic
caching effectively balances the “earning power” of nodes,avoiding strong imbalances
in the credit available to different nodes. Third, the bias in the forwarding policy against
nodes with low confidence tends to isolate freeloaders, causing requests to be effectively
routed around such nodes. Lastly, the bias in the forwardingpolicy based on credit tends
to balance the available credit a node has with its differentneighbors. These various
self-stabilizing forces reduce the probability that a credit path search might fail, either
due to lack of credit or because a freeloader refuses to honorit.

4.4 Bounding lengths of credit paths

Unlike the native Pastry routing policy, Scrivener does notalways choose a neighbor
with a longer prefix match, even if such a neighbor exists. As aresult, Pastry’s logarith-
mic bound on the expected path lengths does not strictly hold. Note that shorter path
lengths are desirable for two important reasons: (1) shorter path lengths ensure low de-
lay and network utilization, and (2) shorter paths are more robust against node failures.
Since the routing policy of Scrivener may occasionally leadto long paths, we resort to
another mechanism to bound the path length.

In the prototype implementation, Scrivener artificially bounds the credit path length
to be logarithmic in the overlay size. When the search for a credit path has reached this
bound, the request is dropped. A rough estimate of the size ofthe overlayN suffices
to determine the bound. Since nodeIds are assigned at random, the overlay size can be
extrapolated from the local density of nodeIds with sufficient accuracy. When a search
exceeds this boundary, the request is dropped. Our simulation results, presented in Sec-
tion 5, show that the impact of this restriction on the ability to locate credit paths is
minimal, while it ensures deterministic bounds on the system’s resource consumption.
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5 Experimental results

In this section, we present simulation results to evaluate our prototype implementation.
We simulate a system where network messages are delivered instantaneously. Objects
are replicated using PAST’s replication strategy, storingan object on thek nodes with
nodeIds closest to the identifier for that object. When requesting an object, client nodes
perform at most 10 queries, each time attempting to discovera credit path using the
randomized greedy algorithm. The initial credit limit is set to 1 object, and increases
linearly with the confidence the node has in its peer. The credit paths are limited to
d3logNe hops. Each node also has a fixed sized, 1024-object soft cacheto retain ob-
jects it has previously obtained to satisfy future requests. We implement an LRU cache
replacement policy to replace entries from the cache when itis full.

A node’s peers maintain their credit and confidence values for a node that is tem-
porarily off-line. Also, the Pastry routing tables are persistent, i.e., a node remembers its
table while it is off-line. Inappropriate entries are simply replaced by the existing over-
lay maintenance mechanisms, but biased towards peers with which the node already has
a relationship. As a last resort, the node initiates a new relationship. Also, for each entry
in the routing table, a node maintains at most three neighbors but uses only the one with
the highest confidence value. (Confidence estimation is described in Section 3.2.)

5.1 Workload model

We use the model described by Gummadi et al. [20] to generate workloads. This model,
derived from KaZaA traffic observations, captures the fetch-at-most-once behavior and
the importance of new object arrivals in typical p2p file sharing applications. Based
on this model, we chose the following parameters: number of nodes onlineC = 800,
number of objectsO = 40,000, request rate per nodeλR = 50, object arrival rateλO =
12, and node arrival rateλC = 5 (the units are nodes or objects per simulation time
unit). The node departure rate is the same as the arrival rate, keeping the number of
active nodes constant. Each object is initially replicatedto k = 3 nodes. We assume that
there is a fixed pool of 1,000 distinct nodes, out of which 800 are online at any time. As
a result, during the first 40 time units all arriving nodes arefresh, but after time 40 all
arriving nodes are those that were online once before. Nodesthat go offline are chosen
randomly from the currently live nodes.
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Fig. 5.Cumulative distribution of debt-based path lengths for different system sizes.

5.2 System performance

First, we study how our mechanisms affect the performance ofthe underlying coopera-
tive content distribution system in the absence of freeloaders. In particular, we want to
see how much overhead has been added to the system.

Success rate Figure 3 shows the fraction of successful requests, both with and with-
out caching. Without caching, the success rate stabilizes around 80%. This is because
object popularity is so uneven that nodes around the replicas of popular objects be-
come indebted to the replica holders, making it sometimes impossible for a node to
find a credit path to the replicas. Many requests to popular objects fail despite retries.
However, allowing nodes to serve cached objects eliminatesthis problem and the suc-
cess rate approaches 100%. The stability of the success ratesuggests that the system
balances out nicely and obedient nodes do not build up debt over time4.

Figure 4 shows the number of retries required to successfully find a credit path.
When caching is enabled, over 73% of queries succeed on the first attempt, and three
attempts are sufficient to achieve over 95% success rate. We conclude that the policy
enforcement in Scrivener with bounded paths does not seriously affect object fetch
reliability in the absence of freeloaders.

Path efficiency Scrivener’s randomized greedy routing strategy attempts to use Pas-
try’s routing mechanism to achieve logarithmic-length paths, when possible, and falls
back to less efficient mechanisms, when necessary, that are artificially capped to pre-
serve anO(logN) expected path length (see Section 4.4). A cumulative distribution of
path lengths at different overlay sizes is shown in Figure 5.By observing horizontal
slices through this graph, we see that the growth in path length follows roughly the
log of the number of nodes. Our simulations show that common case routes are quite
efficient and the worst case routes are only twice as long as common-case routes.

Due to limitations of our simulation environment, we were unable to run simulations
for overlay sizes larger than 2000. In order to emulate the effect of larger overlay sizes,
we ran simulations with 1000 nodes, but with Pastry’s routing base set tob = 2 instead
of 4. The results show that the median Scrivener path lengthsis around 5, close to
the expected Pastry path length(log22 1000≈ 4.98). Note that 5 is the expected path
length for a Pastry overlay with one million nodes whenb= 4. This result suggests that

4 We have also implementedspeculative caching, where nodes observe the requests they have
forwarded and actively fetch objects that they consider popular. However, the improvements
we observed in terms of success rate were insignificant.
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do not serve objects.
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do not serve objects.

Scrivener’s greedy routing strategy easily scales to much larger overlay sizes than we
were able to simulate.

Still, these longer paths, which would also occur as the number of nodes in the
overlay increases, raise concerns about path usability, particularly if the system is ex-
periencing high node churn. More nodes in a path increase theodds that one of those
nodes will fail while a transitive trade is in progress. However, the system provides
incentives for nodes to stay online until a transitive tradein which they are involved
completes (see Section 3.3). If a path fails, the original requesting node can restart the
trading protocol, find a new path to the source of the data (or areplica), and resume
downloading the missing data.

The total overhead for Scrivener to fetch an object is the product of the average
number of attempts to discover a credit path (≈ 2) and the average credit path length
(< d3logNe). Among competing systems that use auditor sets, KARMA [36]is the
most efficient system we are aware of. KARMA’s asymptotic message overhead is com-
parable to Scrivener’s, but requires expensive public-keycryptographic operations and
additional means of incentivizing auditors [36].

5.3 Introducing freeloaders

Next, we introduce freeloaders into our simulation. Freeloaders issue requests like obe-
dient nodes, but they may refuse to serve objects. In a deployed system, freeloaders can
be expected to attempt a variety of strategies. In the following experiments, we consider
a number of freeloading strategies, and show that in all cases there are no sustainable
benefits to freeloading. We simulate 800 nodes, but now with 5% freeloaders. We as-
sume that freeloaders forward requests and participate in transitive trades, as this allows
them to earn confidence with minimal traffic overhead. While obedient nodes undergo
churn as specified in the model, freeloaders are always online throughout the entire sim-
ulation period. Recall that routing tables are persistent,ensuring that freeloaders cannot
neither escape a bad reputation by periodically departing from the system nor by re-
peatedly exploiting the limited credit granted by obedientnodes looking to establish
relationships.

Freeloaders that never serveFirst we consider freeloaders that never serve any object.
Figure 6 shows that their success rate drops to below 5% within a few time units, yet
that of obedient nodes is unaffected. Note that the success rate for freeloaders never
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Fig. 8.Success rate with a higher churn rate.
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Fig. 9. Success rate with the worst-case sce-
nario where every obedient node gives a high
initial confidence to all freeloaders.

goes to zero. This is because freeloaders can still get the objects that they themselves
are storing “for free.”

To determine Scrivener’s sensitivity to the size of the softcache, we vary the cache
size. The success rate remains virtually constant down to a cache size of 320 objects,
and gradually decreases to 91% at 128 objects. This shows that Scrivener does not
require a large soft cache to work efficiently.

We increased the fraction of freeloaders to 50%, with results shown in Figure 7.
The success rate of freeloaders again drops quickly to near zero, while that for obedient
nodes starts below 60% and plateaus at 80%. Note that with 50%freeloaders and a
replication factork = 3, it is expected that 12.5% of the objects are only stored by
freeloaders and will thus never be served. This suggests that a more expensive search
may increase the success rate somewhat, but with diminishing returns.

To test the system under extreme conditions, we increase thefraction of freeloaders
to 80%. At this point, more than half of the objects are storedonly by freeloaders and,
unsurprisingly, the success rate for obedient nodes is only30%. Also, as a result of
more transitive trading failures, it takes longer for the success rate of obedient nodes
to stabilize. Scrivener does continue to function remarkably well, despite the extreme
freeloading rate. Given that these freeloaders receive no benefit from being present in
the network, one would expect them to depart, allowing the remaining obedient nodes
to operate more efficiently.

Since it takes time for obedient nodes to recognize freeloaders, one concern is that a
high churn rate might enable freeloaders to get a satisfactory success rate by exploiting
new node arrivals. We simulated a system with 800 nodes, but achurn rateλC of 50
nodes per time unit and with fresh nodes arriving for the first100 time units. After time
100, the arriving nodes have all previously been part of the network and gone offline.
Figure 8 clearly shows that with this higher churn of fresh nodes, the success rate for
freeloaders stabilizes at around 15%, dropping after time 100 when the returning nodes
remember previous freeloaders. Thus, while freeloaders can exploit newcomers, the
benefit is limited. More importantly, the success rate for obedient nodes is unaffected.
While obedient nodes waste some effort handling requests from freeloaders, they give
clear priority to serving each other.

Recall that a Scrivener node grants an initial credit to its chosen neighbors. We
next consider an attack where a freeloader somehow convinces an obedient node to
choose it as a neighbor, thus granting it an initial credit. We consider a worst-case
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Fig. 11. Success rate with freeloaders that
serve objects only for the first 20 time units.

scenario where freeloaders can always manipulate obedientnodes into choosing them
as neighbors. With such an attack, freeloaders could now exploit the initial credit from
each obedient node. Figure 9 shows that, indeed, freeloaders get a better success rate
initially. However, the success rate drops to 30% quickly and gradually goes down as
obedient nodes refuse to serve freeloaders after their debts build up. Our simulations
show that, even with such a hypothetical attack, freeloaders would have little benefit
and obedient nodes would observe no significant change in their own success rate.

Short-term cooperation Participation in transitive trades, alone, can earn confidence
and increase credit limits without actually serving any object. An interesting question is
whether it is possible for freeloaders to build up confidencesimply by participating in
transitive trades, and then exploit that confidence. In Figure 10, we simulate freeloaders
that participate in transitive trades for 20 time units before fetching any object. The
success rate for freeloaders drops to below 0.1 within ten time units. Thus, participation
in transitive trades does have a benefit, but only a small one.

We also simulated nodes that were obedient for 20 time units and then began freeload-
ing. As shown in Figure 11, the freeloader’s success rate nowtakes seven time units to
drop below 0.1. The freeloader does benefit from its earlier obedience. However, once
freeloading behavior begins, the success rate remains highfor only two time units, then
falls quickly.

These experiments demonstrate that short-term cooperation is not an effective strat-
egy for freeloaders to exploit the system; once they start tofreeload, obedient nodes
will quickly refuse to serve them.

Providing partial service Another possible freeloading behavior is to serve objects at
a reduced rate. We first consider freeloaders that arbitrarily serve half of their requests.
Figure 12 shows that the success rate for freeloaders drops to and remains at roughly
50% — the same rate at which they are providing service. Note also that the number of
objects received by freeloaders also approaches and stabilizes at the same level as the
number they serve.

Another potential strategy is to have a target quality of service. This freeloading
behavior serves only enough requests to maintain a desired success ratio. We simulate
freeloaders that target a 50% success rate. Figure 13 shows that the resulting success
rate oscillates around 50%. As before, the number of objectsserved by the freeloader
quickly dictates the number of objects the freeloader is allowed to consume.
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Fig. 12.Success rate and number of objects served and fetched with freeloaders that serve half of
the object requests.
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Fig. 13.Success rate and number of objects served and fetched with freeloaders that aim at 50%
success rate.

We finally consider a strategy that alternates between obedience and freeloading,
changing behaviors every 20 time units. Figure 14 shows thatthe success ratio quickly
tends toward 1 and 0 whenever these nodes switch to cooperation and to freeloading,
respectively, with the peak success ratio dropping over time. Also, during the cooper-
ation periods, the former freeloaders service more requests, effectively making up for
the debts they previously accumulated. On average, this alternation strategy performs
worse, from the freeloader’s perspective, than the previous 50% service strategy.

Other experiments In our simulation, a node requests 50 objects per time unit. If
each object is 64 Kbytes, this translates into roughly 3MB ofdata per time unit —
about the size of a typical MP3 file or digital photograph. If we consider users that
attempt to download 100MB of data per day, their success ratewould drop to zero in
about an hour. Increasing the download rate does not help, since its merely accelerates
the decline in success rate.

To test Scrivener’s sensitivity to the size of the downloaded content, we ran simu-
lations where we divided large objects into smaller chunks that were stored and down-
loaded separately. The success rate of obedient nodes improved relative to our earlier
experiments. When downloading smaller chunks, smaller credits were necessary, in-
creasing the success rate of transitive trading. Also of note, freeloaders experienced
an even lower success rate. Because a desired object may now be spread over several
chunks, the odds successfully obtaining all of a file’s chunks diminished. Of course,
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Fig. 14.Success rate and number of objects served and fetched with freeloaders that switch be-
tween cooperation and freeloading every 20 time units.

breaking a file into chunks will increase the overhead rate, as each chunk will need to
be separately located and fetched.

We have also simulated scenarios with obedient nodes with diverse bandwidth ca-
pacities. The success rate for both types of nodes are very close to 100%, although the
success rate for high-end nodes drops slightly. This shows that Scrivener can accom-
modate modest imbalances in the demands and “earning potentials” of participating
nodes gracefully. Other approaches, including treating a high-end node as several vir-
tual nodes, may also be applicable.

Discussion We have evaluated mechanisms to make bandwidth-limited p2pcontent
distribution networks robust against freeloaders. Obedient nodes experience modest ad-
ditional overhead, and over a variety of freeloading behaviors, freeloaders achieve only
the level of service that they willing to provide to others inthe network, even for large
numbers of freeloaders in the system. Our simulations demonstrate that the obedient
strategy maximizes a node’s utility, i.e., Scrivener appears to be economically strategy-
proof.

While our simulation environment does not model delay, the modest increase in the
path length of content requests, combined with the fact thatmost p2p content down-
loads are bandwidth-limited, strongly suggests that download delay is not significantly
affected by Scrivener.

We note that freeloaders still get some benefit during the first few time units after
they join the system. If a freeloader can create new identities without restriction, such
“Sybil attacks” [11] would be able to defeat our mechanisms.As discussed in Section 2,
we require that the p2p overlay has security features to prevent such attacks. Alterna-
tively, Scrivener could adopt a policy where all nodes receive degraded service quality
when they join the p2p network, with the quality improving only after the new node has
proven its worth.

6 Related work

There has been much work on providing incentives for cooperation in distributed sys-
tems. We roughly categorize the related works as follows.

Bandwidth-sharing networks SLIC [35] considers the query nature of unstructured
p2p systems like Gnutella [17]. It proposes giving nodes service levels proportional to



their contribution, so as to provide nodes incentives to share more data and handle more
traffic. BitTorrent [7] facilitates large numbers of nodes all trying to acquire exactly
the same file, with an emphasis on very large files (e.g., software distributions, digital
movies, and so forth). Every BitTorrent node will have acquired some subset of the file
and will trade blocks with other nodes until it has the whole file. In order to bootstrap
new nodes, nodes reserve 1/4 of their bandwidth for altruistic service. Nodes that fairly
trade their bandwidth will experience a higher quality of service. Anagnostakis and
Greenwald [3] suggested that performance can be improved ifexchanges are extended
to allow involving multiple parties. Scrivener solves the more general problem, where
nodes are interested in content from a large set, of potentially much smaller size. We
allow nodes to acquire credits from the files they serve to obtain any other files they
desire in the future. Thus, they have an incentive to serve, even when they themselves
do not require any content at the moment.

GNUnet [19] uses the idea of locally-maintained debit/credit relations in a similar
fashion to our own work. It also uses debt relationships across nodes, comparable to
our debt-based routing. AsGNUnet is more concerned with anonymity than network
efficiency, it does not support transmitting objects directly across the network. All traffic
goes through the overlay, forcing intermediate nodes to carry the bulk traffic of the
object transfer while giving them no particular incentive to do this, save for maintaining
their own anonymity. For a path withn nodes,GNUnet transfers the objectO(n) times.
Scrivener, on the other hand, finds efficient routes and transmits bulk data directly over
the Internet, yielding higher performance, but lackingGNUnet’s anonymity features.
Scrivener also provides mechanism to locate and fetch objects, leveraging its existing
credit/debit framework.

Storage networks In a storage network, nodes share spare disk capacity for applica-
tions such as distributed backup systems. Ngan et al. [27] propose an auditing mecha-
nism, which allows cheaters to be discovered and evicted from the system. Samsara [8]
enforces fairness by requiring an equal exchange of storagespace between peers and by
challenging peers periodically to prove that they are actually storing the data. Storage
incentivicing systems are solving a fundamentally different problem than bandwidth
incentivicing systems. Storage is a commitment, over a longtime period, to provide a
stable service. If misbehavior is detected, a node can punish another by simply deleting
its files. Bandwidth, on the other hand, is an ephemeral service. Bits transmitted cannot
be taken back. Retribution can only be taken by refusing future requests.

Reputation Resource allocation and accountability problems are fundamental to p2p
systems. Dingledine et al. [10] surveys many schemes for tracking nodes’ reputations.
In particular, if obtaining a new identity is cheap and positive reputations have value,
negative reputation could be shed easily by leaving the system and rejoining with a
new identity. Friedman and Resnick [14] also study the case of cheap pseudonyms,
and argue that suspicion of strangers is costly. There have been attempts to build a
distributed trust management system [1,22]. Blanc et al. suggest a reputation system for
incentivicing routing in peer to peer networks that uses a trusted authority to manage
the reputation values for all peers [4]. Unlike those efforts, our design relies solely on
locally observable (and thus more trustworthy) information.

Trading and payments SHARP [16] is a framework for distributed resource manage-
ment, where users can trade resources like bandwidth with trusted peers. KARMA [36]
and SeAl [29] rely on auditor sets to keep track of the resource usage of each partic-
ipant in the network, similar to Ngan et al.’s quota manager approach [27]. MojoNa-
tion [26] similarly allowed peers to exchange certificates for resources. Golle et al. [18]



considered centralized p2p systems with micro-payments, analyzing how various user
strategies reach equilibrium within a game theoretic model.

Trading and payments architectures may be too expensive formany content distri-
bution systems, as each download would incur cryptographicoperations and additional
communication. Moreover, implementing micro-payments either requires a centralized
authority to issue currencies, or uses distributed trust and currency, which is still an
active research area.

Mobile ad hoc networks Since nodes in mobile ad hoc networks rely on each other
to forward traffic, incentives are as important in these networks as they are in p2p con-
tent distribution systems. Marti et al. [25] consider monitoring the performance of other
nodes and routing around uncooperative nodes. CONFIDANT [5] is a distributed rep-
utation system to detect and isolate misbehaving nodes. Salem et al. [32] propose a
micro-payment architecture for multi-hop cellular networks. Catch [24] is a mechanism
to identify and punish selfish nodes who do not forward packets in a multi-hop wire-
less setting based on an anonymous challenge-response protocol. In general, mobile ad
hoc networks may require different incentive mechanisms than p2p systems due to their
limited computational resources and peer connectivity.

7 Conclusions

This paper presents Scrivener, a decentralized system thatprovides nodes in a cooper-
ative content distribution network with incentives to share their bandwidth resources.
Scrivener only requires nodes to track their neighbor’s behavior. It uses a greedy ran-
domized routing algorithm to find a credit path, allowing a node to leverage credit is
has with its overlay neighbors to obtain content from an unrelated node that holds the
desired content. At the same time, Scrivener effectively prevents freeloaders from ex-
ploiting obedient nodes. Our results show that Scrivener isscalable and effective at
deterring freeloading behavior while incurring modest overhead.
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