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Abstract

Background: The Human Cell Atlas is a large international collaborative effort to map all cell types of the human
body. Single-cell RNA sequencing can generate high-quality data for the delivery of such an atlas. However, delays
between fresh sample collection and processing may lead to poor data and difficulties in experimental design.

Results: This study assesses the effect of cold storage on fresh healthy spleen, esophagus, and lung from ≥ 5
donors over 72 h. We collect 240,000 high-quality single-cell transcriptomes with detailed cell type annotations and
whole genome sequences of donors, enabling future eQTL studies. Our data provide a valuable resource for the
study of these 3 organs and will allow cross-organ comparison of cell types.
We see little effect of cold ischemic time on cell yield, total number of reads per cell, and other quality control
metrics in any of the tissues within the first 24 h. However, we observe a decrease in the proportions of lung T cells
at 72 h, higher percentage of mitochondrial reads, and increased contamination by background ambient RNA reads
in the 72-h samples in the spleen, which is cell type specific.

Conclusions: In conclusion, we present robust protocols for tissue preservation for up to 24 h prior to scRNA-seq
analysis. This greatly facilitates the logistics of sample collection for Human Cell Atlas or clinical studies since it
increases the time frames for sample processing.
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Background
High-throughput single-cell RNA sequencing (scRNA-

seq) techniques have developed rapidly in recent years,

making it feasible to generate transcriptional profiles

from thousands of cells in parallel [1–7]. This technol-

ogy has deepened our understanding of the cell types

within tissues, their interactions, and cellular states [1, 4,

8–16]. It is also a cornerstone of the Human Cell Atlas

Project (HCA [17–19];), a large collaborative initiative

which aims to identify every cell type in the human

body. Human samples present particular logistical chal-

lenges: the clinic may be distant from the processing lab

and tissue can become available at short-notice and/or

at inconvenient times. These scenarios necessitate a fast,

simple method of preserving samples that requires min-

imal processing at the clinic.

To address the logistical difficulties and rapid tran-

scriptional changes/stress responses observed upon tis-

sue dissociation [20, 21] or storage [22], a range of cell

freezing or fixation methods have been developed.

Guillaumet-Adkins et al. [23] demonstrate that although

viability is reduced, the transcriptional profiles from cul-

tured cells or minced mouse tissue biopsies cryopre-

served with DMSO are not significantly altered.

However, some cell types are more vulnerable to
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freezing than others, for example, in human endomet-

rium biopsies, stromal cells survive freezing better than

epithelial cells [24]. Fixation of cells with traditional

crosslinking fixatives [25], reversible crosslinkers [26],

non-crosslinking alternatives such as methanol [27], and

other novel stabilization reagents [28] has also been

tested. Fixation halts transcriptional change and stabi-

lizes cell types, although it usually creates 3′ bias. Thus

far, these agents have been tested on dissociated cells, or

at best minced tissues, rather than intact tissue pieces.

Unfortunately, dissociation prior to transportation is

often not practical with human clinical samples and dis-

sociating preserved/fixed tissue pieces using traditional

mechanical or enzymatic dissociation methods is often

challenging.

Hypothermic preservation of intact tissues, as used

during organ transplant procedures, has been opti-

mized to reduce the effects of ischemia (lack of blood

supply) and hypoxia (oxygen deficiency) during stor-

age at 4 °C [29]. Clinically, the kidneys are trans-

planted with a median cold ischemic time of 13 h and

maximum around 35 h; the lungs with median 6.4 h

and maximum 14 h. However, the human kidney and

pancreas maintain their function even after 72 h stor-

age in the University of Wisconsin solution, and the

liver for up to 30 h [30]. Wang et al. [31] demon-

strated that intact mouse kidneys could be stored in

HypoThermosol FRS media for up to 72 h before dis-

sociation and scRNA-seq without altering the tran-

scriptomic profile or cellular heterogeneity of kidney-

resident immune cells. Considering human tissue re-

search, this method has major advantages. Firstly, it

requires no processing of the sample at the collection

site; the clinician can immerse an intact piece of tis-

sue in cold HypoThermosol FRS solution and store

or ship this on ice to the receiving laboratory, where

all other tissue processing can take place. This can be

done in a standardized and reproducible way. Sec-

ondly, it utilizes a commercially available, chemically

defined, non-toxic, and ready-to-use hypothermic

preservation solution, designed to mimic clinical

organ preservation.

One limitation of the Wang et al. study, however, was

that it only studied murine kidney. To provide max-

imum utility for human research, scRNA-seq from mul-

tiple human organs with different ischemic sensitivities

is required. Ferreira et al. [22] saw organ-related vari-

ation in the number of genes that changed expression

with post-mortem interval (warm ischemia) in

Genotype-Tissue Expression (GTEx) project bulk RNA-

seq [32]. For example, the spleen showed relatively little

change, whereas the esophagus mucosa and lung altered

their transcriptional profiles more significantly; the

esophagus showing a response that peaked and declined,

whereas the lung had a more sustained gene expression

change. GTEx data [32] also demonstrates non-random,

transcript-dependent changes in post-mortem RNA deg-

radation and apparent gene expression [33, 34].

In this study, we aimed to identify a method of tissue

preservation that would stabilize intact human tissue

samples for scRNA-seq but that requires minimal pro-

cessing at the clinic and allows sample transportation

time. In order to contribute to the Human Cell Atlas, we

tested the method on three human primary tissues ex-

pected to have different sensitivities to ischemia [22]:

spleen (most stable), esophagus mucosa, and lung (least

stable) [22]. These tissues contain cell types ranging

from immune cells to keratinocytes. Samples were ob-

tained from deceased organ donors and rapidly perfused

with cold organ preservation solution following death.

Our dataset of 240,000 single cells includes the largest

published datasets on human esophagus and spleen to

date, which we provide in an easy to browse data portal:

www.tissuestabilitycellatlas.org. We show that storing in-

tact tissue pieces from these 3 organs at 4 °C in

HypoThermosol FRS for 24 h, or in most cases 72 h, had

little effect on the transcriptomic profile as determined

by bulk and 10x Genomics 3′ single-cell RNA sequen-

cing. The diversity of populations observed in scRNA-

seq data was maintained over time. This protocol should

be easily adopted by many clinical sites and permits at

least a 24-h time window for shipping of samples to col-

laborators, therefore increasing accessibility to fresh hu-

man tissue for research.

Results and discussion
Good scRNA-seq data quality after cold storage

We obtained the lung, esophagus, and spleen samples

from 12 organ donors (Additional file 2: Table S1). The

transplant surgeon assessed each organ as overall healthy

in appearance. Whole genome sequencing (WGS) was

carried out for each individual, confirming that none of

the study participants displayed gross genomic abnor-

malities (Additional file 1: Figure S1). Furthermore, for

each donor, histology sections were produced from the

12- or 24-h time points of each tissue, stained with

hematoxylin and eosin, and assessed by a pathologist

(Additional file 1: Figure S2). This confirmed all tissue

sections as healthy, except one donor with possible lung

hypertension. Heterogeneity between tissue sections, for

example, the presence of glands, and amount of inflam-

mation in some sections (Additional file 1: Figure S2), is

likely to impact profiling by scRNA-seq.

Samples of lung parenchyma, esophagus mid-region,

and spleen (n ≥ 5; experimental design, Fig. 1a) were

placed into 4 °C HypoThermosol FRS solution immedi-

ately after collection (within 2 h of cessation of circula-

tion with cold perfusion) and were kept at 4 °C until
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used for scRNA-seq. For the majority of lung donors

(n = 5), tissue pieces were also flash frozen at the clinic

(earliest possible time point), before transport to the

processing site for bulk RNA sequencing. Following

transport, fresh samples were either dissociated immedi-

ately (T0) or stored at 4 °C for 12, 24, or 72 h cold ische-

mic time prior to processing to single-cell suspension

(Fig. 1b, Additional file 2: Table S1). The T0 time point

varied depending on the length of the organ transplant

procedure, time required to collect samples in the clinic,

and speed of courier delivery (on average 4 h of cold is-

chemia from cessation of circulation to receipt of tissue

at the processing laboratory). Other time points were

processed at 12 h, 24 h, and 72 h after T0. Cells were an-

alyzed by 10X 3′ v2 scRNA-seq (Fig. 1c), and the num-

ber of cells obtained for each sample is given in

Additional file 3: Table S2. At each time point, tissue

pieces were also flash frozen for bulk RNA-seq analysis.

After alignment and normalization of scRNA-seq data,

quality control metrics were assessed for all samples

(Fig. 1, Additional file 1: Figure S3). The number of

reads per sample, number of cells per sample, median

number of genes per cell, and other quality metrics did

not change significantly over time for the lung and

esophagus, but we did observe changes in the spleen at

the 72-h time point (Fig. 1b–d, Additional file 1: Figure

S3). The percentage of reads confidently (QC = 255)

mapped to the transcriptome was stable for all samples

except for the spleen at 72 h (Fig. 1.e). RNA quality was

good and did not change with time in any of the tissues

(Additional file 4: Table S3; RIN > 7 for the majority of

bulk RNA seq samples, with the exception of four lower

quality outliers in spleen mainly from a single donor).

We conclude that in terms of quality metrics, we do not

detect changes that are associated with the length of

cold storage within 24 h of cold ischemic time.

Reduced scRNA-seq data quality by 72 h in the spleen

While the majority of quality metrics did not change

with time, we further studied the observed decline in

confidently mapped reads in the spleen. We identified a

statistically significant decrease in the percentage of

reads in exons that was only observed in the spleen

(Fig. 2a, b). Additionally, the percentage of reads in in-

trons increased with storage time in the spleen, but not

the lung and esophagus (Fig. 2c, d). The change in pro-

portion of good quality reads in the spleen at 72 h

(Fig. 2b, c) may lead to cell type-specific differences that

are further explored later. This skewing between intronic

and exonic reads becomes even more apparent when

only the top and bottom quartile of cells (with respect to

intronic and exonic alignment) are examined over time

Fig. 1 scRNA-seq quality metrics remain stable for at least 24 h of cold storage. a Experimental design: samples from the lung, esophagus, and
spleen were collected from 5 or 6 donors each and stored as whole organ pieces at 4 °C for different time points prior to tissue processing for
scRNA-seq and bulk RNA-seq. b–e Change of quality metrics of scRNA-seq data obtained with time, showing the b number of reads per sample,
c number of cells per sample, d median number of genes detected per cell, and e number of genes confidently mapped to the transcriptome
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(Additional file 1: Figure S4). This result implies that

non-spliced reads are more stable to degradation.

We next assessed the proportion of mitochondrial

reads. This is a commonly used quality metric indicative

of cellular stress [35], for example, induced by tissue dis-

sociation or storage. Cells with high percentages of mito-

chondrial reads are generally excluded from analysis

[36]. In our data, the fraction of mitochondrial reads was

low, with no significant change in proportion, except in

the spleen where mitochondrial reads increase by 72 h in

4 out of 5 donors (Fig. 2e, f). This is also apparent when

examining the number of cells with mitochondrial per-

centage higher than 10%, which significantly increases

with time in the spleen only (Fig. 2g).

Fig. 2 Exploration of loss of data quality with time in the spleen compared to other organs. a Violin plot of good quality reads mapped to exons
in the spleen, b mean percentage of good quality exonic reads in all organs, c violin plot of good quality reads per exon in the spleen, d mean
percentage of intronic reads across all organs, e box plot of percentage of mitochondrial reads in the spleen, f mean percentage of
mitochondrial reads across all organs, and e percentage of cells with greater than 10% mitochondrial reads. The tissue of origin is indicated
by color
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Effect of time on doublet rates and empty droplets

Doublet scores were calculated for each cell in every

sample, and these did not change with time for any of

the three tissues (Additional file 1: Figure S5).

We next evaluated changes in non-cellular droplets.

All droplet sequencing reactions generate many droplets

that do not contain cells but capture acellular mRNA,

often referred to as “ambient RNA” or “soup” [37]. We

normalized the number of UMI by read depth and set

arbitrary thresholds to define “ambient RNA” as 0–0.25,

“debris” as 0.25–5, and “cellular material” as > 5 normal-

ized UMI per droplet (Fig. 3a) to reflect the distribution

of reads. The proportions of droplets containing UMIs

in any of these intervals were not affected by time in the

spleen, lung, or esophagus (Additional file 1: Figure S6).

However, the mean number of normalized UMI in-

creased in debris and decreased in cellular droplets by

72 h (but not 24 h) in the spleen (Fig. 3b, c). This was

not observed in the lung or esophagus, but we note that

the mean values in debris and cellular material were very

variable in all three tissues.

The increasing debris in the spleen could indicate in-

creased cellular death by 72 h. After dissociation, we ob-

served significant variation in cell viability between

samples (Additional file 1: Figure S7) that may be of bio-

logical (donor variation) or technical origin (possibly due

to samples being manually counted by multiple opera-

tors throughout the study). However, viability scores be-

came more consistent after dead cell removal. To assess

if cell viability was altered in the tissue prior to dissoci-

ation, we performed TUNEL assays on T0 and 72 h tis-

sue sections from all three tissues to visualize

apoptosing cells (Additional file 1: Figure S8). TUNEL

staining intensity varied both between and within

individual samples, with staining being noticeably

patchy. There was a trend of higher staining at 72 h for

all three tissues, but T0 staining in the spleen was higher

than in the other two tissues. Overall, these findings are

consistent with increased cell death at later time points

and with a larger effect of cell death observed in the

spleen.

Since dead cells should be removed in the washing

steps and viability columns, we expect not to observe

the cells at the late stages of apoptosis in our sequencing

data. However, we do observe more debris in the spleen

by 72 h that can indicate increased sensitivity to dissoci-

ation after prolonged storage.

Annotation of cell types

The gene expression count matrices from Cell Ranger

output were used to perform sequential clustering of

cells from either whole tissues or particular subclusters.

The cell type identities of the clusters were deter-

mined and annotated by observation of expression of

known cell type markers (Fig. 4a–c, Additional file 1:

Figure S9a-c, and Additional file 3: Table S2). Import-

antly, all time points and at least four different do-

nors contributed to every cell type in all three tissues

(Fig. 4d–f, Additional file 1: Figure S10, and Add-

itional file 3: Table S2).

In the lung, 57,020 cells passed quality control and

represented 25 cell types. We detected ciliated, alveolar

types 1 and 2 cells, as well as fibroblast, muscle, and

endothelial cells both from blood and lymph vessels.

The cell types identified from the immune compartment

included NK, T, and B cells, as well as two types of mac-

rophages, monocytes, and dendritic cells (DC). Multiple

DC populations such as conventional DC1, plasmacytoid

Fig. 3 Loss of data quality is associated with increased “ambient RNA” and “debris” reads in the data. a Average spread of normalized UMI counts
per droplet in the spleen, which were classified into ambient RNA, debris, and cellular material. b Mean values of normalized UMI in droplets
containing debris or c cellular material. Individual sample means are shown for each donor with corresponding shape; color represents tissue.
Means across donors per time point are shown by filled circles; whiskers represent standard deviation. p values were gained by Student’s paired
(T0 vs 72 h) and non-paired (T0 vs 24 h) t test
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DC (pcDC), and activated DC were detected and consti-

tuted 0.3% (163 cells), 0.08% (46 cells), and 0.2% (122

cells) of all cells, respectively. Lung club cell marker

genes are detected in a small number of cells, but our

clustering algorithm did not recognize these cells as a

separate cluster (Additional file 1: Figure S11). All

Fig. 4 Cell types identified in different organs with time a UMAP projections of scRNA-seq data for the lung (n = 57,020), b esophagus (n =
87,947), and c spleen (n = 94,257). d–f Proportions of cells identified per donor and per time point for the d lung, e esophagus, and f spleen. g–j
The single-cell UMAP plots for each organ with length of storage time highlighted. j Percent variance explained in the combined dataset by cell
types, n counts, donor, tissue, and time points
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donors contributed to every cluster. Dividing cells

formed separate clusters for T cells, DC, monocytes, NK,

and macrophages.

The esophagus yielded 87,947 cells with over 90% be-

longing to the 4 major epithelial cell types: upper, strati-

fied, suprabasal, and dividing cells of the suprabasal

layer. The additional cells from the basal layer of the epi-

thelia clustered more closely to the gland duct and mu-

cous secreting cells. While all donors contributed to the

basal layer, only 2 samples from a total of 23 esophagus

samples provided the majority of the mucous secreting

cells (0.06% from total; 55 cells; samples 325C, 12 h, and

356C, 72 h). Immune cells in the esophagus include T

cells, B cells, monocytes, macrophages, DCs, and mast

cells. Interestingly, almost 80% of the mast cells (87

cells) originated from a single donor (296C). Increased

proportions of other immune cells (B cells, DC, mono-

cytes/macrophages) were also noticed in this donor. This

donor was the only one subjected to MACS dead cell re-

moval, which was later excluded from the protocol due

to concerns about losing larger cell types such as upper

epithelial cells (0.5% of all cells in 296C, over 7% in all

other donors). In addition, this donor was diagnosed

with ventilator-associated pneumonia and some reports

in mice indicate a link between mast cells and pneumo-

nia infection [38, 39].

All the 94,257 cells from the spleen were annotated as

immune cells. Follicular and mantle zone B cells were

identified as the largest group with 17% (> 16,000 cells)

and 20% (> 18,000 cells), respectively. Dividing B cells

potentially undergoing affinity maturation were anno-

tated by the expression of AICDA and detected with a

frequency of 0.5% (437 cells). Over 6000 plasma cells

were detected and annotated as plasmablasts, IgG, or

IgM expressing plasma cells. About 90% from each of

those originated from one donor 356C, which is consist-

ent with the medical records showing chest infection in

this donor. Over 28,000 T cells were annotated as CD4+

conventional, CD8+ activated, CD+4 naive, CD4+ fol-

licular helper (fh), CD8+ MAIT-like, CD8+ gamma-

delta, CD8+ cytotoxic lymphocyte (CTL), CD4+ regula-

tory, or dividing T cells. Two subpopulations of natural

killer (NK) cells, a dividing NK population, monocytes,

macrophages, and DCs were also identified. Multiple cell

groups were represented in very low proportions, such

as subpopulations of the DC including activated DC

(0.04%), conventional DC1 (0.3%), and pcDC-s (0.3%), as

well as innate lymphoid cells (0.6%), CD34+ progenitor

cells (0.2%), platelets (0.08%), and an unknown popula-

tion of cells positioned between T and B cell clusters

(0.1%). Another group containing over 2207 cells ex-

pressing both T and B cell markers could represent the

doublets of interacting cells and were called T_B doub-

let. Besides the plasma cell populations, multiple other

cell types such as T_B doublet, conventional DC 1 and

DC 2, DC plasmacytoid, and macrophages were also rep-

resented in higher proportions in donor 356C than any

other donor. No stromal cells were detected, which is

likely to be due to the fact that for the spleen, no enzym-

atic digestion was employed to release cells.

Tissue processing signatures

We also performed bulk RNA-sequencing for each

donor at each time point to assess gene expression

changes over time without dissociation artifacts and to

allow us to determine what gene sets are changed by dis-

sociation, or if specific cell populations are lost. On a

UMAP plot, the bulk and single-cell pseudo-bulk (sc-

pseudo-bulk) samples cluster primarily by method (bulk

or sc-pseudo-bulk) and by tissue of origin, but not ac-

cording to the time point (Additional file 1: Figure S12).

Previous work has highlighted the effect of enzymatic

tissue dissociation on gene expression patterns [20].

Differential expression analysis was carried out by the

Wilcoxon signed-rank test in each tissue between bulk

vs sc-pseudo-bulk samples. p values were corrected for

multiple testing via the Benjamini and Hochberg (BH)

method. The genes with the highest fold changes from

sc-pseudo-bulk to bulk were enriched in ribosomal

genes in all three tissues (Additional file 5: Table S4).

Also, a long non-coding RNA “MALAT1” appeared in

the top 20 genes expressed at higher levels in sc-pseudo-

bulk in all of the 3 tissues (adjusted p values < 0.002 in

the lung, esophagus, and spleen). The high enrichment

of ribosomal genes (adjusted p value 1.15 × 10−6) as well

as MALAT1 (adjusted p value 1.15 × 10−6, median log2

fold change − 4.4) in sc-pseudo-bulk samples was also

evident when combining all three tissues for the analysis.

All of the dissociation-related FOS, FOSB, JUN, and

JUNB genes [20] were significantly higher in the sc-

pseudo-bulk than in the bulk samples with adjusted p

values 1.56 × 10−7, 2.3 × 10−10, 8.7 × 10−06, and 6.13 ×

10−09, respectively. Differential expression of ribosomal

and early response genes was also seen in previous re-

ports of dissociation signatures [20].

We also carried out tissue-specific analysis of differen-

tial gene expression. Genes more highly expressed in

bulk derive from the cell types sensitive to dissociation.

Pulmonary alveolar cells are very scarce in our single-

cell lung data, but abundant in the tissue. This results in

the differential expression of the marker AGER and

surfactant-protein encoding genes SFTPB, SFTPA1, and

SFTPA2. Other genes with high fold changes between

bulk and sc-pseudo-bulk lung are blood vessel endothe-

lial markers VWF and PECAM1. In the esophagus,

stromal-specific genes FLNA and MYH11 and both

KRT4 and KRT5, expressed in the majority of keratino-

cytes, are higher in bulk vs sc-pseudo-bulk. In the
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spleen, the list of top genes includes APOE, CD5L,

VCAM1, HMOX1, C1QA, and C1QC, which are

strongly expressed in macrophages. This suggests that

our sample processing protocols are mostly affecting al-

veolar and blood vessel cells in the lung, stromal cells in

the esophagus, and macrophages in the spleen.

Cell type-specific changes

Having annotated cell types, it was possible to study the

change in proportion of cell types over time. Cell type

proportions varied greatly between samples and between

donors (Fig. 4d–f, Additional file 3: Table S2, Add-

itional file 1: Figure S13a). When examining cell type

changes with time within donors, we noticed that the

proportion of B cells increased in the spleen and that of

T cells decreased in the lung and spleen with storage

time (Additional file 3: Table S2, Additional file 1: Figure

S13b, and Additional file 1: Figure S14). None of these

changes were statistically significant after multiple test-

ing corrections when comparing individual time points.

However, we do observe a decrease of CD4 T cells and

CD8 cytotoxic lymphocyte proportion in the lung when

combining the T0, 12-h, and 24-h time points for com-

parison with the 72-h time point (BH-corrected p values

< 0.01, Additional file 6: Table S5).

We next examined whether there was a cell type-

specific effect of storage time on the transcriptome. Not-

ably, UMAP plots that were calculated on highly variable

genes did not reveal an obvious effect of time (Fig. 4g,

h). We joined gene expression matrices for all the tissues

and calculated the percentage of variability explained by

different variables. Figure 4j shows that the variable

donor, tissue, cell type, and number of counts account

for the highest fraction of the variance explained, while

the effect of storage time made the smallest contribu-

tion. This remained the case when the analysis was car-

ried out per tissue (Additional file 1: Figure S15).

We next examined whether the observed increase in

mitochondrial reads with time (spleen, 72 h, Fig. 2e–g)

was due to a specific cell type. For this purpose, cells

with high mitochondrial reads were assigned to a cell

type via similarity. For each cell type and tissue, the

mitochondrial percentages and their fold changes rela-

tive to T0 were calculated (Additional file 1: Figure S16,

Fig. 5). The highest fold changes were present in the

spleen at 72 h. While this effect was apparent in multiple

cell types, it was particularly evident in plasma cells,

where this effect was independently replicated in the

two donors contributing the majority of this cell type

(Additional file 1: Figure S17, Fig. 5a).

Next, similar cell types were joined together into larger

clusters for more reliable analysis. The percentage of

variability explained by time point in each of these cell

type clusters was extremely low (Fig. 5b), especially

compared with variables such as donor and number of

counts (Fig. 4j), highlighting that for almost all cell types,

cold storage time did not have a major effect.

We also examined which genes changed most with

storage time in each cell type (see the “Methods” sec-

tion). This analysis was carried on a per organ basis, as

cold storage gene signatures derived from different cell

types primarily clustered by organ of origin, rather than

cell types. For example, storage-induced gene signatures

from T cells, natural killer cells, and monocytes/macro-

phages grouped by organ (Additional file 1: Figure S18).

Furthermore, the genes driving this similarity were

among the top genes contributing to the ambient RNA

contamination in the majority of samples (Add-

itional file 1: Figure S19, Additional file 7: Table S6). For

example, in the spleen, the plasma cell-specific genes

such as JCHAIN, IGHA1, and IGLC3 are high in ambi-

ent RNA (Additional file 1: Figure S19) and are also

overrepresented in the cold storage signature. This ob-

servation is consistent with high mitochondrial percent-

ages (due to stress or cell death) observed in the plasma

cells (Fig. 5a). In addition, we observed an overrepresen-

tation of the cold storage signature genes (Add-

itional file 5: Table S4) among the most strongly

dissociation-related genes (adjusted p value < 0.01 and

median log2 fold change < − 2, Additional file 7: Table

S6) with Fisher’s exact test. We found a higher overlap

of the dissociation-related signature than expected by

chance in all three tissues (p values 2.2 × 10−16, 2.05 ×

10−14, and 2.2 × 10−16 in the lung, esophagus, and spleen

correspondingly). This can be explained either by cells

becoming more sensitive to the dissociation with storage

time, or by similar stress signatures being activated via

storage time and dissociation independently. Therefore,

the low levels of gene expression changes that we do

observe with storage time are likely to be driven by

stress-induced cell death leading to ambient RNA

contamination.

Pairwise differential expression analysis in bulk RNA-

sequencing between T0 and other time points did not

yield significant genes in any tissue (Additional file 8:

Table S7), further indicating that any changes observed

are extremely small. For the lung, we were also able to

freeze samples at the clinic immediately after collection

and compare this sample to later time points. Again, no

significantly differentially expressed genes were detected.

It may seem surprising to observe so few changes in

gene expression with time, especially given that other

studies such as the GTEx project do demonstrate such

effects [22, 32]. However, it is important to note that

post-mortem samples from warm autopsy were used for

the GTEx project (albeit with < 24 h PMI). Our study

was designed to mimic the process used during organ

transplantation, in which tissues are removed rapidly
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(within 1 h of cessation of circulation) from cold-

perfused donors and stored at 4 °C in hypothermic pres-

ervation media such as University of Wisconsin (timing

is tissue-dependent; the heart can be stored for 4–6 h,

lungs median 6.5 h, kidneys median 13 h). Indeed, for

some organs, there is evidence that they remain func-

tional for longer [29, 30]. Further, the work of Wang

et al. [31], which looked at hypothermic preservation of

Fig. 5 Cell type-specific changes in transcriptome. a Proportion of mitochondrial reads relative to T0 calculated for the spleen, esophagus, and
lung. The fold change (FC) of mitochondrial percentage is measured in every cell type between T0 and 12 h, 24 h, and 72 h. FC is indicated by
color with white indicating no fold change (FC = 1), blue indicating a drop in mitochondrial percentage, and red indicating an increase in
mitochondrial percentage compared to T0 (FC > 1). The Benjamini and Hochberg (BH)-adjusted p values are indicated by asterisk as follows: *p
value < 0.01, **p value < 0.00001, and ***p value < 0.00000001. All cells are used including those with high mitochondrial percentage (> 10%),
annotated via scmap tool. Gray indicated time points with fewer than 5 cells. Missing values (no sample) are shown by a cross. b Percentage of
variance in gene expression explained by time for cell type groups in the lung, esophagus, and spleen. Cell type groups in the lung are
Endothelial (Blood vessel, Lymph vessel), Alveolar (Alveolar Type 1 and Type 2), Mono_macro (Monocyte, Macrophage_MARCOneg,
Macrophage_MARCOpos), and T_cell (T_CD4, T_CD8_Cyt, T_regulatory). Cell type groups in the spleen are Mono_macro (Monocyte,
Macrophage), NK (NK_FCGR3Apos, NK_CD160pos), T_cell (T_CD4_conv, T_CD4_fh, T_CD4_naive, T_CD4_reg, T_CD8_activated, T_CD8_CTL,
T_CD8_gd, T_CD8_MAIT-like, T_cell_dividing), and B_cell (B_follicular, B_Hypermutation, B_mantle). c Hierarchical clustering of cell types of up to
10 cells per cell type per tissue per donor and time. Cell attributes (cell type, organ, time, and donor ID) are indicated by color

Madissoon et al. Genome Biology            (2020) 21:1 Page 9 of 16



mouse kidneys in HypoThermosol FRS, also demon-

strated little change in gene expression over 72 h. There-

fore, while it is certainly true that rapid gene expression

changes will occur under certain storage conditions, at

least for the organs tested in this study, it appears these

can be limited by maintaining the samples cold in

hypothermic preservation media. Altogether, this will be

very useful for designing further studies with fresh bio-

logical samples (including biopsies from living donors)

with regard to sample collection time in clinic, transport

to the lab, and storage until processing is convenient.

Mapping of cell types across organs

Having generated datasets for the esophagus, lung, and

spleen, we examined if cell types that can be found in all

three organs, such as immune cells, would cluster by

organ or by cell type. Figure 5c shows the result of hier-

archical clustering using the 1000 most highly variable

genes in up to 10 cells per cell type, tissue, time, and

donor. In this analysis of approximately 7500 cells, we

see clear subclusters of mast cells, macrophages, and

plasma cells with some substructure depending on the

donor and the tissue of origin, suggesting that more ex-

tensive analysis will allow us to study tissue adaptation

of different immune cell populations. Other cells such B

cells sit in two groups, and dividing cells (NK, macro-

phages, T cells) also co-segregate. Importantly for this

study, samples do not cluster by time.

Variation in cell type contribution

Our protocols of single-cell dissociation are aimed at

capturing the diversity of cell types present in each

organ, but do not represent the proportion of each cell

type in the original tissue. For example, the tissue dis-

sociation protocol employed for the lung strongly en-

riches for immune cell types. Relatively high variability

in the proportions of cell types was seen between sam-

ples. This was likely to be due to technical variation as

well as underlying biological variation as indicated by

the capture of rare structures such as glandular cells in

only some esophagus samples, namely from donor 325C

and 356C. Interestingly, histology on sections from

donor 325C (12 h) confirmed the presence of glands

(mucous secreting cells; Additional file 1: Figure S2) that

were not present in the other esophagus samples sec-

tioned. All other samples contained fewer than five mu-

cous secreting cells (Additional file 3: Table S2). This

exemplifies the difficulty in collecting cells from struc-

tures that are sparsely distributed, such as the glands in

the esophagus, and suggests that some of the sample to

sample variation is due to the underlying differences in

the architecture of the specific tissue sections analyzed.

A similar effect was seen for blood vessels (Fig. 4e, 367C,

72 h). Furthermore, the immune infiltrate seen on one of

the histology sections (Additional file 1: Figure S2c,

362C, 24 h) is possibly reflected in an increase in im-

mune cells (B, T, and monocytes/macrophages) at the

single-cell level (Fig. 4e, 362C, 24 h).

Overall, we observe greater variability between donors

than between samples. Additional file 6: Table S5 lists all

cell types per tissue, 72 in total. Statistical tests (t tests)

for changes with time yielded only two significant

changes (discussed above). However, when we test dif-

ferences between donors, we find that for 29 out of the

72 combinations the proportions of cell types were sig-

nificantly different in at least 1 of the donors compared

to the rest (one-sided ANOVA, BH-corrected p value <

0.05). This variability in cell type proportions per donor

is also visualized in Additional file 1: Figure S12a. The

cell type with the most significant variation between do-

nors was mast cells in the lung. Other examples include

NK cells in both the spleen and lung and dividing epi-

thelial cells in the esophagus (Fig. 4d–f). This high vari-

ability between donors suggests that for the Human Cell

Atlas, a large number of donors will have to be profiled

to understand the range of “normal.”

Conclusions
We present a method for cold storage of primary human

tissue samples that requires no processing at the clinical

site beyond sample collection and permits at least a 24-h

window for shipping, tissue dissociation, and scRNA-

seq. The lung and esophagus appeared stable for 72 h by

all of the metrics tested. In the spleen, we observe

changes in the proportion of intronic and exonic reads

and an increase in the percentage of mitochondrial reads

at 72 h. We demonstrate that it is possible to minimize

the consequences of ischemia in various different cell

types by storing the tissue samples immediately after

collection in cold tissue preservation solution. We see

no effect of time on the diversity of cell populations in

scRNA-seq data or change in bulk RNA-seq within 24 h.

This method is easy to adopt and will greatly facilitate

primary sample collections for Human Cell Atlas stud-

ies. We highlight changes of cell type distribution due to

anatomical heterogeneity of tissue samples and signifi-

cant heterogeneity between donors, which will impact

future HCA study design.

Further, we have generated detailed annotations on

three primary human tissues: spleen, esophagus, and

lung. This dataset of over 240,000 single cells presents a

significant resource for further investigation of the biol-

ogy of these tissues and contains the largest esophagus

and spleen datasets to date. In addition, we make avail-

able WGS data from 13 healthy donors, including clin-

ical metadata, allowing for future tissue-specific, single-

cell eQTL studies.

Madissoon et al. Genome Biology            (2020) 21:1 Page 10 of 16



Methods
Aim and study design

We aimed to identify a method of preserving intact hu-

man tissue samples for scRNA-seq. Three tissues, ex-

pected to have different sensitivities to ischemia (n = 5–6

per tissue), were chosen: spleen, esophagus, and lung.

One sample was processed for 10x Genomics 3′ scRNA-

seq (v2) immediately upon receipt (T0), and the remain-

der processed after 12 h, 24 h, and 72 h cold ischemic

time. Additional samples were collected for bulk RNA

extraction at each time point, and genomic DNA was

also prepared for WGS from each donor. Of note, an

additional lung donor was collected (376C) and samples

sequenced but not included in the analysis, but these

data are available in the Data Coordination Platform

submission. Upon receipt, this sample was morphologic-

ally abnormal (blackened) and the resulting cell suspen-

sion contained cells with black granules, likely due to

the donor being a heavy smoker for a prolonged period.

Donor samples

All samples were obtained from the Cambridge Biorepo-

sitory for Translational Medicine (CBTM) under appro-

priate ethical approval (see the “Ethics approval and

consent to participate” section). These were primarily

from donation after circulatory death (DCD) organ do-

nors, in whom circulatory arrest followed withdrawal of

life-sustaining treatment. Patient characteristics are

listed in Additional file 2: Table S1, and representative

histology is shown in Additional file 1: Figure S2. Upon

cessation of circulation, donors were perfused with cold

University of Wisconsin (UW) solution (within 12 min

of asystole) and research samples collected at the end of

the transplant procedure, within 1–2 h of cessation of

circulation, constantly under cold ischemic conditions.

Samples (typically 0.5–2 cm3) were maintained on ice in

UW in the operating theater, then rapidly transferred

into 5ml of cold HypoThermosol FRS preservation solu-

tion, or approximately 10 ml for esophagus cylinders

(sufficient to completely submerge the tissue), at 4 °C for

shipping/storage (Sigma H4416). The size of samples

varied by organ. For the lung and spleen, initial samples

received were roughly 1.5 cm3 and were immediately dis-

sected into four pieces (for 0 h, 12 h, 24 h, and 72 h time

points) on receipt at the processing laboratory, then each

placed into 5ml cold HypoThermosol FRS. For the

esophagus, cylindrical regions were received up to 2 cm

in length from which only the thin (< 0.3 cm thick)

length of mucosa was retained (see “Tissue dissociation”

section). This was divided into four pieces, each stored

in 5 ml cold HypoThermosol FRS either for immediate

processing (0 h) or for storage at 4 °C. Of note, the lung

and spleen are both soft/porous tissues and the stored

esophagus mucosa was very thin, so we expect good

penetration of HypoThermosol FRS into these tissues.

We have not tested more solid organs with this method.

Following division into four pieces for time points at the

processing laboratory (typically 4–5 h following cessation

of circulation), samples were dissociated for 10x Genom-

ics 3′ single-cell sequencing (v2), and a portion flash fro-

zen in isopentane for bulk RNA/DNA extraction as soon

as possible (“T0” time point), or at 12, 24, and 72 h is-

chemic time following storage in the fridge (4 °C). For

lung samples, it was also possible to collect an additional

flash frozen sample at the clinic immediately after tissue

excision, in order to compare bulk RNA between this

“true zero” time and the “T0” time point, the latter being

frozen on receipt at the tissue processing laboratory.

The start of ischemia was defined as the point at which

circulation ceased for donation after cardiac death

(DCD) donors, unless they received normothermic re-

gional perfusion with oxygenated blood (NRP, 2 h), in

which case the end of NRP was used. For the one dona-

tion after brain stem death (DBD) donor in the study,

start of ischemia was defined as the time at which life

support was withdrawn. End of ischemia was defined as

time of cell lysis or freezing; for 10x single-cell reactions,

lysis occurs in the PCR step immediately after loading

on 10x Genomics Chromium instrument. Cold ischemic

times are available in the Data Coordination Platform

metadata submission.

Tissue section staining

Frozen optimal cutting temperature OCT compound

embedded samples were cryosectioned and H&E stained

to check for normal morphology. TUNEL (terminal

deoxynucleotidyl transferase dUTP nick end labeling) as-

says for detecting apoptotic DNA fragmentation were

performed using TACS®2 TdT-DAB In situ Apoptosis

Detection Kit, catalog number: 4810-30-K. Sections were

counterstained with methyl green for 5 min as nuclear

counterstain.

Tissue dissociation

All tissue dissociation protocols are available on proto-

cols.io [40]: spleen (protocol 32rgqd6), esophagus epithe-

lium (protocol 34fgqtn), and lung parenchyma (protocol

34kgquw).

Spleen (protocols.io 32rgqd6) samples from the top 5–

7 mm of the organ were mechanically mashed through a

100-μM cell strainer with cold PBS, pelleted at 500×g for

5 min, and resuspended in cold 1× red blood cell lysis

buffer (Life Technologies). Following dilution in cold

PBS, pelleting at 500×g for 5 min, and resuspension in

cold 0.04% BSA/PBS, cells were counted and viability

was determined using a C-chip hemocytometer and try-

pan blue. Up to 10 million cells were used for MACS

dead cell removal (Miltenyi; protocols.io qz5dx86), and
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the flow through (live cells) pelleted, resuspended in cold

0.04% BSA/PBS, and counted/viability determined using

trypan blue and C-chip. Cells were loaded onto the 10x

Genomics Chromium Controller following the single-

cell 3′ v2 protocol, aiming for between 2000 and 5000

cell recoveries.

In the esophagus epithelium (protocols.io 34fgqtn), a

cylindrical piece of the esophagus was received from the

mid-region, and the mucosa (mainly epithelium) re-

moved mechanically with forceps/scissors and divided

into segments for time points (placed in HypoThermosol

FRS in the fridge). The epithelium/mucosa was finely

chopped with scalpels and incubated for 30 min in 0.25%

trypsin-EDTA (GIBCO) containing 100 μg/ml DNase I

(Sigma) at 37 °C with shaking. The sample was centri-

fuged, and digestion media replaced with fresh 0.25%

trypsin-EDTA (GIBCO)/DNase I for 15 min at 37 °C

with shaking (this protocol can also be used for stomach,

in which the media change is necessary due to pH alter-

ations as the tissue digests; this is less required for

esophagus). Trypsin was neutralized with RPMI contain-

ing 20% FBS, and cells pelleted and passed through a 70-

μM strainer before pelleting again and treating with 1×

red blood cell lysis buffer (Life Technologies). Following

dilution, pelleting, and resuspension in cold 0.04% BSA/

PBS, cells were counted and viability determined using a

C-chip hemocytometer and trypan blue. The resulting

suspension contained a range of cell sizes, up to 50 μM.

No dead cell removal was performed for esophagus sam-

ples due to the risk of losing larger cells in the MACS

column (cell viability was > 70%), with the exception of

the fresh sample from the first esophagus donor (296C).

Cells were loaded onto the 10x Genomics Chromium

Controller following the single-cell 3′ v2 protocol, aim-

ing for 5000 cell recoveries.

In the lung (protocols.io 34kgquw), a 0.2–0.5-g piece

of lung parenchyma (lower left lobe) was finely chopped

with scalpels and incubated for 1 h in 0.1 mg/ml collage-

nase D (Sigma C5138) in DMEM with 100 μg/ml DNase

I (Sigma) for 1 h at 37 °C with shaking. (This protocol

was initially designed for isolation of immune cells from

lung airway, a much tougher region of lung tissue; par-

enchyma can be dissociated with 30min treatment; how-

ever, 1 h incubation was used for this study.) Digested

tissue was mashed through a 100-μM cell strainer and

washed with DMEM containing 10% FBS before centri-

fuging, washing, and resuspending the pellet in 1× red

blood cell lysis buffer (Life Technologies). Following di-

lution, pelleting, and resuspension in cold 0.04% BSA/

PBS, cells were counted and viability determined using a

C-chip hemocytometer and trypan blue. MACS dead cell

removal was performed (Miltenyi; protocols.io qz5dx86),

and the flow through (live cells) pelleted, resuspended in

0.04% BSA/PBS, and counted using trypan blue and C-

chip. Cells were loaded onto the 10x Genomics Chro-

mium Controller following the single-cell 3′ v2 protocol,

aiming for 5000 cell recoveries.

Library preparation, bulk RNA, and WGS

cDNA libraries were prepared from single-cell suspen-

sions following the 10x Genomics 3′ v2 protocol, and 2

samples per lane sequenced on HiSeq4000 with 26 bp

read 1, 8 bp sample index, and 98 bp read 2 (aiming for

150M reads/sample or ≥ 30,000 per cell).

For bulk RNA and DNA extraction, samples were flash

frozen in isopentane at each time point (protocols.io

qz7dx9n). Bulk RNA and DNA were prepared from fro-

zen samples using the Qiagen AllPrep DNA/RNA mini

kit and TissueLyser II. Spleen RNA samples required an

additional on-column DNase digest.

RNA was quantified using the QuantiFluor RNA sys-

tem (Promega) on a Mosquito LV liquid handling plat-

form, Bravo WS, and BMG FluoSTAR Omega plate

reader. Libraries (poly(A) pulldown) were prepared using

the NEB RNA Ultra II Custom kit on an Agilent Bravo

WS automation system, including PCR with the KAPA

HiFi Hot Start Mix and dual-indexing. Libraries were

cleaned on a Caliper Zephyr liquid handling system

using Agencourt AMPure XP SPRI beads and quantified

with the AccuClear™ Ultra High Sensitivity dsDNA

Quantitation kit (Biotium). RNA integrity number (RIN)

was determined for each sample by Agilent BioAnalyser

RNA 6000 Nano kit. Libraries were pooled in equimolar

amounts and quantified on an Agilent BioAnalyser be-

fore sequencing on an Illumina HiSeq4000, 75 bp paired

end, aiming for 35 million reads per sample.

Genomic DNA from 13 donors was prepared for

WGS. DNA was first sheared to 450 bp using a Covaris

LE220 instrument, purified with AMPure XP SPRI beads

(Agencourt) on an Agilent Bravo WS, and then libraries

prepared with the NEB Ultra II custom kit on an Agilent

Bravo WS system. PCR (6 cycles) was performed using

the Kapa HiFi Hot Start Mix and IDT 96 iPCR tag bar-

codes, before purification using Agencourt AMPure XP

SPRI beads on a Beckman BioMek NX96 liquid handling

platform. Libraries were sequenced at 30× coverage on

an Illumina HiSeqX.

Computational analysis

Single-cell RNA-seq data analysis

Reads were mapped to GRCh38 1.2.0 Human Genome

reference by Cell Ranger 2.0.2 pipeline. The EmptyDrops

algorithm [41] was run on each sample. Identified cells

were used to generate the Cell Ranger filtered count

matrix. An outlier sample HCATisStabAug177276393

(spleen, Donor 302C, 24 h) in which fewer than 40% of

reads were mapped to the transcriptome was removed

from further analysis (Additional file 1: Figure S3a).
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Count matrices were analyzed by the scanpy version 1.4

[42] tool in Python version 3.7.2. Cells with less than

300 or more than 5000 detected genes (8000 in esopha-

gus), more than 20,000 UMI, and more than 10% mito-

chondrial reads were removed. Genes that were detected

in less than three cells per tissue were removed. All do-

nors and time points per tissue were combined for ana-

lysis. The reads were log-transformed and normalized.

Quality metrics of samples

Number of cells, number of reads, median genes per cell,

reads confidently mapped to the transcriptome, and

other quality metrics were obtained from Cell Ranger’s

output metrics.csv files. The confidently mapped reads

to intronic, exonic, and intergenic regions were further

studied by extracting the number of reads mapping con-

fidently (QC = 225 from Cell Ranger’s output bam file)

for every cell barcode.

“Scrublet” [43] was used to calculate the doublet

scores for each cell in every 10x separately.

Unique molecular identifier (UMI) count analysis

The number of UMIs in each droplet was quantified by

using soupX tool [37] in R. UMI counts were normalized

for read depth by multiplying with 1 million and divid-

ing by the sum of UMI in all droplets: normalized

UMI = UMI per droplet × 1,000,000/UMI in all droplets

per run. Three intervals were defined for describing the

distribution of reads: 0 < ambient RNA ≤ 0.25, 0.25 <

debris ≤ 5, and 5 < cellular material. The droplets con-

taining up to 0.25 normalized UMI were defined as am-

bient RNA expression originating from free-floating

RNA in the sample.

Clustering and annotation of cell types

To achieve good clustering by cell types, number of

counts, mitochondrial percentage, and donor effects

were regressed out. PCA was carried out on highly vari-

able genes, and the donor effect was reduced by BBKNN

tool [44]. Leiden clustering [45] and UMAP visualization

were performed for gaining clusters of cells and

visualization. Statistical analysis was performed in R ver-

sion 3.5.0, and plotting was in Python via scanpy or cus-

tom script and in R using ggplot2 version 2.2.1 or by

using custom scripts. Cells which contained more than

10% mitochondrial reads were assigned by similarity to

their closest cell type within a tissue with scmap tool

[46], using cells with less than 10% mitochondrial reads

as a reference. The high and low mitochondrial percent-

age cells were then combined for calculating the mito-

chondrial percentage per each cell type. All code for the

analysis is available at https://github.com/elo073/

TissStab.

Expression of known markers and re-analysis of bigger

clusters were used to annotate cell types, with cell

markers shown in Additional file 1: Figure S9. The major

cell types were annotated for the lung, esophagus, and

spleen by looking at expression of known cell type

markers. Three subsets from the lung (mononuclear

phagocytes and plasma cells; lymphocytes; dividing

cells), two subsets from the esophagus (immune; small

clusters), and two subsets from the spleen (DC, small

clusters and dividing cells; CD4 and CD8 T cells) were

extracted, further analyzed by re-clustering, and anno-

tated using known markers. These updated annotations

then replaced the original bigger ones.

Explanatory variance calculation

Effect of variable factors (donor, tissue, time point, cell

type, n_counts, etc.) on gene expression was studied by

the scater package by computing the marginal R2 that

describes the proportion of variance explained by each

factor alone for each gene. Density plots of the gene-

wise marginal R2 are shown. Normalized and scaled gene

expression was used with the effect of donor and num-

ber of counts regressed out, but not mitochondrial per-

centage or time. Effect of time only as a continuous

variable was calculated for each cell type or cell type

group in tissues. Smaller or similar cell types were com-

bined to groups as Endothelial (Blood vessel, Lymph ves-

sel), Alveolar (Alveolar Type 1 and Type 2), Mono_

macro (Monocyte, Macrophage_MARCOneg, Macro-

phage_MARCOpos), and T_cell (T_CD4, T_CD8_Cyt,

T_regulatory) in the lung, and Mono_macro (Monocyte,

Macrophage), NK (NK_FCGR3Apos, NK_CD160pos),

T_cell (T_CD4_conv, T_CD4_fh, T_CD4_naive, T_

CD4_reg, T_CD8_activated, T_CD8_CTL, T_CD8_gd,

T_CD8_MAIT-like, T_cell_dividing), and B_cell (B_fol-

licular, B_Hypermutation, B_mantle) in the spleen.

Differential expression

The Wilcoxon signed-rank test was used to compare ex-

pression between time points in bulk RNA-sequencing

samples, and between bulk RNA-sequencing and sc-

pseudo-bulk samples. The Benjamini and Hochberg

(BH)-corrected p values were reported, as well as the

median_log2_foldchange.

Test of independence

Fisher’s exact test was performed for overrepresentation

of time signature genes (Additional file 7: Table S6)

among the dissociation-related genes with adjusted p

value < 0.01 and median log2 fold change < − 2

(Additional file 5: Table S4) in all three tissues.
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Analysis of whole genome sequencing (WGS)

Pair-end WGS data of 30× were mapped to GRCh38

using bwa-mem [47]. After removing duplicates and fil-

tering out reads with mapping quality < 30, single nu-

cleotide variants (SNVs) were called using bcftools-

mpileup and bcftools-call [48] for each sample individu-

ally and filtered using the criteria “DP>10 && DP<70

&& QUAL>221 && MQB>0.5 && MQSB>0.5 &&

RPB>0.05”. The resulting SNV call set yields a Ts/Tv of

2.1 for all samples. For comparison, SNV call set on

GRCh38 from 1000 genomes project [49] were down-

loaded from 1K genome project data FTP. Functional

consequences of sample SNVs and 1K genome SNVs

were predicted using bcftools-csq [48] based on

EnsEMBL gene annotation v98. Copy number variations

(CNVs) were called using ERDS [50] for each sample in-

dividually using the default parameters. We only kept

calls at least 1 kb in size and not overlapping centromere

or gaps in the reference genome. For comparison, the

latest DGV [51] (database of genomic variants) gold

standard variant sets were downloaded from DGV, and

similarly, only variants at least 1 kb in size were consid-

ered. For whole genome visualization of CNVs, average

depth of 50 kb non-overlapping genomic bins was calcu-

lated for all samples and was normalized by the median

across the samples of the same sex.
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