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Abstract. Impossible differential cryptanalysis has shown to be a very
powerful form of cryptanalysis against block ciphers. These attacks, even
if extensively used, remain not fully understood because of their high
technicality. Indeed, numerous are the applications where mistakes have
been discovered or where the attacks lack optimality. This paper aims
in a first step at formalizing and improving this type of attacks and in
a second step at applying our work to block ciphers based on the Feis-
tel construction. In this context, we derive generic complexity analysis
formulas for mounting such attacks and develop new ideas for optimiz-
ing impossible differential cryptanalysis. These ideas include for example
the testing of parts of the internal state for reducing the number of in-
volved key bits. We also develop in a more general way the concept of
using multiple differential paths, an idea introduced before in a more
restrained context. These advances lead to the improvement of previous
attacks against well known ciphers such as CLEFIA-128 and Camellia,
while also to new attacks against 23-round LBlock and all members of
the Simon family.

Keywords: block ciphers, impossible differential attacks, CLEFIA,
Camellia, LBlock, Simon.

1 Introduction

Impossible differential attacks were independently introduced by Knudsen [21]
and Biham et al. [5]. Unlike differential attacks [6] that exploit differential paths
of high probability, the aim of impossible differential cryptanalysis is to use
differentials that have a probability of zero to occur in order to eliminate the
key candidates leading to such impossible differentials.

The first step in an impossible differential attack is to find an impossible
differential covering the maximum number of rounds. This is a procedure that
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has been extensively studied and there exist algorithms for finding such impos-
sible differentials efficiently [20,19,9]. Once such a maximum-length impossible
differential has been found and placed, one extends it by some rounds to both
directions. After this, if a candidate key partially encrypts/decrypts a given pair
to the impossible differential, then this key certainly cannot be the right one
and is thus rejected. This technique provides a sieving of the key space and the
remaining candidates can be tested by exhaustive search.

Despite the fact that impossible differential cryptanalysis has been extensively
employed, the key sieving step of the attack does not seem yet fully understood.
Indeed, this part of the procedure is highly technical and many parameters have
to be taken into consideration. Questions that naturally arise concern the way
to choose the plaintext/ciphertext pairs, the way to calculate the necessary data
to mount the attack, the time complexity of the overall procedure as well as
which are the parameters that optimize the attack. However, no simple and
generalized way for answering these questions has been provided until now and
the generality of most of the published attacks is lost within the tedious details
of each application. The problems that arise from this approach is that mistakes
become very common and attacks become difficult to verify. Errors in the analysis
are often discovered and as we demonstrate in the next paragraph, many papers
in the literature present flaws. These flaws include errors in the computation of
the time or the data complexity, in the analysis of the memory requirements or
of the complexity of some intermediate steps of the attacks. We can cite many
such cases for different algorithms, as shown in Table 1. Note however, that the
list of flaws presented in this table is not exhaustive.

Table 1. Summary of flaws in previous impossible differential attacks on CLEFIA-128,
Camellia, LBlock and Simon. Symbol ✗ means that the attack does not work, while
✓ says that the corrected attacks work. Error type (1) is when the data complexity
is higher than the codebook, error type (2) shows a big computation flaw, error type
(3) stands for small complexity flaws, while error type (4) is if the attack cannot be
verified without implementation.

Algorithm # rounds Ref. Type Repaira- Where
of error bility discovered

CLEFIA-128 without 14 [36] (1) ✗ [13]
without whit. layers

CLEFIA-128 13 [30] (4) - [7]

Camellia without 12 [34] (2) ✗ this paper, similar
FL/FL−1 layers problem as [33]

Camellia-128 12 [33] (2) ✗ [25]

Camellia-128/192/256 11/13/14 [23] (3) ✓ [34]
without FL/FL−1 layers

LBlock 22 [26] (3) ✓ [27]

Simon (all versions) 14/15/15/16/16/ [3] (1) ✗ Table 1 of [3]
19/19/22/22/22

Simon (all versions) 13/15/17/20/25 [1,2] (2) ✗ this paper
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Instances of such flaws can for example be found in analyses of the cipher
CLEFIA. CLEFIA is a lightweight 128-bit block cipher developed by SONY in
2007 [28] and adopted as an international ISO/IEC 29192 standard in lightweight
cryptography. This cipher has attracted the attention of many researchers and nu-
merous attacks have been published so far on reduced round versions
[31,32,30,24,29,8]. Most of these attacks rely on impossible differential cryptanal-
ysis. However, as pointed out by the designers of CLEFIA [14], some of these
attacks seem to have flaws, especially in the key filtering phase. We can cite here
a recent paper by Blondeau [7] that challenges the validity of the results in [30],
or a claimed attack on 14 rounds of CLEFIA-128 [36], for which the designers
of CLEFIA showed that the necessary data exceeds the whole codebook [13].
Another extensively analyzed cipher is the ISO/IEC 18033 standard Camellia,
designed by Mitsubishi and NTT [4]. Among the numerous attacks presented
against this cipher, some of the more successful ones rely on impossible differ-
ential cryptanalysis [34,33,22,25,23]. In the same way as for CLEFIA, some of
these attacks were detected to have flaws. For instance, the attack from [33] was
shown in [25] to be invalid. We discovered a similar error in the computation
that invalidated the attack of [34]. Also, [34] reveals small flaws in [23]. Errors
in impossible differential attacks were also detected for other ciphers. For ex-
ample, in a cryptanalysis against the lightweight block cipher LBlock [26], the
time complexity revealed to be incorrectly computed [27]. Another problem can
be found in [3], where the data complexity is higher than the amount of data
available in the block cipher Simon, or in [1,2], where some parameters are
not correctly computed. During our analysis, we equally discovered problems in
some attacks that do not seem to have been pointed out before. In addition to
all this, the more the procedure becomes complicated, the more the approach
lacks optimality. To illustrate this lack of optimality presented in many attacks
we can mention a cryptanalysis against 22-round LBlock [18], that could easily
be extended to 23 rounds if a more optimal approach had been used to evaluate
the data and time complexities, as well as an analysis of Camellia [22] which we
improve in Section 4.

The above examples clearly show that impossible differential attacks suffer
from the lack of a unified and optimized approach. For this reason, the first aim
of our paper is to provide a general framework for dealing with impossible differ-
ential attacks. In this direction, we provide new generic formulas for computing
the data, time and memory complexities. These formulas take into account the
different parameters that intervene into the attacks and provide a highly opti-
mized way for mounting them. Furthermore, we present some new techniques
that can be applied in order to reduce the data needed or to reduce the number
of key bits that need to be guessed. In particular we present a new method that
helps reducing the number of key bits to be guessed by testing instead some bits
of the internal state during the sieving phase. This technique has some similari-
ties with the methods introduced in [15,17], however important differences exist
as both techniques are applied in a completely different context. In addition to
this, we apply and develop the idea of multiple impossible differentials, intro-
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duced in [32], to obtain more data for mounting our attacks. To illustrate the
strength of our new approach we consider Feistel constructions and we apply the
above ideas to a number of block ciphers, namely CLEFIA, Camellia, LBlock
and Simon.

More precisely, we present an attack as well as different time/data trade-offs
on 13-round CLEFIA-128 that improve the time and data complexity of the
previous best known attack [25] and improvements in the complexity of the
best known attacks against all versions of Camellia [22]. In addition, in order to
demonstrate the generality of our method, we provide the results of our attacks
against 23-round LBlock and all versions of the Simon block cipher. The attack
on LBlock is the best attack so far in the single-key setting 1, while our attacks
on Simon are the best known impossible differential attacks for this family of
ciphers and the best attacks in general for the three smaller versions of Simon.

Summary of Our Attacks. We present here a summary of our results on the
block ciphers CLEFIA-128, Camellia, LBlock and Simon and compare them to
the best impossible differential attacks known for the four analyzed algorithms.
This summary is given in Table 2, where we point out with a ‘*’ if the mentioned
attack is the best cryptanalysis result on the target cipher or not, i.e. by the best
known attack we consider any attack reaching the highest number of rounds, and
with the best complexities among them.

The rest of the paper is organized as follows. In Section 2 we present a generic
methodology for mounting impossible differential attacks, provide our complex-
ity formulas and show new techniques and improvements for attacking a Feistel-
like block cipher using impossible differential cryptanalysis. Section 3 is dedicated
to the details of our attacks on CLEFIA and Section 4 presents our applications
to all versions of Camellia. Due to lack of space, our applications on LBlock and
the Simon family of ciphers are given in the full version of this paper [11].

2 Complexity Analysis

We provide in this section a complexity analysis of impossible differential attacks
against block ciphers as well as some new ideas that help improving the time
and data complexities. We derive in this direction new generic formulas for the
complexity evaluation of such attacks. The role of these formulas is twofold;
on the one hand we aim at clarifying the attack procedure by rendering it as
general as possible and on the other hand help at optimizing the time and
data requirements. Establishing generic formulas should help mounting as well
as verifying such attacks by avoiding the use of complicated procedures often
leading to mistakes.

An impossible differential attack consists mainly of two general steps. The first
one deals with the discovery of a maximum-length impossible differential, that
is an input difference ΔX and an output difference ΔY such that the probability

1 In [12], an independent and simultaneous result on 23-round LBlock with worse time
complexity was proposed.
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Table 2. Summary of the best impossible differential attacks on CLEFIA-128, Camel-
lia, LBlock and Simon and presentation of our results. The presence of a ‘*’ mentions
if the current attack is the best known attack against the target cipher. Note here
that we provide only the best of our results with respect to the time complexity. Other
trade-offs can be found in the following sections. † see Section 4 for details.

Algorithm Rounds Time Data Memory Reference
(CP) (Blocks)

CLEFIA-128 13 2121.2 2117.8 286.8 [24]
using state-test technique 13 2116.90 2116.33 283.33 Section 3

using multiple impossible differentials 13 2122.26 2111.02 282.60 Section 3*
combining with state-test technique 13 2116.16 2114.58 283.16 [11]*

Camellia-128 11 2122 2122 298 [22]
11 2118.43 2118.4 292.4 Section 4*

Camellia-192 12 2187.2 2123 2155.41 [22]
12 2161.06 2119.7 2150.7 Section 4*

Camellia-256 13 2251.1 2123 2203 [22]
13 2225.06 2119.71 2198.71 Section 4*

Camellia-256† 14 2250.5 2120 2120 [22]
14 2220 2118 2173 Section 4

LBlock 22 279.28 258 272.67 [18]
22 271.53 260 259 [11,10]
23 274.06 259.6 274.6 [11,10]*

Simon32/64 19 262.56 232 244 [11]*

Simon48/72 20 270.69 248 258 [11]*

Simon48/96 21 294.73 248 270 [11]*

Simon64/96 21 294.56 264 260 [11]

Simon64/128 22 2126.56 264 275 [11]

Simon96/96 24 294.62 294 261 [11]

Simon96/144 25 2190.56 2128 277 [11]

Simon128/128 27 2126.6 294 261 [11]

Simon128/192 28 2190.56 2128 277 [11]

Simon128/256 30 2254.68 2128 2111 [11]

that ΔX propagates after a certain number of rounds, rΔ, to ΔY is zero. The
second step, called the key sieving phase, consists in the addition of some rounds
to potentially both directions. These extra added rounds serve to verify which key
candidates partially encrypt (resp. decrypt) data to the impossible differential.
As this differential is of probability zero, keys showing such behavior are clearly
not the right encryption key and are thus removed from the candidate keys space.

We start by introducing the notation used in the rest of the paper. As in this
work we are principally interested in the key sieving phase, we start our attack
after a maximum impossible differential has been found for the target cipher.
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ΔX

ΔY

Δin

Δout

rin

rout

rΔ

(cin, kin)

(cout, kout)

– ΔX , ΔY : input (resp. output) dif-
ferences of the impossible differen-
tial.

– rΔ: number of rounds of the impos-
sible differential.

– Δin, Δout: set of all possible input
(resp. output) differences of the ci-
pher.

– rin: number of rounds of the differ-
ential path(ΔX , Δin).

– rout: number of rounds of the dif-
ferential path(ΔY , Δout).

The differential (ΔX → Δin) (resp. (ΔY → Δout)) occurs with probability 1
while the differential (ΔX ← Δin) (resp. (ΔY ← Δout)) is verified with prob-
ability 1

2cin (resp. 1
2cout

), where cin (resp. cout) is the number of bit-conditions
that have to be verified to obtain ΔX from Δin (resp. ΔY from Δout).

It is important to correctly determine the number of key bits intervening
during an attack. We call this quantity information key bits. In an impossible
differential attack, one starts by determining all the subkey bits that are involved
in the attack. We denote by kin the subset of subkey bits involved in the attack
during the first rin rounds, and kout during the last rout ones. However, some
of these subkey bits can be related between them. For example, two different
subkey bits can actually be the same bit of the master key. Alternatively, a
bit in the set can be some combination, or can be easily determined by some
other bits of the set. The way that the different key bits in the target set are
related is determined by the key schedule. The actual parameter that we need
to determine for computing the complexity of the attacks is the information key
bits intervening in total, that is from an information theoretical point of view,
the log of the entropy of the involved key bits, that we denote by |kin ∪ kout|.

We continue now by describing our attack scenario on (rin+rΔ+rout) rounds
of a given cipher.

2.1 Attack Scenario

Suppose that we are dealing with a block cipher of block size n parametrized by
a key K of size |K|. Let the impossible differential be placed between the rounds
(rin +1) and (rin + rΔ). As already said, the impossible differential implies that
it is not feasible that an input difference ΔX at round (rin+1) propagates to an
output difference ΔY at the end of round (rin + rΔ). Thus, the goal is, for each
given pair of inputs (and their corresponding outputs), to discard the keys that
generate a difference ΔX at the beginning of round (rin + 1) and at the same
time, a difference ΔY at the output of round (rin + rΔ). We need then enough
pairs so that the number of non-discarded keys is significantly lower than the a
priori total number of key candidates.
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Suppose that the first rin rounds have an input truncated difference in Δin

and an output difference ΔX , which is the input of the impossible differential.
Suppose that there are cin bit-conditions that need to be verified so that Δin

propagates to ΔX and |kin| information key bits involved.
In a similar way, suppose that the last rout rounds have a truncated output

difference in Δout and an input difference ΔY , which is the output of the im-
possible differential. Suppose that there are cout bit-conditions that need to be
verified so that Δout propagates to ΔY in the backward direction and |kout|
information key bits involved.

We show next how to determine the amount of data needed for an attack.

2.2 Data Complexity

The probability that for a given key, a pair of inputs already satisfying the
differences Δin and Δout verifies all the (cin+ cout) bit-conditions is 2

−(cin+cout).
In other words, this is the probability that for a pair of inputs having a difference
in Δin and an output difference in Δout, a key from the possible key set is
discarded. Therefore, by repeating the procedure with N different input (or
output) pairs, the probability that a trial key is kept in the candidate keys set
is P = (1− 2−(cin+cout))N .

There is not a unique strategy for choosing the amount of input (or output)
pairs N . This choice principally depends on the overall time complexity, which
is influenced by N , and the induced data complexity. Different trade-offs are
therefore possible. A popular strategy, generally used by default is to choose N
such that only the right key is left after sieving. This amounts to choose P as

P = (1− 2−(cin+cout))N <
1

2|kin∪kout| .

In this paper we adopt a different approach that can help reducing the number
of pairs needed for the attack and offers better trade-offs between the data and
time complexity. More precisely, we permit smaller values of N . By proceeding
like this, we will be probably left with more than one key in our candidate keys
set and we will need to proceed to an exhaustive search among the remaining
candidates, but the total time complexity of the attack will probably be much
lower. In practice, we will start considering values of N such that P is slightly
smaller than 1

2 so to reduce the exhaustive search by at least one bit. The smallest
value of N , denoted by Nmin, verifying

P = (1 − 2−(cin+cout))Nmin � e−Nmin×2−(cin+cout)

<
1

2

is approximately Nmin = 2cin+cout . Then we have to choose N ≥ Nmin.
We provide then a solution for determining the cost of obtaining N pairs such

that their input difference belongs to Δin and their output difference belongs
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to Δout. To the best of our knowledge, this is the first generic solution to this
problem. We evaluated this cost as

CN = max

{
min

Δ∈{Δin,Δout}

{√
N2n+1−|Δ|

}
, N2n+1−|Δin|−|Δout|

}
. (1)

A detailed explanation on how this formula is derived can be found in the full
version of the paper [11]. The cost CN represents also the amount of needed data.
Obviously, as the size of the state is n, the following inequality, should hold:

CN ≤ 2n.

This inequality simply states that the total amount of data used for the at-
tack cannot exceed the codebook. These conditions are not verified in several
cases from [3], as well as in the corrected version of [36] which invalidates the
corresponding attacks.

2.3 Time and Memory Complexity

We are going to detail now the computation of the time complexity of the attack.
Note that the formulas that we are presenting in this section are the first generic
formulas given for estimating the complexity of impossible differential attacks.

By following the early abort technique [23], the attack consists in storing the
N pairs and testing out step by step the key candidates, by reducing at each
time the size of the remaining possible pairs. The time complexity is then de-
termined by three quantities. The first term is the cost CN , that is the amount
of needed data (see Formula (1)) for obtaining the N pairs, where N is such
that P < 1/2. The second term corresponds to the number of candidate keys
2|kin∪kout|, multiplied by the average cost of testing the remaining pairs. For
all the applications that we have studied, this cost can be very closely approx-
imated by

(
N + 2|kin∪kout| N

2cin+cout

)
C′

E , where C′
E is the ratio of the cost of

partial encryption to the full encryption. Finally, the third term is the cost of
the exhaustive search for the key candidates still in the candidate keys set after
the sieving. By taking into account the cost of one encryption CE , we conclude
that the time complexity of the attack is

Tcomp =

(
CN +

(
N + 2|kin∪kout| N

2cin+cout

)
C′

E + 2|K|P
)
CE , (2)

where CN = max
{
minΔ∈{Δin,Δout}

{√
N2n+1−|Δ|

}
, N2n+1−|Δin|−|Δout|

}
, with

N such that P = (1−1/(2cin+cout))N < 1/2 and where the last term corresponds
to 2|K|−|kin∪kout|P2|kin∪kout|. Obviously, as we want the attack complexity to be
smaller than the exhaustive search complexity, the above quantity should be
smaller than 2|K|CE .

It must be noted here that this is a minimum estimation of the complexity,
that, in practice, and thanks to the idea of Section 2.4, it approximates really
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well the actual time complexity, as it can be seen in the applications, and in
particular, in the tight correspondence shown between the LBlock estimation
that we detail in [11] and the exact calculation from [10]. The precise evaluation
of C′

E (that is always smaller than 1) can only be done once the attack parameters
are known. However, C′

E can be estimated quite by calculating the ratio between
the active SBoxes during a partial encryption and the total number of SBoxes
(thought it is not always the best approximation, it is a common practice).

Memory complexity. By using the early abort technique [23], the only elements
that need to be stored are the N pairs. Therefore, the memory complexity of
the attack 2 is determined by N .

2.4 Choosing Δin,Δout, cin and cout

We explain now, the two possible ways for choosing Δin, Δout, cin and cout. For
this, we introduce the following example that can be visualized in Figure 1 and
where we consider an Sbox-based cipher. In this example, we will only talk about
Δin and cin, however the approach for Δout and cout is identical.

S M

(α, 0, 0, 0) M(β, 0, 0, 0)
(β, 0, 0, 0)

(α, 0, 0, 0)

ΔX

K0

(0, 0, 0, 0)

Fig. 1. Choosing Δin and cin

Suppose that the state is composed of two branches of four nibbles each. The
round function is composed of a non-linear layer S, seen as a concatenation of
four Sboxes S0, S1, S2 and S3, followed by a linear layer M . There exist two
different ways for choosing |Δin| and cin:

1. The most intuitive way is to consider |Δin| = 4 + 4 and cin = 4, as the size
of α and of β is 4 bits, and in the first round we want 4 bits to collide. In
this case, for a certain key, the average probability that a pair taken out of
the 24+424+4−1 pairs belonging to Δin leads to ΔX is 2−4.

2. In general, the difference α can take 24 − 1 different values. However, each
value can be associated by the differential distribution table of the Sbox S0

2 If N > 2|kin∪kout| we could store the discarded key candidates instead, this is rarely
the case. Thus, we can consider a memory complexity of min{N, 2|kin∪kout|}.



188 C. Boura, M. Naya-Plasencia, and V. Suder

to 23 output differences on average3, so the possibilities for the difference β
are limited to 23. Therefore, we can consider that |Δin| ≈ 4+3. But, in this
case cin = 3, as for each input pair belonging to the 24+324+3−1 possible
ones, there exist on average 2 values that make the differential transition
α → β possible (instead of 1 in the previous case).

We can see, by using the generic formulas of Section 2.3, that both cases
induce practically the same time complexity, as the difference in N compensates
with the difference in cin + cout. However, the memory complexity, given by
N , is slightly better in case 2. Furthermore, case 2, in which a preliminary
pairs filtering is done, allows to reduce the average cost of using the early abort
technique [23].

In several papers, for example in [33] and [23], the second case is followed.
However, its application is partial (either for the input or the output part) and
this with no apparent reason. Note however, that in these papers, the associated
cout was not always correctly computed and sometimes, 8-bit conditions were
considered when 7-bit conditions should have been accounted for. For reasons of
simplicity, we will consider case 1 in our applications and check afterwards the
actual memory needed.

2.5 Using Multiple Impossible Differentials to Reduce the Data
Complexity

We explain in this section a method to reduce the data complexity of an attack.
This method is inspired by the notion of multiple impossible differentials that was
introduced by Tsunoo et al. [32] and applied to 12-round CLEFIA-128. The idea
in this technique is to consider at once several impossible differentials, instead of
just one. We assume, as done in [16], that the differences in Δin (and in Δout)
lie in a closed set. There are two ways in which this can be a priori done:

1. Take rotated versions of a certain impossible differential. We call nin the
number of different input pattern differences generated by the rotated ver-
sions of the chosen impossible differential.

2. When the middle conditions have several impossible combinations, we can
consider the same first half of the differential path together with a rotated
version of the second one, in a way to get a different impossible differential.
We call nout the number of different output pattern differences generated
by the rotated versions of the second part of the path that we will consider.
For the sake of simplicity and without loss of generality we will only consider
the case of rotating the second half of the path.

It is important to point out that for our analysis to be valid, in both cases
the number of conditions associated to the impossible differential attack should
stay the same. Both cases can be translated into a higher amount of available

3 This quantity depends on the Sbox. In this example, we consider that all four Sboxes
have good cryptographic properties.
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data by redefining two quantities, |Δ′
in| and |Δ′

out|, that will take the previous
roles of |Δin| and |Δout|,

|Δ′
in| = |Δin|+ log2(nin) and |Δ′

out| = |Δout|+ log2(nout).

|Δ′
in| is the log of the total size of the set of possible input differences, and |Δ′

out|
is the log of the total size of the set of possible output differences.

In this case, the data complexity CN is computed with the corrected values
for the input sizes and is, as can be easily seen, smaller than if only one path
had been used. The time complexity remains the same, except for the CN term.
Indeed, the middle term of Formula (2) remains the same, as for a given pair, the
number of key bits involved stays 2|kin∪kout|. Equally, as the number of involved
possible partial keys is ninnout2

|kin∪kout|, the last term of Formula (2) is now

2|K|

nin · nout2|kin∪kout| (P · nin · nout · 2|kin∪kout|) = 2|K|P

and so also stays the same.
In Section 3 we present our attacks on CLEFIA. In part of these attacks, we

use multiple impossible differentials to reduce the data complexity. Besides, this
technique shows particularly useful for mounting attacks on some versions of
the Simon family for which there is not enough available data to mount a valid
attack with the traditional method.

2.6 Introducing the State-Test Technique

We introduce now a new method that consists in making a test for some part
of the internal state instead of guessing the necessary key bits for computing
it. This somewhat reminds the techniques presented in [15,17] in the context
of meet-in-the-middle attacks. However, the technique that we present in this
section, and that we call the state-test technique is different since it consists
in checking the values of the internal state to verify if we can discard all the
involved candidates.

Very often during the key filtering phase of impossible differential attacks, the
size of the internal state that needs to be known is smaller than the number of
key bits on which it depends. As we will see, focusing on the values that a part of
the state can take permits to eliminate some key candidates without considering
all the values for the involved key bits. The state-test technique works by fixing
s bits of the plaintexts, which allows us to reduce the number of information key
bits by s. We will explain how this method works by a small example.

Consider a 32-bit Feistel construction, where each branch can be seen as a
concatenation of four nibbles (see Figure 2). Suppose that the round function is
composed of a non-linear layer S, seen as a concatenation of four 4-bit invertible
Sboxes (S0, S1, S2, S3) and of a linear layer M on F24 . We suppose for this exam-
ple that the branch number of M , that is the minimal number of active Sboxes
in any two consecutive rounds, is less than 5. Let ΔX = (α, 0, 0, 0)|(0, 0, 0, 0) be
the input difference of the impossible differential, placed at the end of the second
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round and let Δin = (∗, ∗, ∗, 0)|(∗, ∗, ∗, ∗) be the difference at the input of the
block cipher. Note however that in reality, the leftmost side of Δin only depends
on a 4-bit non-zero difference δ, i.e. Δin = M(δ, 0, 0, 0)|(∗, ∗, ∗, ∗).

K1

K0

P0 P1

ΔX

Δin

S

S

M

M

12 bit-cond.

4 bit-cond.

x

Fig. 2. Grey color stands for nibbles with non-zero difference. Hatched key nibbles
correspond to the part of the subkeys that have to be guessed. The nibble x is the part
of the state on which we apply the state-test technique.

As can be seen in Figure 2, there are in total 4 active Sboxes and thus there
are cin = 16 conditions that have to be verified in order to have a transition
from Δin to ΔX . Therefore, the first step is to collect N pairs such that P =
(1 − 2−(cin+cout))N = (1 − 2−cin)N = (1 − 2−16)N < 1

2 . The exact value of N
will be chosen in a way to obtain the best trade-off for the complexities. Before
describing the new method, we start by explaining how this attack would have
worked in the classical way. As we can see in Figure 2, there are 3× 4 bits that
have to be guessed (K0,0, K0,1 and K0,2) in order to verify the conditions on the
first round and there are 2 × 4 bits that have to be guessed (K0,3 and K1,0) in
order to verify the conditions on the second round.

Therefore, for all N pairs, one starts by testing all the 24 possible values for the
first nibble of K0. After this first guess, N×2−4 pairs remain in average, as there
are 4-bit conditions that need to be verified by the guess through the first round.
Then one continues by testing the second and the third nibble of K0 and finally
the last nibble of K0 and the first nibble of K1. At each step, the amount of
data remaining is divided by 24. To summarize, we have |kin ∪kout| = |kin| = 20
and 2cin+cout = 2cin = 24242424. Then Formula (2) can be used to evaluate the
time complexity of the attack as

(
CN +

(
N + 220

N

216

)
C′

E + 220P2|K|−20

)
CE . (3)

We will see now how the state-test technique applies to this example and how
it permits to decrease the time complexity. Consider the first nibble of the left
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part of the state after the addition of the subkey K1. We denote this nibble by
x. Note that mathematically, x can be expressed as

x = K1,0 ⊕ P1,0 ⊕M(S(K0 ⊕ P0))0

x⊕ P1,0 = K1,0 ⊕m0S0(K0,0 ⊕ P0,0)⊕m1S1(K0,1 ⊕ P0,1)

⊕m2S2(K0,2 ⊕ P0,2)⊕m3S3(K0,3 ⊕ P0,3), (4)

where the mi’s are coefficients in F
4
2.

Suppose now that for all pairs, we fix the last s = 4 bits of P0 to the same
constant value. One can verify that this is a reasonable assumption, as by fixing
this part of the inputs we still have enough data to mount the attack. Then
one starts as before, by guessing the first three nibbles of K0. After this 12-bit
guess, approximately N × 2−12 pairs remain. We know for each pair the input
and output differences of the Sbox of the second round as the needed part of K0

has been guessed. Therefore, by a simple lookup at the differential distribution
table of the involved Sbox, we obtain one value for x that verifies the second
round conditions in average per pair (about half of the time the transition is not
possible, whereas for the other half we find two values). Equation (4) becomes

x⊕ P1,0 ⊕m0S0(K0,0 ⊕ P0,0)⊕m1S1(K0,1 ⊕ P0,1)⊕m2S2(K0,2 ⊕ P0,2)

= K1,0 ⊕m3S3(K0,3 ⊕ P0,3), (5)

where the left side of Equation (5), that we denote by x′, is known for each pair.
Thus, for each guess of (K0,0,K0,1,K0,2), we construct a table of size N×2−12,

where we store these values of x′. The last and more important step consists now
in looking if all 24 possible values of x′ appear in the table. Note here, that as
N ≥ 216, the size of the table is necessarily greater than or equal to 24.

Since P0,3 is fixed, the only unknown values in Equation (5) are K1,0 and
K0,3. If all values for x

′ are in the table and since S3 is a permutation, for any
choice of K1,0 and any choice of K0,3, there will always exist (at least) one pair
such that K1,0⊕m3S3(K0,3⊕P0,3) is in the table, leading thus to the impossible
differential.

As a conclusion, we know that if x′ takes all the possible values in the table,
we can remove the keys composed by the guessed value (K0,0,K0,1,K0,2) from
the candidate keys set, as for all the values of (K1,0,K0,3), they would imply
the impossible differential. If instead, x′ does not take all the possible values
for a certain value of (K0,0,K0,1,K0,2), we can test this partial key combined
to all the possibilities of the remaining key bits that verify Equation (5) for the
missing x′, as they belong to the remaining key candidates.

The main gain of the state-test technique is that it decreases the number
of information key bits and therefore the time complexity. For instance,
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in this example, the variable x′ can be seen as 4 information key bits 4 instead
of 2× 4 key bits we had to guess in the classic approach (the bits of K0,3 and of
K1,0). We have s = 4 less bits to guess thanks to the s = 4 bits of the plaintext
that we have fixed. Thus the time complexity in this case becomes

(
CN +

(
N + 220−4 N

216

)
C′

E + 220−4P2|K|−(20−4)

)
CE . (6)

One can see now by comparing Equations (6) and (3) that the time complexity
is lower with the state-test technique, than with the trivial method. Indeed, the
first and the third term of the Equations (6) and (3) remain the same, while the
second term is lower in Equation (6). Finally, note that the probability P for
a key to be still in the candidate keys set remains the same as before. Indeed,
during the attack we detect all and the same candidate keys for which none of
the N pairs implies the impossible differential, which are the same candidate
keys that we would have detected in a classic attack.

We would like to note here that we have implemented the state-test technique
on a toy cipher, having a structure similar to the one that we introduced in this
section, and we have verified its correctness.

Application of the state-test technique in parallel for decreasing the probability P .
An issue that could appear with this technique is that as we have to fix a part
of the plaintexts, s bits, the amount of data available for computing the N pairs
is reduced. The probability P associated to an attack is the probability for a
key to remain in the candidate keys set. When the amount of available data is
small, the number of pairs N that we can construct is equally small and thus
the probability P is high. In such a situation, the dominant term of the time
complexity (Formula (2)), is in general the third one, i.e. 2|K|P .

More precisely, we need the sum of log2(CN ) and s, the number of plaintext
bits that we fix, to be less than or equal to the block size. This limits the size
of N that we can consider, leading to higher probabilities P , and could lead,
sometimes, to higher time complexities. To avoid this, one can repeat the attack
in parallel for several different values, say Y , of the fixed part of the plaintext. In
this case, the data and memory needed are multiplied by Y . On the other hand,
repeating the attack in parallel permits to detect more efficiently if a guessed
key could be the right one. Indeed, for a guessed key, only if none of the tables
constructed as described above contains all the values for x′, one can test if this
guessed key is the correct one.

To summarize, by repeating the state-test technique in parallel, we multiply
the available data by Y , as well as the available pairs, and since the attack is done
Y times in parallel, the probability P becomes PY . The probability decreases

4 Note that we could, equivalently, consider all possible values of x′ in the last step,
and consider the associated remaining pairs table, that would have a size of N2−16

(empty if the key is a good candidate, not empty otherwise), obtaining the same key
candidates of 16 bits, 12 from (K0,0,K0,1,K0,2) and 4 information key bits from x′,
with the same complexity as in the previously described method.
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much faster than the data or the other terms of the time complexity increase.
Therefore, the Formula (2) becomes in this case:

(
CN × Y +

(
N × Y + 2|kin∪kout|−s N × Y

2cin+cout

)
C′

E + 2|K|P Y

)
CE . (7)

In Section 3, we are going to see an application of this technique to 13-round
CLEFIA-128, and at the end of Section 4 we show an application on Camellia-256.

3 Application to CLEFIA

CLEFIA is a lightweight 128-bit block cipher designed by Shirai et al. in 2007 [28]
and based on a 4-branch generalized Feistel network. It supports keys of size
128, 192 or 256 bits and the total number of iterations, say R, depends on the
key size. More precisely, R = 18 for the 128-bit version, while R = 22 and
R = 26 for the two following variants. A key-scheduling algorithm is used to
generate 2R round keysRK0, . . . , RK2R−1 and 4 whitening keysWK0, . . . ,WK3.
The whitening keys are XORed to the right branches of the first and the last
round. CLEFIA’s round function design can be visualized in Figure 3. For a
more complete description of the specifications one can refer to [28].

We describe now several attacks against 13-round CLEFIA-128.

3.1 Impossible Differential Cryptanalysis of 13-round CLEFIA-128

The authors of [31] noticed that a difference on the internal state of CLEFIA
of the form P i = 032|032|032|A cannot lead to a difference P i+9 = 032|032|B|032
after 9 rounds, where A and B are 4-byte vectors for which only one byte in a
different position is active (e.g. A = (α, 08, 08, 08) and B = (08, β, 08, 08)). We
use this same 9-round impossible differential and place it between rounds 3 and
11. Therefore, for our attack, rin = rout = 2 and rΔ = 9, as in [24].

RK0

WK0

F0

RK1

WK1

F1

RK2

F0

RK3

F1

RK22

F0 F1

F0 F1

Δin

ΔX

ΔY

Δout

x

RK23

RK25RK24

WK2 WK3

Fig. 3. The attack on CLEFIA-128. Grey color stands for bytes with a non-zero differ-
ence, while hatched bytes are the subkey bytes that have to be guessed.
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The differential placed on the top and at the bottom of the impossible dif-
ferential are depicted in Figure 3. We describe now the parameters for our
cryptanalysis of 13-round CLEFIA-128. As can be seen in Figure 3 there are
cin + cout = 40 + 40 bit-conditions that need to be verified so that the differ-
ence in the plaintexts Δin = 032|(∗8, 08, 08, 08)|M0(∗8, 08, 08, 08)|∗32 propagates
to ΔX = 032|032|032|(α, 08, 08, 08) and the difference in the ciphertexts Δout =
032|(08, ∗8, 08, 08)|M1(08, ∗8, 08, 08)|∗32 propagates to ΔY = 032|032|(08, β, 08, 08)
|032. In this way, |Δin| = |Δout| = 48.

Following the complexity analysis of Section 2, we need to construct at least
Nmin = 280 pairs. The cost to construct these pairs is

CNmin = max
{√

2802129−48, 2802129−48−48
}
= 2113.

Using the state-test technique. We use now the state-test technique, described
in Section 2.6 to test the 8 bits of the internal state denoted by x in Figure 3,
instead of guessing the whole subkey RK0 and the XOR of the leftmost byte of
RK2 and WK0. For doing this, we need to fix part of the 32 leftmost bits of the
plaintexts. As the number of needed data is CNmin = 2113, we can fix at most
128− 113 = 15 bits. However, as each Sbox is applied to 8 bits, we will only fix
one byte of this part of the plaintexts. We will guess then 24 bits of the subkey
RK0 which are situated on the other bytes.

During a classical attack procedure, we would need to guess 32 bits of RK1, 32
bits of RK0 and 8 bits ofRK2⊕WK0, thus kin = 72.We would also need to guess
8 bits of RK23⊕WK2, 32 bits of RK24 and 32 bits of RK25, therefore kout = 72.
However, the subkeys RK1 and RK24 share 22 bits in common. As a consequence,
the number of information key bits would be |kin ∪ kout| = 72 + 72− 22 = 122.
As we will fix 8 bits of the plaintexts, according to Section 2.6, it is the same
to say that there will be |kin ∪ kout| − 8 = 122− 8 = 114 bits to test. The time
complexity of our attack, computed using Formula (2) is then

(
CN +

(
N + 2114

N

280

)
18

104
+ 2128P

)
CE ,

where the fraction 18/104 is the ratio of the cost of partial encryption to the
full encryption. Since our attack needs at least 2113 plaintexts and since we fixed
8 bits out of them, we have 128 − 113 − 8 = 7 bits of freedom for building
structures.

Among all possible trade-offs with respect to the amount of data, the best
time complexity is 2116.90CE with 283.33 pairs built from 2116.33 plaintexts.

Using multiple impossible differentials. The authors of [31] noticed that there
exist several different 9-round impossible differentials, see [31, Table 1]. In [32],
multiple impossible differentials were used to attack 12 rounds of CLEFIA-128.
Here, we will apply our formalized approach of this idea presented in Section 2.5,
to reduce the data complexity of the attack on 13 rounds of CLEFIA-128.

We use the nin = 2× 4 different inputs to the impossible differentials, that is
P i = 032|A|032|032 and P i = 032|032|032|A, where A can take a difference on only
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one of the four possible bytes. For each one of them, there are nout = 3 different
output impossible differences P i+9 = 032|032|B|032 after 9 rounds, where B has
only one byte active in a different position than the active byte in A. We have
now |Δ′

in| = |Δin|+ log2(8) = 48 + 3 and |Δ′
out| = |Δout|+ log2(3) = 48 + 1.58.

Since the bit-conditions remain unchanged, cin+ cout = 80, the minimal number
of pairs needed for the attack to work is Nmin = 280. For this number of pairs,
we need CNmin = 2113−4.58 = 2108.42 plaintexts. The number of information key
bits is |kin ∪ kout| = 122. We have then

(
CN +

(
N + 2122 N

280

)
18
104 + P2128

)
CE .

Among all the possible trade-offs with respect to the amount of data, the best
time complexity we obtained is 2122.26CE with 282.6 pairs built from 2111.02 plain-
texts. Recall here that the aim of this approach was to reduce data complexity.
Thus, in this attack the gain on the data complexity is the important part5.

In the full version of this paper [11] we show how to combine the state-test-
technique together with multiple differentials in order to reduce at the same time
the time and the data complexity for the attacks on CLEFIA-128.

4 Applications to Camellia

Camellia is a 128-bit block cipher designed by Aoki et. al. in 2000 [4]. It is
a Feistel-like construction where two key-dependent layers FL and FL−1 are
applied every 6 rounds to each branch. Whitening keys are equally applied to the
first and the last round of the cipher. There exist three different versions of the
cipher, that we note Camellia-128, Camellia-192 and Camellia-256, depending
on the key size used. The number of iterations is 18 for the 128-bit version and
24 for the other two versions. A detailed description of Camellia’s structure can
be found in the full version of the paper. For further details, one can refer to [4].

Previous Cryptanalysis. Camellia is since 2005 an international ISO/IEC
standard and has therefore attracted a lot of attention from the cryptographic
community. Since Camellia has a particular design, involving the so-called
FL/FL−1 layers, its cryptanalysis can be classified in several categories. Some
attacks consider the FL/FL−1 functions, while others do not take them into con-
sideration. Equally, some attacks take into account the whitening keys, whereas
others don’t and finally all attacks do not start from the same round. The best
attacks on Camellia in terms of the number of rounds and the complexities are
those presented in [22, Section 4.2].

Here we start by presenting improvements of the best attacks that include
the FL/FL−1 layers and the whitening keys. Next we build an attack using the
state-test technique on 14-round Camellia-256 starting from the first round but
without the FL/FL−1 layers and the whitening keys.

Improvements. We improve here the complexities of the previous attacks that
take into account the FL/FL−1 layers and the whitening keys on all three

5 In [24], the authors used a loose approximation for C′
E, as C

′
E = 1/104.
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versions of Camellia. By using the complexity analysis introduced in Section 2,
we can optimize the complexities of the corresponding attacks from [22]. Note
that we use for this the same parameters as in [22]. The parameters of our attacks
on 11-round Camellia-128, 12-round Camellia-192 and 13-round Camellia-256
are depicted in Table 3. As can be seen in Table 2, the time complexity of
our improved attack on Camellia-128 is 2118.43CE , with data complexity 2118.4

and memory complexity 292.4. For Camellia-192, the time, data and memory
complexities are 2161.06CE , 2

119.7 and 2150.7 respectively, while for Camellia-256
the corresponding complexities are 2225.06CE , 2

119.71 and 2198.71.

Table 3. Attack parameters against all versions of Camellia

Algorithm |Δin| |Δout| rin rout rΔ cin cout |kin ∪ kout|
Camellia-128 23 80 1 2 8 32 57 96

Camellia-192 80 80 2 2 8 73 73 160

Camellia-256 80 128 2 3 8 73 121 224

Using the State-Test Technique on Camellia-256. We provide here an im-
possible differential attack on Camellia-256 without FL/FL−1 layers and whiten-
ing keys by using the state-test technique. Note here, that unlike all previous
attacks not starting from the first round in order to take advantage of the key
schedule asymmetry, our attack starts from the first round of the cipher. It cov-
ers 14 rounds of Camellia-256 which is, to the best of our knowledge, the highest
number of rounds attacked for this version. In [22] another attack on 14-round
Camellia-256 with FL/FL−1 and whitening keys is presented, however, as said
before, it does not start from the first round and it uses a specific property of
the key schedule at the rounds where it is applied.

In this attack, we consider the same 8-round impossible differential as in [25]
and we add 4+2 rounds such that rin = 4, rout = 2 and rΔ = 8. We have |Δin| =
128, |Δout| = 56, cin = 120 and cout = 48. Then we need at least Nmin = 2168

plaintexts pairs. The amount of data needed to construct these pairs is CNmin =

max
{√

21682129−128, 21682129−184
}

= 2113. There remain then 128 − 113 = 15

bits of freedom. Thus, we can fix s = 8 bits on the ciphertexts to apply the
state-test technique on the 8 bits of the internal state at the penultimate round.
The number of information key bits is |kin ∪ kout| = 227− 8 = 219 since there
are 45 bits shared between the subkeys with respect to the key schedule. The
best attack is obtained with N = 2118 pairs. In this case, the time complexity is
2220CE , the data complexity is 2118 plaintexts and the memory is 2118.

5 Conclusion

To start with, we have proposed in this paper a generic vision of impossible
differential attacks with the aim of simplifying and helping the construction
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and verification of this type of cryptanalysis. Until now, these attacks were very
tedious to mount and even more to verify, and so, very often flaws appeared in
the computations. We believe that our objective has been successfully reached,
as it can be seen by the high amount of new improved attacks that we have been
able to propose, as well as by all the different possible trade-offs for each one of
them, something that would be near to unthinkable prior to our work.

Next, the generic and clear vision of impossible differential attacks has allowed
us to discover and propose new ideas for improving these attacks. In particular,
we have proposed the state-test technique, that allows to reduce the number
of key bits involved in the attack, and so to reduce the time complexity. We
have also formalized and adapted to our generic scenario the notion introduced
in [32] of multiple impossible differentials. This option allows reducing the data
complexity. Finally, we have proposed several applications for different variants
of the Feistel ciphers CLEFIA, Camellia, LBlock and Simon, providing in most
of the cases, the best known attack on reduced-round versions of these ciphers.

We hope that these results will simplify and improve future impossible attacks
on Feistel ciphers, as well as their possible combination with other attacks. For
instance, in [35] a combination of impossible differential with linear attacks is
proposed. We haven’t verified these results, but this direction could be promising.
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