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Abstract: Class imbalance is a crucial problem in machine learning and occurs in many domains. Specifically, the 

two-class problem has received interest from researchers in recent years, leading to solutions for oil spill 

detection, tumour discovery and fraudulent credit card detection, amongst others. However, handling class 

imbalance in datasets that contains multiple classes, with varying degree of imbalance, has received limited 

attention. In such a multi-class imbalanced dataset, the classification model tends to favour the majority 

classes and incorrectly classify instances from the minority classes as belonging to the majority classes, 

leading to poor predictive accuracies. Further, there is a need to handle both the imbalances between classes 

as well as address the selection of examples within a class (i.e. the so-called within class imbalance). In this 

paper, we propose the SCUT hybrid sampling method, which is used to balance the number of training 

examples in such a multi-class setting. Our SCUT approach oversamples minority class examples through 

the generation of synthetic examples and employs cluster analysis in order to undersample majority classes. 

In addition, it handles both within-class and between-class imbalance. Our experimental results against a 

number of multi-class problems show that, when the SCUT method is used for pre-processing the data 

before classification, we obtain highly accurate models that compare favourably to the state-of-the-art. 

1 INTRODUCTION 

In an imbalanced dataset used for classification, the 

sizes of one or more classes are much greater than 

the other classes. The classes with the larger number 

of instances are called majority classes and the 

classes with the smaller number of instances are 

referred to as the minority classes. Intuitively, since 

there are a large number of majority class examples, 

a classification model tends to favour majority 

classes while incorrectly classifying the examples 

from the minority classes. However, in imbalanced 

datasets, we are often more interested in correctly 

classifying the minority classes. For instance, in a 

two class setting within the medical domain, if we 

are classifying patients’ condition, the minority class 

(e.g. cancer) is of more interest than the majority 

class (e.g. cancer free). In practice, many problems 

have more than two classes. For example, in 

bioinformatics, protein family classification, where a 

protein may belong to very small families within the 

large Protein Data Bank repository (Viktor et. al, 

2013), as well as protein fold prediction, are 

examples of multi-class problems. Typically, in such 

a multi-class imbalanced dataset, there are multiple 

classes that are underrepresented, that is, there may 

be multiple majority classes and multiple minority 

classes, resulting in skewed distributions. 

A number of research studies have been realized 

in order to improve classification performance on 

imbalanced binary class datasets, in which there is 

one majority class and one minority class. However, 

improving the performance on imbalanced multi-

class datasets has not been researched as 

extensively. Consequently, most existing techniques 

for improving classification performance on 

imbalanced datasets are designed to be applied 

directly on binary class imbalanced datasets. These 

methods cannot be applied directly on multi-class 

datasets (Wang and Yao, 2012). Rather, class 

decomposition is usually used to convert a multi-

class problem into a binary class problem. For 

instance, the One-versus-one (OVO) approach 

employs multiple classifiers for each possible pair of 

classes, discarding the remaining instances that do 

not belong to the pair under consideration. The One-

versus-all (OVA) approach, on the other hand, 
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considers one class as the positive class, and merges 

the remaining classes to form the negative class. For 

‘n’ classes, ‘n’ classifiers are used, and each class 

acts as the positive class once (Fernández et al., 

2010). Subsequently, the results from different 

classifiers are combined in order to reach a final 

decision. Interested readers are referred to (Ramanan 

et al., 2007) for detailed discussions of the OVO and 

OVA approaches. However, combining results from 

classifiers that are trained on different sub-problems 

may result in classification errors (Wang and Yao, 

2012). In addition, in OVO, each classifier is trained 

only on a subset of the dataset, which may lead to 

some data regions being left unlearned. In this paper, 

we propose a different method to improve 

classification performance on multi-class 

imbalanced datasets which preserves the structure of 

the data, without converting the dataset into a binary 

class problem. 

In addition to between-class imbalance (i.e. the 

imbalance in the number of instances in each 

classes), within-class imbalance is also commonly 

observed in datasets. Such a situation occurs when a 

class is composed of different sub-clusters and these 

sub-clusters do not contain the same number of 

examples (Japkowicz, 2001). It follows that 

between-class and within-class imbalances both 

affect classification performance. In an attempt to 

address these two problems, and in order to improve 

classification performance on imbalanced datasets, 

sampling methods are often used for pre-processing 

the data prior to using a classifier to build a 

classification model.  

Sampling methods focus on adapting the class 

distribution in order to reduce the between-class 

imbalance. Sampling methods may be divided into 

two categories, namely undersampling and 

oversampling. Undersampling reduces the number 

of majority class instances and oversampling 

increases the number of minority class instances. 

Unfortunately, both random oversampling and 

undersampling techniques present some weaknesses. 

For instance, random oversampling adds duplicate 

minority class instances to the minority class. This 

may result in smaller and more specific decision 

regions causing the learner to over-fit the data. Also, 

oversampling may increase the training time. 

Random undersampling randomly takes away some 

instances from the majority class. A drawback of 

this method is that useful information may be taken 

away (Han et al., 2005).  Further, when performing 

random undersampling, if the dataset has within-

class imbalance and some sub-clusters are 

represented by very few instances, the probability 

that instances from these sub-clusters be retained is 

relatively low. Consequently, these instances may 

remain unlearned. 

SMOTE represents an improvement over random 

oversampling in that the minority class is 

oversampled by generating “synthetic” examples 

(Chawla et. al., 2002). However, in highly 

imbalanced datasets, too much oversampling (i.e. 

oversampling using a high sampling percentage) 

may result in overfitting. This is especially 

important in a multi-class setting where there are a 

number of minority classes with very few examples. 

Further, in a multi-class setting, there is a need to 

find the correct balance, in terms of number of 

examples, between multiple classes. In order to 

address this issue, we propose an algorithm called 

SCUT (SMOTE and Clustered Undersampling 

Technique) which combines SMOTE and cluster-

based undersampling in order to handle between-

class and within-class imbalance.  

Undersampling is required to balance the dataset 

without using excessive oversampling. If majority 

class instances are randomly selected, small 

disjuncts with less representative data may remain 

unlearned.  Clustering the majority classes helps 

identify sub-concepts, and if at least one instance is 

selected from each sub-concept (cluster) while doing 

undersampling, this issue might be addressed 

(Sobhani et. al, 2014). This implies that the scenario 

of having unlearned regions when within-class 

imbalance exists, is reduced. In this setting, 

combining clustering and undersampling makes 

sense as it addresses the disadvantage of random 

undersampling. To this end, Yen and Lee proposed 

several cluster-based undersampling approaches to 

select representative data as training data to improve 

the classification accuracy for the minority class 

(Yen and Lee, 2009). The main idea behind their 

cluster-based undersampling approaches was based 

on the assumption that each dataset has different 

clusters and each cluster seems to have distinct 

characteristics. Subsequently, from each cluster, a 

suitable number of majority class samples were 

selected (Yen and Lee, 2009). Rahman and Davis 

also used a cluster-based undersampling technique 

for classifying imbalanced cardiovascular data that 

not only balances the data in a dataset, but further 

selects good quality training set data for building 

classification models (Rahman and Davis, 2013). 

Chawla et al. combined random undersampling 

with SMOTE, so that the minority class had a larger 

presence in the training set. By combining 

undersampling and oversampling, the initial bias of 

the learner towards the majority class is reversed in 
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the favour of the minority class (Chawla et al., 

2002). In summary, cluster-based undersampling 

ensures that all sub-concepts are adequately 

represented.  When used in conjunction with 

SMOTE, the hybrid sampling method thus aid to 

ensure that between-class imbalance is reduced 

without excessive use of oversampling and 

undersampling. 

This paper is organized as follows. Section 2 

contains a description of the proposed method. In 

Section 3, the experimental setup and results are 

presented while Section 4 concludes the paper and 

discusses our future plans. 

2 SCUT ALGORITHM 

Our SCUT algorithm combines both undersampling 

and oversampling techniques in order to reduce the 

imbalance between classes in a multi-class setting. 

The pseudocode for our SCUT method is shown in 

Figure 1.  

For undersampling, we employ a cluster-based 

undersampling technique, using the Expectation 

Maximization (EM) algorithm (Dempster et al., 

1977). The EM algorithm replaces the hard clusters 

by a probability distribution formed by a mixture of 

Gaussians.  Instead of being assigned to a particular 

cluster, each member has a certain probability to 

belong to a particular Gaussian distribution of the 

mixture.  The parameters of the mixture, including 

the number of Gaussians, are determined with the 

Expectation Maximization algorithm. An advantage 

of using EM is that the number of clusters does not 

have to be specified beforehand. EM clustering may 

be used to find both hard and soft clusters. That is, 

EM assigns a probability distribution to each 

instance relative to each particular cluster (Dempster 

et al., 1997).  

The SCUT algorithm proceeds as follows. The 

dataset is split into n parts, namely D1, D2, D3 ... Dn, 

where n is the number of classes and Di represents a 

single class. Subsequently, the mean (m) of the 

number of instances of all the classes is calculated. 

i) For all classes that have a number of instances 

less than the mean m, oversampling is performed in 

order to obtain a number of instances equal to the 

mean. The sampling percentage used for SMOTE is 

calculated such that the number of instances in the 

class after oversampling is equal to m. 

ii) For all classes that have a number of instances 

greater than the mean m, undersampling is 

conducted to obtain a number of instances equal to 

the mean. Recall that the EM technique is used to 

discover the clusters within each class (Dempster et 

al., 1977). Subsequently, for each cluster within the 

current class, instances are randomly selected such 

that the total number of instances from all the 

clusters is equal to m. Therefore, instead of fixing 

the number of instances selected from each cluster, 

we fix the total number of instances. It follows that a 

different number of instances may be selected from 

the various clusters. However, we aim to select the 

instances as uniformly as possible. The selected 

instances are combined together in order to obtain m 

instances (for each class). 

iii) All classes for which the number of instances 

is equal to the mean m are left untouched.  
 

 
Input: Dataset D with n classes 

Output: Dataset D' with all classes 

having m instances, where m is the mean 

number of instances of all classes 

 

Split D into D1, D2, D3, ..., Dn where Di 

is a single class 

Calculate m 

 

Undersampling:  

For each Di, i=1,2, ... , n where 

number of instances >m 

 Cluster Di using EM algorithm 

 For each cluster Ci, i = 1,2,           

 ... , k 

       Randomly select instances    

      from Ci 

       Add selected instances to  

      Ci’ 

 End For 

 C = Ø 

 For i=1,2, ... , k 

   C = C U Ci’ 

 End For 

 Di’ = C 

End For 

 

Oversampling: 

For each Di, i=1,2, ... , n where 

number of instances <m 

 Apply SMOTE on Di to get Di’ 

End For 

 

For each Di, i=1,2, ... , n where 

number of instances = m 

 Di’ = Di 

 

D’ = Ø 

For i = 1,2, ... , n 

D’ = D’ U Di’ 

End For 

Return D’ 

Figure 1: SCUT Algorithm. 
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Finally, all the classes are merged together in order 

to obtain a dataset D’, where all the classes have m 

instances. Classification may be performed on D’ 

using an appropriate classifier.  

For instance, one of the datasets used in our work 

is the Lymphography dataset, as obtained from the 

KEEL repository (Alcalá-Fdez et al., 2011). This 

dataset concerns detecting the presence of a 

lymphoma, together with its current status, and 

contains four (4) classes (normal, metastases, 

malignant-lymphoma and fibrosis), with 2, 81, 61 

and 4 examples, respectively. That is, the dataset has 

a high level of imbalance and contains two majority 

and two minority classes. The dataset is split into 

four (4) classes and the mean is 37.  

i) For class 1, the number of instances is 2, so 

SMOTE is applied with a sampling percentage of 

1850% in order to obtain 37 instances.  

ii) For class 2, the number of examples is 81, so 

EM is applied and 3 clusters are obtained, with the 

numbers of instances equal to 29, 17 and 35 

respectively. In order to obtain a total of 37 

instances, 12, 12 and 13 instances are randomly 

selected from the clusters. 

iii) For class 3, the number of instances is 61. 

When EM is applied, only one cluster is obtained. 

Next, 37 instances are randomly selected from this 

one cluster.  

iv) The number of instances of class 4 is equal to 

4, so SMOTE is applied with a sampling percentage 

of 925% in order to obtain 37 instances.  

Lastly, the classes are merged together and a new 

dataset of 148 instances (in which each class has 37 

examples) is obtained. The next section discusses 

our experimental setup and results. 

3 EXPERIMENTATION 

We implemented our SCUT algorithm by extending 

WEKA, an open source data mining tool that was 

developed at the University of Waikato. For 

classification, the WEKA implementations of four 

classifiers, namely J48 (decision tree), SMO 

(support vector machine), Naïve Bayes and IBk 

(Nearest Neighbour), were used. For IBk, the 

number of nearest neighbours (k) was set to five (5), 

by inspection. Default values for the other 

parameters were used. 

A ten-fold cross validation approach was used 

for testing and training. Ten-fold cross validation 

has been shown to be an effective testing 

methodology when datasets are not too small, since 

each fold is a good representation of the entire 

dataset (Japkowicz, 2001).  

3.1 Benchmarking Datasets 

Seven multi-class datasets from the KEEL 

repository (Alcalá-Fdez et al., 2011) and the Wine 

Quality dataset from the UCI repository (Lichman, 

2013) (Cortez et al., 2009) were used in the 

experiments. The details of these datasets are 

summarized in Table 1. The table shows that the 

number of classes in the datasets varies from three 

(3) to ten (10) and the number of training examples 

range from 148 to 6497. Here, the levels of 

imbalance and numbers of classes with majority and 

minority instances vary considerably. 

The WEKA implementation of the EM cluster 

analysis algorithm was used. Recall that the EM 

approach employs probabilistic models which imply 

that the number of clusters does not have to be 

specified in advance. Therefore, a major strength of 

EM is that it determines the number of clusters that 

must be created by cross validation. In order to 

determine the number of clusters, cross validation is 

performed as follows:  

1. Initially, the number of clusters is set to one (1). 

2. The training set is split randomly into ten (10) 

folds. The number of folds is set to ten, as long 

as the number of instances in the training set is 

not smaller ten. If this is the case, the number of 

folds is set equal to the number of instances. 

3. EM is performed ten (10) times using the ten 

(10) folds. 

4. The logarithm of the likelihood is averaged over 

all ten (10) results. If logarithm of the likelihood 

increases, the number of clusters is increased by 

one (1) and the algorithm resumes from step 2.  

Table 1: Datasets. 

Datasets Size # Class Class distribution

Thyroid 720 3 17, 37, 666 

Lymphography 148 4 2, 81, 61, 4 

Pageblocks 548 5 492, 33, 8, 12, 3 

Dermatology 366 6 
112, 61, 72, 49, 

52, 20 

Autos 159 6 
3, 20, 48, 46, 29, 

13 

Ecoli 336 8 
143, 77, 52, 35, 

20, 5, 2, 2 

Wine Quality 6497 7 
30, 216, 2138, 

2836, 1079, 193, 5

Yeast 1484 10 

244, 429, 463, 44, 

51, 163, 35, 30, 

20, 5 
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The G-mean, F-measure and AUC (Area Under 

the Curve) measures were used for evaluating the 

results. For imbalanced datasets, the G-mean 

measure has been found to be highly representative 

of an algorithm’s performance (Sobhani et. al., 

2014). We compared our SCUT method with three 

other techniques, namely the original SMOTE 

algorithm, Random Undersampling (RU) and an 

implementation called CUT, which uses SCUT 

without using SMOTE. We also consider the 

scenario in which no sampling is performed, which 

is denoted by Original, in order to determine 

whether any form of sampling is actually beneficial 

or not. 

3.2 Results  

In this section, we discuss the results we have 

obtained against the eight datasets. Tables 2, 3, 4 

and 5 show the G-mean values when the J48, Naïve 

Bayes, SMO and IBk classifiers are used, 

respectively. Tables 6, 7, 8 and 9 display the results 

of the F-measure values, while Tables 10, 11, 12 and 

13 depict the AUC values. The tables indicate that 

the SCUT and SMOTE algorithms consistently 

produced the best results, in terms of the three 

measures, when applied to these benchmarking 

datasets. 

Table 2: G-mean values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.980 0.989 0.968 0.986 0.984 

Lympho. 0.936 0.909 0.817 0.804 0.822 

Pageblock 0.975 0.975 0.873 0.910 0.859 

Derma. 0.977 0.971 0.976 0.980 0.962 

Autos 0.763 0.893 0.797 0.818 0.853 

Ecoli 0.907 0.921 0.862 0.864 0.899 

Wine 0.800 0.762 0.698 0.728 0.682 

Yeast 0.828 0.766 0.763 0.749 0.691 

Table 3: G-mean values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.841 0.762 0.696 0.734 0.667 

Lympho. 0.946 0.924 0.859 0.906 0.837 

Pageblock 0.920 0.928 0.850 0.898 0.848 

Derma. 0.988 0.988 0.982 0.980 0.984 

Autos 0.814 0.797 0.737 0.687 0.734 

Ecoli 0.936 0.941 0.860 0.910 0.907 

Wine 0.639 0.591 0.565 0.583 0.574 

Yeast 0.753 0.724 0.700 0.711 0.705 

 

Table 4: G-mean values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.849 0.740 0.404 0.419 0.292 

Lympho. 0.954 0.926 0.872 0.897 0.904 

Pageblocks 0.952 0.948 0.737 0.763 0.599 

Derma. 0.982 0.982 0.970 0.970 0.972 

Autos 0.874 0.862 0.803 0.787 0.811 

Ecoli 0.904 0.919 0.898 0.909 0.894 

Wine 0.675 0.620 0.633 0.632 0.601 

Yeast 0.762 0.727 0.710 0.730 0.692 

Table 5: G-mean values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.876 0.883 0.501 0.512 0.318 

Lympho. 0.946 0.929 0.802 0.808 0.844 

Pageblocks 0.951 0.969 0.794 0.809 0.750 

Derma 0.978 0.979 0.978 0.978 0.974 

Autos 0.818 0.824 0.718 0.744 0.766 

Ecoli 0.920 0.933 0.860 0.898 0.910 

Wine 0.792 0.745 0.657 0.649 0.645 

Yeast 0.835 0.774 0.738 0.728 0.667 

Table 6: F-measure values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.974 0.987 0.970 0.977 0.986 

Lympho. 0.905 0.875 0.787 0.786 0.804 

Pageblocks 0.960 0.967 0.873 0.897 0.947 

Derma. 0.962 0.953 0.960 0.967 0.940 

Autos 0.792 0.828 0.688 0.722 0.778 

Ecoli 0.841 0.870 0.777 0.780 0.836 

Wine 0.676 0.640 0.568 0.605 0.586 

Yeast 0.708 0.631 0.616 0.595 0.552 

Table 7: F-measure values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.779 0.650 0.765 0.841 0.940 

Lympho. 0.918 0.897 0.832 0.898 0.835 

Pageblk 0.871 0.919 0.844 0.882 0.930 

Derma. 0.981 0.979 0.971 0.968 0.973 

Autos 0.692 0.674 0.588 0.523 0.602 

Ecoli 0.887 0.902 0.769 0.852 0.854 

Wine 0.417 0.383 0.374 0.409 0.439 

Yeast 0.595 0.573 0.521 0.542 0.566 
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Table 8: F-measure values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.781 0.693 0.742 0.746 0.892 

Lympho. 0.933 0.903 0.861 0.903 0.905 

Pageblocks 0.923 0.938 0.731 0.759 0.897 

Derma. 0.970 0.969 0.950 0.950 0.954 

Autos 0.801 0.785 0.695 0.671 0.718 

Ecoli 0.834 0.863 0.829 0.845 0.823 

Wine 0.480 0.403 0.448 0.448 0.461 

Yeast 0.606 0.556 0.537 0.571 0.550 

Table 9: F-measure values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.831 0.864 0.754 0.777 0.893 

Lympho. 0.919 0.907 0.756 0.817 0.827 

Pageblocks 0.943 0.959 0.817 0.827 0.931 

Derma. 0.964 0.965 0.964 0.964 0.957 

Autos 0.702 0.721 0.578 0.605 0.655 

Ecoli 0.859 0.885 0.767 0.829 0.853 

Wine 0.658 0.612 0.509 0.497 0.543 

Yeast 0.713 0.639 0.576 0.568 0.522 

Table 10: AUC values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.982 0.993 0.968 0.981 0.885 

Lympho. 0.943 0.908 0.809 0.815 0.828 

Pageblocks 0.977 0.981 0.854 0.923 0.845 

Derma 0.984 0.985 0.980 0.985 0.977 

Autos 0.903 0.932 0.869 0.872 0.894 

Ecoli 0.938 0.941 0.874 0.882 0.920 

Wine 0.834 0.803 0.744 0.769 0.722 

Yeast 0.881 0.817 0.806 0.779 0.733 

Table 11: AUC values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.916 0.932 0.819 0.830 0.872 

Lympho. 0.982 0.961 0.930 0.947 0.920 

Pageblocks 0.982 0.981 0.893 0.934 0.916 

Derma 0.999 0.999 0.999 0.999 0.999 

Autos 0.910 0.899 0.832 0.811 0.828 

Ecoli 0.974 0.979 0.928 0.945 0.960 

Wine 0.801 0.748 0.684 0.692 0.658 

Yeast 0.912 0.874 0.858 0.848 0.816 

Tables 14, 15 and 16 show the summaries for the G-

mean, F-measure and AUC values, respectively, 

when the results are ranked. For each dataset, the 

five methods are ranked from 1 to 5. Here, 1 

corresponds to the highest rank (for highest value) 

while 5 denotes the lowest rank. If there is a tie, then  

Table 12: AUC values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.892 0.770 0.522 0.536 0.512 

Lympho. 0.971 0.937 0.895 0.904 0.907 

Pageblocks 0.973 0.964 0.792 0.818 0.673 

Derma. 0.989 0.989 0.980 0.980 0.984 

Autos 0.927 0.925 0.899 0.866 0.896 

Ecoli 0.963 0.970 0.938 0.949 0.944 

Wine 0.808 0.759 0.706 0.705 0.678 

Yeast 0.887 0.846 0.823 0.828 0.781 

Table 13: AUC values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.939 0.948 0.631 0.673 0.591 

Lympho. 0.986 0.965 0.932 0.957 0.923 

Pageblocks 0.981 0.986 0.885 0.933 0.925 

Derma. 0.998 0.998 0.997 0.995 0.997 

Autos 0.929 0.933 0.873 0.876 0.903 

Ecoli 0.958 0.965 0.913 0.939 0.951 

Wine 0.898 0.857 0.764 0.769 0.745 

Yeast 0.927 0.897 0.843 0.840 0.685 

while 5 denotes the lowest rank. If there is a tie, then 

the same rank is assigned to both. For each method, 

all the ranks are added, and the method with the 

smallest rank sum is assigned the highest rank (1) 

while the method with the largest rank sum is 

attributed the lowest rank (5).  

Table 14: Ranks for different methods for G-mean values. 

Classifier SCUT SMOTE CUT RU Orig. 

J48 2 1 5 3 4 

NaiveBayes 1 2 4 3 4 

SMO 1 2 4 3 5 

IBk 2 1 4 3 5 

Table 15: Ranks for different methods for F-measure. 

Classifier SCUT SMOTE CUT RU Orig. 

J48 2 1 4 3 3 

NaiveBayes 1 3 5 4 2 

SMO 1 2 5 4 3 

IBk 2 1 5 4 3 

Table 16: Ranks for different methods for AUC values. 

Classifier SCUT SMOTE CUT RU Orig. 

J48 2 1 5 3 4 

NaiveBayes 1 2 4 3 4 

SMO 1 2 4 3 5 

IBk 2 1 4 3 4 
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For the Naïve Bayes and SMO classifiers, our 

SCUT method obtains the highest overall rank, 

while SMOTE ranks second or third. On the other 

hand, when using the J48 and IBk classifiers, 

SMOTE achieves the highest rank while SCUT 

comes second. The RU technique scores third, in 

terms of the G-means and AUC values, while the 

Original and CUT methods rank either fourth or 

fifth. For the F-measure, the Original dataset 

outperforms the undersampling techniques. This 

result suggests that the undersampling-only 

techniques do not work well in multi-class settings.  

The results from Tables 14, 15 and 16 indicate 

that our SCUT method is most suitable in scenario 

where the Naïve Bayes and SMO classifiers are 

employed. When the J48 and IBk classifiers are 

used, SMOTE on its own provides the best results 

against the datasets under consideration. 

Furthermore, when the datasets are highly 

imbalanced with some classes having very few 

instances, CUT and RU consistently perform poorly. 

This observation is also true for the Original dataset 

in which sampling is absent. This confirms our 

initial hypothesis that oversampling is required in 

order to improve the performance in such a multi-

class scenario.  

Subsequently, the Friedman statistical test was 

used in order to assert the statistical significance of 

the results. The Friedman test is a non-parametric 

statistical test. Since it ranks the values in each row, 

it is not affected by factors that equally affect all the 

values in a row. In addition, unlike other tests such 

as ANOVA and paired t-test, it does not make any 

assumptions about the data distribution. The results 

for each classifier (J48, Naïve Bayes, SMO and IBk) 

on each evaluation metric (G-mean, F-measure and 

AUC) are depicted in Tables 2 to 13. The resultant 

p-values are shown in Table 17.  

Table 17: Summary of p-values for classifiers and 

evaluation metrics. 

Evaluation 

metric 

Classifiers 

 
J48 

Naïve 

Bayes 
SMO IBk 

G-mean 0.01460 0.00038 0.00060 0.00010 

F-measure 0.00221 0.00470 0.00642 0.00029 

AUC 0.00011 0.00024 0.00004 0.00005 

Assuming that the results are statistically 

significant if p < 0.05, it may be concluded that all 

our results are valid and statistically significant.  

3.3 Discussion 

Our experimental results, based on the 

benchmarking multi-class imbalanced datasets, show 

that when the SCUT method is used, improved 

results for the Naïve Bayes and Support Vector 

Machine classifiers are obtained. This suggests that 

undersampling makes these two classifiers more 

sensitive to the minority classes, and aids them to 

correctly classify minority class instances. On the 

other hand, the SMOTE technique produces the 

highest measured values for the J48 and K-Nearest 

Neighbour classifiers. Thus, undersampling does not 

improve the results for these two algorithms. Rather, 

relying solely on oversampling the minority classes 

is sufficient in this particular case. In general, our 

results indicate that oversampling the majority 

instances is crucial in order to address multi-class 

problems. Undersampling approaches, such as RU 

and CUT, do not perform well in these conditions. 

As a matter of fact, using the Original dataset 

without any form of undersampling sometimes 

outperforms these two techniques.  

The reader should notice that the SCUT 

algorithm produced the best overall results in the 

Yeast dataset, which contains the highest number of 

classes with a wide range or cardinality. It also 

produced the best results for the Wine Quality 

dataset (in all cases except Table 7). Recall that this 

is the largest dataset with a high degree of 

imbalance. In addition, SCUT produced the most 

accurate models against the Lymphography dataset, 

where the levels of imbalance are quite high. This 

seems to indicate that our SCUT method is 

particularly suitable in such cases, since 

undersampling is required. That is, this scenario 

implies that a classifier may benefit from increased 

sensitivity to the minority classes. Indeed, consider a 

dataset in which there are majority classes that 

contain very large numbers of instances. In this 

context, solely relying on the oversampling of the 

minority classes may result in overfitting and noise. 

Once more, the SCUT method provides a remedy to 

such a situation. We plan to further investigate this 

aspect in the near future. 

4 CONCLUSIONS 

In this paper, we have proposed a hybrid sampling 

method called SCUT which combines SMOTE and 

cluster-based undersampling to improve the 

classification performance on multi-class 

imbalanced datasets. Cluster-based undersampling 
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handles within-class imbalance. Further, the 

combination of cluster-based undersampling and 

SMOTE aids to reduce between-class imbalance, 

without excessive use of sampling. 

We were not able to establish a clear superiority 

of one oversampling method over the other. 

However, we were able to determine that the SCUT 

method is a promising candidate for further 

experimentation. Our results suggest that our SCUT 

algorithm is suitable for domains where the number 

of classes is high and the levels of examples vary 

considerably. We intend to further investigate this 

issue. We also intend extending our approach to very 

large datasets with extreme levels of imbalances, 

since our early results indicate that our SCUT 

approach would potentially outperform 

undersampling-only techniques in such a setting. In 

our paper, the number of instances for each class 

was set to the mean value. Exploring the optimal 

strategy for fixing the number of instances will be 

further explored, e.g. by sampling the instances 

directly from the distribution associated with the 

mixture of Gaussians as obtained from the EM 

algorithm.   

Cost-sensitive learning is another common 

approach for dealing with the class-imbalance 

problem. Most of the existing solutions are 

applicable to binary-class problems, and cannot be 

applied directly to multi-class imbalanced datasets 

(Sun et al., 2006). Rescaling, which is a popular 

cost-sensitive learning approach for binary class 

problems can be applied directly on multi-class 

datasets to obtain good performance only when the 

costs are consistent (Zhou and Liu, 2010). In 

addition, rescaling classes based on cost information 

may not be suitable for highly imbalanced datasets. 

Designing a multi-class cost-sensitive learning 

approach for inconsistent costs without transforming 

the problem into a binary-class problem will be the 

focus of our future work. 
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