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Abstract

Probabilistic models have provided the underpinnings for state-of-the-art performance in many
single-cell omics data analysis tasks, including dimensionality reduction, clustering, differential
expression, annotation, removal of unwanted variation, and integration across modalities. Many of the
models being deployed are amenable to scalable stochastic inference techniques, and accordingly they
are able to process single-cell datasets of realistic and growing sizes. However, the community-wide
adoption of probabilistic approaches is hindered by a fractured software ecosystem resulting in an array
of packages with distinct, and often complex interfaces. To address this issue, we developed scvi-tools
(https://scvi-tools.org), a Python package that implements a variety of leading probabilistic
methods. These methods, which cover many fundamental analysis tasks, are accessible through a
standardized, easy-to-use interface with direct links to Scanpy, Seurat, and Bioconductor workflows.
By standardizing the implementations, we were able to develop and reuse novel functionalities across
different models, such as support for complex study designs through nonlinear removal of unwanted
variation due to multiple covariates and reference-query integration via scArches. The extensible
software building blocks that underlie scvi-tools also enable a developer environment in which new
probabilistic models for single cell omics can be efficiently developed, benchmarked, and deployed.
We demonstrate this through a code-efficient reimplementation of Stereoscope for deconvolution of
spatial transcriptomics profiles. By catering to both the end user and developer audiences, we expect
scvi-tools to become an essential software dependency and serve to formulate a community standard
for probabilistic modeling of single cell omics.

1 Introduction

The field of single-cell omics is rapidly growing, as evidenced by the number of published studies and
the number of omics approaches that can reveal distinct aspects of cellular identity [1, 2, 3]. Similar
growth has been observed in the number of computational methods designed to analyze single-cell
data [4]. These methods overwhelmingly target a core set of computational tasks such as dimensionality
reduction (e.g., scVI [5], scLVM [6], CisTopic [7]), cell clustering (e.g., PhenoGraph [8], BISCUIT [9],
SIMLR [10]), cell state annotation (e.g., scmap [11], scANVI [12]), removal of unwanted variation
(e.g., ZINB-WaVE [13], Scanorama [14], Harmony [15]), differential expression (e.g., DESeq2 [16],
edgeR [17]), identification of spatial patterns of gene expression (SpatialDE [18], SPARK [19]), and
joint analysis of multi-modal omics data (MOFA+ [20], totalVI [21]).

Many of these methods rely on likelihood-based models to represent variation in the data; we refer to
these as probabilistic models [22]. Probabilistic models provide principled ways to capture uncertainty
in biological systems and are convenient for decomposing the many sources of variation that give
rise to omics data [23]. A special class of probabilistic models makes use of neural networks either
as part of the generative model, or as a way to amortize the computational cost of inference. These
so-called deep generative models (DGMs) have been successfully applied to many analysis tasks for
single-cell omics (e.g., scVI [5], totalVI [21], PeakVI [24], SCALE [25], scPhere [26], scGen [27],
CellBender [28], Dhaka [29], VASC [30], and scVAE [31]) as well as other areas of computational
biology [32].

Despite the appeal of probabilistic models, several obstacles impede their community-wide adoption.
The first obstacle, coming from the perspective of the end user, relates to the difficulty of implementing
and running such models. As contemporary implementations of probabilistic models leverage modern
Python machine learning libraries, users are often required to interact with interfaces and objects
that are lower-level in nature than those utilized in popular environments for single-cell data analysis
like Bioconductor [33], Seurat [34], or Scanpy [35]. A second obstacle relates to the development of
new probabilistic models. From the perspective of developers, there are many necessary routines to
implement in support of a probabilistic model, including data handling, tensor computations, training
routines that handle device management (e.g., GPU computing), and the underlying optimization,
sampling and numerical procedures. While higher-level machine learning packages that automate
some of these routines, like PyTorch Lightning [36] or Keras [37], are becoming popular, there still
remains overhead to make them work seamlessly with single-cell omics data.

To address these limitations, we built scvi-tools, a Python library for deep probabilistic analysis of single-
cell omics data. From the end user’s perspective (Section 2.1), scvi-tools offers standardized access
to methods for many single-cell data analysis tasks such as integration of single-cell RNA sequencing
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(scRNA-seq) data (scVI [5], scArches [38]), annotation of single-cell profiles (CellAssign [39],
scANVI [12]), deconvolution of bulk spatial transcriptomics profiles (Stereoscope [40], DestVI [41]),
doublet detection (Solo [42]), and multi-modal analysis of CITE-seq data (totalVI [21]). All twelve
models currently implemented in scvi-tools interface with Scanpy through the annotated dataset
(AnnData [43]) format. Furthermore, scvi-tools has an interface with R, such that all scvi-tools
models may be used in Seurat or Bioconductor pipelines.

Here we also demonstrate two new features that add important capabilities for the analysis of large,
complex datasets. These two features are accessible for several of the implemented models, and thus,
applicable to several types of omics data. The first feature offers the ability to remove unwanted
variation due to multiple nuisance factors simultaneously, including both discrete (e.g., batch category)
and continuous (e.g., percent mitochondrial reads) factors. We apply this in the context of an
scRNA-seq dataset of Drosophila wing development (Section 2.2), which suffered from nuisance
variation due to cell cycle, sex, and replicate. The second feature extends several scvi-tools integration
methods to iteratively integrate new “query” data into a pre-trained “reference” model via the recently
proposed scArches neural network architecture surgery [38]. This feature is particularly useful for
incorporating new samples into an analysis without having to reprocess the entire set of samples.
We present a case study of applying this approach with totalVI by projecting data from COVID-19
patients into an atlas of immune cells (Section 2.3).

From the perspective of a methods developer, scvi-tools offers a set of building blocks that make it easy
to implement new models and modify existing models with minimal code overhead (Section 2.4). These
building blocks leverage popular libraries such as AnnData, PyTorch [44], PyTorch Lightning [36],
and Pyro [45] and facilitate (deep) probabilistic model design with GPU acceleration. This allows
methods developers to focus on developing novel probabilistic models. We demonstrate how these
building blocks can be used for efficient development of new models through a reimplementation of
Stereoscope, in which a 60% reduction in the number of lines of code was achieved (Section 2.5).
This example demonstrates the broad usability and the rich scope of analyses that may be powered by
scvi-tools.

2 Results

2.1 scvi-tools is a unified resource for single-cell omics data analysis

The single-cell omics data analysis pipeline is composed of several steps [46, 47] (Figure 1a). First,
data are staged within a data object using packages like Scanpy [35], Seurat [34] or scater [48] and
preprocessed with quality control filters. The data are then analyzed through a variety of subsequent
steps, which aim to normalize, simplify, infer structure, annotate, and extract new insight (Figure 1b).
scvi-tools aims to provide a rich set of methods for these latter steps, while relying on probabilistic
models for statistically sound interpretation of data.

The models currently implemented in scvi-tools can perform normalization, dimensionality reduction,
dataset integration, differential expression (scVI [5, 49], scANVI [12], totalVI [21], PeakVI [24],
LDVAE [50]), automated annotation (scANVI, CellAssign [39]), doublet detection (Solo [42]), and
deconvolution of spatial transcriptomics profiles (Stereoscope [40], DestVI [41]). These models span
multiple modalities including scRNA-seq (scVI, scANVI, CellAssign, Solo), CITE-seq [51] (totalVI),
single-cell ATAC-seq (PeakVI), and spatial transcriptomics (Stereoscope, gimVI [52], DestVI [41])
(Supplementary Table 1). Importantly, these models make use of stochastic inference techniques and
(optionally) GPU acceleration, such that they readily scale to even the largest datasets.

Each model also comes with a simple and consistent application programming interface (API). They
all rely on the popular AnnData format as a way to store and represent the raw data (Figure 1b).
Consequently, scvi-tools models are easily integrated with Scanpy workflows. This also enables users
to interface with AnnData-based data zoos like Sfaira [53]. Furthermore, the globally consistent
API of scvi-tools allows us to maintain a reticulate-based [54] workflow in R, such that scvi-tools
models may be used directly in Seurat or Bioconductor workflows. Therefore, after running methods
in scvi-tools, results can be visualized and further assessed with a broad range of analysis packages
like Scanpy, Seurat, VISION [55], and cellxgene [56].
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Figure 1: User perspective of scvi-tools. a, Overview of single-cell omics analysis pipeline with scvi-tools.
Datasets may contain multiple layers of omic information, along with metadata at the cell- and feature-levels.
Quality control (QC) and preprocessing are done with popular packages like Scanpy, Seurat, and Scater.
Subsequently, datasets can be analyzed with scvi-tools, which contains implementations of probabilistic models
that offer a range of capabilities for several omics. Finally, results are further investigated or visualized, typically
through the basis of a nearest neighbors graph, and with methods like Scanpy and VISION. b, (left) The
functionality of models implemented in scvi-tools covers core single-cell analysis tasks. Each model has a simple
and consistent user interface. (right) A code snippet applying scVI to a dataset read from a h5ad file, and then
performing dimensionality reduction and differential expression.

2.2 Nonlinear removal of unwanted variation due to multiple covariates

As the quantity, size, and complexity of single-cell datasets continues to grow, there is a significant
need for methods capable of controlling for the effects of unwanted variation [58]. Some factors that
contribute to unwanted variation depend directly on the data generating process, such as differences
between labs, protocols, technologies, donors, or tissue sites. Normally, such nuisance factors are
observable and available as sample-level metadata. Unwanted variation can also come at the level
of a single cell and can be calculated directly from the data. It can stem from technical factors like
quality as gauged by proxies such as the abundance of mitochondrial RNA or the expression of
housekeeping genes, as well as biological factors like cell cycle phase. Nuisance factors can come in
either categorical or numerical form. These factors can affect the data in a nonlinear manner [59],
and controlling for them is essential for most forms of downstream analysis.

Many methods have been proposed for removing unwanted variation, but most target the subtask
of dataset integration, which consists of controlling for one categorical confounding factor at the
sample-level, like sample ID [60, 61]. Harmony [15] is, to the best of our knowledge, the only method
capable of nonlinearly controlling for multiple categorical covariates simultaneously. While the
focus of the integration task is on categorical factors, some pipelines provide an additional layer of
normalization, where a given numerical confounder (typically, though not limited to the cell-level)
can be regressed out prior to batch correction using a linear model (e.g, the “regress out” function in
Scanpy [35] or Combat [62]). Thus, no existing method is capable of performing nonlinear removal
of unwanted variation with respect to multiple (cell- or sample-level) categorical and continuous
covariates. However, we anticipate an increase in the need for such methods, reflecting the complexity
of recent single-cell atlases.

Our previously described models scVI [5], scANVI [12], totalVI [21], and PeakVI [24] all rely on a
latent variable models and neural networks to remove unwanted variation from observed covariates,
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Figure 2: Removal of unwanted variation in the analysis of Drosophila wing disc development. a, Graphical
model representation of a latent variable models in scvi-tools that conditions on nuisance covariates. b, Graphical
representation of covariates injected into each layer of decoder neural networks. c, Code snippet to register
AnnData and train scVI with continuous covariates. The covariates are identified with keys stored in the
AnnData.obs cell-level data frame. d, UMAP [57] embedding of scVI latent space with only batch covariates
(scVI) and scVI latent space with batch and continuous covariates (scVI-cc). UMAP plot is colored by batch,
PCNA (cell cycle gene), IncRNA:roX1 (cell sex gene), and vg (gene marking spatial compartment within the
wing disc). e, Geary’s C of canonical marker genes of interest per model. f, Geary’s C of the cell cycle and cell
sex genes conditioned on per model. Box plots were computed on n=31 genes for (e) and n=55 genes for (f) and
indicate the median (center lines), interquartile range (hinges), and whiskers at 1.5× interquartile range. Gene
lists can be found in Supplementary Table 2.

denoted as sn for a cell n (Figure 2a). These models learn a latent representation of each cell that
is corrected for this unwanted variation by using a nonlinear neural network decoder that receives
the representation and the observed covariates as input, and subsequently injects the covariates into
each hidden layer (Figure 2b). While the models could theoretically process multiple categorical or
continuous covariates, their previous implementations restricted this capability due to the difficulty of
implementing proper data management throughout the training and downstream analysis of a fitted
model. scvi-tools allowed us to address this obstacle and support conditioning on arbitrary covariates
via its global data registration process and shared neural network building blocks. Now, users simply
register their covariates before running a model (Figure 2c). By implementing this feature in the four
aforementioned models, scvi-tools can handle complex data collections across a range of modalities
and analysis tasks; furthermore, we envision that this feature can be easily propagated to new models
(and modalities), all with the same user experience, due to the structured nature of the scvi-tools
codebase.

To demonstrate this capability, we applied scVI to a dataset of Drosophila wing disc myoblast cells [63]
that suffered from strong effects due to cell cycle and sex of the donor organism, both of which were
observed via a set of nuisance genes (i.e., numerical covariates; Supplementary Table 2). Both of
these confounding factors are observed at the cell-level, as these cells were taken from batches of
fly larva and were processed together without sex sorting. The dataset also featured a sample-level
confounding factor (batch ID; two batches) and non-nuisance factor (developmental time point;
Figure 2d).

When scVI was trained only conditioned on the batch covariate, we observed that it successfully
integrated each batch, however the effects from PCNA, a cell cycle gene, and IncRNA:roX1, a gene
that is expressed by males (Figure 2c), still manifested in the latent space. When scVI was additionally
conditioned on the expression of the set of nuisance genes (scVI-cc; Methods), we observed that it
successfully integrated the data across batch, cell cycle, and sex. Additionally, we found that the
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desirable biological signals, such as the expression of vg, a gene marking a spatial compartment in the
wing disc, were preserved (Figure 2d).

We compared these results to the respective Scanpy-based workflow, which consisted of the
scanpy.pp.regress_out function for linear removal of signal from nuisance genes followed
by bbknn [64] (regress-bbknn) or Harmony (regress-harmony) for correction of batch effects (Sup-
plementary Figure 1; Methods). We evaluated these alternative workflows using an autocorrelation
measure (Geary’s C [65]) computed with respect to each workflow’s low-dimensional representation
and a set of genes, and observed that scVI-cc was able to both retain important biological signal
and remove the unwanted variation due to the nuisance genes relative to the vanilla scVI baseline
(Figure 2e,f). While we found a tradeoff between retaining biological signal of marker genes and
removing nuisance variation across all workflows, these results demonstrate that scVI strikes a balance
in removing unwanted variation and retaining wanted variation. The scVI workflow with multiple
covariates is also more scalable than the alternatives; we evaluated scalability using subsampled
versions of the Heart Cell Atlas dataset [66] that had categorical covariates like donor and continuous
covariates like cell-level mitochondrial count percentage (Supplementary Figure 2; Methods).

2.3 Transfer learning for reference-query integration with scArches

While dataset integration provides a way to leverage information from many sources, current methods
do not scale well to the subtask of reference-query integration in which a “query” dataset is integrated
with a large, annotated “reference” dataset. This is an increasingly common scenario, however,
that is driven by community efforts for establishing consolidated tissue atlases. These atlases are
meant to be used as general references of cell states in a given tissue and may consist of millions of
cells [67].

scArches [38] is a recent method that was developed to address this scenario. scArches leverages
conditional (variational) autoencoders and transfer learning to decouple the reference-query integration
task into two subproblems: First, a reference model is trained on the reference data only; and second,
the neural network from the reference model is augmented with nodes that are only influenced by the
query data. This new part of the network is subsequently trained with the query data, resulting in a
joint model that describes both the train and the reference datasets, while correcting for their technical
variation. This procedure dramatically reduces the computational burden of dataset integration.
Assuming a pre-trained reference model is available (e.g., representing the “atlas” of cell state for
a particular tissue), one only needs to process the (typically much smaller) query data. Another
advantage is that the addition of the query data does not change the representation of the reference
data in the joint model. Beyond the aforementioned reference-query scenario, this property is also
useful in studies where data is accumulated gradually as it eliminates the need for reanalysis when
new samples are collected.

We implemented the scArches method in scvi-tools through the addition of one class called
ArchesMixin. This class contains a generic procedure for adding new nodes to a given reference
model, as well as appropriately freezing the nodes corresponding to the reference dataset during
training. The ArchesMixin class can therefore be inherited by scVI, scANVI, totalVI, and peakVI,
without any other custom code. From a user’s perspective, this inheritance adds one function called
load_query_data to each of these models that is used to load a pre-trained reference model with
new query data.

We applied scArches-style reference-query integration with totalVI in order to quickly annotate and
then interpret a dataset of immune cells of the blood in donors responding to COVID-19 infection [68]
(Figure 3a, Methods). First, we used totalVI to train a reference model of immune cell states, using
an annotated CITE-seq dataset of 152,094 peripheral blood mononuclear cells (PBMCs) with over
200 surface proteins [69]. Next, we applied scArches to augment the reference model with an
additional CITE-seq dataset of 57,669 PBMCs with 35 proteins from donors with moderate and severe
COVID-19, as well as healthy controls [68]. Running totalVI in this setting is made straightforward
with the scvi-tools interface and required only a few lines of code (Figure 3a). After query training, we
visualized the joint latent representation of the reference and query cells using UMAP (Figure 3b,c).
We transferred the annotated cell type labels from the reference cells to the query cells using a random
forest classifier operating on the 20 dimensional joint latent space. Notably, since the model does not
change for the reference data, the training of the classifier is independent of the query data. Therefore,
the classifier itself can also be seen as a part of the pre-trained reference model.
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Figure 3: Sequential integration of CITE-seq PBMC samples with totalVI and the scArches method.
a, Code-based overview of using scArches with the implementation of totalVI in scvi-tools. scArches was
implemented globally through the ArchesMixin class. First, the reference model is trained on reference data,
and then the scArches architectural surgery is performed when load_query_data is called on the query data.
Finally, the (now) query model is trained with the query data and downstream analysis is performed. b, c, UMAP
embedding of the totalVI reference and query latent spaces colored by (b) the reference labels and predicted
query labels and (c) the dataset of origin. d, Row-normalized confusion matrix of scArches predicted query
labels (rows) and study-derived cell annotations (columns). e, Dotplot of log library size normalized RNA
expression across cell type markers for predicted T cell subsets. f, g Frequency of (f) MAIT cells and (g) CD4
CTLs for each donor in the query dataset across healthy controls and donors with moderate and severe COVID.
Horizontal line denotes median. h, Row-normalized confusion matrix of scArches predicted query labels (rows)
and default totalVI predicted labels (columns).

The predicted labels of the query cells generally agreed with the labels that were provided in the
original study and held-out from this analysis (Figure 3d). However, there were some inconsistencies
related to T cell subtype classification. The totalVI-scArches approach identified populations of
Mucosal associated invariant T (MAIT) cells and CD4 positive cytotoxic T lymphocytes (CD4 CTLs),
whereas both populations were mostly annotated as CD8 T cells in the original study (Figure 3d). We
found that the predicted MAIT subpopulation had expression of the known markers SLC4A10, CCR6,
KLRB1, and PRSS35, and that they decreased in frequency as a function of COVID severity, which
has been previously described [70, 71] (Figure 3e, f). CD4 CTLs have not been as well characterized
in terms of their response to COVID, but the predicted CD4 CTLs had relatively high expression of
cytotoxic molecules like PRF1, GZMB, GZMH, GNLY, and were found to be most prevalent in donors
with moderate COVID. This pattern is consistent with evidence suggesting that the presence of CD4
CTLs is associated with better clinical outcomes in other viral infections in humans [72], though more
targeted study designs may be necessary to better understand this relationship [73]. Overall, these
results suggest that integrating with reference atlases can lead to a more rapid, and potentially more
accurate and consistent annotations of cells across studies.
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Figure 4: scvi-tools application programming interface for developers. a, For every probabilistic method
implemented in scvi-tools, users interact with a high-level Model object. The Model relies on several lower level
components for training a model and analyzing data. The Module, which must be implemented systematically,
encapsulates the probabilistic specification of the method. The rest of the lower level components rely on
pre-coded objects in scvi-tools, such as AnnDataLoader for loading data from AnnData objects, TrainingPlan
for updating the parameters of the module, and Mixins classes for downstream analyses. b, The creation of a new
Module in scvi-tools involves three key steps. First, one mathematically describes the generative model and fully
specify the inference procedure. Second, one may choose to from our wide range of pre-coded neural network
architectures and distributions, or implement their own in PyTorch object. Finally, those elements are combined
together and organized into a class that inherits from the abstract class BaseModuleClass. The generative
method maps latent variables to the data generating distribution. The inference method maps input data to the
variational distribution (specific to variational inference). The loss method specifies the objective function for
the training procedure, here the evidence lower bound.

Finally, we compared the totalVI-scArches approach to default totalVI, namely training totalVI in
one step, using both the reference and query datasets. Using the same random forest procedure, we
found that the predictions from scArches and default modes were in high agreement (Figure 3h,
Supplementary Figure 3a-e). This is despite the massive speed increase of the scArches approach,
which took only 10 minutes to integrate the query dataset, whereas default totalVI took over 80
minutes total due to necessary retraining with the reference data (Supplementary Figure 3h).

2.4 scvi-tools accelerates probabilistic model development

scvi-tools has a convenient programming interface for rapid construction and prototyping of novel
probabilistic methods, built on top of PyTorch [44] and AnnData [35]. The primary entry point
is the Model class, which includes all the components needed to fully specify a new probabilistic
model. To ensure flexibility, we implemented the Model class in a modular manner through four
internally used classes (Figure 4a). The Module class specifies the probabilistic form of the model
(Figure 4b) and contains the elementary calculations that make up the generative model and the
inference procedure, including the objective function to optimize during training (e.g., log likelihood
or a lower bound thereof). The TrainingPlan class defines the procedure for training the model
(Supplementary Figure 4a). This class specifies how to manage stochastic gradient descent in terms
of optimizer hyperparameters as well as how to update the parameters of a model given random
subsamples (i.e., mini-batches) of data. It also provides an interface with PyTorch Lightning’s training
procedures [36], which can automatically move the data between different devices such as from CPU
to GPU to maximize throughput or perform early stopping. The AnnDataLoader class reads data
from the AnnData object and automatically structures it for training or for downstream analysis with
the trained model (Supplementary Figure 4b). Finally, the Mixins are optional classes that implement
specific routines for downstream analysis, which can be model-specific or shared among different
model classes, such as estimation of differential expression or extraction of latent representations
(Supplementary Figure 4c).

These four components may be reused by many models. The AnnDataLoader was written as a
generic class and already has support for jointly processing data from multiple modalities, such
as transcriptomics and proteomics data in totalVI. The TrainingPlan subclasses cover a wide
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range of scenarios, from optimizing a simple objective function, such as in maximum likelihood
estimation (MLE), expectation maximization (EM), or variational inference (VI), to more complex
semi-supervised learning procedures as is done in scANVI for handling cells with unobserved
annotations. Finally, the available Mixin(s), like the VAEMixin that offers procedures specific to the
variational autoencoder (VAE) (listed in Supplementary Figure 4c), can be inherited by new models
and augment their functionalities.

Consequently, methods developers can focus on the Module class, which specifies the parameters
of the model, the metric of fitness (e.g., data likelihood), and (optionally) a recipe for how latent
variables can be sampled given the data. The Module class has a generic structure consisting of three
functions. First, the generative function returns the parameters of the data generating distribution,
as a function of latent variables, model parameters, and observed covariates. In the case of a VAE
(e.g., scVI, totalVI, etc.), the generative function takes samples of the latent variables as input and
returns the underlying data distribution encoded according to the generative (decoder) neural network
(Figure 4b). In the case of maximum a posteriori (MAP) inference (as in Stereoscope) or EM (as in
CellAssign), the generative function maps the model parameters to the data generating distribution
or returns the components of the expected joint log likelihood, respectively. Second, the inference
function caters to models that use VI and returns samples from the variational distribution of the
latent variables. For a VAE, this calculation is done through an encoder neural network (Figure 4b).
Finally, the loss function specifies the learning objective given the inference and generative
outputs. For example, the loss function can either return the data likelihood (e.g., for MAP), or a
lower bound thereof (e.g., for VI or EM).

scvi-tools also contains many pre-coded building blocks that can be used in the development of new
Module subclasses for new probablistic models. These include popular neural network architectures,
as well as distribution classes that are commonly used for single-cell data, like the mean-parameterized
negative binomial. scvi-tools also provides an alternative “backend” with Pyro, which has useful
properties like automated loss computation and (in some cases) inference procedures like automatic
differentiation variational inference (ADVI [74]). We provide a more technical exposition of these
and other capabilities in the methods section and in tutorials on the scvi-tools website.

2.5 Reimplementation of models with scvi-tools

Using the scvi-tools model development interface, we implemented three published methods external
to our collaboration: Solo for doublet detection [42], CellAssign for single-cell annotation based
on marker genes [39] (Supplementary Note 1), and Stereoscope for deconvolution of spatial
transcriptomics profiles [40]. Additionally, we refactored the scGen [27] codebase, a popular method
for predicting gene expression perturbations on single cells, to rely on scvi-tools [75]. For all four
algorithms, we saw a sharp decrease in number of lines of coded needed. Here we describe the
reimplementation of Stereoscope.

Stereoscope is a probabilistic method for deconvolution of spatial transcriptomics profiles, which
may represent the average of dozens of cells in each spot [76] (Figure 5a). It is composed of two
distinct latent variables models. The first model is trained with an annotated scRNA-seq dataset and
learns the gene expression profiles of every annotated cell type. The second model, trained on the
spatial data, assumes that the counts in every spot come from a linear combination of the same cell
types defined in the scRNA-seq data. The coefficients in this linear combination are normalized and
returned as the inferred cell-type proportions at every spot.

There are several reasons for including Stereoscope in scvi-tools. First, while it is a significant and
timely contribution for leveraging spatial transcriptomics, it is difficult to use in practice. Indeed, the
reference implementation only provides a command line interface to run the algorithm rather than an
API, thus complicating its integration in analysis pipelines. Second, Stereoscope is a linear model
that is fit with maximum a posteriori inference. It is therefore conceptually different from many of
the other models currently implemented in scvi-tools, most of which are deep generative models
trained with amortized variational inference. Consequently, this example illustrates the flexibility of
our developer interface. A third reason is the elegance and conciseness of this model, which made it a
good case study for demonstrating an implementation with our PyTorch backend.

Using the scvi-tools developer interface provided both a conceptual and practical simplification of the
reimplementation, focusing most of the effort on the formulation of the actual probabilistic model.
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Figure 5: Reimplementation of Stereoscope in scvi-tools. a, Overview of the Stereoscope method. Stereoscope
takes as input a spatial transcriptomics dataset, as well as single-cell RNA sequencing dataset, and outputs the
proportion of cell types in every spot. b, Short description of the steps required to reimplement Stereoscope into
the codebase. For each of the two models of Stereoscope, we created a module class as well as a model class. c,
Average cyclomatic code complexity and total number of source code lines for each of scvi-tools implementation
and the original implementation. d, e, Description of implementation of the ScSignatureModule, the module
class for the single-cell model of the Stereoscope method. f, Example of user code, interaction with Scanpy. g,
Output example on the hippocampus spatial 10x Visium dataset.

Specifically, our implementation consisted of two module classes and two model classes (one pair of
classes per latent variable model; Figure 5b). It was not necessary to write any code for data loading
or training, as these functionalities are inherited through the scvi-tools base classes. Consequently,
we observed a marked reduction both in the code complexity (average cyclomatic complexity [77])
and the number of lines of code (Methods) compared to the original codebase (Figure 5c).
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To further illustrate the simplicity of implementing new models in scvi-tools, we elaborate on the
development of the ScSignatureModule class (the module class for the scRNA-seq data latent
variable model). In the model, for every cell n, the observed data includes its cell type cn, its library
size ln and for every gene g, the gene expression xng . Let G be the number of observed genes and let
C be the number of annotated cell types. The parameters of the model, which we want to infer, specify
the distribution of each gene g in every cell type c. This distribution is assumed to be a negative
binomial, parameterized by λng and rg , where (rgλng)/(1− rg) is the expectation and where rg is
a gene-specific parameter determining its mean-variance relationship. Parameter λng = lnµgcn of
the negative binomial depends on the type assigned to the cell (cn), its overall number of detected
molecules (ln). Figure 5d specifies the model more concisely.

The parameters of the data generative procedure are calculated in ScSignatureModule (Figure 5e).
While the code follows the model closely, care must be given to the constraints on the parameters. For
example, µ must be positive, so we use a softplus transformation. Similarly, r must be in the range
[0, 1], which we enforce with a sigmoid transformation. The loss function returns the likelihood of
the observed data, using a negative binomial distribution and evaluated at the model parameters. In
contrast to VAEs (Figure 4b), there is no need to provide an implementation of the inference method
because there are no latent variables. Our implementation therefore consists only of the generative
function and the loss.

We applied the method to the 10x Visium spatial transcriptomics data of an adult mouse brain [78] and
a single-cell RNA sequencing dataset of the mouse hippocampus [79] (Methods). A schematic of the
user experience in Figure 5f. Applying Stereoscope and visualizing the results with Scanpy takes less
than 20 lines of code including the import statements and the call to the Scanpy library. In contrast to
the original software, which only accommodated a command line interface, our reimplementation
can be used from Jupyter notebooks and with AnnData objects. The result of our Stereoscope
implementation, which appears in Figure 5g, performs nearly the same as the original implementation
(Supplementary Figure 5) in terms of the average Spearman correlation of cell-type proportion across
all individual cell types.

3 Discussion

We have developed scvi-tools, a resource for the probabilistic analysis of single-cell omics data with
standardized access to more than ten models that can collectively perform a multitude of tasks across
several omics. We also equipped several models with new features to aid in the analysis of large,
complex data collections via the implementations of removal of unwanted variation due to arbitrary
covariates and reference-query integration with scArches. To simplify the usage of scvi-tools, we
made the functionalities of models concentrated in scope and ensured seamless connection with the
single-cell software ecosystem at large. Thus, preprocessing and downstream analysis (e.g., clustering
of a latent space) can be performed with widely-used packages like Scanpy and Seurat. On the
scvi-tools documentation website, we feature the API reference of each model as well as tutorials
describing the functionality of each model and its interaction with other single-cell tools. We also
made these tutorials available via Google Colab, which provides a free compute environment and
GPU and can even support large-scale analyses.

At its core, scvi-tools is based on reusable software building blocks for constructing single-cell-
focused probabilistic models. With these building blocks, we reimplemented our own previously
described models and external models, which together span several inference techniques, like MAP
inference, EM, and many stochastic variational inference algorithms [80] such as amortized variational
inference [81]. Further, standardized implementations of these models allowed us to add features
to many models simultaneously, like in the case of scArches. We expect that this type of method
development will grow in popularity following future advancements in microfluidics and molecular
biology that will produce a new set of computational challenges.

scvi-tools models contain modules that structure the implementation of a generative process and
inference procedure. While we focused on the developing modules directly with PyTorch, we can
alternatively develop a module with Pyro. From a developer’s perspective, it may be unclear when
one should use the PyTorch backend or the Pyro backend for module development. Using Pyro comes
with many benefits, such as automated ELBO computation and automatic differentiation variational
inference [74]. We envision that Pyro will be useful for hierarchical Bayesian models with a large
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collection of latent variables, such as cell2location [82]. Pyro will be also appropriate in cases where
a black-box inference procedure is known to work well. However, for more complex cases with
inference schemes that deviate from standard Bayesian recipes (e.g., warmup [83], alternate variational
bounds [84, 85], adversarial inference [86]), we recommend using the PyTorch backend.

In the development of scvi-tools, we aimed to bridge the gap that exists between the single-cell software
ecosystems and the contemporary machine learning frameworks for constructing and deploying
this class of models. Thus, developers can now expect to build models using popular machine
learning libraries that are immediately accessible to end users in the single-cell community. On
our documentation website, we provide a series of tutorials on building a model with scvi-tools,
walking through the steps of data management, module construction, and model development. We
also built a template repository on GitHub that enables developers to quickly create a Python package
that uses unit testing, automated documentation, and popular code styling libraries. This repository
demonstrates how the scvi-tools building blocks, through a simplified implementation of scVI, can be
used externally. We anticipate that most models built with scvi-tools will be deployed in this way as
independent packages.

scvi-tools remains under active development. Thus, end users can expect that scvi-tools will
continually evolve along with the field, adding support for new models, new workflows, and new
features. Looking forward, we anticipate that these resources will serve the single-cell community by
facilitating the prototyping of new models, creating a standard for the deployment of probabilistic
analysis software, and enhancing the scientific discovery pipeline.
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4 Methods

scvi-tools is a Python package available via the Python Package Index (PyPI) and Bioconda. Further
details on scvi-tools, including model vignettes and a tutorial series on developing models, are
available at https://scvi-tools.org.

Analysis with multiple covariates

Drosophila The dataset of Drosophila myoblasts was downloaded from Gene Expression Omnibus
(Accession ID GSE155543). The list of cell cycle, cell sex, and marker genes were provided by the
authors (Supplementary Table 2). scVI was trained on the raw count data with a single batch covariate
for timepoint and replicate. For scVI-cc, the model was conditioned on each nuisance gene’s log
normalized expression (first each cells counts were normalized, then scaled to the median of total
counts for cells before normalization, before calculating the log on the scaled normalized counts) as
well as a categorical batch covariate for timepoint and replicate. Furthermore, each nuisance gene
that was conditioned on was also removed from the input count matrix. Each scVI model was trained
for 400 epochs. For regress-bbknn, the regress_out scanpy function was used for the continuous
covariates, while the bbknn scanpy function was used for the categorical batch covariates. Similar to
scVI-cc, the nuisance gene expression was removed from the input count matrix. For regress-harmony,
the regress_out function was used for the continuous covariates, while the harmony_integrate
scanpy function was used for the categorical batch covariates. The nuisance genes were removed
from the input count matrix. To compute Geary’s C we used the gearys_c scanpy function.

Runtime Runtime analysis was run on a desktop with an Intel Core i9-10900K 3.7 GHz processor,
2x Corsair Vengeance LPX 64GB ram, and an NVIDIA RTX 3090 GPU. Runtime was performed
with the Heart Cell Atlas dataset downloaded from https://www.heartcellatlas.org/. We
then subsampled and created datasets of 5,000, 10,000, 20,000, 40,000, 80,000, 160,000, 320,000,
and 486,134 cells and selected the top 4,000 genes via highly_variable_genes per dataset, with
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parameter flavor=“seurat_v3”. For each of the following methods, we used the cell_source
and donor fields of the dataset as categorical covariates. For continuous covariates, we generated
8 random covariates by sampling from a standard normal distribution in addition to treating the
percent_mito and percent_ribo fields as additional continuous covariates, for a total of 10 continuous
covariates. For scVI runtime, we tracked the runtime of running the train function with the following
parameters:

early_stopping=True, early_stopping_patience=45, max_epochs=10000,

batch_size=1024, limit_train_batches=20,

train_size=0.9 if n_cells < 200000 and train_size=1-(20000/n_cells) otherwise

This choice of the size parameter for the training set ensures that the validation set always has size of
less than 20,000 cells for the whole runtime experiment. For the regress-bbknn baseline, we tracked
the runtime of correcting continuous covariates with regress_out, running pca, and correcting for
categorical covariates with bbknn (all from the scanpy package). For the regress-harmony baseline,
we tracked the runtime of regress_out to correct for continuous covariates, running pca, and
correcting for categorical covariates with harmony_integrate (all from the scanpy package). For
the regress baseline, we only tracked the runtime of the regress_out function.

Transfer learning with scArches

The reference dataset of Human PBMCs corresponding to the CITE-seq dataset described in
[69] was downloaded from Gene Expression Omnibus (Accession ID GSE164378). Associated
metadata, like cell-type annotations, were retrieved from https://atlas.fredhutch.org/nygc/
multimodal-pbmc/. The query dataset of Human PBMCs corresponding to the CITE-seq dataset
described in ref. [68] was provided by the authors, with full metadata including study-derived
annotations and other study design information. The reference data were additionally filtered to
include cells that meet the following criteria: (1) greater than 150 proteins detected, (2) percent
mitochondrial counts less than 12%, (3) not doublets (i.e., reference cells annotated as doublets
removed), (4) natural log protein library size, defined as total protein counts, between 7.6 and 10.3.
Furthermore, protein features corresponding to isotype controls were removed (for reference and
query), and protein features targeting the same protein (i.e., antibody clones) were summed together
(applies to reference only). The query data were additionally filtered for doublets using Scrublet [87]
with default parameters. Highly variable genes (4000) were selected using only the reference datasets
and with the method in Scanpy (flavor="seurat_v3"). Finally, the protein expression for a random
set of five out of the 24 batch categories (representing time and donor) in the reference dataset
were masked from totalVI, in order to help the model generalize to query data with mismatched
proteins.

In the case of scArches, totalVI was trained on the reference data for 250 epochs, using two
hidden layers and layer normalization as described in the totalVI scArches tutorial https://docs.
scvi-tools.org/en/stable/user_guide/notebooks/scarches_scvi_tools.html. After
applying the scArches architectural surgery, the model was updated with the query data for 150
additional epochs. The latent representation for the reference and query datasets was obtained from
the model after it was updated with the query data; however, we note that the latent representation of
the reference data does not change after query traning in the case of scArches. In the case of default
totalVI, we kept all hyperparameters and data preprocessing the same, except that we trained totalVI
only once, on the concatenated reference and query datasets for 250 epochs.

For both scArches and default totalVI, we transferred the reference cell-type annotations using
a random forest classifier implemented in scikit-learn [88]. In particular, we trained a random
forest classifier on the latent representations of the reference cells (default parameters except
class_weight="balanced_subsample"). The query cell annotations were then obtained by
passing the query latent representations to the classifier. In all cases, UMAP embeddings were
computed using Scanpy [89] with metric="cosine" and min_dist=0.3. The frequency of
predicted query MAIT cells and CD4 CTLs were computed on a per-donor basis and were defined
as the frequency given the total number of observed cells per donor. All analyses were run on a
computer with one NVIDIA GeForce RTX 3090 GPU.
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Cell-type deconvolution with Stereoscope

For the single-cell data, we used the dataset from Saunders et al. [79], as pre-processed by Cable et
al [90]. We filtered genes out with a minimum count of 10. Then, we selected 2,000 highly variable
genes using the corresponding scanpy function. For the spatial transcriptomics data, we used the V1
Adult Mouse Brain dataset [78] and filtered spots so as to focus on the hippocampus (as in Cable et
al. Supplementary Figure 7). We then filtered genes in the spatial transcriptomics data by taking
the intersection with the highly variable genes in the single-cell data. We then ran the single-cell
model for 100 epochs and ran the spatial model for 5,000 epochs. We ran the original Stereoscope
code from the command line, on the same dataset and with the same parameters. We used the Radon
package for the calculations of average cyclomatic complexity [77] and source lines of code.

Data availability

A collection of processed data discussed in this manuscript have been deposited on figshare
(https://doi.org/10.6084/m9.figshare.14374574.v1).

Code availability

The code to reproduce the experiments of this manuscript is available at https://github.com/
YosefLab/scvi-tools-reproducibility. The scvi-tools package can be found on GitHub
at https://github.com/YosefLab/scvi-tools, and is also deposited on Zenodo https:
//doi.org/10.5281/zenodo.4341715.
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Supplementary Figures

Supplementary Figure 1: Multiple covariates. a, b, Low-dimensional embeddings derived from
scanpy.pp.regress_out function followed by (a) Scanpy’s external bbknn and (b) harmony methods
(Regress-bbknn, Regress-harmony; Methods). UMAP plot is colored by batch, PCNA (cell cycle gene),
IncRNA:roX1 (cell sex gene), and vg (gene marking spatial compartment within the wing disc).

Supplementary Figure 2: Multiple covariates runtime on Heart Cell Atlas. a, Runtime of workflows to
correct multiple continuous and categorical covariates on subsampled versions of the Heart Cell Atlas dataset.
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Supplementary Figure 3: Sequential integration of PBMC samples with totalVI and the scArches method.
a, b, UMAP embedding of the totalVI reference and query latent spaces from default totalVI model run colored
by (a) the reference labels and predicted query labels and (b) the dataset of origin. c-e, UMAP embedding of the
totalVI scArches query latent space from colored by (c) study-derived labels, (d) predicted labels from totalVI
scArches, and (e) predicted labels from totalVI default. f, Runtime of totalVI default versus totalVI scArches.

Supplementary Figure 4: Black box components of scvi-tools’ application programming interface for
developers. a, The training plan configures several aspects relevant for model training, like the optimizers, and
the actual training optimization step in which data gets passed through a module. b, The AnnDataLoader is used
to load minibatches of data directly from an AnnData object into a module. c, Mixins are Python classes with
pre-coded functionality that can be inherited into many models, introducing isolated feature sets, like getting
metrics relevant to VAEs (VAEMixin).
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Supplementary Figure 5: Reproducibility of Stereoscope implementation in scvi-tools. a, Scatter plot for
six cell types of the hippocampus dataset. Each point in the scatter plot represents one spot. The x axis is
the proportion inferred by the original Stereoscope software and the y axis is the proportion inferred by our
implementation. We report the Pearson coefficient for each cell type. The top three cell types are the most
reproducible and the bottom three cell types are the least reproducible. b, Box plot of correlations of proportions
between the two implementations. Each dot in the box plot is a cell type. Golden line in the box plot is the
median.
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Supplementary Figure 6: Evaluation of CellAssign implementation in scvi-tools. a, b, UMAP embedding
of follicular lymphoma single-cell expression data, labeled by maximum probability assignments from the (a)
original CellAssign implementation and (b) scvi-tools implementation. c, Row-normalized confusion matrix of
scvi-tools predicted labels (rows) and study-derived cell annotations (columns) for follicular lymphoma expression
data. d, e, UMAP embedding of HGSC single-cell expression data, labeled by maximum probability assignments
from the (d) original CellAssign implementation and (e) scvi-tools implementation. f, Row-normalized confusion
matrix of scvi-tools predicted labels (rows) and study-derived cell annotations (columns) for HGSC single-cell
expression data. g, Runtime on downsampled versions of 68k peripheral blood mononuclear cells dataset for the
original and scvi-tools implementations.
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Supplementary Tables

Modality Model Tasks

scRNA-seq

scVI [5] Dimensionality reduction, removal of unwanted variation, inte-
gration across replicates, donors, and technologies, differential
expression, imputation, normalization of other cell- and sample-
level confounding factors

LDVAE [50] scVI tasks with linear decoder
scANVI [12] Automated annotation, all scVI tasks
AutoZI [91] Gene-wise model selection for zero-inflation
Solo [42] Doublet detection
CellAssign [39] Marker-based automated annotation

CITE-seq totalVI [21] Dimensionality reduction, removal of unwanted variation, inte-
gration across replicates, donors, and technologies, differential
expression, protein imputation, imputation, normalization of
other cell- and sample-level confounding factors

scATAC-seq PeakVI [24] Dimensionality reduction, removal of unwanted variation, differ-
ential accessibility, imputation, normalization of other cell- and
sample-level confounding factors

Spatial Transcriptomics
gimVI [52] Imputation of missing genes in spatial data using scRNA-seq

reference
Stereoscope [40] Deconvolution of spatial transcriptomics profiles
DestVI [41] Multi-resolution deconvolution of spatial transcriptomics profiles

Multiple scArches [38] Transfer learning for reference-query integration applied on top
of peakVI, scVI, scANVI, totalVI

Supplementary Table 1: Overview of models and functionality currently implemented in scvi-tools.
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Cell Sex Genes Cell Cycle Genes Marker Genes

lncRNA:roX1 PCNA Argk
lncRNA:roX2 dnk Nrt
Sxl RnrS Ten-a
msl-2 RnrL Ten-m

Claspin wb
Mcm5 Act57B
Caf1-180 drl
RPA2 mid
HipHop nemy
stg lms
Mcm6 CG11835
dup Gyg
WRNexo ara
Mcm7 tok
dpa kirre
CG10336 NK7.1
Mcm3 fj
Mcm2 beat-IIIc
RpA-70 CG33993
Chrac-14 dpr16
CG13690 CG15529
RPA3 CG9593
asf1 beat-IIb
DNApol-alpha73 robo2
CycE Ama
DNApol-alpha50 fz2
Kmn1 elB
Lam noc
Nph nkd
msd5 fng
msd1 vg
ctp
Set
scra
Chrac-16
ncd
Ote
pzg
HDAC1
nesd
tum
CG8173
aurB
feo
pav
CG6767
sip2
Det
Cks30A
CycB
B52

Supplementary Table 2: Gene sets for multiple covariates Drosophila analysis.
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Supplementary Note 1

In this note, we describe the implementation of CellAssign in scvi-tools. Unlike other external
methods in scvi-tools, there are slight differences in the scvi-tools implementation. First we describe
the statistical model of CellAssign, highlighting differences between the scvi-tools implementation
and the original implementation. Then we evaluate the scvi-tools implementation against the original
on two datasets used in the original publication [39].

Preliminaries

CellAssign takes as input a scRNA-seq gene expression matrix X with N cells and G genes along
with a cell-type marker matrix ρ which is a binary matrix of G genes by C cell types denoting if
a gene is a marker of a particular cell type. A size factor s for each cell may also be provided as
input, otherwise it is computed empirically as the total unique molecular identifier count of a cell.
Additionally, a design matrix D containing p observed covariates, such as day, donor, etc, is an
optional input.

Generative process

CellAssign uses a negative binomial mixture model to make cell-type predictions. The cell-type
proportion is drawn from a Dirichlet distribution,

(π1, ..., πC) ∼ Dirichlet(α, ..., α), (1)

with α = 0.01.

CellAssign then posits that the observed gene expression counts xng for cell n and gene g are generated
by the following process:

δgc ∼ LogNormal(δ̄, σ2) (2)

logµngc = log sn + δgcρgc + βg0 +
∑

p

βgpdpn (3)

φ̃ngc =
B∑

i=1

ai × exp(−b× (µngc − vi)
2) (4)

zn ∼ Discrete(π) (5)

xng | zn = c ∼ NegativeBinomial(µngc, φ̃ngc) (6)

Notably, the logarithm of the mean of the negative binomial for cell n, gene g, given that it belongs
to cell type c (Equation 3) is computed as the sum of (1) the base expression of a gene g, βg0, (2) a
cell-type-specific overexpression term for a gene, δgc, (3) an offset for the size factor, log sn, and (4) a
linear combination of covariates in the design matrix (weighted by coefficients βgi). A cell-specific
discrete latent variable, zn, represents the cell-type assignment for cell n.

Furthermore, the inverse dispersion of the negative binomial, φ̃ngc (Equation 4) is computed with a
sum of radial basis functions of the mean centered on vi with parameters ai and b. In total, there are
B centers v1, v2, ..., v10 that are set a priori to be equally spaced between 0 and the maximum count
value of X . Additionally, as in the original implementation we used B = 10. The parameters ai and
b are further described below.

Inference

CellAssign uses expectation maximization, which optimizes its parameters and provides a cell-type
prediction for each cell.

Initialization CellAssign initializes parameters as follows: δgc is initialized with a LogNormal(0, 1)
draw, δ̄ is initialized to 0, σ2 is initialized to 1, πi is initialized to 1/C, βgi is initialized with a N (0, 1)
draw, and the inverse dispersion parameter log ai is initialized to zero. Additionally, b is fixed a priori
to be

b =
1

2(v2 − v1)2
, (7)

where v1 and v2 are the first and second center determined as stated previously.
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E step The E step consists of computing the expected joint log likelihood with respect to the
conditional posterior, p(zn | xn, δ, β, a, π), for each cell. This conditional posterior is computed in
closed form as

γnc := p(zn = c | xn, δ, β, a, π) ∝ p(zn = c | π)
∏

g

p(xng | µngc, φ̃ngc), (8)

which is normalized over all c. The expected joint log likelihood over all N cells is then computed
as

Ez|X,π,δ,β,a[log p(X,π, δ | β, a, δ̄, σ2)] =
N∑

n=1

C∑

c=1

γnc

G∑

g=1

log p(xng|zn = c)

+ log p(π) + log p(δ).

(9)

Herein lies the major difference between the scvi-tools implementation and the original CellAssign
implementation. Notably, in scvi-tools we compute this expected joint log likelihood using a
mini-batch of 1,024 cells, using the fact that

N∑

n=1

C∑

c=1

γnc

G∑

g=1

log p(xng|zn = c) ≈
N

M

M∑

m=1

C∑

c=1

γnc

G∑

g=1

log p(xτ(m)g|zn = c) (10)

for a minibatch of M < N cells, where τ is a function describing a permutation of the data indices
{1, 2, ..., N}.

M step The parameters of the expected joint log likelihood (π, δ, β, a, δ̄, σ2) are optimized as in
the original implementation, using the Adam optimizer [92], except that now an optimization step
corresponds to data from one minibatch. Following the original implementation, we also clamped
δ > 2. We also added early stopping with respect to the log likelihood of a held-out validation
set.

Evaluation

We downloaded two datasets with full metadata and cell-type marker matrices from the original
publication [39] (from https://zenodo.org/record/3372746) and compared the scvi-tools
implementation predictions to the original predictions for these datasets. The first dataset consisted of
9,156 cells from lymph node biopses of two follicular lymphoma (FL) patients. The second dataset
consisted of 4,848 cells from a high-grade serous carcinoma (HGSC) patient. On both datasets, the
scvi-tools implementation predictions were highly reproducible with the original implementation
(Supplementary Figure 6a-f). UMAP embeddings used in Supplementary Figure 6 were the original
embeddings from the publication and were retrieved from the downloaded objects.

Next, we evaluated the runtime of the two implementations on a desktop with an Intel Core i9-10900K
3.7 GHz processor, 2x CorsairVengeance LPX 64GB ram, and an NVIDIA RTX 3090 GPU. To do
so, we used a dataset of 68k peripheral blood mononuclear cells from 10x Genomics [78], and used
the same cell-type marker matrix as the FL dataset (23 markers, 5 cell types). Across a range of
cells, we observed that the scvi-tools implementation is consistently faster and thus more scalable
(Supplementary Figure 6g). This is mostly due in part to the minibatching, which is a capability
present in the original codebase, but not set as default (also no guidance on how to set it). Thus, we
have shown that the scvi-tools implementation of CellAssign is both reproducible, and by default,
more scalable than the original implementation.
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