
ScyPer: Elastic OLAP Throughput on Transactional Data⇤

Tobias Mühlbauer

Technische Universit

¨

at M

¨

unchen

Munich, Germany

muehlbau@in.tum.de

Wolf Rödiger

Technische Universit

¨

at M

¨

unchen

Munich, Germany

roediger@in.tum.de

Angelika Reiser

Technische Universit

¨

at M

¨

unchen

Munich, Germany

reiser@in.tum.de

Alfons Kemper

Technische Universit

¨

at M

¨

unchen

Munich, Germany

kemper@in.tum.de

Thomas Neumann

Technische Universit

¨

at M

¨

unchen

Munich, Germany

neumann@in.tum.de

ABSTRACT
Ever increasing main memory sizes and the advent of multi-

core parallel processing have fostered the development of

in-core databases. Even the transactional data of large en-

terprises can be retained in-memory on a single server. Mod-

ern in-core databases like our HyPer system achieve best-of-

breed OLTP throughput that is su�cient for the lion’s share

of applications. Remaining server resources are used for

OLAP query processing on the latest transactional data, i.e.,

real-time business analytics. While OLTP performance of a

single server is su�cient, an increasing demand for OLAP

throughput can only be satisfied economically by a scale-out.

In this work we present ScyPer, a Scale-out of our HyPer
main memory database system that horizontally scales out

on shared-nothing hardware. With ScyPer we aim at (i)

sustaining the superior OLTP throughput of a single HyPer

server, and (ii) providing elastic OLAP throughput by pro-

visioning additional servers on-demand, e.g., in the Cloud.

1. INTRODUCTION
Declining DRAM prices have lead to ever increasing main

memory sizes. Together with the advent of multi-core par-

allel processing, these two trends have fostered the devel-

opment of in-core database systems, i.e., systems that store

and process data solely in main memory. On the high end,

Oracle recently announced the SPARC M5-32 [6] with up to

32 CPUs and 32TB of main memory in a single machine.

While the M5-32 certainly has a high price tag, servers with

1TB of main memory are already retailing for less than

$35,000. On such a server, in-core databases like our HyPer

⇤
Tobias M

¨

uhlbauer is a recipient of the Google Europe Fel-

lowship in Structured Data Analysis, and this research is

supported in part by this Google Fellowship. Wolf R

¨

odiger is

a recipient of the Oracle External Research Fellowship. This

work has been sponsored by the German Federal Ministry of

Education and Research (BMBF) grant HDBC 01IS12026.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

DanaC’13, June 23, 2013, New York, NY, USA

Copyright 2013 ACM 978-1-4503-2202-7/13/6 ...$15.00.

Snapshotting

OLTP

Primary HyPer

...

On-Demand Secondary HyPer Nodes

OLAP

Redo Log Multicasting

OLAP Load Balancing

Figure 1: Elastic provisioning of secondary HyPer
nodes for scalable OLAP throughput

system [3] process more than 100,000 TPC-C transactions

(TX) per second in a single thread, which is enough for hu-

man generated workloads even during peak hours. A ball-

park estimate of Amazon’s yearly transactional data volume

further reveals that retaining all data in-memory is feasible

even for large enterprises: with a revenue of $60 billion,

an average item price of $15, and about 54B per orderline,

we derive less than 1/4TB for the orderlines—the dominant

repository in a sales application. We thus conjecture that for

the lion’s share of OLTP workloads, a single server su�ces.

Besides OLTP, data management solutions are today also

faced with analytical workloads (OLAP). It is common to

run these analytical queries in a separate data warehouse to

avoid interference with the mission-critical OLTP process-

ing. The data warehouse is updated only periodically (e.g.,

every night), which inevitably leads to the problem of data

staleness. Industry leaders like SAP’s Hasso Plattner [9] ar-

gue that this does not suit today’s business needs and call for

a real time business analytics paradigm, which aims at the

analysis of fresh transactional data. Emerging hybrid main

memory databases like SAP’s HANA or HyPer address this

issue. HyPer achieves best-of-breed OLTP throughput and

OLAP query response times in one system in parallel on the

same database state. Even though available resources—i.e.,

CPU cores that are not used for OLTP—can process OLAP

queries, OLAP throughput is still limited.

In this work we present ScyPer, a Scaled-out version of

our HyPer main memory database system that horizontally

scales out on shared-nothing hardware, e.g., in the Cloud.

With ScyPer we aim at (i) sustaining the superior OLTP

throughput of a single HyPer server, and (ii) providing elas-

tic OLAP throughput by provisioning additional servers on-

demand. Fig. 1 gives an overview of its architecture.

11

In ScyPer, a primary node processes incoming TX and

multicasts the redo log to secondaries, which in turn replay

the log and—mainly due to not having to replay reader and

aborted TX—have free capacities to process OLAP queries

on TX-consistent virtual memory snapshots. HyPer’s e�-

cient snapshotting mechanism, which is based on the fork()

system call, is one of the cornerstones of its superior OLTP

and OLAP performance. Secondaries can further use free

hardware resources to maintain additional indexes, access

non-transactional data, and write out database backups.

In particular, this work makes the following contributions:

• We show how the redo log is propagated from the pri-

mary server to secondaries using a reliable multicasting

protocol. An evaluation of this approach on a 1GbE

and a 40Gbit/s InfiniBand (4⇥QDR IPoIB) infras-

tructure demonstrates the feasibility of this approach.

Further, we compare logical and physical redo logging

in the context of ScyPer.

• We describe how global TX-consistent snapshots are

created in ScyPer and which guarantees they give.

• We evaluate the sustained OLTP and scalable OLAP
throughput of ScyPer using the TPC-CH [1] bench-

mark that combines the transactional TPC-C and an-

alytical TPC-H workloads.

• We show that secondaries can act as high availability
failovers for the primary HyPer instance.

ScyPer in the Cloud. “In-memory computing will play

an ever-increasing role in Cloud Computing” [9]: ScyPer

with its elastic scale-out is particularly suitable for the de-

ployment on Cloud infrastructures. In an infrastructure-

as-a-service scenario, ScyPer runs on multiple physical ma-

chines in the Cloud. Nodes for secondaries are rented on-

demand, which makes this model highly cost-e↵ective. In

a database-as-a-service scenario, ScyPer is o↵ered as a ser-

vice. The service provider aims at an optimal resource usage.

Following the partitioned execution model of H-Store [2]

and VoltDB, HyPer—and thus primary ScyPer instances—

provides high single-server OLTP throughput on multiple

partitions in parallel, which allows running multiple tenants

on one physical machine [5]. Redo logs for the partitions are

multicast on a per-tenant basis so that OLAP secondaries

can be created for specific tenants. OLAP processing of mul-

tiple tenants can again be consolidated on a single server.

In case a primary node that processes the OLTP of multiple

tenants faces an increased load, partitions of a tenant can

migrate from one primary to another or a secondary can

take over as a primary very quickly (see Sect. 2.4). In sum-

mary, ScyPer in the Cloud allows great flexibility, very good

resource utilization, and high cost-e↵ectiveness. However,

let us add a word of caution: many Cloud infrastructure of-

ferings are virtualized. Our previous experiments, which are

out of scope for this work, suggest that running applications

tuned for modern hardware like ScyPer on such instances

can lead to severe performance degradations; unvirtualized

instances should thus be preferred.

2. SCYPER
ScyPer consists of two HyPer instance types: one primary

and multiple secondaries. Incoming OLTP is processed on

the primary while OLAP queries are load-balanced across

secondaries (and the primary if it has spare resources). This

OLAP
Backup

OLAP
LSN 112

LSN 105

LSN 100

OLTP

 ti

me

Persistent Storage

Figure 2: Long-running snapshots allow parallel pro-
cessing of OLAP queries and simultaneous backups.

allows to scale the OLAP throughput by provisioning addi-

tional secondaries on-demand. When a secondary instance

is started, it first fetches the latest full database backup

from durable storage and then replays the redo log until it

catches up with the primary. Secondaries can always catch

up as redo log replaying is about ⇥2 faster than processing

the original OLTP workload (see Sect. 2.1). Further, the

system will not experience full load at all times.

The primary node usually uses a row-store data layout

which is better suited for OLTP processing and it keeps

indexes that support e�cient transaction (TX) processing.

When processing the OLTP workload, the primary node

multicasts the redo log of committed TX to a specific mul-

ticast address. The address encodes the database partition

such that secondaries can subscribe to specific partitions.

This allows the provisioning of secondaries for specific par-

titions and enables a more flexible multi-tenancy model as

described in Sect. 1. Besides being multicast, the log is

further sent to a durable log. Each redo log entry for a TX

comes with a log sequence number (LSN). ScyPer uses these

LSNs to define a logical time in the distributed setting. A

secondary that last replayed the entry with LSN x has log-

ical time x. It next replays the entry with LSN x + 1 and

advances its logical time to x+ 1.

As a large portion of a usual OLTP workload is read-only

(i.e., no redo is necessary), replaying the redo log on sec-

ondary nodes is usually cheaper than processing the original

workload on the primary node. Further, read operations

of writer TX do not need to be evaluated when physical

logging is employed. The available resources on the secon-

daries are used to process incoming OLAP queries on TX-

consistent snapshots. HyPer’s e�cient snapshotting mecha-

nism allows to process several OLAP queries in parallel on

multiple snapshots as shown in Fig. 2. A snapshot can also

be written to persistent storage so that it can be used as a

TX-consistent starting point for recovery. Furthermore, the

faster OLTP processing allows to create additional indexes

for e�cient analytical query processing. Secondary nodes

can either store data in a row-, column-, or a hybrid row-

and column-store data format. Additionally, these nodes

can include non-transactional data in OLAP analyses which

need not necessarily be kept in-core.

In the following we describe our redo log propagation and

distributed snapshotting approaches. We further show how

ScyPer provides scalable OLAP throughput while sustaining

the OLTP throughput of a single server and how secondary

nodes can act as high availability failovers.

2.1 Redo Log Propagation
When processing a TX, HyPer creates a memory-resident

undo log which is used for the rollback of aborted TX. Ad-

ditionally, a redo log is created. For committed TX, this

12

normal
execution

logical log
replaying

physical log
replaying

0

200

400

600

800

56%
faster

23%
faster

ex
ec
u
ti
o
n
ti
m
e
[m

s]

writers readers aborts

Figure 3: Time savings when replaying 100k TPC-C
transactions using logical and physical redo logging

redo log has to be persisted and written to durable storage

so that it can be replayed. The undo log however can be

discarded when a TX commits.

ScyPer uses multicasting to propagate the redo log of com-

mitted TX from the primary to secondary nodes to keep

them up-to-date with the most recent transactional state.

Multicasting allows to add secondaries on-demand without

increasing the network bandwidth usage.

UDP vs. PGM multicast. Standard UDP multicasting

is not a feasible solution for ScyPer as it may drop messages,

deliver them multiple times, or transfer them out of order.

Instead, ScyPer uses OpenPGM for multicasting, an open

source implementation of the Pragmatic General Multicast

(PGM) protocol [8], which is designed for reliable and or-

dered transmission of messages from a single source to mul-

tiple receivers. Receivers detect message loss and recover by

requesting a retransmission from the sender.

Logical vs. physical logging. ScyPer supports both, the

use of logical and physical redo logs for redo log propagation.

These two alternatives di↵er in the size of the resulting log

and the time needed to replay it. While in a logical redo log

only the TX identifier and invocation parameters are logged,

the physical redo log logs the individual insert, update, and

delete statements that modified the database during the TX.

Physical redo logging results in a larger log but replaying it

is often much faster compared to logical logging, especially

when the logged TX executed costly logic or many read op-

erations. In any case, TX that use operations where the

outcome can not be determined solely by the transactional

state, e.g., random operations or current time information,

have to be logged using physical redo logging. It is of note

that logical redo logging is restricted to pre-canned stored

procedures. However, stored procedures can be added to

ScyPer at any time by a low-overhead system-internal TX.

As mentioned before, secondaries do not need to replay

all TX. Only committed TX that modified data are logged.

Fig. 3 shows that replaying the logical log of 100,000 TPC-

C TX saves 17% in execution time compared to the original

processing of the TX by not having to re-execute reader and

aborted TX and an additional 6% for not having to log again

(undo and redo log)—together this adds up to savings of

23%. Physical logging is even able to save 56% of execution

time as it further does not re-execute read operations of

writers and only replays basic inserts, updates and deletes.

The physical log for 100,000 TPC-C TX has a size of

85MB and is therefore about ⇥5 larger than the logical log

which needs only 14MB. An individual physical log entry

has an average size of ⇠1,500B, whereas a logical log entry

1GbE InfiniBand

UDP PGM UDP PGM

Bandwidth [Mbit/s] 906 675 14,060 1,832

Throughput [1,000/s] 81 43 1,252 112

Latency [µs] —– 100.4—– ——13.5——

Table 1: Comparison of UDP and PGM perfor-
mance for Gigabit Ethernet and InfiniBand 4⇥QDR

3. read a

a

LSN 101

LSN 100

a*
2. write

a=a*

1. fork()

(a) Local order violation

Non-transactional Data

...

On Demand Secondaries

Persistent Log

1. read a

a* a

2. read a

LSN 103 LSN 100

(b) Diverging distributed reads

Figure 4: Two problems which lead to unexpected
results prevented by global TX-consistent snapshots

has ⇠250B. Group commits allow to bundle and compress

log entries for improved network usage. Compression is not

feasible on a per-TX basis as the individual log entries are

simply too small. Compressing the log for 100,000 TPC-C

transactions using LZ4 compression reduces the size by 48%

in the case of physical and by 54% for logical logging.

Ethernet vs. InfiniBand. Table 1 compares the single-

threaded performance of UDP and PGM multicast in a 1

Gigabit Ethernet (1GbE) and a 4⇥QDR IPoIB InfiniBand

infrastructure. Our setup consists of four machines each

equipped with an on-board Intel 82579V 1GbE adapter and

a Mellanox ConnectX-3 InfiniBand adapter (PCIe 3 ⇥8).

We used a standard 1GbE switch and a Mellanox 8 Port

40Gbit/s QSFP switch. UDP was measured with 1.5 kB

datagrams; PGM messages had a size of 2 kB. The UDP

bandwidth and throughput increases by a factor of 15 from

1GbE to InfiniBand; PGM still profits by a factor of 2.7.

The latency is, in both cases, reduced by a factor of 7.

With a processing speed of around 110,000 TPC-C TX

per second, HyPer creates ⇠60,000 redo log entries per sec-

ond per OLTP thread. 1GbE allows the multicasting of

the 60,000 logical log entries but o↵ers not enough perfor-

mance for physical logging due to its low PGM multicast

performance. Only when group commits with log compres-

sion are used, physical redo log entries can be multicast over

1GbE. Our InfiniBand setup can handle physical redo log-

ging without compression and even has free capacities to

support multiple outgoing multicast streams. These could

be used for the simultaneous propagation of the redo logs of

all TX-processing threads in a partitioned execution setting.

2.2 Distributed Snapshots
ScyPer adapts HyPer’s e�cient virtual memory snapshot-

ting mechanism [3] to the distributed setting. In the fol-

lowing, we describe how we designed ScyPer’s global TX-

consistent snapshotting mechanism to solve two potential

problems which a↵ect query processing on transactional data:

local order violations and diverging distributed reads.
Local order violations. Fig. 4(a) shows a schedule which

exhibits a local order violation: First, the snapshot is cre-

13

1 2 3 4
0

20k

40k

60k

80k

number of nodes

q
u
er
ie
s/
h

1 stream 2 streams

3 streams 4 streams

(a) OLAP throughput on di↵erent

numbers of nodes (without TX load)

0 20 40 60

110k

120k

130k

time [s]

tr
a
n
sa
ct
io
n
s/
s

logical (group) physical (group)

physical (per TX) logical (per TX)

(b) TX throughput on the primary with

redo log propagation to secondaries

1 2 3
0

50k

100k

150k

query streams per node

tr
a
n
sa
ct
io
n
s/
s

0

20k

40k

60k

q
u
er
ie
s/
h

OLTP throughput

OLAP throughput

(c) Combined processing of OLTP and OLAP

with di↵erent numbers of OLAP query streams

Figure 5: Evaluation of ScyPer’s isolated and combined OLAP and OLTP throughput on a 4 node cluster

ated. Then a TX modifies a data item which is afterwards

read by an OLAP query. In this example the query reads

the data item’s old value a because the snapshot was cre-

ated before the TX changed it to a*. A single client who

issued both, the TX and the query, would get an unex-

pected result—even though the schedule satisfies serializ-

ability. Order-preserving serializability (OPS) avoids such

order violations as it “requires that transactions that do

not overlap in time appear in the same order in a conflict-

equivalent schedule” [10]. In the example the TX finished

before the query, i.e., both did not overlap, therefore OPS

requires that the query reads the new state.

To achieve OPS, a query has to be executed on a snapshot

that is created after its arrival. While one might argue that

if OPS is desired, the query has to be executed as a TX,

we propose a solution that does not require this. A sim-

ple solution is to create a snapshot for every single query.

However, while snapshot creation is cheap, it does not come

for free. Therefore, we associate queries with a logical ar-

rival time and delay their execution until a snapshot with

a greater logical creation time is available. The primary

node then acts as a load balancer for OLAP queries and

tags every incoming query with a new LSN as its logical ar-

rival time. The primary also triggers the periodic creation

of global TX-consistent snapshots (e.g., every second). To-

gether, this guarantees order-preserving serializability as TX

are executed sequentially and queries always execute on a

state of the data set that is newer than their arrival time.

Diverging distributed reads. The system as described

until now is further subject to a problem which we call di-

verging reads: Executing the same OLAP query twice can

lead to two di↵erent results in which the second result is

based on an older transactional state—i.e., a database state

with a smaller LSN than that of the first query. Fig. 4(b)

shows an example for this. The diverging reads problem is

caused by the load balancing mechanism, which may assign

a successive query to a di↵erent node whose snapshot rep-

resents the state of the data set for an earlier point in time.

This problem is not covered by order-preserving serializabil-

ity but is solved by the synchronized creation of snapshots.

To create such a global snapshot, the primary node sends

a system-internal TX to the secondary nodes which create

local snapshots using the fork() system call at the logical

time point defined by the transaction’s LSN. We use a log-

ical time based on LSNs to avoid problems with clock skew

across nodes. The creation of the global TX-consistent snap-

shot is fully asynchronous on the primary node which avoids

any interference with transaction processing. Therefore, the

time needed to create a global TX-consistent snapshot only

a↵ects the OLAP response time on the secondaries. The

time to create a global TX-consistent snapshot on n sec-

ondary nodes is defined by

max

0i<n
(RTTi + T

replayi
+ T

forki)

where RTTi is the round trip time from the primary to sec-

ondary i, T

replayi
is the time required to replay the out-

standing log at i, and T

forki is the time to fork at i. In

our high-speed InfiniBand setup, RTTs are as low as a few

µs. To avoid inconsistencies, the snapshot transaction has

to be processed in order, i.e., the outstanding log at the sec-

ondary has to be processed first. However, it is expected

that at most one TX has to be replayed before the snapshot

can be created—as the secondaries process TX faster than

they arrive. On average a transaction takes only 10µs. The

time of the fork depends on the memory page size and the

database size but is in general very fast, e.g., with a database

size of 8GB a fork takes 1.5ms with huge and 50ms with

small pages. All in all, the time needed to create a global

TX-consistent snapshot adds up to only a few milliseconds

which has no significant impact on the OLAP response time.

Distributed processing. As global TX-consistent snap-

shots avoid inconsistencies between local snapshots, they

also enable the distributed processing of a single query on

multiple secondaries. The distributed processing has the po-

tential to further reduce query response times.

2.3 Scaling OLAP Throughput on Demand
The evaluation of ScyPer was conducted on four commod-

ity workstations, each equipped with an Intel Core i7-3770

CPU and 32GB dual-channel DDR3-1600 DRAM. The CPU

is based on the Ivy Bridge microarchitecture, has 4 cores, 8

hardware threads, a 3.4GHz clock rate, and 8MB of last-

level shared L3 cache. As operating system we used Linux

3.5 in 64 bit mode. Sources were compiled using GCC 4.7

with -O3 -march=native optimizations.

Fig. 5 shows the isolated and combined TPC-CH bench-

mark [1] OLAP and OLTP throughput that can be achieved

with the ScyPer system. We prioritized the OLTP process so

that replaying the log is preferred over OLAP query process-

14

ing to avoid that secondaries cannot keep up with redo log

replaying. Fig. 5(a) demonstrates that the OLAP through-

put scales linearly when no TX are processed at the same

time. Multiple query streams allow the nodes to process

queries in parallel using their 4 cores and therefore increase

the OLAP throughput. Fig. 5(b) shows the TX throughput

which was achieved on the primary node while the redo log

is simultaneously broadcasted to and replayed by the sec-

ondaries. The figure shows the TX rate for di↵erent redo

log types and commit variants. While the TX rates for the

four options di↵er by at most 15%, group commits clearly

provide a better performance than per-TX log propagation.

The reason for this is the reduced PGM processing overhead

since group commits lead to fewer and larger messages. Fi-

nally, Fig. 5(c) shows the combined execution of OLTP and

OLAP with logical redo log propagation and uncompressed

group commits. All four nodes, including the primary, pro-

cess OLAP queries. The nodes are able to handle up to two

query streams each, while sustaining a OLTP throughput of

over 100,000TX/s (normal execution on primary, replaying

on secondaries). Three streams degrade the OLTP through-

put noticeably and with four streams, secondaries can no

longer keep up with TX log replaying. This is reasonable,

as the nodes only have 4 cores, of which in this case all are

busy processing queries.

2.4 High Availability
Besides providing scalable OLAP throughput on transac-

tional data, secondary HyPer nodes can further be used as

high availability failover nodes. Secondaries detect the fail-

ure of the primary when no redo log message—or heartbeat

message—is received from the primary within a given time-

frame. In case of failure, the secondaries then elect a new

primary using a distributed consensus protocol. The new

primary and the remaining secondaries replay all TX in the

durable redo log for which they have not yet received the

multicast log. Once the primary replayed these TX, it is

active and can process new TX. It is thus recommendable

to chose the new primary depending on the number of TX it

has to replay, i.e., to choose the secondary with smallest dif-

ference between its LSN and the LSN of the durable redo log.

Further, if a secondary using a row-store layout exists, this

node should be preferred over nodes using a column-store

layout. However, for our main memory database system

HyPer, TPC-C TX processing performance only decreases

by about 10% using a column- compared to a row-store lay-

out. In conclusion, ScyPer is designed to handle a failure of

its primary node within a very short period of time.

3. RELATED WORK
Oracle’s Change Data Capture (CDC) system [7] allows to

continuously transfer updates of the OLTP database to the

data warehouse. Instead of periodically running an extract-

transform-load phase, CDC allows changes to be continu-

ally captured in the warehouse. As in ScyPer, changes can

be sni↵ed from the redo log to minimize the load on the

OLTP database. In contrast to CDC, ScyPer, however,

multicasts the redo log directly from the primary to sub-

scribed secondaries, which allows updates to be propagated

with a µs latency in modern high-speed network infrastruc-

tures. Further, being an in-core database, ScyPer allows

unprecedented transaction and query processing speeds that

are unachieved by current commercial solutions. As ScyPer

consolidates the transactional database and the data ware-

house in a true hybrid OLTP&OLAP solution, secondaries

can further act as failovers for the primary. This is com-

parable to Microsoft’s SQL Server AlwaysOn solution [4],

which allows multiple SQL Server instances to be running

as backups that can take over quickly in case of a failure.

ScyPer di↵ers from traditional data warehousing by not

relying on materialized views, which are commonly used to

speed up query processing. In-core processing of queries

allows clock-speed scan performance, which in turn makes a

high query throughput and superior response times possible.

4. CONCLUSION AND OUTLOOK
In this work we have shown that ScyPer, a scaled-out ver-

sion of the HyPer in-core database system, is indeed able

to sustain the superior OLTP throughput of a single HyPer

server while providing elastic OLAP throughput by provi-

sioning additional servers on-demand. OLAP queries are

thereby executed on global TX-consistent snapshots of the

transactional state. We have shown that ScyPer’s snapshot-

ting mechanism guarantees order-preserving serializability

and further prevents the problem of diverging reads in a

distributed setting. Secondary nodes are e�ciently kept up-

to-date using a redo log propagation mechanism based on

reliable multicasting. In case of a primary node failure, these

secondaries act as high availability failovers.

In the future we plan to extend ScyPer’s query engine

to handle distributed queries on fragmented transactional

data sets. Further, our evaluation has revealed that careful

resource management is crucial for high-performance hybrid

query and transaction processing.

5. REFERENCES
[1] R. Cole et al. The mixed workload CH-benCHmark.

In DBTest, 2011.

[2] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,

A. Rasin, S. Zdonik, E. Jones, et al. H-store: a

high-performance, distributed main memory

transaction processing system. PVLDB, 1(2), 2008.

[3] A. Kemper and T. Neumann. HyPer: A hybrid

OLTP&OLAP main memory database system based

on virtual memory snapshots. In ICDE, 2011.

[4] Microsoft. SQL Server: High Availability. http:

//microsoft.com/en-us/sqlserver/solutions-technologies/

mission-critical-operations/high-availability.aspx.

[5] H. M

¨

uhe, A. Kemper, and T. Neumann. The

mainframe strikes back: elastic multi-tenancy using

main memory database systems on a many-core

server. In EDBT, 2012.

[6] Oracle. SPARC M5-32 Server.

http://www.oracle.com/us/products/servers-storage/servers/

sparc/oracle-sparc/m5-32/overview/index.html.

[7] Oracle 11g: Change Data Capture. http:

//docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm.

[8] PGM Reliable Transport Protocol Specification.

http://tools.ietf.org/pdf/rfc3208.

[9] H. Plattner and A. Zeier. In-Memory Data
Management: An Inflection Point for Enterprise
Applications. Springer, 2011.

[10] G. Weikum and G. Vossen. Transactional Information
Systems. Morgan Kaufmann, 2002.

15

http://microsoft.com/en-us/sqlserver/solutions-technologies/mission-critical-operations/high-availability.aspx
http://microsoft.com/en-us/sqlserver/solutions-technologies/mission-critical-operations/high-availability.aspx
http://microsoft.com/en-us/sqlserver/solutions-technologies/mission-critical-operations/high-availability.aspx
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m5-32/overview/index.html
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m5-32/overview/index.html
http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm
http://tools.ietf.org/pdf/rfc3208

