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SD-RSIC: Summarization Driven

Deep Remote Sensing Image Captioning
Gencer Sumbul, Graduate Student Member, IEEE, Sonali Nayak, and Begüm Demir Senior Member, IEEE

Abstract—Deep neural networks (DNNs) have been recently
found popular for image captioning problems in remote sensing
(RS). Existing DNN based approaches rely on the availability
of a training set made up of a high number of RS images with
their captions. However, captions of training images may contain
redundant information (they can be repetitive or semantically
similar to each other), resulting in information deficiency while
learning a mapping from the image domain to the language
domain. To overcome this limitation, in this paper, we present a
novel Summarization Driven Remote Sensing Image Captioning
(SD-RSIC) approach. The proposed approach consists of three
main steps. The first step obtains the standard image captions
by jointly exploiting convolutional neural networks (CNNs) with
long short-term memory (LSTM) networks. The second step,
unlike the existing RS image captioning methods, summarizes
the ground-truth captions of each training image into a single
caption by exploiting sequence to sequence neural networks
and eliminates the redundancy present in the training set. The
third step automatically defines the adaptive weights associated
to each RS image to combine the standard captions with the
summarized captions based on the semantic content of the
image. This is achieved by a novel adaptive weighting strategy
defined in the context of LSTM networks. Experimental results
obtained on the RSCID, UCM-Captions and Sydney-Captions
datasets show the effectiveness of the proposed approach com-
pared to the state-of-the-art RS image captioning approaches.
The code of the proposed approach is publicly available at
https://gitlab.tubit.tu-berlin.de/rsim/SD-RSIC.

Index Terms—Image captioning, caption summarization, deep
learning, remote sensing.

I. INTRODUCTION

THE new generation of remote sensing (RS) sensors char-

acterized by very high geometrical resolution can acquire

images with sub-metric spatial resolution. Thus, the significant

amount of geometrical details can be presented in very high

resolution RS image scenes. Accordingly, one of the most

important applications is the RS image captioning, which aims

at automatically assigning descriptive sentences (i.e., captions)

to RS image scenes by accurately characterizing their semantic

content. Recent studies in RS have shown that deep neural

networks (DNNs) are capable of generating accurate image

captions for RS images due to their ability to model a mapping

from the high-level semantic content of RS images in image

domain into the descriptive captions in language domain [1].
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DNN based encoder-decoder framework is one of the most

effective methods for RS image captioning. Within this frame-

work, image captioning is achieved based on two steps. In

the first step, convolutional neural networks (CNNs) are used

to extract image features, while in the second step recurrent

neural network (RNN) based sequential approaches are used

as a natural language model to generate a caption for each

image based on the image features. The overall framework is

considered as an encoder-decoder neural network where the

encoder (CNN) takes an image as input and generates the cor-

responding encoded features, whereas the decoder generates a

caption for the image based on the features. Then, the neural

network trained on image-caption pairs can automatically

generate a caption for a new image. Accordingly, in [2], CNNs

and RNNs are employed to generate captions by combining

image features of very high resolution RS images with the

associated captions. In detail, pre-trained CNN models on

a widely used computer vision dataset (i.e., ImageNet) are

used to extract image features, while long-short term memory

(LSTM) networks are utilized to sequentially characterize the

image captions. In this study, two image captioning datasets

are introduced as the first time in RS to evaluate the success

of RS image captioning approaches. In [3], a conventional

template-based method is presented in the context of RS

image captioning for the cases where the number of RS

images annotated with captions is not sufficient. This method

represents RS images with a combination of ground elements,

their attributes and relations that derive a language template.

In detail, a fully convolutional network is introduced for

the detection of multi-level ground elements, while captions

are generated based on the predefined templates. In [4], the

largest RS image captioning dataset, which is called RSICD,

is introduced. In this study, traditional hand crafted features

are compared with the features extracted through different

CNN models in the context of RS image captioning, while

the caption generation strategy introduced in [2] is used. A

Collective Semantic Metric Framework (CSMLF) that models

the common semantic space of RS images and their captions is

recently introduced in [5]. In detail, CSMLF maps the GloVe

based representations of image captions and the image features

from a pre-trained CNN model into a common semantic space

with a metric learning strategy. Then, the distance between a

new image and all captions in the common space is computed

to generate a new caption. In [6], an attribute attention

strategy that exploits the correlation between image regions

and generated caption words is integrated into the standard

encoder-decoder approach to further improve the semantic

content characterization of images. In this approach, fully
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connected (FC) layers of a CNN are considered to characterize

the image attributes, while convolutional layers are employed

to obtain image features. The caption generation is achieved

by using LSTMs (where the log likelihood of generating a

caption word by word is maximized given the previous words),

the image feature and corresponding image attributes. We

would like note that although only a few DNN based RS

image captioning approaches are proposed in RS literature,

this research field has been extensively studied in computer

vision. As an example, the above-mentioned encoder-decoder

framework that jointly employs CNNs and RNNs for image

captioning is initially introduced in [7] as the first time. In [8],

an attention mechanism is employed to characterize where or

what to look in images to generate their captions. In [9], topic

embeddings are first extracted from a CNN-based multi-label

classifier and then used with image features in an LSTM-based

language model to generate topic-oriented image captions. We

refer the readers to [10] for a detailed review of DNN based

image captioning approaches introduced in computer vision.

Most of the existing DNN based approaches in the context

of RS image captioning rely on the availability of a training

set, which consists of very high resolution RS images with

their captions (which accurately describe the semantic content

of images). Due to the complexity of learning in RS image

and language domains, multiple captions are usually assigned

to each training image to effectively and efficiently learn an

image captioning model. Although each RS image is expected

to be ideally described with different captions, each of which

embodies different information of the image, a training set

may contain redundant information through multiple captions.

As an example, in the existing benchmark image captioning

datasets (e.g., RSICD, Sydney-Captions and UCM-Captions),

most of the RS images are associated with repetitive captions

or similar captions with small differences. This can cause

the information deficiency while learning a mapping from the

image domain to the language domain. Redundant information

in training sets may also lead to over-fitting in training, which

reduces the generalization capability of image captioning

models and thus causes poor image captioning performance.

None of the existing DNN based approaches in RS take

into account the above-mentioned problems. Thus, if a DNN

model is trained on image caption pairs that include redundant

information, existing captioning methods in RS may provide

insufficient captioning performance.

To overcome this limitation, in this paper, we introduce a

novel Summarization Driven Remote Sensing Image Caption-

ing (SD-RSIC) approach. The SD-RSIC aims at: i) learning

to summarize image captions learned on large text corpora;

and then ii) integrating it with the learning procedure of

the captioning task to guide the whole training process. To

this end, the proposed approach is made up of three main

steps: 1) generation of standard captions; 2) summarization

of ground-truth captions; and 3) integration of summarized

captions with standard captions. In the first step, CNNs and

LSTMs are jointly used as in the literature works for learning

of standard image captions based on image features. In the

second step, unlike the existing methods, we propose to exploit

a sequence-to-sequence DNN model to summarize ground-

truth captions of each image into a single caption. Due to this

step, the proposed SD-RSIC approach is capable of eliminating

redundant information present in captions, while enhancing

the word vocabulary that provides more detailed captions

for semantically complex RS images. In the third step, to

integrate the summarized captions with the standard captions,

the vocabulary word probabilities of standard captions are

combined with those of the summarized captions based on

the image features by a novel adaptive weighting strategy in

the framework of LSTMs. This step reduces the risk of over-

fitting during training, and thus improves the generalization

capability of the whole approach. The novelty of the pro-

posed approach consists in: 1) summarization of ground-truth

captions into single caption per RS image to eliminate the

redundancy present in the ground-truth captions; 2) integration

of the summarized captions with standard captions by an adap-

tive weighting strategy; and 3) exploiting the summarization

approach that guides whole training procedure.

The rest of the paper is organized as follows: Section

II provides the formulation of the image captioning task

and introduces the proposed SD-RSIC approach. Section III

describes the considered datasets, while Section IV provides

the experimental results. Section V concludes our paper.

II. PROPOSED SUMMARIZATION DRIVEN REMOTE

SENSING IMAGE CAPTIONING (SD-RSIC) APPROACH

In this section, we first formulate the RS image captioning

task, and then explain our Summarization Driven Remote

Sensing Image Captioning (SD-RSIC) approach. Let I =
{I1, . . . , IM} be an archive that consists of M images, where

Ii is the ith image. We assume that a training set T ⊂ I of

images, each of which is annotated with one or more captions,

is initially available. Let Ci = {ci,j}
Ni

j=1 be the caption set

associated with the ith image Ii, where ci,j is the jth caption of

the set Ci and Ni is the number of considered captions. Each

caption of the set Ci can be formulated as the set of ordered

words ci,j = {wk}
Li,j

k=1, where wk is the kth word in the caption

and Li,j is the length of the caption ci,j . The image captioning

task aims to learn a function F (I∗; θ) that assigns a descriptive

caption to a new image I∗. To this end, the parameters of the

function can be learned by maximizing the log probability of

the ground-truth captions for each (Ii, Ci) training instance

pair as follows:

θ∗ = argmax
θ





|T |
∑

i=1

Ni
∑

j=1

Li,j
∑

k=1

logP (wk|w1:k−1, Ii; θ)



 (1)

where θ is the whole parameter set of the function and

P (wk|w1:k−1, Ii; θ) is the probability of the kth word wk,

which is conditioned on the previous words of the caption ci,j
and the image Ii. Then, the caption of the image I∗ can be ob-

tained by estimating the probabilities of corresponding words

P (w∗
k|w

∗
1:k−1, I

∗; θ∗) with learned parameters. Conventional

image captioning approaches in deep learning are based on

encoder-decoder architectures for which the semantic content

of RS images is encoded to facilitate the caption generation.

Learning image-caption mapping generally requires describ-

ing each image with many captions in the training set since



3

Final Caption Generation
Step 2: Summarization of Ground-Truth Captions

Step 3: Integration of Summarized Captions with Standard Captions

Caption 
Decoding

Adaptive 
Weighting 
Strategy

Some buildings and many green trees 
are in a medium residential area.

1) On both sides of the 
road were rows of gray 
roofs; 2) On both sides of 
the road were rows of gray 
roofs; 3) There are many 
cars on the road; 4) There 
are many cars on the road; 
5) There are many cars on 
the road.

Summarization 
Decoding

Caption 
Encoding

Image 
Encoding

Step 1: Generation of Standard Captions

0

1

0

1

Fig. 1. The proposed Summarization Driven Remote Sensing Image Captioning (SD-RSIC) approach.

by this way caption and image semantics can be accurately

associated. However, the captions can share very similar

semantics or include a large number of same words with

similar orders. The disadvantages of redundant information

present in ground-truth captions are twofold. First, this can

cause the information deficiency during the learning process.

Second, redundancy present in the captions can lead to over-

fitting in training, which reduces the generalization capability

of captioning models and thus causes poor image caption-

ing performance. To address these problems, the proposed

SD-RSIC approach is characterized by three main steps: 1)

generation of standard captions; 2) summarization of ground-

truth captions; and 3) integration of summarized captions with

standard captions. The first step is based on the widely used

learning method that jointly exploits CNNs and LSTMs for

the image captioning problems. The novelty of the proposed

SD-RSIC approach relies on the last two steps. In the second

step, we propose to exploit sequence-to-sequence DNN models

for the summarization of ground-truth image captions to

eliminate the redundant information. In the third step, we

introduce a novel adaptive weighting strategy to accurately

define the weights for integrating the summarized captions

with the standard captions according to the image features.

Fig. 1 presents a general overview of the proposed SD-RSIC

approach and each step is explained in the following sections.

A. Step 1: Generation of Standard Captions

This step aims at generating consecutive words in a mean-

ingful order that characterizes the standard image captions

based on the image features. To this end, similar to the

literature works in RS (e.g., [4]), we utilize: i) CNNs to

capture the high level semantic content of RS images; and

ii) LSTMs to learn a mapping between the image features

and consecutive word embeddings by sequentially modeling

the language semantics. Let φ be any type of CNN. For a

given image Ii, φ(Ii) provides a feature vector (i.e., image

descriptor) to model the content of the image. In order to map

the extracted feature vector to a common space with image

captions, the extracted feature vector is given as input to a FC

layer, which provides the final image embedding ei having the

dimension of W . After the characterization of image features,

an LSTM network produces a word at each time step based

on the previous LSTM states and the word predictions to

sequentially capture word semantics, while relying on the

image features. At the beginning of the sequence, the image

embedding ei is fed into the LSTM network that performs

as the initial input of the sequence to affect the following

word predictions. To start the caption sequence, we employ

the special start token w0 for all captions. Word generation is

repeated until the special end token we reaches to the network.

To this end, we represent each word as a one-hot vector of

dimension |V |, where V is the vocabulary set including all

unique words. In order to encode semantic similarity in words,

we apply mapping from the one-hot vector representation into

a real-valued embedding of words with the dimension of W

as follows:

uk = Ewk, wk ∈ V (2)

where E is the word embedding matrix with the size of W ×
|V |. The LSTM network of this step exploits word embedding
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There are road

LSTM
Cell

LSTM
Cell

LSTM
Cell

START

There are ENDmany

Fig. 2. The first step of the SD-RSIC approach. The LSTM network used for
this step is represented as unrolled, showing the input and output of a time
step in the sequence.

and previous information of the sequence at each time step as

follows:

fk = δ(Wf,uuk +Uf,hh
c
k−1 + bf )

ik = δ(Wi,uuk +Ui,hh
c
k−1 + bi)

ok = δ(Wo,uuk +Uo,hh
c
k−1 + bo)

cck = fk ⊙ cck−1 + ik ⊙ tanh(Wc,uuk

+Uc,hh
c
k−1 + bc)

hck = ok ⊙ tanh(cck)

(3)

where W
.

and b
.

are the weight and bias parameters, respec-

tively. tanh and δ are the hyperbolic tangent and sigmoid

functions, and i, f , o and c are input gate, forget gate, output

gate and cell state, respectively (for a detailed explanation,

see [11], [12]). At the beginning of the sequence, cc0 and hc0
are randomly initialized. Then, we obtain word probabilities

at each time step with softmax function following to a classi-

fication layer as follows:

P c
k (V |w1:k−1, Ii; θ) = σ(Wp,hh

c
k + bp) (4)

where σ is the softmax function and Wp,h and bp are the

weight and bias parameters of a FC layer. P c
k (V |w1:k−1, Ii; θ)

denotes the probability distribution of all vocabulary words

produced at the kth time step of the corresponding LSTM

network. This step is illustrated in Fig. 2.

B. Step 2: Summarization of Ground-Truth Captions

This step aims to summarize the ground-truth captions of

RS images. The summarized captions guide the whole training

process of the proposed SD-RSIC approach. To this end, we

propose to adapt the automatic summarization task of natural

language processing literature into the image captioning prob-

lem. The summarization task is defined as condensing a text to

a shorter version that contains the most important information.

In our approach, we exploit pointer-generator DNNs [13] as a

special type of sequence-to-sequence neural networks. To this

end, we consider to train the pointer-generator model on news

articles to automatically extract headlines. Then, we exploit the

model for summarizing ground-truth captions in our approach.

To this end, we stack all corresponding captions of each

RS image as a single text to summarize them into single

caption. Then, all words of stacked captions are embedded

as in (2) and fed into the pre-trained model. Two recurrent

neural networks sequentially encode the stacked captions and

decode them to generate a summarized caption in order. In

addition, pointer-generator structure decides the probability of

generating words from the vocabulary versus copying from all

captions. This allows an accurate reproduction of information,

while retaining the ability to produce novel words through the

generator (for a detailed explanation, see [13]). Let ψ be the

pre-trained summarization network, ψ({ci,j}
Ni

j=1) produces the

word probabilities of the vocabulary P s
k (V |{ci,j}

Ni

j=1) at the

kth time step.

Due to the summarization of ground-truth captions, the

proposed SD-RSIC approach is capable of eliminating redun-

dant information present in the multiple captions associated

with each training image by condensing all captions into a

single caption that captures the most significant information

content. In addition, the summarization model is pre-trained

on a dataset whose vocabulary is excessively larger than any

RS image captioning dataset. In this way, our approach uses

significantly bigger vocabulary (which is also used in all steps

of the SD-RSIC) compared to existing approaches. Using

enriched vocabulary increases the capability of our approach

to generate more detailed captions for semantically complex

RS images.

C. Step 3: Integration of Summarized Captions with Standard

Captions

This step aims to define a final caption for each image by

reducing the limitations of redundant information in ground-

truth captions, while providing the detailed language seman-

tics. To this end, we propose to integrate the standard caption

of each image with its summarized caption based on a novel

adaptive weighting strategy. The proposed strategy employs an

LSTM network, which automatically characterizes the weights

for combining the vocabulary word probabilities of standard

captions with those of the summarized captions at each time

step. Initial cell state ca0 and hidden state ha0 of the LSTM

network are randomly initialized, and then the LSTM takes

the final image embedding ei as input at each time step.

Then, a single weight score hat is produced as in (3) at each

time step based on the previous cell states and the image

embedding. To normalize the scores to the range of [0, 1], we

apply sigmoid function to obtain the final weights {αk}
Ni

k=1

for the RS image Ii. Then, final word probability distribution

at time step k is obtained by the weighted combination of the

word probabilities of standard captions (which is obtained in

the first step) and those obtained in the second step as follows:

Pk(V ) = αk×P
c
k (V |w1:k−1, Ii)+(1−αk)×P

s
k (V |Ci). (5)

If there is no corresponding output in the first or second step

at the kth time step, we apply zero-padding to the shorter

output. After obtaining the probabilities for all time steps, we
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achieve the final caption by selecting the words leading to

the highest probabilities. Since the learning of the weights is

achieved based on the image features, weights are adaptive

depending on the content of the images, i.e., different weights

are assigned to different images. Due to the proposed adaptive

weighting strategy, the proposed SD-RSIC approach is capable

of exploiting the summarized captions to guide the training of

the whole neural network. With this guidance, the training

procedure is less affected by the redundancy present in the

ground-truth captions. This process: i) reduces the risk of

over-fitting and thus increases the generalization capability of

the SD-RSIC; and ii) thus leads to a more effective learning

procedure and more accurate RS image captions.

For the training of the proposed SD-RSIC approach, we

use the stochastic gradient descent based optimization to

maximize the log probability of the ground-truth captions for

each (Ii, Ci) training instance using (1). After learning model

parameters, the proposed approach automatically generates a

caption for a new RS image. This process does not require any

ground-truth caption since the summarization of ground-truth

captions is only applied in the training stage. It is worth noting

that finding the optimal word sequence is computationally

expensive during the inference due to a large number of

possible output sequences. Thus, we utilize the beam search

algorithm with a beam size of four to acquire the best word

sequence. This algorithm iteratively considers the set of best

captions up to kth time step to produce the captions for the

time step of k + 1. However, it keeps only some of them

depending on the beam size parameter value.

We would like to note that the summarized and standard

captions can be semantically different (mainly due to possible

differences between the lengths of the captions). However,

since the adaptive weights of the words are iteratively learned,

the proposed approach is not significantly affected by the

possible semantic differences between the summarized and

the standard captions. In detail, when the optimization process

converges, the weights become more adapted to compensate

the semantic differences between the summarized and the

standard captions. In addition, iteratively learning the weights

also forces generated weights and the standard captions to be

in the same semantic order.

III. DATASETS AND EXPERIMENTAL SETUP

In this section, we first describe the datasets used in the

experiments and then present the experimental setup with the

description of the baseline approaches.

A. Dataset Description

To evaluate our approach, we performed experiments on

the Sydney-Captions [2], UCM-Captions [2] and RSICD [4]

datasets. In addition, we utilized the Annotated Gigaword

dataset [14], [15] for the second step of the proposed SD-

RSIC approach.

The Sydney-Captions dataset includes 613 images, each of

which has the size of 500×500 pixels with a spatial resolution

of 0.5 meters. This dataset was built based on the Sydney

scene classification dataset [16], which includes RS images

1. A red church is near several buildings.
2. A red church is near several buildings.
3. A red church is near several buildings.
4. A red church is near several buildings.
5. A red church is near several buildings.

1. Two storage tanks arranged neatly with a 
house beside.

2. Two storage tanks and a red house are 
surrounded by plants.

3. Two storage tanks and a red house are 
surrounded by plants.

4. There are two storage tanks with a red 
house surrounded by plants.

5. There are two storage tanks with a house 
beside and surrounded by plants.

1. Many buildings with white and red roofs 
arranged densely in the industrial area.

2. An industrial area with many buildings 
of white and red roofs and a lawn beside.

3. There is a lawn beside the industrial area.
4. There are many buildings with red and 

white roofs arranged densely while a 
lawn beside.

5. An industrial area with many white and 
red buildings while a lawn beside.

UCM-Captions Dataset

Sydney-Captions Dataset

RSCID Dataset

Fig. 3. An example of RS images with their ground-truth captions selected
from the UCM-Captions (top), the Sydney-Captions (middle) and the RSICD
(bottom) datasets.

TABLE I
AN EXAMPLE OF ARTICLE-HEADLINE PAIRS IN THE ANNOTATED

GIGAWORD DATASET

Article Headline

A fire on a freight shuttle in the channel tunnel on
thursday forced an emergency rescue operation
and the closure of the tunnel, officials said.

Fire closes channel
tunnel

World oil prices rose in asian trade thursday as
hurricane ike headed towards key energy facilities
on the southern us coast, dealers said.

Oil prices up in asia
on hurricane fears

annotated with one of the seven land-use classes. Each image

in the Sydney-Captions dataset was annotated by the five

captions, providing 3065 captions in total. The UCM-Captions

dataset includes 2100 aerial images, each of which has a

size of 256×256 pixels with a spatial resolution of one foot.

This dataset is defined based on the UC Merced Land Use

dataset [17], in which each image is associated with one of

21 land-use classes. Each image in the UCM-Captions dataset

was annotated with five captions, resulting in 10500 captions

in total. Although five captions per image are considered,

captions belonging to the same classes are very similar in both

datasets. Both the Sydney-Captions and the UCM-Captions

datasets were initially built for scene classification problems

with a small number of images. The RSICD is currently the

largest RS image captioning dataset, including 10921 images

in total with the size of 224×224 pixels with varying spatial

resolutions. In this dataset, each image is described with



6

a different number of captions [4]. In detail, 724 images

have five different captions, 1495 images have four different

captions, 2182 images have three different captions, 1667

images have two different captions and 5853 images have only

one caption. As mentioned in [4], the number of captions was

augmented in cases where images are described with less than

five captions by randomly duplicating the existing captions.

This leads to 54605 captions in the dataset. Fig. 3 shows an

example of images and their captions for all considered RS

image captioning datasets. The Annotated Gigaword dataset

is a corpus of article-headline pairs that consists of nearly 10

million documents with a total of more than 4 billion words

sourced from various news services. Instead of using the whole

corpus, we follow the same removal and pre-processing steps

presented in [18] that results in around 4 million articles. Table

I shows an example of article-headline pairs in this dataset.

B. Experimental Setup

To perform the experiments, we split each considered

dataset into training (80%), validation (10%) and test (10%)

sets as suggested in the papers that the datasets were intro-

duced ( [2], [4]). All hyper-parameters were obtained based

on the RS image captioning performance on the validation

set. In the training sets of all datasets, there are five captions

per image. Thus, we replicated each image five times to

compose image-caption pairs of training. For the Annotated

Gigaword dataset, we initially used the same training set

splitting with [18] that results in 110,000 unique words, which

is significantly higher than any vocabulary size within the RS

captioning datasets. Then, we changed the vocabulary set of

captioning datasets, since they do not contain all the words

from the summarization vocabulary, and thus might miss

several words when we summarize the five captions to one

using the summarization model. Accordingly, we constructed

a new common vocabulary set, which is used in all the

steps of our approach. To this end, we selected 50000 words

that include all the words from the Sydney-Captions, UCM-

Captions and RSICD datasets and the list of most appearing

words in the Annotated Gigaword dataset.

Before training our approach, we trained the pointer-

generator network for summarization by following the same

hyper-parameters presented in [13]. Then, we combine the

pre-trained model with our approach. In addition, we also

utilized the existing CNN models, which are pre-trained on

the ImageNet for the feature extractor φ in the first step of

the SD-RSIC. To select the CNN model for each dataset, φ

is tested among the CNNs of the VGG [19], GoogleNet [20],

InceptionV3 [21], ResNet [22] and DenseNet [23] models.

We would like to note that we did not apply fine-tuning to

the parameters of pre-trained models during the training of

our approach. The extracted image features are mapped to the

embedding space, whose dimension is the same as the word

embedding dimension. In the experiments, the value of the

embedding size W is varied as W = 128, 256, 512, 1024.

However, for the selection of φ, the value of the embedding

size is fixed to 512. In the first and third steps of our approach,

we exploited the LSTM networks with W and 1 dimensional

hidden states, respectively. We trained our approach with the

learning of 10−3, which decays by 20% if there are eight

consecutive epochs without any improvement on the validation

set performance. The training was conducted on NVIDIA

Tesla V100 GPUs. To assess the effectiveness of the second

and the third steps of the proposed approach, we considered a

scenario for which these steps are neglected and only the first

step of the proposed approach is applied. For this scenario,

we randomly selected a single caption for each image in the

training sets of all the considered datasets. It is denoted as

Step 1 (Single Caption) in the experiments. To assess the

effectiveness of the different steps of the proposed approach

in terms of computational complexity, we provided the total

number of parameters and floating-point operations associated

to the different steps of the proposed approach.

In the experiments, we compared our approach with: 1) the

cosine distance matching between the bag-of-words represen-

tation of image captions and the CNN features of images

(which is denoted as BoW+CNN); 2) the cosine distance

matching between the Deep Visual-Semantic Embedding (De-

ViSE) [24] of image captions and the CNN features of

images (which is denoted as DeViSE+CNN); 3) the Collective

Semantic Metric Learning Framework (CSMLF) [5]; and 4)

the Neural Image Caption (NIC) [7]. RS image captioning

accuracies of the BoW+CNN, DeViSE+CNN and CSMLF on

each dataset were obtained in [5] by utilizing the ResNet

model at the depth of 50 (ResNet50) as the feature extractor for

RS images. Since the results were obtained by using the same

sets with our approach, we did not repeat the corresponding

experiments. For the NIC, which is one of the widely used

state-of-the-art RS image captioning approaches, we applied

the same CNN and caption generation procedure as the first

step of our approach for each experiment of the NIC to fairly

compare it with the proposed SD-RSIC approach.

Results of each experiment are provided in terms of four

performance evaluation metrics: 1) the Bilingual Evaluation

Understudy (BLEU) [25], 2) the Meteor Universal (ME-

TEOR) [26], 3) the Longest Common Subsequence-Based F-

Measure of Recall-Oriented Understudy for Gisting Evaluation

(ROUGE-L) [27] and 4) the Consensus-Based Image Descrip-

tion Evaluation (CIDEr) [28].

BLEU is not only the oldest but also the most well-known

metric used for sentence similarity measurement. It mea-

sures the closeness of machine translation with one or more

reference human translation according to numerical metrics

that is proposed in [25]. It compares n-grams of machine

generated captions with the n-grams of ground-truth captions

and then counts the number of matches. Thus, the score is

better if machine translation is closer to human translation. It is

calculated by finding the geometric mean of n-gram precision

scores as follows:

BLEU-n = BP × e(
∑

NB

n=1
wB

n logPB
n ) (6)

where PB
n and wB

n are the precision and weights of n-grams.

It further applies brevity penalty BP for short sentences as

follows:

BP =

{

1 if lc > lr
e(1−lr/lc) if lc ≤ lr

(7)
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TABLE II
IMAGE CAPTIONING PERFORMANCE ON THE SYDNEY-CAPTIONS DATASET WHEN USING DIFFERENT CNN MODELS FOR THE PROPOSED SD-RSIC

APPROACH

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VGG16 72.4 62.1 53.2 45.1 34.2 63.6 139.5

VGG19 73.4 63.1 55.2 48.7 34.8 64.1 160.3

GoogleNet 71.5 60.5 51.1 42.2 33.3 62.8 130.6

InceptionV3 73.3 62.6 54.5 47.7 35.1 62.9 143.9

ResNet34 73.0 62.9 54.4 46.8 34.3 63.7 137.6

ResNet50 71.6 59.2 49.1 39.8 32.0 61.6 108.7

ResNet101 76.1 66.6 58.6 51.7 36.6 65.7 169.0

ResNet152 73.3 61.9 51.7 42.5 31.8 62.0 114.6

DenseNet121 73.6 63.4 55.2 47.8 34.9 63.8 138.9

DenseNet169 73.0 63.2 54.6 46.7 34.1 62.9 140.2

DenseNet201 71.8 61.6 53.2 45.3 33.3 62.4 137.8

where lc and lr are the lengths of the candidate and ground-

truth captions, respectively.

METEOR is based on word-to-word matching scores. For

the multiple ground-truth captions, the score is calculated with

respect to each caption and the best score is considered only.

First, an F -Score (FM ) is calculated based on the word-to-

word matching precision (PM ) and recall (RM ) scores as

follows:

FM =
10× PM ×RM

RM + 9× PM
. (8)

Then, METEOR is calculated as follows:

METEOR = FM × (1−
0.5× |Chunks|

|Matched Words|
) (9)

where chunk is defined as a series of contiguous and identi-

cally ordered matches among the candidate and ground-truth

captions.

ROUGE-L considers the longest common sub-sequence

(LCS) between a pair of candidate and ground-truth captions.

It is a type of F -Score based on the precision (PL) and recall

(RL) scores of LCS results as follows:

RL =
|LCS|

lr

PL =
|LCS|

lc

ROUGE-L =
(1 + β2)×RL × PL

RL + β2 × PL
.

(10)

CIDEr considers a consensus of how often the n-grams in

a candidate caption is present in ground-truth captions. It also

considers the n-grams, which are not present in the ground-

truth captions and should not be presented in the candidate

caption [28]. To this end, it is calculated based on the Term

Frequency Inverse Document Frequency (TF-IDF) weighting

for each n-gram as follows:

CIDErn =
1

m

∑

j

gn(c∗i ) · g
n(ci,j)

||gn(c∗i )|| ||g
n(ci,j)||

CIDEr =

N
∑

n=1

wB
n CIDErn

(11)

where c∗i and ci,j are the candidate and ground-truth captions,

respectively and gn is a function that provides the vector of

all n-grams of length n.

IV. EXPERIMENTAL RESULTS

We carried out different kinds of experiments in order to: 1)

perform a sensitivity analysis; and 2) compare the effectiveness

of the proposed SD-RSIC approach with the state-of-the-art

image captioning approaches.

A. Sensitivity Analysis of the Proposed Approach

In this sub-section, we perform the sensitivity analysis of

the proposed SD-RSIC approach in terms of: i) different CNN

models utilized in the first step; ii) different embedding size

used for image features and captions; iii) the effectiveness of

the second and third steps; iv) the computational complexity

associated to the different steps; and v) the sensitivity to zero-

padding operation applied in the third step.

In the first set of trials, we analyzed the effect of different

CNN models (the VGG model at the depths of 16 and 19 layers

[VGG16, VGG19], the GoogleNet model, the InceptionV3

model, the ResNet model at the depths of 34, 50, 101 and

152 layers [ResNet34, ResNet50, ResNet101, ResNet152] and

the DenseNet model at the depths of 121, 169 and 201 layers

[DenseNet121, DenseNet169, DenseNet201]) in the first step

of the proposed approach in terms of the image captioning per-

formance. Table II shows the results for the Sydney-Captions

dataset. By assessing the table, one can observe that the

ResNet model at the depth of 101 layers leads to the highest

scores under all metrics compared to the other CNNs. As an

example, the ResNet101 provides almost 5% higher BLEU-

1, more than 6% higher BLEU-2, almost 8% higher BLEU-3,

more than 9% higher BLEU-4 and almost 3% higher ROUGE-

L scores compared to the GoogleNet model. In detail, most

of the CNN models (except ResNet101) achieve similar scores

on the Sydney-Captions dataset under all metrics regardless of

their depth. As an example, the VGG model at the lowest depth

in considered CNNs (VGG16) provides less than 1% higher

BLEU-1 and almost the same BLEU-4 scores compared to
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TABLE III
IMAGE CAPTIONING PERFORMANCE ON THE UCM-CAPTIONS DATASET WHEN USING DIFFERENT CNN MODELS FOR THE PROPOSED SD-RSIC

APPROACH

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VGG16 74.8 66.4 59.8 53.8 39.0 69.5 213.2

VGG19 73.4 65.2 58.3 52.2 37.0 67.9 208.0

GoogleNet 74.6 65.3 58.3 52.6 37.8 67.5 214.9

InceptionV3 69.4 59.1 51.6 45.6 33.4 62.2 173.4

ResNet34 73.3 63.6 56.0 49.6 36.2 66.2 197.1

ResNet50 74.3 65.4 58.2 51.5 35.8 66.7 205.7

ResNet101 72.2 63.3 56.1 49.9 36.3 66.7 199.8

ResNet152 71.4 62.5 55.3 49.2 36.3 65.8 197.8

DenseNet121 72.6 63.1 55.6 49.1 35.7 65.8 196.7

DenseNet169 74.7 65.3 58.1 51.8 37.5 68.1 202.8

DenseNet201 73.1 63.5 56.2 49.8 35.3 65.3 195.5

TABLE IV
IMAGE CAPTIONING PERFORMANCE ON THE RSICD DATASET WHEN USING DIFFERENT CNN MODELS FOR THE PROPOSED SD-RSIC APPROACH

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VGG16 64.5 47.1 36.4 29.4 24.9 51.9 77.5

VGG19 64.8 47.3 36.5 29.3 25.1 51.8 76.5

GoogleNet 63.7 45.7 34.9 28.0 24.4 51.0 73.6

InceptionV3 62.8 45.0 34.3 27.3 23.8 50.7 71.8

ResNet34 63.5 46.0 35.2 28.2 24.2 51.1 73.8

ResNet50 64.9 47.2 36.5 29.5 24.9 52.0 77.3

ResNet101 63.1 45.8 35.4 28.7 24.1 51.2 75.4

ResNet152 64.4 47.4 36.9 30.0 24.9 52.3 79.4

DenseNet121 63.2 46.2 35.8 28.8 24.5 51.4 75.7

DenseNet169 64.3 46.5 35.7 28.5 24.4 51.2 75.9

DenseNet201 62.5 45.7 35.1 28.1 24.0 51.3 74.2

the DenseNet model at the highest depth among all CNNs

(DenseNet201). The image captioning results for the UCM-

Captions dataset is given in Table III. By analyzing the table,

one can see that the VGG model at the depth of 16 layers

(VGG16) provides the highest scores under all metrics except

CIDEr. As an example, the VGG16 provides more than 5%
higher BLEU-1, more than 8% higher BLEU-4 and more than

7% higher ROUGE-L scores compared to the InceptionV3.

However, only under CIDEr metric, the VGG16 leads to less

than 2% lower score compared to the highest score obtained

by the GoogleNet model. In detail, the InceptionV3 provides

the lowest scores under all metrics. As an example, it provides

more than 5% lower BLEU-1 and almost 6 lower ROUGE-

L scores compared to the DenseNet169. These results show

that almost all CNN models (except the InceptionV3) achieve

similar scores on the UCM-Captions dataset. This supports our

conclusion on the Sydney-Captions dataset. In greater details,

increasing the depths of the ResNet and DenseNet models up

to some extent achieves slightly higher metric scores compared

to those at the lowest depth. However, further increasing their

depths do not provide the highest scores. As an example,

the ResNet model at the depth of 152 leads to the lowest

score under most of the metrics compared to the other ResNet

CNNs. Table IV shows the results for the RSICD dataset. By

analyzing the table, one can observe that the ResNet model at

the depth of 152 layers provides the highest scores under most

of the metrics compared to the other CNNs. As an example,

the ResNet152 achieves more than 2% higher BLEU-3 and

BLUE-4 scores and almost 8% higher CIDEr score compared

to the InceptionV3. It also achieves almost the same BLEU-

1 and METEOR scores with the VGG19 and the ResNet50,

which provide the highest score in BLEU-1 and METEOR

metrics, respectively. In detail, the VGG model (which has

the shallowest CNNs compared to the others) leads to higher

scores under most of the metrics compared to the DenseNet

model. As an example, the VGG model at the depth of 19

layers achieves more than 2% BLEU-1 and CIDEr scores

compared to the DenseNet201, which has the highest depth in

considered CNNs. These results show that accuracies obtained

by most of the CNNs are, again, similar to each other.

The sensitivity analysis for different CNN models used

in the first step shows that utilizing different models does

not significantly affect the RS image captioning performance

of our approach. However, the proper selection of a CNN

model and its depth can improve the performance of the SD-

RSIC. Accordingly, we utilized the ResNet101, VGG16 and
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TABLE V
RESULTS OBTAINED BY THE PROPOSED SD-RSIC WHEN USING DIFFERENT EMBEDDING SIZES

Dataset Embedding Size (W ) BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Sydney-Captions

128 72.1 61.5 52.1 42.9 32.4 61.9 128.7

256 73.0 62.7 54.0 45.6 33.5 62.7 140.8

512 76.1 66.6 58.6 51.7 36.6 65.7 169.0

1024 70.9 59.5 50.6 42.9 35.1 63.1 126.7

UCM-Captions

128 71.6 63.1 56.0 50.0 36.2 66.0 199.9

256 74.2 65.7 58.7 52.3 38.1 68.4 202.8

512 74.8 66.4 59.8 53.8 39.0 69.5 213.2

1024 74.6 66.2 59.4 53.7 39.2 69.1 213.9

RSICD

128 61.0 43.2 33.1 26.5 23.0 49.4 66.0

256 63.4 45.8 35.3 28.3 24.4 51.0 73.6

512 64.4 47.4 36.9 30.0 24.9 52.3 79.4

1024 64.7 46.8 35.9 28.8 25.0 51.5 78.7

TABLE VI
RESULTS OBTAINED BY THE PROPOSED SD-RSIC ON THE COMPLETE SET OF CAPTIONS AND ITS FIRST STEP ON A SINGLE CAPTION FOR EACH IMAGE

Dataset Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Sydney-Captions
Step 1 (Single Caption) 66.5 55.3 47.0 39.9 31.2 60.6 109.9

SD-RSIC 76.1 66.6 58.6 51.7 36.6 65.7 169.0

UCM-Captions
Step 1 (Single Caption) 70.0 60.2 52.6 46.0 33.2 63.6 177.4

SD-RSIC 74.8 66.4 59.8 53.8 39.0 69.5 213.2

RSICD
Step 1 (Single Caption) 62.9 45.5 35.2 28.5 24.4 51.0 74.0

SD-RSIC 64.4 47.4 36.9 30.0 24.9 52.3 79.4

ResNet152 for the rest of the experiments on Sydney-Captions,

UCM-Captions and RSICD datasets, respectively.

In the second set of trials, we assessed the effect of the

embedding size W used in the proposed approach. Table V

shows the image captioning performances under the different

sizes of embedding space for all the considered datasets. By

assessing the table, one can observe that increasing the value of

W up to some extent provides significantly higher scores under

all the metrics compared to those obtained by using the lowest

value of W . As an example, the proposed approach with the

W = 512 provides more than 6% higher BLEU-3, more

than 4% higher METEOR and almost 4% higher ROUGE-L

scores compared to that of the W = 128 for the Sydney-

Captions dataset. This is due to the fact that increasing the

value of W allows to preserve more detailed information than

the lowest dimensional embeddings for both image features

and image captions. However, selecting a very high value of

W (e.g., W = 1024) does not further improve the informa-

tion preserving capability of the proposed SD-RSIC. As an

example, the proposed approach with the W = 512 leads to

almost 1% higher BLEU-2, BLEU-3, BLUE-4, ROUGE-L,

CIDEr scores and almost the same BLEU-1 and METEOR

scores compared to that of the W = 1024 for the RSICD

dataset. It is worth noting that increasing the value of W

also increases the computational complexity of the proposed

approach. Accordingly, we selected the value of W as 512 for

the rest of the experiments on the considered datasets.

In the third set of trials, we analyzed the effectiveness

of the second and third steps of the proposed approach.

Several 
buildings and green 

trees are exposed 
near a beach.

Many buildings 
are around a matt 

playground.

Many gray buildings 
are orderly in a dense 
residential area and 

green trees in nature.

Im
ag

es
SD

-R
SI

C

Fig. 4. An example of the RSICD images with the generated captions by the
SD-RSIC. The words, which are only from Annotated Gigaword dataset, are
in red.

Table VI shows the image captioning performances obtained

when: i) the first step of the proposed approach is applied by

considering only a single caption for each image (i.e., Step 1

(Single Caption)); and ii) the proposed SD-RSIC approach

is applied by considering the complete set of captions for

all the considered datasets. By analyzing the table, one can

see that our proposed approach results in significantly better

performances with respect to the Step 1 (Single Caption) for

all datasets. As an example, the proposed approach provides

almost 6% higher BLUE-1 and more than 5% higher ROUGE-

L scores for the Sydney-Captions dataset, while providing

more than 7% higher BLEU-3 and BLEU-4 scores for the

UCM-Captions dataset compared to the Step 1 (Single Cap-
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TABLE VII
NUMBER OF REQUIRED MODEL PARAMETERS (NP) AND

FLOATING-POINT OPERATIONS (FLOPS) ASSOCIATED TO THE DIFFERENT

STEPS OF THE PROPOSED APPROACH (THE SYDNEY-CAPTIONS DATASET)

Steps of the Proposed Approach NP

(×10
6)

FLOPs

(×10
9)1st 2nd 3rd

✓ ✗ ✗ 43.55 7.83

✓ ✓ ✗ 77.93 8.62

✓ ✓ ✓ 77.94 8.63

TABLE VIII
NUMBER OF REQUIRED MODEL PARAMETERS (NP) AND

FLOATING-POINT OPERATIONS (FLOPS) ASSOCIATED TO THE DIFFERENT

STEPS OF THE PROPOSED APPROACH (THE UCM-CAPTIONS DATASET)

Steps of the Proposed Approach NP

(×10
6)

FLOPs

(×10
9)1st 2nd 3rd

✓ ✗ ✗ 119.57 15.46

✓ ✓ ✗ 153.96 16.26

✓ ✓ ✓ 153.97 16.27

tion). This is due to the fact that the second and the third

steps of the SD-RSIC significantly addresses the problems

related to redundancy present in ground-truth captions, and

thus improves the image captioning performances. Fig. 4

shows an example of RSICD images with the generated

captions by the SD-RSIC. By assessing the figure, one can

observe that the SD-RSIC provides the enriched vocabulary

compared to the original vocabulary of captioning datasets. As

an example, the words for describing the objects on the ground

(e.g., matt, nature) are from the Annotated Gigaword dataset

and not included in the original vocabulary of the RSICD

dataset. The enriched vocabulary of the proposed approach

leads to more detailed captions for semantically complex RS

images. These results show that the SD-RSIC overcomes the

limitations of redundant information in ground-truth captions,

while providing the detailed language semantics due to its

second and third steps.

In the fourth set of trials, we assessed the computational

complexity associated to the different steps of the proposed

approach. Table VII, VIII and IX show the number of model

parameters and the floating-point operations (FLOPs) for the

Sydney-Captions, the UCM-Captions and the RSICD datasets,

respectively. By analyzing the tables, one can observe that the

selection of a CNN model for the first step at the proposed

approach is one of the most important factors affecting the

overall computational complexity. As an example, the total

number of FLOPs for the UCM-Captions dataset is twice as

large as that of the Sydney-Captions dataset due to the different

CNNs used for these datasets. It is worth noting that this can

affect almost all deep learning based image captioning ap-

proaches. In addition, the third step of the proposed approach

does not significantly affect the computational complexity.

As an example, when the third step is included within the

proposed approach, the amount of increase in the total number

of parameters is less than 1%. In greater details, the amount

of increase in the FLOPs is significantly less than that in the

TABLE IX
NUMBER OF REQUIRED MODEL PARAMETERS (NP) AND

FLOATING-POINT OPERATIONS (FLOPS) ASSOCIATED TO THE DIFFERENT

STEPS OF THE PROPOSED APPROACH (THE RSICD DATASET)

Steps of the Proposed Approach NP

(×10
6)

FLOPs

(×10
9)1st 2nd 3rd

✓ ✗ ✗ 59.18 11.55

✓ ✓ ✗ 93.57 12.35

✓ ✓ ✓ 93.58 12.35

TABLE X
THE AVERAGE RATE OF ZERO-PADDING OPERATION APPLIED IN THE

THIRD STEP OF THE PROPOSED SD-RSIC

Sydney-Captions UCM-Captions RSICD

42.5% 32.5% 33.9%

number of parameters when the second step is included within

the proposed approach. These results show that the second step

of the proposed approach does not significantly increase the

computational time during training.

In the fifth set of trials, we analyzed the effect of zero-

padding operation applied to the summarized captions in the

third step of the proposed approach. Table X shows the average

rate of zero-padding operation during training for the consid-

ered datasets. By assessing the table, one can observe that the

zero-padding operation is not often applied to the summarized

captions. As an example, for the RSICD dataset, it is applied

once in three times on average. To this end, integration of

summarized captions with standard captions is not dominated

by standard captions. If zero-padding operation is applied

frequently, final caption generation may mostly relies on the

standard captions. This condition can be eliminated by: 1)

using other summarization approaches, which are capable of

producing longer sentences, in the second step of the proposed

approach; or 2) changing the pre-training of the pointer-

generator model (which is utilized in the second step) with

different datasets to produce longer sentences.

B. Comparison of the Proposed Approach with the State-of-

the-Art Approaches

In the sixth set of trials, we assessed the effectiveness

of the proposed SD-RSIC approach compared to the state-

of-the art RS image captioning approaches, which are: the

BoW+CNN [5], the DeViSE+CNN [5], the CCSMLF [5]

and the NIC [7]. Table XI, XII and XIII show the cor-

responding image captioning performances on the Sydney-

Captions, UCM-Captions and RSICD datasets, respectively.

By analyzing the tables, one can observe that the proposed SD-

RSIC approach leads to the highest scores under all metrics

for all datasets. As an example, the SD-RSIC outperforms

the CSMLF by almost 32% in BLEU-1 and more than 30%
in BLEU-3 for the Sydney-Captions dataset, almost 45%
in BLEU-2 and more than 44% in BLEU-4 for the UCM-

Captions dataset, and almost 8% ROUGE-L and more than

26% in CIDEr for the RSICD dataset. Similar behaviors



11

TABLE XI
RESULTS OBTAINED BY THE BOW+CNN, DEVISE+CNN, CCSMLF, NIC AND THE PROPOSED SD-RSIC (THE SYDNEY-CAPTIONS DATASET)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

BoW+CNN [5] 62.3 47.9 39.0 32.9 24.5 51.7 128.3

DeViSE+CNN [5] 64.2 51.5 43.5 38.1 27.0 56.6 139.2

CSMLF [5] 44.4 33.7 28.2 24.1 15.8 40.2 93.8

NIC [7] 70.7 59.1 50.3 42.5 32.0 60.6 127.7

SD-RSIC 76.1 66.6 58.6 51.7 36.6 65.7 169.0

TABLE XII
RESULTS OBTAINED BY THE BOW+CNN, DEVISE+CNN, CCSMLF, NIC AND THE PROPOSED SD-RSIC (THE UCM-CAPTIONS DATASET)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

BoW+CNN [5] 40.6 25.5 18.4 14.4 14.4 36.6 41.6

DeViSE+CNN [5] 37.0 17.4 9.8 6.0 9.8 29.7 9.7

CSMLF [5] 38.7 21.5 12.5 9.2 9.5 36.0 37.0

NIC [7] 72.6 64.1 57.5 51.7 37.4 67.3 200.6

SD-RSIC 74.8 66.4 59.8 53.8 39.0 69.5 213.2

TABLE XIII
RESULTS OBTAINED BY THE BOW+CNN, DEVISE+CNN, CCSMLF, NIC AND THE PROPOSED SD-RSIC (THE RSICD DATASET)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

BoW+CNN [5] 29.7 11.3 5.8 3.4 9.6 25.1 12.9

DeViSE+CNN [5] 30.7 11.4 5.6 3.1 9.7 25.6 12.4

CSMLF [5] 57.6 38.6 28.3 22.2 21.3 44.6 53.0

NIC [7] 62.9 46.0 35.8 29.1 24.3 51.5 76.0

SD-RSIC 64.4 47.4 36.9 30.0 24.9 52.3 79.4

are also observed while comparing the BoW+CNN and De-

ViSE+CNN with our approach under different metrics. This

shows that modeling image captions based on the joint char-

acterization of language and RS image semantics significantly

improves the RS image captioning performance compared to

separately describing their semantics and applying matching.

In addition, the proposed SD-RSIC approach outperforms

the well-known automatic image captioning approach (the

NIC) by almost 6% in BLEU-1, more than 9% in BLEU-

4 and more than 5% in ROUGE-L for the Sydney-Captions

dataset, more than 2% in BLEU-2 and BLUE-3 for the UCM-

Captions dataset, and more than 3% in CIDEr and almost

2% in BLEU-1 for the RSICD dataset. This is due to the

second and the third steps of the SD-RSIC that integrate the

summarization of ground-truth image captions into the widely

used CNN and LSTM based encoder-decoder strategy. This

shows that the SD-RSIC is capable of: i) eliminating the

redundant information in the training set; ii) increasing the

generalization capability of the whole neural network; and

iii) improving the vocabulary of training sets compared to the

existing approaches.

Fig. 5 shows an example of RSICD images with their

ground-truth captions and the generated captions by the NIC

and the SD-RSIC. By assessing the figure, one can observe

that the SD-RSIC provides more accurate image captions

to describe the complex semantic content of RS images in

the grammatically correct form compared to the NIC. As an

example, in the first image, the SD-RSIC is able to describe

the green trees near the bridge while this information is not

captured by the NIC. In addition to the first image, the SD-

RSIC is capable of describing the type of the residential area

in the third image that is not characterized in the caption of

the NIC. In greater details, for the first and last images, the

SD-RSIC is capable of generating the single caption, which

accurately describes most of the information associated with

the semantic content of the image in a grammatically correct

form. However, the NIC provides grammatically incorrect sen-

tences, wrong information in the captions and phrases instead

of sentences for the same images. This shows that the SD-

RSIC can accurately describe the complex semantic content

of RS images with single grammatically correct caption. We

observed the similar behaviours for the other approaches and

datasets. Thus, qualitative results further confirm that the

proposed SD-RSIC approach achieves promising RS image

captioning performance.

V. CONCLUSION

In this paper, we have introduced a novel Summarization

Driven Remote Sensing Image Captioning (SD-RSIC) ap-

proach. The proposed SD-RSIC approach consists of three
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A bridge is on a river 
with some green trees in 

two sides.

A bridge is over a river in 
a bridge over it.

1. On either side of the 
river there are many grey 
roofed houses.
2. On either side of the 
river there are many grey 
roofed houses.
3. On either side of the 
river there are many grey 
roofed houses.
4. There is a magnificent 
bridge over the river.
5. There is a magnificent 
bridge over the river.

Many cars are on a bridge 
over a river with many green 

trees in two sides of it.

Many cars are on a 
bridge over a parking 

lots.

1. There are many cars 
running on the road.
2. There are many cars 
running on the road.
3. There are many cars 
running on the road.
4. There are many tall 
trees planted on both 
sides of the river.
5. There are many tall 
trees planted on both 
sides of the river.

Some buildings and 
many green trees in a 

medium residential area.

Many green trees and a 
swimming pool are in a 

resort.

1. The residential with 
black villages is in the 
center of the forest.
2. The residential with 
black villages is in the 
center of the forest.
3. The residential with 
black villages is in the 
center of the forest.
4. This lush woods is 
surrounding the peaceful 
neighborhood with roads 
passes by.
5. Several buildings and 
many green trees are in a 
residential area.

It is a piece of green 
meadow.

It is a large piece of green 
mountain.

1. A furcate road 
separates the grass green 
farmland.
2. A furcate road 
separates the grass green 
farmland.
3. The green farmland is 
divided by a furcate road.
4. It is a green farmland 
with several curved roads 
through it .
5. Many pieces of green 
farmlands are together.

Many storage tanks are in 
a factory near a river.

Many green trees and 
green and parking.

1. There is a factory 
beside the river.
2. There is a factory 
beside the river.
3. There is a factory 
beside the river.
4. There are many 
storage tanks in the 
factory.
5. There are many 
storage tanks in the 
factory.

SD-RSIC

NIC

Ground-truth
Captions

Images

Fig. 5. An example of the RSICD images with their five ground-truth captions and the generated captions by the NIC and the SD-RSIC.

main steps. The first step generates the standard RS image

captions by jointly exploiting CNNs and LSTMs. The second

step summarizes all ground-truth captions into a single cap-

tion by using a sequence-to-sequence deep learning model.

Third step automatically computes the adaptive weights for

combining the standard captions with summarized captions,

relying on the semantic content of RS images based on their

image level features. Experimental results obtained on the

existing RS image captioning datasets show the effectiveness

of the proposed SD-RSIC approach over the state-of-the-art

approaches. The main reasons for the success of our proposed

SD-RSIC approach are summarized as follows:

1) Due to the summarization of ground-truth captions in

the second step, the SD-RSIC eliminates the redundant

information (occured because of the repetitive as well

as highly similar captions) present in the RS image

captioning datasets.

2) Due to the use of the summarization model, which is

trained on large text corpora in the second step, the

SD-RSIC significantly enriches the image captioning

vocabulary in terms of the number and variety of words,

resulting in more accurate image captions for complex

scenarios.

3) Due to the adaptive weights among the standard and

summarized captions provided in the third step, which

allows effective integration of the condensed (summa-

rized) information of ground-truth captions with stan-

dard captions, the SD-RSIC reduces the risk of over-

fitting during training and increases the generalization

capability of the proposed DNN.

It is worth noting that an attention strategy that finds the

most informative regions of RS images in terms of both

the generation of standard captions and the integration of

summarized captions can further improve the performance of

the proposed approach. To this end, any attention strategy

presented in the literature can be directly integrated within

the proposed approach. We would like to point out that the

existing image captioning metrics evaluate the accuracy of

the automatically generated image captions by computing the

word similarities of these captions with those of the ground

truth captions (generated by human experts). These metrics

do not compare the actual meaning of the generated and

ground truth captions. As a future development of this work

we plan to study on defining a new image captioning metric

that can intrinsically address this issue. In addition, we also

plan to improve the second step of the SD-RSIC by including

different: i) summarization approaches (e.g., [29]); and ii)

summarization datasets (e.g., the DUC 2004).
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