
1

SD3: A Scalable Approach to Dynamic
Data-Dependence Profiling

Minjang Kim, Nagesh B. Lakshminarayana, Hyesoon Kim, Chi-Keung Luk‡
College of Computing, Georgia Institute of Technology, Atlanta, GA

‡Intel Corporation, Hudson, MA

Abstract—As multicore processors are deployed in mainstream computing, the need for software tools to help parallelize programs

is increasing dramatically. Data-dependence profiling is an important technique to exploit parallelism in programs. More specifically,

manual or automatic parallelization can use the outcomes of data-dependence profiling to guide where to parallelize in a program.

However, state-of-the-art data-dependence profiling techniques are not scalable as they suffer from two major issues when profiling

large and long-running applications: (1) runtime overhead and (2) memory overhead. Existing data-dependence profilers are either

unable to profile large-scale applications or only report very limited information.

In this paper, we propose a scalable approach to data-dependence profiling that addresses both runtime and memory overhead in a

single framework. Our technique, called SD3, reduces the runtime overhead by parallelizing the dependence profiling step itself. To

reduce the memory overhead, we compress memory accesses that exhibit stride patterns and compute data dependences directly

in a compressed format. We demonstrate that SD3 reduces the runtime overhead when profiling SPEC 2006 by a factor of 4.1× and

9.7× on eight cores and 32 cores, respectively. For the memory overhead, we successfully profile SPEC 2006 with the reference input,

while the previous approaches fail even with the train input. In some cases, we observe more than a 20× improvement in memory

consumption and a 16× speedup in profiling time when 32 cores are used.

Index Terms—profiling, data dependence, parallel programming, program analysis, compression, parallelization.

✦

1 INTRODUCTION

As multicore processors are now ubiquitous in mainstream

computing, parallelization has become the most important

approach to improving application performance. However,

specialized software support for parallel programming is still

immature although a vast amount of work has been done

in supporting parallel programming. For example, automatic

parallelization has been researched for decades, but it was

successful in only limited domains. Hence, unfortunately,

parallelization is still a burden for programmers.

Recently several tools including Intel Parallel Studio [12],

CriticalBlue Prism [6], and Vector Fabric vfAnalyst [31]

have been introduced to help the parallelization of legacy

serial programs. These tools provide useful information on

parallelization by analyzing serial code. A key component

of such tools is dynamic data-dependence analysis, which

indicates if two tasks access the same memory location and at

least one of them is a write operation. Two data-independent

tasks can be safely executed in parallel without the need for

synchronization.

Traditionally, data-dependence analysis has been done stat-

ically by compilers. Techniques such as the GCD test [25]

and Banerjee’s inequality test [16] were proposed in the past

to analyze data dependences in array-based data accesses.

However, this static analysis may not be effective in languages

that allow pointers and dynamic allocation. For example, we

• minjang@gatech.edu, nageshbl,@cc.gatech.edu, hyesoon@cc.gatech.edu,

‡chi-keung.luk@intel.com

observed that state-of-the-art production automatic paralleliz-

ing compilers often failed to parallelize simple embarrassingly

parallel loops written in C/C++. The compilers also had

limited success in irregular data structures due to pointers,

indirect memory accesses, and control flows.

Rather than entirely relying on static analysis, dynamic

analysis using data-dependence profiling is an alternative or

a complementary approach to address the limitations of the

static approach since all memory addresses are resolved in

runtime. Data-dependence profiling has already been used in

parallelization efforts like speculative multithreading [4, 8, 21,

28, 34] and finding potential parallelism [18, 26, 30, 32, 36].

It is also being employed in the commercial tools we men-

tioned. However, the current algorithm for data-dependence

profiling incurs significant costs of time and memory overhead.

Surprisingly, although there have been a number of research

works on using data-dependence profiling, almost no work

exists on addressing the performance and scalability issues in

data-dependence profilers.

As a concrete example, Fig. 1 demonstrates the scalability

issues of our baseline algorithm. We believe that this baseline

algorithm is still state-of-the-art and very similar to the current

commercialized tools. Figures 1(a) and 1(b) show the memory

and time overhead, respectively, when profiling 17 SPEC

2006 C/C++ applications with the train input on a 12 GB

machine. Among the 17 benchmarks, only four benchmarks

were successfully analyzed, and the rest of the benchmarks

failed because of insufficient physical memory (consumed

more than 10 GB memory). The runtime overhead is between

80× and 270× for the four benchmarks that worked. While

2

95 25 86
337

93.6 12 60
392

7.8 9
184

4.3 44

421

12 46
250

0

500

1000

1500

2000

2500

3000

3500

4000
T

o
ta

l
M

e
m

o
ry

 O
v

e
rh

e
a

d
 (

M
B

)
Native

Tool1

(a) Memory overhead of Tool1 (✕: Dependence profiling takes 10+ GB memory.)

0

50

100

150

200

250

300

S
lo

w
d

o
w

n
s
 (

T
im

e
s
)

Tool1

(b) Time overhead of Tool1

1

10

100

1000

10000

512x512 1024x1024 2048x2048M
e
m

o
ry

 O
v

e
rh

e
a
d

 (
M

B
)

(l
o

g
 s

ca
le

)

Matrix Size

ToolA ToolB SD3

(c) Memory overhead of matrix addtion

Fig. 1: Overhead of our baseline algorithm and current tools.

both time and memory overhead are severe, the latter will stop

further analysis. The culprit is the dynamic data-dependence

profiling algorithm used in these tools, which we call the

pairwise method. The algorithms of previous work [4, 18] are

similar to the pairwise method. This pairwise method needs

to store all outstanding memory references in order to check

dependences, resulting in huge memory bloats.

Another example that clearly shows the memory scalability

problem is a simple matrix addition program that allocates

three N × N matrices (A = B + C). As shown in Fig. 1(c),

the current tools require significant additional memory as the

matrix size increases while our method, SD3, needs only very

small (less than 10 MB) memory.

In this paper, we address these memory and time scalability

problems by proposing a scalable data-dependence profiling

algorithm called SD3. Our algorithm has two components.

First, we propose a new data-dependence profiling technique

using a compressed data format to reduce the memory over-

head. Second, we propose the use of parallelization to accel-

erate the data-dependence profiling process. More precisely,

this work makes the following contributions to the topic of

data-dependence profiling:

1) Reducing memory overhead by stride detection and

compression along with new data-dependence calcula-

tion algorithm: We demonstrate that SD3 significantly

reduces the memory consumption of data-dependence

profiling. However, SD3 is not a simple compression

technique; we should address several issues to achieve

the profiling to be memory efficient. The failed bench-

marks in Fig. 1(a) are successfully profiled by SD3.

2) Reducing runtime overhead with parallelization: We

show that our memory-efficient data-dependence profil-

ing itself can be effectively parallelized. We observe an

average speedup of 4.1× on profiling SPEC 2006 using

eight cores. For certain applications, the speedup can be

as high as 16× with 32 cores.

2 BACKGROUND

2.1 Usage Models of Data-Dependence Profiler.

Before describing SD3, we illustrate usage models of our

dynamic data-dependence profiler, as shown in Fig. 2.

A tool using the data-dependence profiler takes a program in

either source code or binary and profiles with a representative

input. A raw result from our dependence profiler is list of

Source Binary Program Input

Static Analysis
Instrumentation

Data-Dependence
Profiler

Parallelism Explorer
• Easily parallelizable?
• Pipeline parallelism?
• Barrier? . . .

Raw
Results

Programmers
• Hints for parallelization model
• Hints for code modification

Compilers
• Aggressive optimizations and
automatic parallelization

Fig. 2: Examples of data-dependence profiler applications

discovered data-dependence pairs, as shown in Table 2. All or

some of the following information is provided by our profiler:

• Sources and sinks of data dependences (in source code

lines if possible, otherwise in program counters)1,

• Types of data dependences: Flow (Read-After-Write,

RAW), Anti (WAR), and Output (WAW) dependences,

• Frequencies and distances of data dependences,

• Whether a dependence is loop-carried or loop-

independent, and data dependences carried by a partic-

ular loop in nested loops,

• Data-dependence graphs in functions and loops.

A raw result can be further analyzed to give programmers

advice on parallelization models and transformation of the

serial code. We discuss some details in Section 9. The raw

results also can be used by aggressive compiler optimizations

and opportunistic automatic parallelization [30]. Among the

three steps, obviously the data-dependence profiler is the

bottleneck of the scalability problem, and we focus on this

in the paper.

2.2 Why the Dynamic Approach?

One of the biggest motivations for using the data-dependence

profiling is to complement the weaknesses of the static data-

dependence analysis. Table 1 shows an example of the weak-

nesses of the static analysis. We tried automatic parallelization

on the OmpSCR benchmarks [1] (OpenMP Source Code

Repository), which consist of short mathematical kernel code,

by Intel C/C++ compiler (Version 11.0) [11]. The compiler

options are calibrated to maximize the opportunities to find

automatic parallelism.

Programmer# column of Table 1 shows the number of

loops that the programmer manually parallelized. Note that

the benchmarks of OmpSCR are parallelized by OpenMP,

and most of the parallelized loops are embarrassingly parallel.

1. Data dependences from registers can be analyzed at static time.

3

TABLE 1: The number of parallelizable loops based on a compiler and a
data-dependence profiler (static vs. dynamic) in OmpSCR

Benchmark Programmer # Compiler # Reason Profiler #

FFT 2 1 Recursion 3

FFT6 3 0 Pointers 16

Jacobi 2 1 Pointers 8

LUreduction 1 0 Pointers 4

Mandelbrot 1 0 Reduction 2

Md 2 1 Reduction 10

Pi 1 1 N/A 1

QuickSort 1 0 Recursion 4

1: // A, B are dynamically allocated integer arrays

2: for (int i = 1; i <= 2; ++i) { // For-i

3: for (int j = 1; j <= 2; ++j) { // For-j

4: A[i][j] = A[i][j-1] + 1;

5: B[i][j] = B[i+1][j] + 1;

6: }

7: }

Fig. 3: A simple example of data-dependence profiling.

Compiler# column represents the number of loops that were

automatically parallelized by the compiler. Reason column

summarizes why the compiler misidentified actually paral-

lelizable loops as non-parallelizable based on the diagnostic

information of the compiler. The result shows that only four

loops (out of 13) were successfully parallelized. Pointer alias-

ing was the main cause of the limitations. Finally, Profiler#

column shows the number of loops that are identified as par-

allelizable through our data-dependence profiler. Our profiler

identified as parallelizable all loops that were parallelized by

the programmer. However, note that the numbers of Profiler#

are greater than those of Programmer# because our profiler

reported literally parallelizable loops without considering cost

and benefit.

Despite the effectiveness of the data-dependence profiling,

we should note that any dynamic approach has a fundamental

limitation, the input sensitivity problem: a profiling result only

reflects given inputs. A purely dynamic dependence profiler

can only report potential parallelism. However, as Section 7.4

will show, data dependences in frequently executed loops

are not changed noticeably with respect to different inputs.

Furthermore, our primary usage model of the data-dependence

profiler is assisting programmers in manual parallelization,

where compilers cannot automatically prove the parallelizabil-

ity of the code. In this case, programmers should empirically

verify the correctness of the parallelized code with several

tests. We believe a dependence profiler should be very infor-

mative to programmers in manual parallelization.

3 THE BASELINE PAIRWISE METHOD

We describe our baseline algorithm, the pairwise method,

which is still the state-of-the-art algorithm for existing tools.

SD3 is implemented on top of the pairwise method. At the end

of this section, we summarize the problems of the pairwise

method. We begin our descriptions of the algorithm by focus-

ing on data dependences within loop nests, because loops are

major parallelization targets. Note that our algorithm can be

easily extended to find data dependences in arbitrary program

structures, for example, dependences among function calls,

which will be discussed in Section 9.

TABLE 2: lMemory traces and discovered dependences of Fig. 3

j = 1 j = 2

i = 1
A[1][1] = A[1][0] + 1; A[1][2] = A[1][1] + 1;

B[1][1] = B[2][1] + 1; B[1][2] = B[2][2] + 1;

i = 2
A[2][1] = A[2][0] + 1; A[2][2] = A[2][1] + 1;

B[2][1] = B[3][1] + 1; B[2][2] = B[3][2] + 1;

(a) Memory traces (Boldfaces are conflicting accesses)

Loop Var Source/Sink (R/W, Line#, Col#) Dependence (Type, Freq)

For-i B[] (R,5,15)→(W,5, 5) Loop-carried WAR, 2

For-j A[] (W,4, 5)→(R,4,15) Loop-carried RAW, 2

(b) Discovered dependences (Inductions i and j are ignored.)

3.1 Checking Data Dependences in a Loop Nest

In the big picture, to calculate data dependences in a loop, we

find conflicts between the memory references of the current

loop iteration and the previous iterations.

Our pairwise method temporarily buffers all memory refer-

ences during the current iteration of a loop. We call these

references pending references. When an iteration ends, we

compute data dependences by checking pending references

against the history references, which are the memory refer-

ences that appeared from the beginning to the previous loop

iteration. These two types of references are stored in the

pending table and history table, respectively. Each loop has

its own pending and history table, instead of having the tables

globally. This is needed to compute data dependences correctly

and efficiently while considering (1) nested loops and (2) loop-

carried/independent dependences.

We explain the pairwise algorithm with a simple loop nest

example in Fig. 3 and Fig. 4. Note that we intentionally

use a simple example. This code may be easily analyzed by

compilers, but the analysis could be difficult if (1) dynami-

cally allocated arrays are passed through deep and complex

procedure call chains, (2) the bounds of loops are unknown

at static time, or (3) control flow inside of a loop is complex.

We detail how the pairwise algorithm works with Fig. 4:

• ❶: During the first iteration of For-j (i = 1, j = 1),

four pending memory references are stored in the pending

table of For-j. After finishing the current iteration,

we check the pending table against the history table.

At the first iteration, the history table is empty. Before

proceeding to the next iteration, the pending references

are propagated to the history. This propagation is done

by merging the pending table with the history table. (This

merge operation will be complex in our SD3 .)

• ❷: After the second iteration (i = 1, j = 2), we

now see a loop-carried RAW on A[1][1] in For-j.

Meanwhile, For-j terminates its first invocation.

• ❸: At the same time, observe that the first iteration of the

outer loop, For-i, is also finished. In order to handle

data dependences across loop, we treat an inner loop as if

it were completely unrolled to its upper loop. This is done

by propagating the history table of For-j to the pending

table of For-i. Hence, the entire history of For-j is

now at the pending table of For-i.

• ❹ and ❺: For-j executes its second invocation.

• ❻: Similar to ❸, the history of the second invocation of

For-j is again propagated to For-i. Data dependences

4

For-j:Pending

A[1][0] R

A[1][1] W

B[2][1] R

B[1][1] W

For-j:History

i = 1, j = 1, PC @ 6

For-j:Pending

A[1][1] R

A[1][2] W

B[2][2] R

B[1][2] W

For-j:History

A[1][0] R

A[1][1] W

B[2][1] R

B[1][1] W

i = 1, j = 2, PC @ 6

For-i:Pending

A[1][0] R

A[1][1] RW

B[1][2] W

B[1][1] W

B[1][2] W

B[2][1] R

B[2][2] R

For-i:History For-i:Pending

A[2][0] R

A[2][1] RW

B[2][2] W

B[2][1] W

B[2][2] W

B[3][1] R

B[3][2] R

For-i:History

A[1][0] R

A[1][1] RW

B[1][2] W

B[1][1] W

B[1][2] W

B[2][1] R

B[2][2] R

1

2

i = 1, PC @ 7 3 i = 2, PC @ 7 6

For-j:Pending

A[2][0] R

A[2][1] W

B[3][1] R

B[2][1] W

For-j:History

i = 2, j = 1, PC @ 6

For-j:Pending

A[2][1] R

A[2][2] W

B[3][2] R

B[2][2] W

For-j:History

A[2][0] R

A[2][1] W

B[3][1] R

B[2][1] W

i = 2, j = 2, PC @ 6

4

5

Loop-carried RAW on
A[][] in For-j

Loop-carried WARs on
B[][] in For-i

Fig. 4: Snapshots of the pending and history tables of each iteration when the pairwise method profiles Fig. 3. Each snapshot was taken at the end
of an iteration. ’PC@6’ (PC is at line 6) and ’PC@7’ mean the end of an iteration of For-j and For-i, respectively. Note that the tables actually have
absolute addresses, not a symbolic format like A[1][1]. The table entry only shows R/W. However, it also remembers the occurrence count and the
timestamp (trip count) of the memory address to calculate frequencies and distances of dependences, respectively.

1: void scan_recognize(...) {

2: for (j = starty; j < endy; j += stride) {

3: for (i = startx; i < endx; i += stride){

4: ...

5: pass_flag = 0; 11: void match() {

6: match(); 12: ...

7: if (pass_flag == 1) 13: if (condition)

8: do_something(); 14: pass_flag = 1;

9: ... 15: ...

16: }

Fig. 5: Loop-independent dependence on pass_flag in 179.art.

are checked, and we discover two loop-carried WARs on

B[][] with respect to For-i.

In this example programmers can parallelize the outer loop

after removing the WARs by duplicating B[]. The inner loop

is not lucrative for parallelization due to the short-distant loop-

carried RAWs on A[].

3.2 Handling Loop-independent Dependences

When reporting data dependences inside a loop, we must

distinguish whether a dependence is loop-independent (i.e., de-

pendences within the same iteration) or loop-carried because

its implication is very different on judging parallelizability of

a loop: Loop-independent dependences do not prevent paral-

lelizing a loop, but loop-carried flow dependences generally

do prevent. Consider the code in SPEC 179.art.

A loop in scan_recognize calls match(). How-

ever, the code communicates a result via a global variable,

pass_flag. This variable is always initialized on every

iteration at line 5 before any uses, and may be updated at

line 14 and finally consumed at line 7. Therefore, a loop-

independent flow dependence exists on pass_flag, which

means this dependence does not prevent parallelization of the

loop.2 However, if we do not differentiate loop-carried and

loop-independent dependences, programmers might think the

reported dependences could stop parallelizing the loop.

To handle such loop-independent dependence, we introduce

a killed address (this is very similar to the kill set in a

dataflow analysis [2]). We mark an address as killed once the

memory address is written in an iteration. Then, all subsequent

accesses within the same iteration to the killed address are not

stored in the pending table and reported as loop-independent

dependences. Killed information is cleared on every iteration.

2. A global variable pass_flag may make loop-carried output depen-
dences, but it can be removed easily by privatizing the variable.

In this example, once pass_flag is written at line 5,

its address is marked as killed. All following accesses on

pass_flag are not stored in the pending table, and are

reported as loop-independent dependences. Since the write

operation at line 5 is the first access within an iteration,

pass_flag does not make loop-carried flow dependences.

3.3 Problems of the Pairwise Method

The pairwise method needs to store all distinct memory

references within a loop invocation. Hence, it is obvious

that the memory requirement per loop is increased as the

memory footprint of a loop is increased. However, the memory

requirement could be even worse because we consider nested

loops. As explained in Section 3.1, history references of inner

loops propagate to their upper loops. Therefore, only when the

topmost loop finishes can all the history references within the

loop nest be flushed. However, many programs have fairly

deep loop nests (for example, the geometric mean of the

maximum loop depth in SPEC 2006 FP is 12), and most of

the execution time is spent in loops. Hence, whole distinct

memory references often need to be stored along with PC

addresses throughout the program execution. In Section 4, we

solve this problem by using compression.

Profiling time overhead is also critical since extremely

many memory loads and stores may be traced. We attack this

overhead by parallelizing the data-dependence profiling itself.

We present our solution in Section 5.

4 THE SD3 ALGORITHM PART I:
A MEMORY-SCALABLE ALGORITHM

4.1 Overview of the Algorithm

The basic idea of solving this memory-scalability problem is to

store memory references as a compressed format. Since many

memory references show stride patterns3, our profiler can

also compress memory references with a stride format (e.g.,

A[a*n + b]). However, a simple compression technique is

not enough to build a scalable data-dependence profiler. We

also need to address the following challenges:

• How to detect stride patterns dynamically,

• How to perform data-dependence checking with the com-

pressed format without decompression,

3. This is also the motivation of hardware stride prefetchers.

5

• How to handle loop nests and loop-independent depen-

dence with the compressed format, and

• How to manage both stride and non-stride patterns simul-

taneously.

The above problems are now discussed in this section.

4.2 Dynamic Detection of Strides

We define that an address stream is a stride as long as the

stream can be expressed as base + stride distance × n.

SD3 dynamically discovers strides and directly checks data

dependences with strides and non-stride references. In order to

detect strides, when observing a memory access, the profiler

trains a stride detector for each PC (or any location identifier of

a memory instruction) and decides whether the access is part

of a stride or not. Because sources and sinks of dependences

should be reported, we have a stride detector per PC. An

address that cannot be represented as part of a stride is called

a point in this paper.

Weak
Stride

Strong
Stride Start First

Observed
Stride

Learned

3

1

3 3

1

1 2

Fig. 6: Stride detection FSM. The current state is updated on every
memory access with the following additional conditions: ❶ The address
can be represented with the learned stride; ❷ Fixed-memory location
access is detected; ❸ The address cannot be represented with the
current stride.

Fig. 6 illustrates the state transitions in our stride detector.

After watching two memory addresses for a given PC, a stride

distance is learned. When a newly observed memory address

can be expressed by the learned stride, FSM advances the state

until it reaches the StrongStride state. The StrongStride state

can tolerate a small number of stride-breaking behaviors. For

memory accesses like A[i][j], when the program traverses

in the same row, we will see a stride. However, when a row

changes, there would be an irregular jump in the memory ad-

dress, breaking the learned stride. Having Weak/StrongStride

states tolerates this behavior and increases the opportunity for

finding strides.

We separately handle fixed-location memory accesses (i.e.,

stride distance is zero). If a newly observed memory access

cannot be represented with the learned stride, it goes back

to the FirstObserved state with the hope of seeing another

stride behavior. Note that our stride detector does not always

require strictly increasing or decreasing patterns. For example,

a stream [10, 14, 18, 14, 18, 22, 18, 22, 26] is considered as

a stride 10+4n (0 ≤ n ≤ 4). However, such non-strict strides

may cause slight errors when calculating the occurrence count

of data dependences. We discuss this issue in Section 4.7.

4.3 Stride-Based Dependence Checking Algorithm

Checking dependences is trivial in the pairwise method: we

can exploit a hash table keyed by memory addresses, which

enables fast searching whether a given memory address is

dependent or not. However, the stride-based algorithm cannot

use such simple conflict checking because a stride represents

an interval. Hence, we first search potentially dependent

strides and points by using the interval test, and then perform

a new data-dependence test, Dynamic-GCD.

A naive solution for finding overlapping strides and points

would be linear searching between strides and points, but this

is extremely slow. Instead, we employ an interval tree based

on a balanced binary search tree, Red-Black Tree [5]. Given

an interval, we find all intersecting intervals in the tree, which

means finding all overlapping strides and points.4 Fig. 7 shows

an example of an interval tree. Each node represents either a

stride or point. Through a query, a stride of [86, 96] overlaps

with [92, 192] and [96, 196].

[100, 200]

[92, 192]

[96, 196] [80, 80]

[180, 210]

Query: [86, 96]

Overlapped

Fig. 7: Interval tree (based on a Red-Black Tree) for fast overlapping
point/stride searching. Numbers are memory addresses. Black and
white nodes represent Red-Black properties.

The next step is an actual data-dependence test between

overlapping strides and points. We extend the well-known

GCD (Greatest Common Divisor) test to the Dynamic-GCD

Test in two directions: (1) We dynamically construct affined

descriptors from address streams to use GCD test, and (2)

we count the exact number of dependence occurrences (many

static-time dependence test algorithms give a may answer

along with dependent and independent).

1: for (int n = 0; n <= 6; ++n) {

2: A[2*n + 10] = ...; // Stride 1 (Write)

3: ... = A[3*n + 11]; // Stride 2 (Read)

4: }

Fig. 8: A simple example for DYNAMIC-GCD.

To illustrate the algorithm, consider the code in Fig. 8. We

assume that the array A is the type of char[] and begins at

address 10. Then, two strides will be created: (1) [20, 32] with

the distance of 2 from line 2, and (2) [21, 39] with the distance

of 3 from line 3. Our goal is to calculate the exact number of

conflicting addresses in the two strides. The problem is then

reduced to solving a Diophantine equation5:

2x+ 20 = 3y + 21 (0 ≤ x, y ≤ 6).

DYNAMIC-GCD is described in Algorithm 1, and we detail

the steps of computations with Fig. 9:

1) Obtain the overlapped bounds and lengths as in Fig. 9:

low = 21, high = 30, length = 10.

2) Check the existence of dependence by GCD, without

considering bounds: To use GCD test on strides, delta

4. In the worst case, where all the nodes of an interval tree intersect a given
input, it requires linear time to find overlapped strides and points. However,
on average, an interval tree gives much faster searching time than a linear
search. Further optimizations could be done in this step.

5. A Diophantine equation is an indeterminate polynomial equation in
which only integer solutions are allowed. In our problem, we solve a linear
Diophantine equation such as ax+ by = 1.

6

delta

Stride1: 20 21 22 23 24 25 26 27 28 29 30

Stride2: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

low offset high

length

offset g

Fig. 9: Two strides in Fig. 8. Lightly shaded blocks indicate accessed
memory locations, and black blocks are conflicting locations. The terms
(length, delta, low, high, and offset) are explained in the below.

(the distance between low and the immediately follow-

ing accessed address) is computed. It allows the two

strides to be aligned to an imaginary common array that

begins at low . Finally, do GCD test. If the test says

no dependence, the algorithm halts. In Fig. 9, delta is

1; GCD(2, 3) yields 1, which divides delta . Therefore,

there may be dependences.

3) Compute the number of dependences while considering

bounds: EXTENDED-EUCLID [5] yields the smallest

solution of the Diophantine equation. In this example,

the solution is 24. Then, offset (the distance between

low and the first solution) is obtained. Also, observe

that the distance between solutions of the equation is

LCM (Least Common Multiple) of two stride values.

We finally compute the answer (Line 8, 9).

In this example, offset is 3; the LCM of the strides

is 6. We conclude that two (24 and 30) addresses are

conflicting, and the strides are dependent.

Algorithm 1 DYNAMIC-GCD

INPUTS: Two strides: low1, low2, high1, high2, stride1, stride2
OUTPUT: Return the number of dependences of given strides
Require: low1 ≤ low2, otherwise swap the strides.

1: Calculate low, high, and length as shown in Fig. 9.
2: delta← (stride1− (low− low1) mod stride1) mod stride1
3: if GCD(stride1, stride2) mod delta 6= 0 then
4: return 0
5: end if
6: Call EXTENDED-EUCLID and obtain x and y. [5]
7: offset← ((stride2 · y · delta/GCD) + LCM) mod LCM
8: result← (len− (offset + 1) + LCM)/LCM
9: avg occur count← total access in stride/distinct access in stride

10: return max(0, result) · avg occur count

4.4 Summary of the Memory-Scalable SD3 Algorithm

The first part of SD3, a memory-scalable algorithm, is sum-

marized in Algorithm 2. The algorithm is augmented on top

of the pairwise algorithm and will be parallelized to decrease

time overhead. Note that we still use the pairwise algorithm for

memory references that do not have stride patterns. Algorithm

2 uses the following data structures:

• STRIDE: It represents a compressed stream of memory

addresses from a PC. A stride consists of (1) the lowest

and highest addresses, (2) the stride distance, (3) the size

of the memory access, (4) the number of total accesses

in the stride, and (5) read/write mode.

• LoopInstance: It represents a dynamic execution

state of a loop including statistics and tables for data-

dependence calculation (pending and history tables).

• PendingPointTable and PendingStrideTable:

They capture memory references in the current

iteration of a loop. PendingPointTable stores

point (i.e., non-stride) memory accesses and is imple-

mented as a hash table keyed by the memory ad-

dress. PendingStrideTable remembers strides and

is hashed by the PC address of the memory instruction.

Note that a PC can generate multiple strides (e.g., int

A[N][M]). Both pending tables also store killed bits to

handle loop-independent dependences. See Fig. 10.

• HistoryPointTable and HistoryStrideTable:

They remember memory accesses in all executed itera-

tions of a loop so far. The structure is mostly identical to

the pending tables except for the killed bits.

• ConflictTable: It holds discovered dependences for

a loop throughout the program execution.

• LoopStack: It keeps the history of a loop execution

like the callstack for function calls. A LoopInstance

is pushed or popped as the corresponding loop is executed

and terminated. It is needed to calculate data dependences

across loop nests.

<R/W, low/high_addr, distance, ... > <R/W, count, ... >

Stride Table

PC

...

...

Stride Stride

Point Table

Address

...

...

PC PC

Fig. 10: Structures of point and stride tables: The structures of the
history and pending tables are identical. They only differs some fields.

Algorithm 2 THE MEMORY-SCALABLE ALGORITHM

Note: new steps added on top of the pairwise method are underlined.

1: When a loop, L, starts, LoopInstance of L is pushed

on LoopStack.

2: On a memory access, R, of L’s i-th iteration, check

the killed bit of R. If killed, report a loop-independent

dependence, and halt the following steps.

Otherwise, store R in either PendingPointTable or

PendingStrideTable based on the result of the stride

detection of R. Finally, if R is a write, set its killed bit.

3: At the end of the iteration, check data dependences. Also,

perform stride-based dependence checking. Report any

found data dependences.

4: After Step 3, merge PendingPointTable with

HistoryPointTable. Also, merge the stride tables.

The pending tables including killed bits are flushed.

5: When L terminates, flush the history tables, and pop

LoopStack. However, to handle loop nests, we prop-

agate the history tables of L to the parent of L, if exist.

Propagation is done by merging the history tables of L

with the pending tables of the parent of L.

Meanwhile, to handle loop-independent dependences, if a

memory address in the history tables of L is killed by the

parent of L, this killed history is not propagated.

7

Although the essential parts of the algorithm are described

in the above sections, the stride-based dependence calculation

algorithm also needs a couple of new stride handling algo-

rithms. The following three subsections elaborates these issues.

4.5 Merging Stride Tables for Loop Nests

In the pairwise method, we propagate the histories of inner

loops to its upper loops to compute dependences in loop

nests. However, introducing strides makes this propagation

difficult. Steps 4 and 5 in Algorithm 2 require a merge op-

eration of a history table and a pending table. Without strides

(i.e., only points), this step is straightforward: we simply

compute the union set of the two point hash tables, which

takes a linear time, O(max(size(HistoryPointTable),

size(PendingPointTable))). 6

However, merging two stride tables is not trivial. A naive

solution is just concatenating two stride lists. If this is done, the

number of strides could be bloated, resulting in huge mem-

ory consumption. Hence, we try to do stride-level merging

rather than a simple stride-list concatenation. The example is

illustrated in Fig. 11.

+

= PC [10, 130] +10 36

PC [10, 100] +10 24 PC [30, 130] +10 12

Fig. 11: Two stride lists from the same PC are about to be merged. The
stride ([10, 100], +10, 24) means a stride of (10, 20, ..., 100) and total
of 24 accesses in the stride. These two strides have the same stride
distance. Thus, they can be merged, and the number of accesses is
summed.

A naive stride-level merging requires quadratic time com-

plexity. Here we again exploit the interval tree for fast

overlapping testing. Nonetheless, we observed that tree-based

searching still could take a long time if there is no possibility

of stride-level merging. To minimize such waste, the profiler

caches the result of the merging test. If a PC shows very little

chance of having stride merges, SD3 skips the merging test

and simply concatenates the lists.

4.6 Handling Killed Addresses in Strides

We showed that maintaining killed addresses is very important

to distinguish loop-carried and independent dependences. As

discussed in Section 3.2, the pairwise method prevented killed

addresses from being propagated to further steps. However,

this step becomes complicated with strides because strides

could be killed by the parent loop’s strides or points.

Fig. 12 illustrates this case. A stride is generated from the

instruction at line 6 when Loop_5 is being profiled. After fin-

ishing Loop_5, its HistoryStrideTable is merged into

Loop_1’s PendingStrideTable. At this point, Loop_1

knows the killed addresses from lines 2 and 4. Thus, the stride

at line 6 can be killed by either (1) a random point write at

line 2 or (2) a write stride at line 4. We detect such killed

cases when the history strides are propagated to the outer loop.

6. To make this merging faster, we employ PC-set optimization. However,
this optimization may lead a slight lossy compression. This issue is discussed
in Section 6.2.2.

1: for (int i = 0; i < N; ++i) { // Loop_1

2: A[rand() % N] = 10; // Random kill on A[]

3: for (int j = i; j >= 0; --j) // Loop_3

4: A[j] = i; // A write-stride

5: for (int k = 0; k < N; ++k) // Loop_5

6: sum += A[k]; // A read-stride

7: }

Fig. 12: A stride from line 6 can be killed by either a point at line 2 or a
stride at line 4.

Detecting killed addresses is essentially identical to finding

conflicts, thus we also exploit an interval tree to handle killed

addresses in strides.

Interestingly, after processing killed addresses, a stride

could be one of three cases: (1) a shrunk stride (the range

of stride address is reduced), (2) two separate strides, or (3)

complete elimination. For instance, a stride [4, 8, 12, 16] can

be shortened by killed address 16. If a killed address is 8, the

stride is divided.

4.7 Lossy Compression in Strides

Our stride-based algorithm essentially uses a compression,

which can be either lossy or lossless. If we only consider

a strictly increasing or decreasing stride, SD3 guarantees the

perfect correctness of data-dependence profiling (i.e., results

of SD3 are identical to those of the pairwise method).

However, as discussed in Section 4.2, a stride like [10, 14,

18, 14, 18, 22, 18, 22, 26] is also considered as a stride in our

implementation. In this case, our stride format cannot perfectly

record the original characteristic of the memory stream. We

only remember two facts: (1) a stride of 10 + 4i, (0 ≤ i ≤ 4)
and (2) the total number of memory accesses in this stride

is 9. Therefore, the stride format cannot precisely remember

the occurrence count of each memory address. Such lossy

compression may cause slight errors when DYNAMIC-GCD

calculates the occurrence count of discovered data-dependence

(Line 9 and 10 of Algorithm 1).

Suppose that this stride has a conflict at the address of 26.

The address 26 is accessed only one time, but this information

is lost. DYNAMIC-GCD estimates the occurrence count of this

conflict by taking an average: 9 / 4 = 2.5, the total number

of accesses in the stride is divided by the number of distinct

addresses in the stride.

Nonetheless, such error does not noticeably affect the

usefulness of our approach, because we still guarantee the

correctness of the existence of data dependences. The error

only happens in occurrence counts.

5 THE SD3 ALGORITHM PART II: REDUCING

TIME OVERHEAD BY PARALLELIZATION

5.1 Overview of the Algorithm

It is well known that the runtime overhead of data-dependence

profiling is very high. A typical method to reduce this overhead

would be using sampling techniques. Unfortunately, we cannot

use simple sampling techniques for our profiler because it

mostly does trade-off between accurate results and low over-

head. For example, a dependence pair could be missed due to

8

sampling, but this pair can prevent parallelization in the worst

case. We instead solve the time overhead by parallelizing

data-dependence profiling itself. In particular, we discuss the

following problems:

• Which parallelization model is most efficient?

• How do the stride algorithms work with parallelization?

5.2 A Hybrid Parallelization Model of SD3

We first survey parallelization models of the profiler that

implements Algorithm 2. Before the discussion, we need

to explain the structure of our profiler. Our profiler before

parallelization is composed of the following three steps:

1) Fetching events from an instrumented program: Events

include (1) memory events: memory reference informa-

tion such as effective address and PC, and (2) loop

events: beginning/iteration/termination of a loop, which

is essential to implement Algorithm 2. Note that our

profiler is an online tool. These events are delivered and

processed on-the-fly.

2) Loop execution profiling and stride detection: We collect

statistics of loop execution (e.g., trip count), and train

the stride detector on every memory instruction.

3) Data-dependence profiling: Algorithm 2 is executed.

Our goal is to design an efficient parallelization model

for the above steps. Three parallelization strategies would

be candidates: (1) task-parallel, (2) pipeline, and (3) data-

parallel. SD3 exploits a hybrid model of pipeline and data-level

parallelism.

With the task-parallel strategy, several approaches could

be possible. For instance, the profiler may spawn concurrent

tasks for each loop. During a profile run, before a loop is

executed, the profiler forks a task that profiles the loop. This

is similar to the shadow profiler [24]. This approach is not

easily applicable to the data-dependence profiling algorithm

because it requires severe synchronization between tasks due

to nested loops. Therefore, we do not take this approach.

With pipelining, each step is executed on a different core

in parallel. In a data-dependence profiler, the third step, the

data-dependence profiling, is the most time consuming step.

Hence, the third step will determine the overall speedup of the

pipeline. However, we still can hide computation latencies of

the first (event fetch) and the second (stride detection) steps

from pipelining.

With the data-parallel method, the profiler distributes the

collected memory references into different tasks based on a

rule. A task performs data-dependence checking (Algorithm

2) in parallel with a subset of the entire input. It is essentially

a SPMD (Single Program Multiple Data) style. Since this data-

parallel method is the most scalable one and does not require

any synchronizations (except for the final result reduction step,

which is very trivial), we also use this model for parallelizing

the data-dependence profiling step.

Fig. 13 summarizes the parallelization model of SD3. We

basically exploit pipelining, but the dependence profiling step,

which is the longest, is further parallelized. To obtain even

higher speedup, we also exploit multiple machines (See details

in Section 6.2).

Event
Fetching

Event
Distribution

Loop/Stride
Profiling

Dependence
Profiling

Task

Task

Task

Pipeline Stage 1 Pipeline Stage 2

Step 1 Step 1* Step 2 Step 3

Fig. 13: SD3 exploits both pipelining (2-stage) and data-level parallelism.
Step 1* is augmented for the data-level parallelization.

Note that the event distribution step is introduced in the

stage 1. Because of a SPMD-style parallelization at the stage

2, we need to prepare inputs for each task. In particular, we

divide the address space in an interleaved fashion for better

speedup, as shown in Fig. 14. The entire address space is

divided by every 2k bytes, and each subset is mapped to

M tasks in an interleaved way. Each task only analyzes the

memory references from its own range. A thread scheduler

then executes M tasks on N cores.

Task0 Task1 Task2 … TaskM-1 Task0 Task1 …

0 12k 22k … (M-1)2k M2k (M+1)2k …
Address

Space:

task_id = (Memory_Address >> k) % M

Scheduler

Task0

Task1
...

TaskM-1

Core0

Core1
...

CoreN-1

Fig. 14: Data-parallel model of SD3 with the address-range size of 2k,
M tasks, and N cores: Address space is divided in an interleaved way.
The above formula is used to determine the corresponding task id for a
memory address. In our experimentation, the address-rage size is 128-
byte (k = 7), and the number of tasks is the same as the number of
cores (M = N).

L L L

Task0

L L L

Task1

L L L

Task2

L L L

Loop events L Memory events for Task0 Task1 Task2

Fig. 15: An example of the event distribution step with 3 tasks: Loop
events are duplicated for all tasks while memory events are divided
depending on the address-range size and the formula of Fig. 14.

However, this event distribution, as illustrated in Fig. 15,

is not a simple division of the entire input events: Memory

events are distributed by our interleaved fashion. By contrast,

loop events must be duplicated for the correctness of the data-

dependence profiling because the steps of Algorithm 2 are

triggered on a loop event.

5.3 Strides in Parallelized SD3

Our stride-detection algorithm and Dynamic-GCD also need

to be revised in parallelized SD3 for the following reason.

Stride patterns are detected by observing a stream of memory

addresses. However, in the parallelized SD3, each task can

only observe memory addresses in its own address range. The

problem is illustrated in Fig. 16. Here, the address space is

divided for three tasks with the range size of 4 bytes. Suppose

a stride A with the range of [10, 24] and the stride distance of

2. However, Task0 can only see addresses in the ranges of [10,

14) and [22, 26). Therefore, Task0 will conclude that there are

9

two different strides at [10, 12] and [22, 24] instead of only

one stride. These broken strides bloat the number of strides

dramatically.

Address Space

Stride A:

Not observed by Task0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Task0 Task1 ... Task2 Task0 ...

Fig. 16: A single stride can be broken by interleaved address ranges.
Stride A will be seen as two separate strides in Task0 with the original
stride-detection algorithm.

To solve this problem, the stride detector of a task assumes

that any memory access pattern is possible in out-of-my-region

so that broken strides can be combined into a single stride.

In this example, the stride detector of Task0 assumes that

the following memory addresses are accessed: 14, 16, 18,

and 20. Then, the detector will create a single stride. Even

if the assumption is wrong, the correctness is not affected:

To preserve the correctness, when performing Dynamic-GCD,

SD3 excludes the number of conflicts in out-of-my-region.

5.4 Details of the Data-Parallel Model

5.4.1 Choosing a good address-range size

A key point in designing the data-parallel model is to obtain

higher speedup via good load balancing. However, the division

of the address space inherently makes a load unbalancing

problem as memory accesses often show non-uniform locality.

Obviously, having too small or too large address-rage size

would worsen this problem. Hence, we use an interleaved

division as discussed and then need to find a reasonably

balanced address-range size.

0.00%
0%

10%

20%

30%

40%

50%

60%

Matrix FFT6 179.art 436.cactus

8 16

32 64

128 256

512

Addr-Range Size

Fig. 17: Deviations of total number of memory accesses of eight tasks
by the address-rage sizes (in bytes). Lower is better.

According to our experiment, shown in Fig. 17, as long

as the range size is not too small or not too large, address-

range sizes from 64 to 256 bytes yield well-balanced workload

distribution. In our implementation, we choose 128 bytes.

5.4.2 Choosing an optimal number of tasks

Even if taking the interleaved approach, we cannot avoid

the load unbalancing problem. To address this problem, we

attempt to create sufficient tasks and employ the work-stealing

scheduler [3], that is, exploiting fine-granularity task paral-

lelism. At a glance, this approach would yield better speedup,

but our data negated our hypothesis, as shown in Fig 18. We

observed that no speedup was gained by this approach.

There are two reasons: (1) First, even if the quantity of the

memory events is reduced, the number of stride may not be

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Matrix FFT6 179.art 436.cactus

S
lo

w
d

o
w

n
s

8 12

16 24

32

Number of Task

Fig. 18: Having more tasks than the number of cores (on a eight-core
machine) exhibits slowdowns in our hybrid parallelization model.

proportionally reduced. For example, in Fig. 16, despite the

revised stride-detection algorithm, the total number of stride

for all tasks is three; on a serial version of SD3, the number

of stride would have been one. Hence, having more tasks may

increase the overhead of storing and handling strides, eventu-

ally resulting in poor speedup. (2) Second, the overhead of the

event distribution would be significant as the number of tasks

increase. Recall again that loop events are duplicated while

memory events are distributed. This restriction makes the event

distribution a complex and memory-intensive operation. On

average, for SPEC 2006 with the train inputs, the ratio of the

total size of loop events to the total size of memory event is

8%. Although the time overhead of processing a loop event

is much lighter than that of a memory event, the overhead

of transferring loop events could be serious as the number of

tasks is increased.

Therefore, we let the number of tasks be identical to the

number of cores. Although the data-dependence profiling is

embarrassingly parallel, the mentioned challenges, handling

strides and distributing events, hinder an optimal workload

distribution and an ideal speedup.

6 IMPLEMENTATION

Building a profiler that implements SD3 has many imple-

mentation challenges. We discuss important issues in this

section. We believe the discussion would be informative to

the implementation of other program analysis tools that exploit

instrumentation.

We implement SD3 on both Pin [22], a dynamic binary-

level instrumentation toolkit and LLVM [20], a compiler

framework. SD3 algorithm itself is orthogonal to the choice

of instrumentation mechanisms. We first discuss the common

issues regardless of Pin and LLVM. In the end of this section,

we elaborate issues specific to each instrumentation method.

6.1 Basic Architecture

Our profiler consists of tracer and analyzer, which is a typical

producer and consumer architecture. These two modules are

executed as separate processes.

• Tracer: It instruments a program, captures runtime exe-

cution traces (i.e., memory events and loop events), and

transfers to the analyzer via an inter-process communi-

cation mechanism, using shared memory.

• Analyzer: It takes events from the tracer and performs

SD3 algorithm.

10

Note that our profiler must be an online tool. Because

majority of loads and stores are instrumented, generated traces

could be extremely huge, up to an order of 10 TB. Hence, we

cannot simply use an offline approach. An example of such

offline approach would be storing and compressing events

(e.g., by using bzip) and then decompressing and analyzing

the events. This approach is not effective at all, because

compressing/decompressing traces take huge time.

One concern of this online approach would be the overhead

of inter-process communication. We observed that the average

amount of event transfer rate between the two processes was

approximately 1 - 3 GB/s, which can be sufficiently handled

by moderen computers. The size of the execution event is 12

bytes, and events are transferred as uncompressed.

This separation of tracer and analyzer enables two sig-

nificant benefits. First, the pipeline parallelism, explained in

Section 5.2, is easily achieved. Second, we can design the

analyzer to be reused by different tracers. We separately

implement tracers based on instrumentation mechanisms. We

also define an abstracted communication layer between the

single analyzer and multiple tracers, regardless of the choice of

instrumentaion tools. Finally, such separation eases debugging

of SD3 algorithm.

6.2 Implementation of Analyzer

The analyzer first implements the data structures described in

Section 4.4 and Algorithm 2, and we then parallelize by using

Intel Threading Building Block (TBB) [13].

To obtain even better parallelism, we extend our profiler to

work on multiple machines, based on a MPI-like execution

model [9]. The same tracer, analyzer, and application are

running in parallel on multiple machines, but each machine

has equally divided workload. This is a simple extension of our

data-parallel model, but applies across different machines. Our

profiler also profiles multithreaded applications and provides

per-thread profiling results.

6.2.1 False Positive and False Negative Issues

We discuss regarding false positives (i.e., reported as having

dependences, but it was a false alarm) and false negatives (i.e.,

no dependences reported, but it has a dependence) in the data-

dependence profiling.

False positives can occur if we take a bigger granularity

in the memory instruction instrumentation, such as 8-byte

granularity rather than a byte granularity. A data-dependence

profiling in the speculative multithreading domain can take

a large granularity to minimize overhead, but this approach

suffers more false positive dependences [4].

In our implementation, first of all, the stride-based approach

does not suffer from false positives. We correctly handle the

size of memory access (e.g., whether char, int, or double)

in the stride-based data structures and DYNAMIC-GCD.

For the pairwise method in which hash tables keyed by

addresses, we always use 1-byte granularity, which means

no false positives. However, it may have false negatives in

a very unusual case, as shown in Fig. 19. Even if there was

a 8-byte write at line 4, the 1-byte granularity policy only

records the first byte of the access. Hence, the read from

line 5 results in a missing data dependence. However, we

believe such case is very unlikly to happen in well-written

code. Of course, this false negative problem can be solved by

a naive approach: inserting every bytes into a hash table on

multiple-byte accesses. This approach obviously requires too

more memory and time to be used.

1: void* raw = malloc(1024);

2: double* data1 = (double*)raw;

3: char* data2 = (char*)raw;

4: data1[0] = 1.0; // Writing 8 bytes

5: char t = data2[1]; // Reading only part of data1[0];

Fig. 19: A false negative case with 1-byte granularity.

False negatives can also happen because not all code can

be executed with a specific input. This problem is discussed

in Section 7.4.

6.2.2 PC-set optimization for the Pairwise Method

This PC-set optimization is only for the pairwise method, but

this optimization can reduce both time and space overhead.

Recall SD3 still uses the pairwise method when a memory

access does not show the stride behavior. As discussed in

Section 4.5, the pairwise method merges two point tables

when the current iteration finishes and when an inner loop

is terminated.

Point Table (w/o PC-Set)

100

Address

...

Point Table (with PC-Set)

ID_3, RW, 6 PC_a, W, 4 PC_b, R, 2 100

Address

... <PC, R/W, occurrence> <PC_Set ID, RW, occur>

ID_1

ID_2

ID_3

PC Set Table

PC_a, W

PC_b, R

PC_a, W PC_b, R

ID_1 ∪ ID_2 = ID_3

…

…

Union-Computation Cache

Fig. 20: PC set optimization for the fast PC-list merging. A PC list can
be represented as a single PC-set ID, resulting in saving the memory.
The union computation is be accelerated by the cache. However, this
optimization can make an error in the frequency of dependence.

However, note that each entry of a point table has a list of

PC, which is required to report PC-wise sources and sinks of

dependences. Also, when merging two point tables, we need to

compute an union set of two PC lists from two entries, which

requires additional time. Fortunately, we observed that most of

such union computation was repeated over a limited number

of distinct PC lists. Hence, we introduce a global PC-set table

that remembers all observed distinct PC lists, and a cache for

the union computation. These two data structures, shown in

Fig. 20, not only save the total memory consumption, but also

avoid excessive computation time.

This PC-set optimization causes another lossy compression

like the error discussed in Section 4.7. As illustrated in Fig.

20, introducing PC-set loses the occurrence count per each PC;

the total occurrence count for the single PC-set is just saved.

Hence, when reporting the frequency of the data dependence,

the pairwise method may have an error. However, we also

should note that this error is not for the existence of the

dependence, but only for the slight frequency.

11

6.3 Implementation of Tracers

6.3.1 Issues in a Pin-based Tracer

A Pin-based tracer enables the data-dependence profiling at

dynamic and binary level. This approach broadens the ap-

plicability of the tool, comparing to a compiler and source-

code level approach. A dynamic instrumentation does not

require a recompilation of a profilee. It is a great benefit if

the application does not have full source code and requires

different and complex tool chains.

The downside of Pin-based approach is that additional

binary-level static analysis is needed to recover control flow

graphs and loop structures, which is hard to implement. For

example, recovering indirect branches and pinpointing the

correct locations of loop entries and exits are challenge in

the binary-level analysis.

Regarding the instrumentation of loads and stores, a binary

executable typically has a lot of artifacts from push/pop on

stacks and system function calls. Without eliminating such

redundant loads and stores, results of a Pin-based profiler

would have lots of dependences that are not useful for the

parallelization hints. Some loads and stores also do not need to

be instrumented if their dependences can be identified at static

time, notably inductions and reductions. However, filtering

such loads and stores selectively is also hard to implement. An

alternative to this direct binary-level static analysis would be

using a x86 binary translator to LLVM IR and then exploiting

the LLVM framework [17].

6.3.2 Issues in a LLVM-based Tracer

Another choice of implementation of a tracer is using

compiler-based instrumentation such as LLVM. Although

LLVM also allows dynamic compilation and instrumentation,

we use as a static and source-level instrumentation toolkit.

LLVM provides very rich static-analysis infrastructure. Correct

control flows and loop structures are already provided. Skip-

ping inductions and reductions is relatively easy to implement

inside of LLVM. Source-level instrumentation is easy to avoid

binary-level artifacts. Idealy, some static analysis may be per-

formed before the dynamic profiling to decrease the profiling

overhead [7].

However, recompiling an application with instrumentation

code is not always easy. It sometimes requires modifications

in compiler toolchains and compiler driver code. The analyzer

must need some information from the instrumentation phase,

such as list of instrumented loops and memory instructions.

As the instrumentation phase is separated from the runtime

profiling, such information should be transfered via a persistent

medium like a file.

7 EXPERIMENTAL RESULTS

7.1 Experimentation Methodology

We use 22 SPEC 2006 benchmarks to report runtime overhead

by running the entire execution of benchmarks with the

reference input.7 We instrument all memory loads and stores

except for certain types of stack operations and some memory

instructions in shared libraries. Our profiler collects details

of data-dependence information as enumerated in Section 2.1.

However, we only profile the top 20 hottest loops (based on

the number of executed instruction). For the comparison of

the overhead, we use the pairwise method. We also use seven

OmpSCR benchmarks [1] for the input sensitivity problem.

Our experimental results were obtained on machines with

Windows 7 (64-bit), 8-core with Hyper-Threading Technology,

and 16 GB main memory. Memory overhead is measured in

terms of the peak physical memory footprint. For results of

multiple machines, our profiler runs in parallel on multiple

machines but only profiles distributed workloads. We then take

the slowest time for calculating speedup.

7.2 Memory Overhead of SD3

0

2

4

6

8

10

0 100 200 300 400 500

M
e

m
o

ry
 O

v
e

rh
e

ad
 (

G
B

)

Time (Seconds)

433.milc

434.zeusmp

436.cactusADM

470.lbm

lbm cactus milc

zeusmp

Fig. 23: Memory overhead of the pairwise for 4 SPEC 2006 benchmarks

Fig. 21 shows the absolute memory overhead of SPEC 2006

with the reference inputs. The memory overhead includes ev-

erything: (1) native memory consumption of a benchmark, (2)

instrumentation overhead, and (3) profiling overhead. Among

the 22 benchmarks, 21 benchmarks cannot be profiled with

the pairwise method, which is still the state-of-the-art method,

with a 12 GB memory budget. Many of the benchmarks (16

out of 22) consumed more than 12 GB even with the train

inputs. Fig. 23 shows the memory consumption of the pairwise

method on every second for 433.milc, 434.zeusmp, 435.lbm

and 436.cactusADM. Within 500 seconds, these four bench-

marks reached 10 GB memory consumption. We do not even

know how much memory would be needed to complete the

profiling with the pairwise method. We also tested 436.cactus

and 470.lbm on a 24 GB machine, but still failed. Simply

doubling memory size could not solve this problem.

However, SD3 successfully profiled all the benchmarks. For

example, while both 416.gamess and 436.cactusADM demand

12+ GB in the pairwise method, SD3 requires only 1.06 GB

(just 1.26× of the native overhead) and 1.02 GB (1.58×
overhead), respectively. The geometric mean of the memory

consumption of SD3 (1-task) is 2113 MB while the overhead

of native programs is 158 MB. Although 483.xalancbmk

7. Due to issues in instrumentation and binary-level analysis, we were not
able to run the remaining 6 SPEC benchmarks. Please note that current LLVM
implementation cannot instrument Fortran programs. The results in this paper
is from the Pin-based profiler.

12

0.0

2.0

4.0

6.0

8.0

10.0
M

e
m

o
ry

 O
v

e
rh

e
a

d
 (

G
B

) Native

Pairwise

SD3(1-Task)

SD3(8-Task)

×

Fig. 21: Absolute memory overhead for SPEC 2006 with the reference inputs: 21 out of 22 benchmarks (✕ mark) need more than 12 GB in the
pairwise method that is still the state-of-the-art algorithm of current tools. The benchmarks natively consume 158 MB memory on average.

0

50

100

150

200

S
lo

w
d

o
w

n
s
 (

T
im

e
s
) SD3(Serial)

SD3(8-Task)

SD3(32-Task)

Infinite CPUs

380× 397× 488× 391× 210× 845× 405× 323× 299× 497× 218× 319× 543× 521× 212× 260× 289×

Fig. 22: Slowdowns (against the native run) for SPEC 2006 with the reference inputs: From left to right, (1)SD3 (1-task on 1-core), (2) SD3 (8-task
on 8-core), (3) SD3 (32-task on 32-core), and (4) estimated slowdowns of infinite CPUs. For all experiments, the address-range size is 128 bytes.
The geometric mean of native runtime is 488 seconds on Intel Core i7 3.0 GHz.

needed more than 7 GB, we can conclude that the stride-based

compression is very effective.

Parallelized SD3 naturally consumes more memory than the

serial version of SD3, 2814 MB (8-task) compared to 2113

MB (1-task) on average. The main reason is that each task

needs to maintain a copy of the information of the entire

loops to remove synchronization. Furthermore, the number

of total strides is generally increased compared to the serial

version since each task maintains its own strides. However,

SD3 still reduces memory consumption significantly against

the pairwise method.

7.3 Time Overhead of SD3

The time overhead results of SD3 is presented in Fig. 22. The

time overhead includes both instrumentation-time analysis and

runtime profiling overhead. The instrumentation-time over-

head, such as recovering loops, is quite small. For SPEC 2006,

this overhead is only 1.3 seconds on average. The slowdowns

are measured against the execution time of native programs.

As discussed in Section 5.4, the number of task is the same

as the number of core in the experimentations.

As shown in Fig. 22, serial SD3 shows a 289× slowdown

on average, which is not surprising given the quantity of

computations on every memory access and loop execution.

Note that we do an exhaustive profiling for the top 20 hottest

loops. The overhead could be improved by implementing

better static analysis that allows us to skip instrumenting loads

and stores that have proved not to make any data dependences.

When using 8 tasks on 8 cores, parallelized SD3 shows a

70× slowdown on average, 29× and 181× in the best and

worst cases, respectively. We also measure the speedup with

four eight-core machines (total 32 cores). On 32 tasks with 32

cores, the average slowdown is 29×, and the best and worst

cases are 13× and 64×, respectively, compared to the native

execution time. Calculating the speedups over the serial SD3,

we achieve 4.1× and 9.7× speedups on eight and 32 cores,

respectively.

Although the data-dependence profiling stage is embarrass-

ingly parallel, our speedup is lower than the ideal speedup

(4.1× speedup on eight cores). The first reason is that we

have an inherent load unbalancing problem. The number of

tasks is equal to the number of cores to minimize redundant

loop handling and event distribution overhead. Note that the

address space is statically divided for each task, and there is

no simple way to change this mapping dynamically. Second,

with the stride-based approach, processing time for handling

strides is not necessarily decreased in the parallelized SD3.

We also estimate slowdowns with infinite CPUs. In such

case, each CPU only observes conflicts from a single memory

address, which is extremely light. Therefore, the ideal speedup

would be very close to the runtime overhead without the

data-dependence profiling. However, some benchmarks, like

483.xalancbmk and 454.calculix, show 17× and 14× slow-

downs even without the data-dependence profiling. The large

overhead of the loop profiling mainly comes from frequent

loop start/termination and deeply nested loops.

7.4 Input Sensitivity of Data-Dependence Profiling

One of the concerns of using a data-dependence profiler as a

programming-assistance tool is the input sensitivity problem.

We quantitatively measure the similarity of data-dependence

profiling results from different inputs. A profiling result has

a list of discovered dependence pairs (source and sink).

We compare the discovered dependence pairs from a set of

different inputs. Note that we only compare the top 20 hottest

loops and ignore the frequency of the data-dependence pairs.

We define similarity as follows, where Ri is the i-th result

(i.e., a set of data-dependence pair):

13

Similarity = 1−
∑N

i=1

|Ri−
⋂

N

k=1
Rk|

|Ri|

The similarity of 1 means all sets of results are exactly

the same (no differences in the existence of discovered data-

dependence pairs, but not frequencies). We first tested eight

benchmarks in the OmpSCR [1] suite. All of them are small

numerical programs, including FFT, LUReduction, and Man-

delbrot. We tested them with three different input sets by

changing the input data size or iteration count, but the input

sets are sufficiently long enough to execute the majority of

the source code. Our result shows that the data-dependence

profiling results of OmpSCR were not changed by different

input sets (i.e., Similarity = 1). Therefore, the parallelizability

prediction of OmpSCR by our profiler has not been changed

by the input sets we gave.

0.95
0.96
0.97
0.98
0.99
1.00

40
1.
b
zi
p
2

42
9.
m
cf

44
5.
g
o
b
m
k

45
6.
h
m
m
er

45
8.
sj
en
g

46
2.
li
b
q
u
an

46
4.
h
26
4r
ef

47
1.
o
m
n
et

48
3.
x
al
an

41
6.
g
am

es
s

43
3.
m
il
c

43
4.
ze
u
sm

p

43
5.
g
ro
m
ac
s

43
6.
ca
ct
u
s

43
7.
le
sl
ie
3d

44
4.
n
am

d

44
7.
d
ea
lI
I

45
3.
p
o
v
ra
y

45
4.
ca
lc
u
li
x

46
5.
to
n
to

47
0.
lb
m

48
2.
sp
h
in
x
3

G
E
O
M
E
A
N

S
im

il
a

ri
ty

Fig. 24: Similarity of the results from different inputs: 1.00 means all
results were identical (not the frequencies of dependence pairs).

We also tested SPEC 2006 benchmarks. We obtained the

results from the reference and train input sets. Our data

shows that there are very high similarities (0.98 on average)

in discovered dependence pairs. Note that again we com-

pare the similarity for only frequently executed loops. Some

benchmarks show a few differences (as low as 0.95), but

we found that the differences were highly correlated with

the executed code coverage. In this comparison, we tried to

minimize x86-64 specific artifacts such as stack operations of

prologue/epilogue of a function.

A related work also showed a similar result. Thies et al.

used a dynamic analysis tool to find pipeline parallelism in

streaming applications with annotated code [29]. Their results

showed that memory dependences between pipeline stages are

highly stable and predictable over different inputs.

7.5 Discussion

We discuss two questions for designing SD3 algorithm: the

effectiveness of stride compression and samplings.

7.5.1 Opportunities for Stride Compression

We would like to see how many opportunities exist for stride

compression. We easily expect that a regular and numerical

program has a higher chance of stride compression than

an integer and control-intensive program. Fig. 25 shows the

distributions of the results from the stride detector when it

profiles the entire memory accesses of SPEC 2006 with the

train inputs. Whenever observing a memory access, our stride

detector classifies the access as one of the three categories: (1)

stride, (2) fixed-location access, or (3) point (i.e., non-stride).

Clearly, SPEC FP benchmarks have a higher chance of stride

compression than INT benchmarks: 59% and 28% of all the

accesses show stride behaviors, respectively. Overall, 46% of

the memory accesses are classified as strides. However, note

that there are some benchmarks that have similar distributions

of stride and non-stride accesses such as 444.namd. Thus,

efficiently handling stride and point accesses simultaneously

is important.

7.5.2 Sampling Technique

Instead of directly addressing the scalability issue, some pre-

vious work has tried to limit the overhead of data-dependence

profiling using sampling [4]. However, simple sampling tech-

niques are inadequate for the purpose of our data-dependence

profiler: Any sampling technique can introduce inaccuracy.

Inaccuracy in data-dependence profiling can lead to either false

negatives or false positives (discussed in Section 6.2.1).

Some usage models of data-dependence profiling can toler-

ate inaccuracy. One such example is thread-level data specula-

tion (TLDS) [4, 21, 28]. The reason is that in TLDS, incorrect

speculations can be recovered by the rollback mechanism in

hardware. Nevertheless, when we use dependence profiling

to guide programmer-assisted parallelization for multicore

processors without such rollbacks, the profile should be as

accurate as possible.

307: for(item = 0 ; item < group->n_scheditems; item++)

308: {

309: switch(group->scheditems[group->order[item]].type)

310: {

311: case sched_function: // call work function

...

322: case sched_group: // call work function

...

338: }

339: } Fig. 26: 436.cactusADM, ScheduleTraverse.c

Fig. 26 illustrates a case where a simple sampling could

make a wrong decision on parallelizability prediction. The

loop at line 307 of the figure is mistakenly reported as

parallelizable. The reason was that the work function that

generated dependences was called just one time, at the end of

iteration. A simple sampling technique that randomly samples

iterations in a loop could make this error.

8 RELATED WORK

8.1 Dynamic Data-Dependence Analysis

One of the early works that used data-dependence profiling to

help parallelization is Larus’ parallelism analyzer pp [18]. pp

detects loop-carried dependences in a program. The profiling

algorithm is similar to the evaluated pairwise method. Larus

analyzed six programs and showed that two different groups,

numeric and symbolic programs, had different dependence

behaviors. However, this work had huge memory and time

overhead, as we demonstrated in this paper.

Tournavitis et al. [30] proposed a dependence profil-

ing mechanism to overcome the limitations of automatic

parallelization. However, in their work, they also used a

pairwise-like method and did not discuss the scalability prob-

lem. Zhang et al. [36] proposed a data-dependence-distance

profiler called Alchemist. Their tool is specifically designed

for the future language constructor that represents the result

14

0%

20%

40%

60%

80%

100%

point

fixed

stride

Fig. 25: Classification of stride detection for SPEC 2006 benchmarks with the train inputs: (1) point: memory references with non-stride behavior,
(2) fixed: memory references whose stride distance is zero, and (3) stride: memory references that can be expressed in an affined descriptor.

of an asynchronous computation. Although they claimed there

was no memory limitation in their algorithm, they evaluated

very small benchmarks. The number of executed instructions

of a typical SPEC 2006 reference run is on the order of 1012,

while that of the evaluated programs in Alchemist is less than

108. Praun et al. [32] proposed a notion of dependence density,

the probability of existing memory-level dependencies among

any two randomly chosen tasks from the same program phase.

They also implemented a dependence profiler by using Pin and

had a runtime overhead similar to our pairwise method.

8.2 Data-Dependence Profiling for Speculation

As discussed in Section 7.5, the concept of dependence pro-

filing has been used for speculative hardware based optimiza-

tions. TLDS compilers speculatively parallelize code sections

that do not have much data dependence. Several methods have

been proposed [4, 8, 21, 28, 34], and many of them employ

sampling or allow aliasing to reduce overhead. However, all

of these approaches do not have to give accurate results

like SD3 since speculative hardware would solve violations in

memory accesses.

8.3 Reducing Overhead of Dynamic Analysis

Shadow Profiling [24], SuperPin [33], PiPA [37], and Ha et

al. [10] employed parallelization techniques to reduce the time

overhead of instrumentation-based dynamic analyses. Since all

of them focus on a generalized framework, they only exploit

task-level parallelism by separating instrumentation and dy-

namic analysis. However, in our case, SD3 further exploits

data-level parallelism while reducing the memory overhead

simultaneously.

A number of techniques that compress dynamic profiling

traces have been proposed to save memory space [19, 23,

26, 35] as well as standard compression algorithms like bzip.

Their common approach is using specialized data structures

and algorithms to compress instructions and memory accesses

that show specific patterns. METRIC [23], a tool to find

cache bottlenecks, also exploits the stride behavior like SD3.

However, the fundamental difference is that their algorithm is

only for compressing memory streams. SD3 is not a simple

compression algorithm; we present a number of algorithms

that effectively calculates data dependence with the stride and

non-stride formats.

9 APPLICATIONS OF SD3 ALGORITHM

SD3 is developed to solve the scalability for tools that assist

programmers for easier manual parallelization from serial

code. SD3 algorithm is directly applicable to tools such as

Intel Parallel Studio [12], CriticalBlue Prism [6], and Vector

Fabric vfAnalyst [31]. As claimed in the Introduction, these

tools currently show high overhead. DProf by Das and Wu

[7] is a dependence profiler to assist parallelization, but also

suffers from huge overhead. We have confirmed that some

of the current tools may not distinguish loop-independent

dependences from loop-carried dependences. SD3 will provide

more accurate data-dependence analysis algorithm.

This paper have focused on a precise algorithm to calculate

data dependences in loop nests. However, we should note that

SD3 is easily extended to find data dependences among arbi-

trary function calls (including recursion). On a function entry,

we assume that an imaginary loop that encloses the entire

function body has been started, while the trip count is just

one. Any data dependences between statements in the same

function are detected as loop-independent dependences. Any

data dependences across function calls are handled because

SD3 correctly calculates data dependences in loop nests.

A raw result from SD3 algorithm is pairs of data depen-

dences for a given program. If no data dependence reported, it

obviously means that this code section can be embarrassingly

parallelized. However, many serial code would have data

dependences. SD3 does not give hints on code transformation

to avoid such data dependences. Unfortunately, the current

tools also do not provide good hints to programmers. The

interpretation of the discovered data dependences is the task

of programmers at this time.

Our future work, Prospector [15], is to provide more useful

hints on code transformation to programmers. As illustrated in

an example of Prospector [15], by further analysis of discov-

ered data dependences, we may classify some of dependences

as reduction variables and assist to change the code. More

sophisticated analyses would be possible. If discovered flow

dependences do not dependent on order, it can be avoided by

inserting critical sections. Jin et al. presented a similar idea

recently [14], although their work is to fix concurrency bugs.

If flow dependences should obey some computation order,

we may provide hints on inserting synchronization such as

condition variables and phasers [27]. Finally, if flow data

dependences can be grouped into several steps, DOACROSS

and pipelining could be advised.

15

10 CONCLUSIONS AND FUTURE WORK

This paper proposed a new scalable data-dependence profiling

technique called SD3. Although data-dependence profiling is

an important technique for helping parallel programming, it

has huge memory and time overhead. SD3 is the first solution

that attacks both memory and time overhead at the same

time. For the memory overhead, SD3 not only reduces the

overhead by compressing memory references that show stride

behaviors, but also provides a new data-dependence checking

algorithm with the stride format. SD3 also presents several

algorithms on handling the stride data structures. For the time

overhead, SD3 parallelizes the data-dependence profiling itself

while keeping the effectiveness of the stride compression.

SD3 successfully profiles 22 SPEC 2006 benchmarks with the

reference inputs.

In future work, we will focus on how such a scalable data-

dependence profiler can actually provide advice on paralleliz-

ing legacy code, as discussed in Section 9. We hope that

SD3 can help many researchers to develop other dynamic tools

to assist parallel programming.

REFERENCES

[1] OmpSCR: OpenMP source code repository. http://

sourceforge.net/projects/ompscr/.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Com-

pilers: Principles, Techniques, and Tools (2nd Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2006.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.

Leiserson, K. H. Randall, and Y. Zhou. Cilk: an efficient

multithreaded runtime system. In PPOPP, 1995.

[4] T. Chen, J. Lin, X.Dai, W. Hsu, and P. Yew. Data

dependence profiling for speculative optimizations. In

Proc. of 14th Int’l Conf on Compiler Construction (CC),

2004.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Second Edition. The MIT

Press, September 2001.

[6] CriticalBlue. Prism: an analysis exploration and ver-

ification environment for software implementation and

optimization on multicore architectures. http://www.

criticalblue.com.

[7] D. Das and P. Wu. Experiences of using a dependence

profiler to assist parallelization for multi-cores. In IPDPS

Workshops, pages 1–8, 2010.

[8] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and

T.-F. Ngai. A cost-driven compilation framework for

speculative parallelization of sequential programs. In

PLDI, 2004.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:

portable parallel programming with the message-passing

interface. MIT Press, Cambridge, MA, USA, 1994.

[10] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley.

A concurrent dynamic analysis framework for multicore

hardware. In OOPSLA, 2009.

[11] Intel Corporation. Intel Compilers. http://software.intel.

com/en-us/intel-compilers/.

[12] Intel Corporation. Intel Parallel Studio. http://software.

intel.com/en-us/intel-parallel-studio-home/.

[13] Intel Corporation. Intel Threading Building Blocks. http:

//www.threadingbuildingblocks.org/.

[14] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Auto-

mated atomicity-violation fixing. In PLDI, 2011.

[15] M. Kim, H. Kim, and C.-K. Luk. Prospector: Helping

parallel programming by a data-dependence profiler. In

2nd USENIX Workshop on Hot Topics in Parallelism

(HotPar ’10), 2010.

[16] X. Kong, D. Klappholz, and K. Psarris. The I Test: An

improved dependence test for automatic parallelization

and vectorization. IEEE Transactions on Parallel and

Distributed Systems, 2(3), 1991.

[17] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and

R. Barua. Automatic parallelization in a binary rewriter.

In Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO

’43, 2010.

[18] J. R. Larus. Loop-level parallelism in numeric and

symbolic programs. IEEE Trans. Parallel Distrib. Syst.,

4(7), 1993.

[19] J. R. Larus. Whole program paths. In PLDI, 1999.

[20] C. Lattner and V. Adve. Llvm: A compilation framework

for lifelong program analysis & transformation. In

Proceedings of the international symposium on Code

generation and optimization: feedback-directed and run-

time optimization, CGO ’04, 2004.

[21] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau,

and J. Torrellas. Posh: a tls compiler that exploits

program structure. In PPoPP, 2006.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.

Pin: Building customized program analysis tools with

dynamic instrumentation. In PLDI, 2005.

[23] J. Marathe, F. Mueller, T. Mohan, S. A. Mckee, B. R.

De Supinski, and A. Yoo. METRIC: Memory Tracing

via Dynamic Binary Rewriting to Identify Cache Ineffi-

ciencies. ACM Transactions on Programming Languages

and Systems, 29(2), 2007.

[24] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and

R. Peri. Shadow profiling: Hiding instrumentation costs

with parallelism. In CGO-5, 2007.

[25] S. S. Muchnick. Advanced Compiler Design and Imple-

mentation. Morgan Kaufmann Publishers, 1997.

[26] G. D. Price, J. Giacomoni, and M. Vachharajani. Visu-

alizing potential parallelism in sequential programs. In

PACT-17, 2008.

[27] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer.

Phasers: a unified deadlock-free construct for collective

and point-to-point synchronization. In Proceedings of the

22nd annual international conference on Supercomput-

ing, ICS ’08, 2008.

[28] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.

A scalable approach to thread-level speculation. In ISCA,

2000.

[29] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A

practical approach to exploiting coarse-grained pipeline

16

parallelism in C programs. In MICRO-40, 2007.

[30] G. Tournavitis, Z. Wang, B. Franke, and M. O’Boyle.

Towards a holistic approach to auto-parallelization inte-

grating profile-driven parallelism detection and machine-

learning based mapping. In PLDI, 2009.

[31] VectorFabrics. vfAnalyst: Analyze your sequential C code

to create an optimized parallel implementation. http://

www.vectorfabrics.com/.

[32] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling

optimistic concurrency using quantitative dependence

analysis. In PPoPP, 2008.

[33] S. Wallace and K. Hazelwood. SuperPin: Parallelizing

dynamic instrumentation for real-time performance. In

CGO-5, 2007.

[34] P. Wu, A. Kejariwal, and C. Caşcaval. Compiler-driven

dependence profiling to guide program parallelization. In

LCPC 2008, 2008.

[35] X. Zhang and R. Gupta. Whole execution traces. In

MICRO-37, 2004.

[36] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A

transparent dependence distance profiling infrastructure.

In CGO-7, 2009.

[37] Q. Zhao, I. Cutcutache, and W.-F. Wong. PiPA: pipelined

profiling and analysis on multi-core systems. In CGO-6,

2008.

