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Abstract

1. Geostatistical data—spatially referenced observations related to some continuous spatial phenomenon—
are ubiquitous in ecology and can reveal ecological processes and inform management decisions. However,
appropriate models to analyze these data, such as generalized linear mixed effects models (GLMMs) with
Gaussian random fields, are often computationally intensive and challenging to implement, interpret, and
evaluate.
2. Here, we introduce the R package sdmTMB, which implements predictive-process SPDE- (stochastic
partial differential equation) based spatial and spatiotemporal models. Estimation is conducted via
maximum marginal likelihood with Template Model Builder (TMB) but can be extended to penalized
likelihood or Bayesian inference. We describe the statistical model, illustrate the package’s use through
two case studies, and compare the functionality, speed, and interface to related software.
3. We highlight advantages of using sdmTMB for this class of models: (1) sdmTMB provides a flexible
interface familiar to users of glm(), lme4, glmmTMB, or mgcv; (2) estimation is often faster than
alternatives; (3) sdmTMB provides simple out-of-sample cross validation; (4) non-stationary processes
(time-varying and spatially varying coefficients) are easily constructed with a formula interface; and (5)
sdmTMB includes features not available as a combination in related packages (e.g., delta/hurdle models,
penalized smoothers and break-point effects, anisotropy, abundance index standardization).
4. We hope that sdmTMB’s user-friendly interface will open this useful class of models to a wider audience
within species distribution modelling and beyond.
Keywords: Gaussian Markov random fields (GMRF), generalized linear mixed effects models (GLMM),
INLA, SPDE, species distribution modelling, R package, spatio-temporal or spatial-temporal, Template
Model Builder
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Introduction

Ecological data are often collected in space or in space repeatedly over time. While such data are a rich
source of information about ecological processes (Legendre & Fortin 1989; Rossi et al. 1992; Tilman et al.
1997), they are challenging to properly model—data closer in space and time are usually more similar to each
other than data farther apart due to measured and unmeasured variables (Cressie 1993; Diggle & Ribeiro
2007; Cressie & Wikle 2011). While measured variables can be accounted for with predictors in a model (e.g.,
measuring and modelling temperature effects on species abundance), unmeasured variables (e.g., everything
influencing species abundance but not explicitly modelled) can cause residual spatial correlation. Accounting
for this residual correlation is important because doing so allows for valid statistical inference (Legendre
& Fortin 1989; Dormann et al. 2007), can improve predictions (e.g., Shelton et al. 2014), and can be of
ecological interest itself by, for example, identifying locations with similar population responses (e.g., Thorson
2019b; Barnett et al. 2021).

Geostatistical GLMMs (generalized linear mixed effects models) with spatially correlated random effects are
a class of models appropriate for these data (Rue & Held 2005; Diggle & Ribeiro 2007; Cressie & Wikle 2011).
Similarly to how random intercepts can account for correlation among groups, spatial or spatiotemporal
random effects can account for unmeasured variables causing observations to be correlated in space or space
and time. A common approach to modelling these spatial effects is with Gaussian random fields (GRFs),
where the random effects describing the spatial patterning are assumed to be drawn from a multivariate
normal (MVN) distribution, constrained by some covariance function such as the exponential or Matérn
(Cressie 1993; Chilés & Delfiner 1999; Diggle & Ribeiro 2007).

Such models quickly become computationally limiting due to the need to invert large matrices to keep track
of covariation among data (e.g., Rue & Held 2005; Latimer et al. 2009). Many solutions have been proposed,
such as predictive processes (Banerjee et al. 2008; Latimer et al. 2009), the stochastic partial differential
equation (SPDE) approximation to GRFs (Lindgren et al. 2011), and nearest-neighbour Gaussian processes
(Datta et al. 2016; Finley et al. 2021). These approaches reduce the scale of the covariance estimation problem
while providing a means to evaluate the data likelihood, thereby allowing fitting via Bayesian (Gelfand &
Banerjee 2017) or maximum likelihood methods. This can greatly improve computational efficiency (e.g.,
Heaton et al. 2019). The SPDE approach is a solution popularized via the INLA R package (Rue et al.
2009; Lindgren et al. 2011; Lindgren & Rue 2015) and an implementation in TMB (Template Model Builder,
Kristensen et al. 2016) that partially relies on INLA to create input matrices (e.g., Osgood-Zimmerman &
Wakefield 2021). Details are beyond the scope of this paper and are not necessary to use the software discussed
here, but the idea is that the solution to a specific SPDE is a GRF with a Matérn covariance function and
this ‘trick’ enables one to efficiently fit approximations to GRFs to large spatial datasets (Lindgren et al.
2011).

Systems for specifying statistical models that can include the SPDE, such as INLA and TMB, are flexible
and powerful but are challenging to use for many applied ecologists. For example, TMB requires the user to
program in a C++ template and it can be slow to experiment with multiple models when writing bespoke
model code. Packages such as lme4 (Bates et al. 2015) and glmmTMB (Brooks et al. 2017) let users quickly
iterate and explore statistical models—focusing on evaluating fit and comparing models—but do not have
built-in SPDE functionality. Packages such as VAST (Thorson 2019a) and inlabru (Bachl et al. 2019) are
powerful user interfaces to fit spatial models that use the SPDE, but they either lack a modular interface
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familiar to those who have used lme4 or glmmTMB, or lack some functionality. We provide a more detailed
comparison of related software packages in Table 1 and the Discussion.

Here, we introduce the R package sdmTMB, which implements geostatistical spatial and spatiotemporal
GLMMs using TMB for model fitting and INLA to set up SPDE matrices. Our aim is not to replace the
above-mentioned statistical packages, but to provide a fast, flexible, and user-friendly interface that is familiar
to users of lme4, glmmTMB, or mgcv (Wood 2017), for a specific class of spatial and spatiotemporal models.
One common application is for species distribution models (SDMs), hence the package name. This paper
describes the basic functionality of this R package and its underlying statistical model, illustrates its use
through two case studies, and concludes with a comparison to related software.

Model description

sdmTMB fits GLMMs to spatial or spatiotemporal geostatistical data. Geostatistical data simply refers to
data observed at specific spatial coordinates reflecting some underlying spatial process (Rossi et al. 1992;
Diggle & Ribeiro 2007). These data can be collected across discrete points in time. Areal data (data
aggregated to polygon or grid level) may be analyzed using other spatial models, including conditional (CAR)
autoregressive models (e.g., Ver Hoef et al. 2018). sdmTMB can also fit models with areal data if each
polygon has an associated centroid. A benefit of the geostatistical approach over CAR or similar models is
that the parameters describing spatial covariance can be more easily interpreted (Wall 2004).

The process component of an sdmTMB model can be formed by any combination of main (“fixed”) effects,
spatial intercept random fields, spatiotemporal intercept random fields, IID (independent and identically
distributed) random intercepts (but not currently random slopes), time-varying effects, and spatially varying
effects (Fig. 1, Appendix 1). This process component is combined with an observation error family (e.g.,
Gaussian, Gamma, binomial, Tweedie) and link (e.g., identity, log, logit) as in any generalized linear model
(GLM) (McCullagh & Nelder 1989). Some families can be combined into a two-part “delta” or “hurdle” model
(Aitchison 1955) to model the zero vs. non-zero observations separately from the positive observations.

The GLMMs underpinning sdmTMB models are spatially explicit—they estimate interpretable parameters
of a spatial covariance function: parameters defining the magnitude of spatial variation and the rate of
correlation decay with distance. In contrast, semi- and non-parametric approaches do not estimate spatial
covariance functions (e.g., randomForest (Liaw & Wiener 2002), MaxEnt (Phillips et al. 2006), and most
smooths in mgcv (Wood 2017)). The random fields in sdmTMB are structured as MVN constrained by a
Matérn covariance function (Matérn 1960). The Matérn can accommodate a range of shapes and can be both
isotropic (covariance decays the same in all directions) or anisotropic (covariance in the latitudinal direction
may differ from the longitudinal direction) (Haskard 2007). The Matérn standard deviations are estimated
separately for the various fields and the range—the distance at which spatial correlation decays to ∼ 0.13
(Lindgren & Rue 2015)—can be shared or estimated separately (share_range argument).
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Main effects

Spatial random effects

Spatiotemporal random effects

Time-varying effects

Spatially varying effects

IID random intercepts

Model component Illustration Description

Linear, smoother, or 
breakpoint effects

All spatially correlated effects 
from variables that are 
constant in time but are 
omitted from the model
(or a model without a time 
element)

All spatially correlated effects 
from variables that change 
through time but are omitted 
from the model

Effects that vary though time

Effects (‘slopes’) that vary in 
space

Example

Linear temperature, spline of 
depth, or breakpoint effect of 
oxygen on abundance

Depth, latitude, or substrate 
effects if omitted from model

Temperature, oxygen, prey 
abundance effects if omitted 
from the model

Relationship between depth 
and fish abundance 
changing through time

(1) Local trends in 
abundance over time;
(2) when a climate index is 
high, hotspots look one way, 
and vice versa

Group-level effects that are 
constrained by normal 
distributions

Transect ID, vessel ID

Notation

Observation error

Example code

formula = y ~ x
formula = y ~ s(x)
formula = y ~ breakpt(x)

spatial = ‘on’
spatial = ‘off’

spatiotemporal = ‘iid’
spatiotemporal = ‘ar1’
spatiotemporal = ‘rw’
spatiotemporal = ‘off’

time_varying = 
   ~ 0 + depth

spatial_varying = 
   ~ 0 + climate_index

formula = y ~ (1|g)

Error from observing or 
sampling the process

Counting birds or fish in a 
survey; recording presence/
absence in a quadrat

family = binomial(link = "logit")
family = nbinom2(link = "log")
family = tweedie(link = "log")

Figure 1: Components of an sdmTMB model with illustrations, descriptions, examples, notation, and example code. An sdmTMB model can be built
from any combination of the process components (first six rows) plus an observation component (last row). The examples are from an SDM context,
but the model can be fit to any spatially referenced point data. Notation: We refer to design matrices as X. The indexes s, t, and g index spatial
coordinates, time, and group, respectively. The σ and Σ symbols represent standard deviations and covariance matrices, respectively. All other symbols
refer to the described model components (e.g., β and ω refer to a vector of main effects and spatial random field deviations, respectively). See Appendix
1 for a full description of the model. Note that s() denotes a smoother as in mgcv (Wood 2017), breakpt() denotes a breakpoint ‘hockey-stick’ shape
(e.g., Barrowman & Myers 2000), (1|g) denotes a random intercept by group g, and ~ 0 is used in an R formula to omit an intercept.
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By default, if spatiotemporal fields are included, they are assumed IID; however, additional options allow
them to be modelled as a random walk or first-order autoregressive, AR(1), process (Fig. 1; Appendix 1).
Turning off both spatial and spatiotemporal effects allows comparison with a standard non-spatial GLM
or GLMM. We include additional flexibility in specifying the linear fixed effect matrix: covariates can be
modelled as penalized smooth functions (generalized additive models, GAMs) using the same s() syntax as
in mgcv (Wood 2017) (thereby allowing automatic selection of smoother ‘wiggliness’), or can be modelled
with threshold shapes; for example, hockey-stick models, breakpt(), (Barrowman & Myers 2000) or logistic
functions, logistic() (Appendix 1). The smoothers in sdmTMB can mimic most mgcv::s() smoothers
including bivarate smoothers (s(x, y)), smoothers varying by continuous or categorical variables (s(x1, by
= x2)), cyclical smoothers s(x, bs = "cc"), and smoothers with specified basis dimensions s(x, k = 4)
(Wood 2017).

The sdmTMB model is fit by maximum marginal likelihood. Internally, a TMB (Kristensen et al. 2016) model
template is used to calculate the marginal log likelihood and its gradient, and the negative log likelihood is
minimized via the non-linear optimization routine stats::nlminb() in R (Gay 1990; R Core Team 2021).
Random effects are estimated at values that maximize the log likelihood conditional on the estimated fixed
effects and are integrated over via the Laplace approximation (Kristensen et al. 2016). After rapid model
exploration with maximum likelihood, one can optionally pass an sdmTMB model to the R package tmbstan
(Monnahan & Kristensen 2018) to estimate the joint posterior distribution for Bayesian inference.

sdmTMB models can include penalized likelihoods by assigning priors to model parameters (?sdmTMBpriors).
These priors may be useful in cases where estimation is difficult because of identifiability issues or relatively
flat likelihood surfaces, or to impart prior information or achieve regularization. Following other recent SPDE
implementations in TMB (Osgood-Zimmerman & Wakefield 2021; Breivik et al. 2021), penalized complexity
(PC) priors (Simpson et al. 2017; Fuglstad et al. 2019) (?pc_matern) can constrain the spatial range and
variance parameters.

The results from an sdmTMB model can be used to generate various quantities of interest. For example,
sdmTMB provides functionality for generating population-level summaries for each time slice including the
center of gravity (get_cog()) (e.g., Thorson et al. 2016b) and total population index (get_index()) given a
user-supplied grid.

Introductory example using fish survey data

An sdmTMB model requires a data frame that contains a response column, columns for any predictors, and
columns for spatial coordinates. It usually makes sense to convert the spatial coordinates to an equidistant pro-
jection such as the Universal Transverse Mercator (UTM) to ensure that distance remains constant throughout
the study region (e.g., using sf::st_transform(), Pebesma 2018, or sdmTMB::add_utm_columns()). Here,
we illustrate a spatial model fit to Pacific cod (Gadus macrocephalus) trawl survey data from Queen Charlotte
Sound, British Columbia, Canada. Our model contains a main effect of depth as a penalized smoother, a
spatial random field, and Tweedie observation error. Our data frame pcod (built into the package) has a
column year for the year of the survey, density for biomass density of Pacific cod in the area swept for a
given survey tow, depth for depth in meters of that tow, and spatial coordinates X and Y, which are UTM
coordinates in kilometres.
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library(sdmTMB)
head(pcod)

#> year density depth X Y
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2003 113. 201 446. 5793.
#> 2 2003 41.7 212 446. 5800.
#> 3 2003 0 220 449. 5802.

We start by creating a mesh object that contains matrices to apply the SPDE approach.

mesh <- make_mesh(pcod, xy_cols = c("X", "Y"), cutoff = 10)

Here, cutoff defines the minimum allowed distance between mesh vertices in the units of X and Y. Alternatively,
we could have created any mesh via the INLA package and supplied it to make_mesh(). We can inspect our
mesh object with the associated plotting method (plot(mesh); see Fig. 2A).

We can then fit a model with spatial random fields (spatial = "on") via the function sdmTMB(). We use
a penalized smoother for depth as a main effect via s() from the mgcv package. We specify the family as
Tweedie to account for positive continuous density values that also contain zeros. An alternative would be
the delta_gamma() family to specify a delta/hurdle model (Aitchison 1955) or to model catch weight with
an offset for log(area swept).

fit <- sdmTMB(
density ~ s(depth),
data = pcod,
family = tweedie(link = "log"),
mesh = mesh,
spatial = "on"

)

We can get a summary of the fit with the print() or summary() methods or extract parameter estimates as
a data frame with the tidy() method.

summary(fit)

#> Spatial model fit by ML ['sdmTMB']
#> Formula: density ~ s(depth)
#> Mesh: mesh
#> Data: pcod
#> Family: tweedie(link = 'log')
#> coef.est coef.se
#> (Intercept) 2.37 0.21
#> sdepth 6.17 25.17
#>
#> Smooth terms:
#> Std. Dev.
#> sds(depth) 13.93
#>
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#> Dispersion parameter: 12.69
#> Tweedie p: 1.58
#> Matern range: 16.39
#> Spatial SD: 1.86
#> ML criterion at convergence: 6402.136

The output indicates our model was fit by maximum (marginal) likelihood (ML). We also see the formula,
mesh, fitted data, and family. Next we see any estimated main effects including the linear component of the
smoother (sdepth), the standard deviation on the smoother weights (sds(depth)), the Tweedie dispersion
and power parameters, the Matérn range distance, the marginal spatial field standard deviation, and the
negative log likelihood at convergence.

We can make predictions with the predict() method (?predict.sdmTMB) and optionally use the newdata
argument to predict on a new data frame with any locations and values for the predictor columns. Here, we
will predict on a 2x2 km grid (qcs_grid) that covers the entire region of interest so we can visualize the
predictions spatially (or calculate a standardized population index with a spatiotemporal model). The grid
contains spatial covariate columns and all predictors used in the model set at values for which we want to
predict.

p <- predict(fit, newdata = qcs_grid)

The output of predict() is a data frame containing overall estimates in link space, estimates from the
non-random-field components (intercept and depth), and estimates from the random field components. We
show a basic plot of the estimated spatial random field, predictions across a depth gradient, and predictions
in space in Fig. 2B–D.

We could extend this spatial model to be a spatiotemporal one simply by supplying the year column name to
the time argument and specifying how we want the spatiotemporal random fields to be structured. Here we
will keep the spatial field and structure the spatiotemporal random fields as AR(1).

fit_spatiotemporal <- sdmTMB(
density ~ s(depth), family = tweedie(link = "log"), data = pcod, mesh = mesh,
time = "year", spatial = "on", spatiotemporal = "ar1"

)

We could generate an area-weighted population index (e.g., a relative or absolute index of abundance or
biomass) that is independent of sampling locations by predicting from that fit on a grid covering the area of
interest and summing the predicted biomass with the get_index() function (Fig. 2E, Appendix 2).

Example of a spatially varying coefficient with citizen science data

Snowy Owls (Bubo scandiacus) breed on the arctic tundra and are irruptive migrants, meaning that they
appear across the mid-latitudes of North America in much greater numbers in some winters than others. The
reasons for this interannual variation in the number of individuals migrating south are not well understood
but seem to be related to high abundances of food during the breeding season and therefore sharp increases
in breeding ground population densities (Robillard et al. 2016). The North Atlantic Oscillation Index (NAO)
has been linked to productivity of both owls and their prey in Europe (Millon et al. 2014). Because both
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Figure 2: Output from the Pacific cod spatial model example in Queen Charlotte Sound, BC, Canada. (A)
SPDE mesh (lines) combined with the trawl survey observations (points). Finer meshes will be slower to
fit but generally increase the accuracy of the SPDE approximation. The circle area corresponds to biomass
density of Pacific cod caught on individual trawls. (B) Spatial random field: these values are shown in
link (log) space and represent spatially correlated deviations that are not accounted for by the depth effect.
(C) Overall prediction: these estimates represent the combination of all fixed and random effects. Crosses
illustrate center of gravity (get_cog()) from a spatiotemporal version; lighter crosses are more recent. (D)
Conditional effect of depth modelled as a penalized smoother. These predictions are made omitting the
spatial random field. (E) Standardized area-weighted population index derived from a spatiotemporal version
(get_index()). The line represents the estimate and the ribbon indicates a 95% confidence interval (+/- 2
SEs).
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productivity and the choice of wintering location could be influenced by climate, we tested for a spatially
varying effect of annual mean NAO index on winter abundance across the southern boundary of their winter
distribution. We fit counts observed in North America during annual Christmas Bird Counts (National
Audubon Society 2021) using a negative binomial (NB2) distribution, random intercepts for year, spatial and
spatiotemporal random fields, and a spatially varying coefficient associated with the NAO.

mesh <- make_mesh(snow, xy_cols = c("X", "Y"), cutoff = 1.5)
fit_owls <- sdmTMB(

count ~ 1 + nao + (1 | year_factor),
spatial_varying = ~ 0 + nao,
family = nbinom2(link = "log"), data = snow, mesh = mesh,
time = "year", spatial = "on", spatiotemporal = "iid"

)

We found a weak average positive effect of annual mean NAO on overall counts, but a southeast to northwest
gradient in the intensity of the effect (Fig. 3, Appendix 3). This result is consistent with owls closest to the
Atlantic coast and those migrating the furthest south being the most affected by NAO.

Figure 3: Spatially varying coefficient for effect of mean annual NAO (North Atlantic Oscillation) on counts
of Snowy Owls observed on annual Christmas Bird Counts 1979–2020 in Canada and the US. Points represent
all count locations and circle area is scaled to the mean number of owls observed per year (range: 0 to 8).
The effect is multiplicative on owl count per NAO unit.

Model validation and selection

Validation and selection of state-space models is challenging, particularly when using the Laplace approximation
(Thygesen et al. 2017). We provide several approaches to assist this process: (1) The Akaike Information
Criterion (AIC, Akaike 1974) can be calculated with AIC(), although AIC has well-documented biases with
mixed-effects models (Liang et al. 2008). (2) Alternatively, k-fold cross validation with sdmTMB_cv() can
be used with user-specified or randomly chosen folds for model selection (e.g., via expected log predictive
density [ELPD], Vehtari et al. 2017) or to evaluate goodness of fit according to user-calculated criteria
(e.g., mean squared error, area under the curve). (3) An sdmTMB model can be passed to the tmbstan
package (Monnahan & Kristensen 2018) to sample from the joint posterior with Stan (Carpenter et al.
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2017), evaluate the accuracy of the Laplace approximation, or perform posterior predictive checks (see
?extract_mcmc). (4) The residuals() method by default returns randomized quantile (Dunn & Smyth
1996) or probability integral transform (PIT) (Smith 1985) residuals. For state-space models, these residuals
have known statistical issues with the Laplace approximation (Thygesen et al. 2017) but are quick to calculate.
A version that uses Markov chain Monte Carlo (MCMC) to avoid this issue is recommended but slower
(?residuals.sdmTMB). Simulation-based residuals (Hartig 2021) (dharma_residuals()) are also possible.
(5) The simulate.sdmTMB() method can simulate from fitted models and the sdmTMB_simulate() function
can simulate entirely new data to which models can be fit to ensure identifiability, evaluate bias and precision
in parameter estimation, or evaluate the consequences of model misspecification.

Package comparisons

There are many R packages capable of fitting geostatistical spatial or spatiotemporal models (e.g., Heaton
et al. 2019). sdmTMB, VAST, INLA/inlabru, and spaMM (Rousset & Ferdy 2014) are the most closely
related, as they all provide a user interface to SPDE-based GRF models; we also include spBayes in our
software comparison as it is a prominent package that can fit related predictive-process models without the
SPDE (Table 1). sdmTMB, VAST, and mgcv can estimate anisotropic covariance whereas INLA/inlabru and
spBayes are currently limited to isotropic covariance. sdmTMB and mgcv focus on univariate response data,
whereas VAST, INLA/inlabru, spaMM, and spBayes extend to multivariate responses with various limitations.
To our knowledge, VAST is the only package to implement spatial (Thorson et al. 2015) and spatial dynamic
factor analysis (Thorson et al. 2016a) and spatial empirical orthogonal function (EOF) regression (Thorson
et al. 2020). Of these packages, only sdmTMB and inlabru can currently fit threshold (e.g., hockey-stick)
covariate relationships. spaMM is limited to a spatial random field and spBayes implements spatiotemporal
fields, but only as a random walk. There is considerable variability in the available observation likelihoods
across packages (Table 1). We provide comparisons of the syntax and the reproducibility of results from
models fit using INLA or inlabru (Appendix 4) and VAST (Appendix 5).

We ran a simple speed comparison between sdmTMB, inlabru/INLA, and mgcv for fitting an SPDE spatial
random field model to 1000 data points with Gaussian error across a range of mesh resolutions (Fig. 4,
Appendix 6). In this test, sdmTMB was the fastest across all mesh resolutions; however, inlabru/INLA and
spaMM were less affected by mesh resolution than sdmTMB. mgcv was most affected by mesh resolution. Our
test was restricted to one core and default R algebra libraries; all packages could run faster with optimized
libraries and parallel processing. Results with optimized math libraries on one core (openBLAS: Xianyi &
Kroeker (2021) and PARDISO: Bollhöfer et al. (2019)) resulted in a ~10% speed increase for sdmTMB and
inlabru and a ~7–9-fold speed increase for mgcv.

Discussion

How does one choose among the related packages mentioned in this paper to fit SPDE-based geostatistical
GLMMs? Assuming a given package can fit the model of interest (Table 1), we suggest the primary differences
are the user interface and speed. We think users familiar with stats::glm(), lme4, or glmmTMB will find
sdmTMB most approachable. Users familiar with INLA will find inlabru approachable. Users familiar with
mgcv can adapt mgcv to fit similar models with custom code (Miller et al. 2019) and INLA/inlabru and mgcv
are also general purpose modelling packages. VAST is the sole option for fitting some multivariate models;
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Table 1: Comparison of functionality between several R packages that can fit geostatistical GLMMs.

sdmTMB VAST INLA/inlabru mgcv spBayes spaMM

Time-varying coefficients ✓ –1 ✓ ✓ ✓ –
Spatially varying coefficients (SVC) ✓ ✓ ✓ ✓ ✓ –
GAMs2 ✓ – ✓ ✓ – –
Threshold covariates ✓ – ✓3 – – –
Offsets ✓ ✓ ✓ ✓ ✓ ✓

Spatiotemporal fields ✓ ✓ ✓ ✓ ✓4 –
Spatial + spatiotemporal fields ✓ ✓ ✓ ✓ – –
Anisotropy ✓ ✓ – ✓ – –
Correlation barriers ✓ ✓ ✓ ✓ – –
Separate range parameters for fields ✓ – ✓ ✓ – –
Share range parameters across fields ✓ ✓ ✓ – – –
SPDE-based ✓ ✓ ✓ ✓5 –6 ✓

NB1 distribution ✓ – ✓ ✓ – ✓
NB2 distribution ✓ ✓7 ✓ ✓ – ✓
Zero-truncated distributions ✓ – ✓ – – ✓
Zero-inflated distributions ✓ ✓ ✓ – – ✓
Tweedie distribution ✓ ✓ ✓ ✓8 – –
Student-t distribution ✓ – ✓ ✓ – –
Censored Poisson distribution ✓ – ✓ – – –
log Gaussian Cox processes –9 –9 ✓ –9 –9 –9

Multivariate responses – ✓ ✓ – ✓ ✓
Built-in delta/hurdle models ✓ ✓ ✓ –10 – ✓
Poisson-link delta model ✓ ✓ ✓ – – –
Likelihood weights ✓ – ✓ ✓ ✓ ✓
Maximum/marginal likelihood ✓ ✓ – ✓ – –

Bayesian/optionally Bayesian ✓ ✓ ✓ ✓ ✓ –
Priors/penalties ✓ – ✓ – ✓ –
Matern PC priors ✓ – ✓ – – –

Spatial (or spatial dynamic) factor analysis – ✓ – – – –
Empirical Orthogonal Function (EOF) analysis – ✓ – – – –
Built-in area-weighted index standardization ✓ ✓ – – – –
Built-in cross-validation ✓ – – – – –

Note:
1Technically possible but non-trivial. 2Penalized smoother GAMs that determine ‘wiggliness’. 3inlabru but not INLA.
4Spatiotemporal fields as random walk only. 5SPDE approach as in Miller et al. (2019). 6Does have predictive process
knots. 7Zero-inflated NB2 only. 8Tweedie power parameter fixed for mgcv::gamm(). 9Possible as log-linked Poisson
GLMM with aggregated data. 10Hurdle models possible by fitting components separately.
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Figure 4: Comparison of time to fit an SPDE spatial random field model with 1000 observations, an intercept
and one predictor, Gaussian error, and a sequence of SPDE resolutions. Lines represent means and ribbons
95% quantiles across 50 random iterations. Note the log x and y axes. VAST is similar to sdmTMB and
so is not shown. inlabru used the empirical Bayes integration strategy and Gaussian approximation with
bru_max_iter = 1, and the like() formulation. mgcv used bam(), method = "fREML", and discretized
covariates (Miller et al. 2019). Note that spaMM only fits spatial, not spatiotemporal, models. All platforms
were restricted to one core and could be faster with parallel computation or optimized algebra libraries.

alternatively, because VAST focuses on multivariate delta models and fisheries applications (Appendix 5),
users fitting “simple” univariate spatial/spatiotemporal GLMMs in non-fisheries contexts may find sdmTMB
more straightforward to use. Users looking for calculation, with uncertainty, of derived variables such as
area-weighted population indexes, may favour sdmTMB or VAST (although such quantities can be post hoc
derived with other packages).

Speed-wise, sdmTMB (and by association VAST) were fastest up to at least 1000 mesh nodes at approximately
4–16 times faster than INLA/inlabru across the range of mesh complexities considered here. These speed
increases can allow for more rapid and thorough model exploration and experimentation with a class of
computationally intensive models. However, for users ultimately interested in Bayesian inference, the
approximate Bayesian inference offered by INLA/inlabru is likely to be considerably faster than passing
the same model from sdmTMB/VAST to tmbstan for full Bayesian inference. Furthermore, although both
INLA/inlabru and sdmTMB can use parallel processing, the PARDISO library (Bollhöfer et al. 2019) within
INLA/inlabru allows memory to be shared across cores.

Additional functionality in sdmTMB not already mentioned includes interpolating across missing time slices
and forecasting, the barrier SPDE model of Bakka et al. (2019), time-varying spatiotemporal covariance
parameters, and simulation from the parameter joint precision matrix. Future development may include
additional zero-inflated models, improvements to Bayesian sampling efficiency (e.g., Monnahan et al. 2021),
continuous time models (e.g., Blangiardo & Cameletti 2015), multivariate responses, and non-Gaussian
random fields (e.g., Anderson & Ward 2019). The included TMB .cpp file also provides a high-quality and
tested model template that can be modified to add additional features.
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Spatially and spatiotemporally explicit data are increasingly collected in ecology and have the power to reveal
new ecological processes (e.g., Dinnage et al. 2020; English et al. 2022) and improve ecological management
(Sofaer et al. 2019). These data present statistical challenges to modelling them effectively and efficiently since
appropriate models such as GLMMs with random fields are often computationally intensive and challenging
to implement, interpret, and evaluate. We hope the development of user-friendly interfaces such as sdmTMB
opens this useful class of models to a wider audience of users.
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