
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

SDN-Based Architecture for Transport
and Application Layer DDoS Attack
Detection by Using Machine and Deep
Learning

NOE M. YUNGAICELA-NAULA1, CESAR VARGAS-ROSALES1, (Senior Member, IEEE), AND

JESUS ARTURO PEREZ-DIAZ1

1Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico

Corresponding author: N. Marcelo Yungaicela-Naula (a00821711@itesm.mx).

This work was partially supported by the joint Seed Funding Program from The University of Texas at San Antonio and Tecnologico de
Monterrey "UTSA & ITESM seed funding program"; the project "Red temática Ciencia y Tecnología para el desarrollo (CYTED)
519RT0580" by the Ibero-American Science and Technology Program for development CYTED; a 2020 Seed Fund award from
Tecnologico de Monterrey & CITRIS and the Banatao Institute at the University of California; the School of Engineering and Sciences at
Tecnologico de Monterrey; and the Telecommunications Research Group.

ABSTRACT Distributed Denial of Service (DDoS) attacks represent the most common and critical
attacks targeting conventional and new generation networks, such as the Internet of Things (IoT), cloud
computing, and fifth-generation (5G) communication networks. In recent years, DDoS attacks have
become not only massive but also sophisticated. Software-Defined Networking (SDN) technology has
demonstrated effectiveness in counter-measuring complex attacks since it provides flexibility on global
network monitoring and inline network configuration. Although several works have been proposed to detect
DDoS attacks, in most of them the authors did not use up-to-date datasets that contain the newest threats.
Furthermore, only a few previous works assessed their solutions using simulated scenarios, easing the
migration to production networks. This document presents the implementation of a modular and flexible
SDN-based architecture to detect transport and application layer DDoS attacks using multiple Machine
Learning (ML) and Deep Learning (DL) models. Exploring diverse ML/DL methods allowed us to resolve
which methods perform better under different attack types and conditions. We tested the ML/DL models
using two up-to-date security datasets, and they showed accuracy above 99% on classifying unseen traffic
(testing set). We also deployed a simulated environment using the network emulator Mininet and the Open
Network Operating System (ONOS) SDN controller. In this experimental setup, we demonstrated high
detection rates, above 98% for transport DDoS attacks and up to 95% for application-layer DDoS attacks.

INDEX TERMS Software Defined Networking, deep learning, machine learning, DDoS attack, transport
layer, application layer, slow-rate attacks.

I. INTRODUCTION

T
HE Denial of Service and Distributed Denial of Service
(DoS/DDoS) attacks continue to be the most frequent

and worst threats targeting conventional and new generation
network environments, such as Internet of Things (IoT) [1],
cloud computing [2], and fifth-generation (5G) communi-
cation networks [3]. According to the Kaspersky Q4 2020
DDoS attacks report [4], the number of DDoS attacks in 2020
increased three-fold compared to 2019.

DoS/DDoS attacks have not only become more frequent

and critical, but also smarter over time. Initially, transport
layer DDoS threats, such as TCP-SYN, UDP, and network
layer like ICMP flooding, were the most common threats
to networks. As the state-of-the-art detection techniques,
such as Machine Learning (ML) and Deep Learning (DL),
became capable of detecting these threats, more complex
and specialized DDoS attacks appeared, namely, application-
layer attacks. DoS/DDoS application-layer attacks are more
sophisticated and dedicated threats that affect the servers’ re-
sources. Therefore, conventional attack detection techniques

VOLUME X, 2021 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

that use packet-level information result ineffective [5].
For detection of DoS/DDoS attacks, it is relevant to use

information from network traffic flows in order to design
a network-based Intrusion Detection System (IDS), using
innovative networking technologies such as the Software-
Defined Networking (SDN). SDN is a modern networking
paradigm that decouples the control plane (CP) from network
devices. This technology operates differently from the con-
ventional network architecture. While the forwarding engine
is located in the switches, all network control functions, such
as traffic monitoring and routing take place in a centralized
software-based controller [6]. This technology allows us to
dynamically reconfigure routing rules in the network devices
such as switches and routers. Such capabilities can enable
the implementation of in-line and network-based attack de-
tection/mitigation mechanisms.

Previous proposals have demonstrated that SDN architec-
ture is suitable to deploy ML algorithms to detect DDoS
attacks, thanks to the higher computational resources in the
CP and the global visibility of the network [7]–[10]. How-
ever, most of the proposals did not use up-to-date security
datasets [11]–[13], which did not permit the study of the
most recent DoS/DDoS attacks. Moreover, most of these
proposals have been evaluated only in an offline manner,
using benchmark or generated datasets [14]–[18]. Although,
offline assessment could be a valid approach to establish
the best DDoS detection, it could not fit the demands for
characterization, detection, and practical evaluation of the
network security solutions using SDN before their deploy-
ment in production environments. An implementation on a
real or emulated network will provide us a better analysis of a
proposed solution. In addition, previous works focused their
studies on a single type of DoS/DDoS attack and a limited
number of intelligent-based detection mechanisms.

In this paper, we present a modular and flexible SDN-
based architecture to detect DoS/DDoS attacks by using
artificial intelligence methods. The modularity property helps
us modify and improve each component in the architecture,
that is the flow collector, the preprocessing, the detection,
and the flow manager modules, independently. Also, this
design provided us flexibility in experimenting with various
ML/DL detection techniques to countermeasure different
DoS/DDoS attacks. On the one hand, we explored the two
most frequent and hazardous transport layer DDoS attacks,
namely, SYN Flood and UDP flood [4]. We also explored
the seven most common and critical application-layer attacks,
including high-volume and slow-rate DoS/DDoS attacks,
which are harder to detect [5]. On the other hand, we eval-
uated three ML methods, namely, support vector machine
(SVM), random forest (RF), K-nearest neighbor (K-NN),
and four DL mechanisms, namely, multilayer perceptron
(MLP), convolutional neural network (CNN), gated recurrent
units (GRU), and long short-term memory (LSTM) neural
network, to detect DoS/DDoS attacks. The wide range of in-
telligent mechanisms explored allows us to determine which
technique is better under different conditions and attack

types.
Additionally, we used two up-to-date datasets, the CIC-

DoS2017 and the CICDDoS2019 datasets [19], for training
the ML/DL models. Afterward, the models were deployed in
an emulated testbed, using Mininet and an ONOS controller
for real-time testing. To assess the robustness of each ML/DL
technique, we experimented with different attack conditions.
We varied parameters such as the traffic rate and connection
rate of each DDoS attack.

This research presents new ideas with remarkable im-
provements over the work previously published in [20].
Unlike this previous work, we included a comprehensive
performance and robustness assessment of several new ML
models. Also, we expanded the scope of the study by includ-
ing new attack types, new datasets, and the most promising
DL models. The accuracy of the ML and DL models is highly
improved, and we added a comprehensive evaluation of the
models in a simulated environment.

In summary, the contributions of this work are:
1) A modular and flexible SDN-based architecture to

detect diverse transport-layer and application-layer
DoS/DDoS attacks.

2) The evaluation and comparison of the performance and
complexity of diverse ML and DL classification tech-
niques applied in two up-to-date datasets containing
multiple types of DoS/DDoS attacks. Exploring diverse
ML/DL techniques allowed us to resolve which methods
perform better under different attack types and condi-
tions. Moreover, the use of up-to-date datasets permits
the study of the most recent DoS/DDoS attacks.

3) Real-time performance and robustness evaluation of
the proposed solution in a testbed deployed using the
network emulator Mininet and ONOS controller. Only a
few previous works assessed their solutions using real or
simulated environments. This evaluation demonstrates
that our solution is ready to be implemented in pro-
duction environments since we obtained high detection
rates for high-volume and slow-rate DDoS attacks.

A. EXISTING WORKS

Recently, several works have been developed to detect trans-
port layer and application-layer DoS/DDoS attacks using
intelligent techniques and SDN technology. Next, we provide
a brief review of recent works related with our study to
explain the differences with our approach.

The transport layer threats TCP-SYN, UDP, and the net-
work layer ICMP are the most explored DDoS attacks. The
work in [21] uses the LSTM method and fuzzy logic (FL)
to detect and mitigate DDoS and Port Scan attacks in SDN
environments. The used features were the bit/s, packet/s,
source IP entropy, destination IP entropy, source Port entropy,
and the destination Port entropy. The authors evaluated their
proposal into two ways: 1) Using a testbed with Mininet
network emulator and Floodlight controller and 2) using the
CICDDoS2019 dataset. They compared their solution with
SVM, KNN, MLP, LSTM-2, and Particle Swarm Optimiza-

2 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

tion Digital Signature (PSO-DS) techniques. Their proposal
presented the best results, achieving 99.74% of accuracy and
0.25% of false-positive rate (FPR). On the mitigation part, the
abnormal packets discarded were above 99.88%. This work
focused only on high-volume attack, though.

The work in [11] proposed to combine supervised and
unsupervised ML techniques to detect DDoS attacks, includ-
ing Probe, R2L, and U2R attacks. The unsupervised method
reduces the irrelevant and noisy traffic data. The supervised
technique minimizes the FPRs of the unsupervised method
to classify the DDoS traffic accurately. The evaluation of
this approach used the NSL-KDD, the UNB ISCX IDS
2012, and the UNSW-NB15 datasets. The authors achieved
a classification accuracy of 98.23%. This work did not use
up to date daset and was limited in the number of ML/DL
methods and attack types explored.

The Intrusion Prevention System (IPS) proposed in [13]
uses the KNN model to detect TCP-SYN and ICMP flooding
attacks. This solution was evaluated using the CAIDA 2007
dataset and a dataset generated using an SDN-based testbed.
The scheme has a mitigation efficiency of 99.4% for TCP-
SYN attacks and 98.9% for ICMP attacks. The work in [12]
proposed a source-based defense, using an LSTM model
at the packet level. The authors used 192 packet features,
and they trained the model using the ISCX 2012 IDS and
CTU-13 datasets. Moreover, a laboratory-based testbed with
a Floodlight controller was deployed to generate a dataset for
testing the model and achieved an accuracy of 98.88%. The
authors in [22] explored the RF, decision tree, and logistic
regression methods to detect DDoS in two datasets: KDD
Cup 99 dataset and their own generated real-time dataset.
The RF technique provided the best performance with an
accuracy of 99.21% and a FPR of 0.3%. The authors in [23]
evaluated the LSTM, CNN, and MLP models to detect DDoS
attacks using the KDD Cup 99, NSL KDD, and their own
generated real-time dataset. The LSTM approach demon-
strated the best accuracy, achieving up to 99.09% and FPR
of 0.029. These studies explored only high-volume DDoS
threats with outdated security datasets, and did not perform
online assessments of their proposed solutions in a testbed.

Application-layer attacks are harder to detect compared
to transport-layer attacks since their traffic patterns are like
those of legitimate clients. Therefore, more complex de-
tection mechanisms are needed. The Q-MIND framework
proposed in [24] defeats stealthy DoS attacks in SDN en-
vironments. This solution mitigates slow-rate DoS attacks
using a reinforcement learning reward-based policy to delete
all flows stemming from an identified attacker IP. Then, the
solution installs a flow rule to block sources for a certain
period. The framework was tested using hosts connected
to an OpenFlow switch and an ONOS controller, achieving
attack detection performance of 99.5%. A disadvantage of
this scheme is that every time an IP is detected, a complete
game is executed, which could slow down the execution in
large networks.

The authors in [20] proposed a flexible architecture to

detect and mitigate slow-rate DoS attacks, such as slow body,
slow headers, and slow read attacks, using ML methods.
In this scheme, an IDS detects attacks and an intrusion
prevention system (IPS) mitigates them. They used the CI-
CDoS2017 dataset to train the ML models. To mitigate
attacks, they proposed to create a blacklist and to increase
its probability until it is certain that it is not legitimate traf-
fic, thus mitigating it. The proposed architecture was tested
in a simulated environment, using Mininet and an ONOS
controller. However, the detection accuracy is not very high
(95%) due to the complexity of identifying low-rate DDoS
attacks.

The work in [14] proposed an LSTM enabled framework
for slow-rate DDoS detection. They used the CICIDS2017
dataset that includes the slow body, slow header, and the
DoS Get attacks to test the framework. About 15 flow pa-
rameters were used to train the LSTM model. The proposed
mechanism was compared with the Decision Tree, ANN,
and SVM methods The model performance achieved with
training was of recall above 99.9%, precision above 99.9%,
and F1 score above 99.9%. Testing the model on a different
dataset reduced the precision, recall, and F1 score to 70%,
80%, and 80%, respectively. In the work in [15], an MLP
neural network was used to detect HTTP-based slow-rate
attacks, the neural network analyze the requesting behavior
of the botnet in terms of network flow characteristics. This
approach used 14 flow characteristics and used three different
datasets to test the proposed mechanism, namely, WIDE
dataset, CTU dataset, and an own generated MANET dataset.
The detection rate achieved was above 95% on separating
legitimate flows from attack flows, but 80% in detecting
specifically the attack types. These studies did not perform
a testbed-based inline model assessment to evaluate the mod-
els.

Based on our brief review, we can conclude that many
previous works have not used up-to-date datasets, as we
considered in this work. In addition, most works studied
transport or application layer attacks separately. We propose
to evaluate different ML/DL techniques on both transport and
application layer DoS/DDoS attacks. This assessment will
allow us to define the accuracy of each ML/DL method under
different attacks, which increases the scope of the function-
ality of our proposed architecture. Moreover, many previous
approaches performed an offline analysis of their proposals,
using traffic captured from testbeds. The implementation of a
security solution in a real or emulated network brings several
issues and challenges, such as the limited capability of the
SDN controller (memory and processing) to manage real-
time flow collection and classification, and the decrease in the
detection performance of the models. Our proposal uses an
emulated network to assess the models’ performance in real-
time. Finally, we evaluate the robustness and the time and
space complexity of each ML/DL method to detect different
attacks and vary the attack conditions. This comprehensive
assessment has not been reported in previous works.

The remaining content of this work is organized as follows.

VOLUME X, 2021 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

Section II describes the DoS/DDoS attacks targeted in this
work. Section III explains our SDN-based architecture pro-
posed to detect DoS/DDoS attacks. Next, different modules
of the proposed architecture are presented, including the
Flow Collector module in Section IV, and the Detection and
Flow Manager modules in Section V. Experimental results
and complexity analysis using two up-to-date datasets are
presented in Section VI. Experimental results analysis using
a simulation-based testbed are presented in Section VII. Fi-
nally, Sections VIII and IX draw the discussions, conclusion
and future work.

II. DOS/DDOS ATTACKS

DoS/DDoS attacks are the most frequent and critical threats
that use protocols of different layers of the OSI model. Trans-
port layer DDoS attacks have been the most widely studied
threats, and still, they cause several damages to current net-
work environments. These attacks are generally high-volume
and expensive to deploy. However, they can be detected using
state-of-the-art artificial intelligence techniques such as ML
and DL.

Application-layer DoS/DDoS attacks are more recent
threats targeting the resources of specific applications run-
ning on the servers. They can be low-volume or high-volume
attacks, and the former is the most complex to detect. Ad-
ditionally, the creation of these threats requires a high level
of expertise, but its deployment consumes low computational
and bandwidth resources [5].

Fig. 1 shows the taxonomy of the attacks studied in this
work. Next, the description of each type of attack is pre-
sented.

A. TRANSPORT LAYER DDOS ATTACKS

These kinds of threats use protocols such as TCP and UDP
to deploy attacks. TCP-SYN flood and UDP flood are well-
known attacks in the literature.

1) SYN

The SYN flood attack is often generated by botnets that
consume the server resources by exploiting TCP-three-way
handshake [25]. This attack initiates by sending repeated
SYN packets to the target server at a high rate. However,
the attackers never end the TCP-three-way handshake, which
causes server crashes/malfunctions or reboots. Besides, the
bandwidth of the network gets exhausted, and network per-
formance degrades.

2) UDP

The UDP flood attack initiates on a remote host by sending
many UDP packets to random ports on the target machine
at a very high rate [25], which results in the exhaustion
of available network bandwidth, the system crashes, and its
performance degrades.

B. APPLICATION-LAYER DOS/DDOS ATTACKS

These kinds of threats target the resources of the applications
in a server.

1) High-volume application-layer attacks

These threats are similar to traditional DoS/DDoS attacks.
They use high-volume application-layer requests, such as
HTTP GET and HTTP POST requests that are transmitted
to a victim. However, these threats target the resources of
the server and require smaller volumes of malicious traffic.
In this work, we study the DoS GET attack which uses
what appears to be legitimate HTTP GET requests to attack
a web server or application. This attack can use multiple
coordinated computers to send numerous GET requests of
some asset from a targeted server, such as images, files, etc.
When the target is inundated with incoming requests and
responses, denial-of-service will occur to additional requests
from legitimate traffic sources [26].

Distributed and reflected Domain Name Server (DrDNS)
amplification threat is also studied in this work. In a DrDNS
attack, bots are used to make UDP-based requests to open
DNS resolvers with a spoofed IP address, which has been
changed to the real source IP address of the targeted victim.
Since UDP is connectionless, with a small request, very large
answers can be obtained. Besides, because the real IP address
is hidden, it becomes a reflection attack [27].

2) Low-volume application-layer attacks

Low-volume application-layer attacks are characterized by
the small amount of traffic needed to beat a victim. These
threats can be classified into three categories: Low-rate at-
tacks that send traffic in periodic short-time pulses, slow-rate
attacks that exploit timing parameters on the server’s side by
sending or receiving traffic slower than expected, and one-
shot attacks that damage victims in a single request [15].

In this work, we experiment with slow-rate attacks, which
can be seen in two variations: Slow send and slow read at-
tacks. Slow send attacks aim to collapse the server resources
by slowly sending legitimate but incomplete requests causing
the victim server to reserve resources for open connections
waiting for their completion. These threats can be imple-
mented with the focus on the header or body request, namely,
slow header and slow body attacks. Slow read attackers start
with a legitimate request to a victim server followed by a slow
consumption of the response sent by the victim. Therefore,
the attacker can maintain multiple active and concurrent
connections with a server.

We selected different kinds of threats to explore most
of the combinations of DoS/DDoS attacks. We study trans-
port/application layer attacks of high- and low-volume, as
established in Table 1.

III. PROPOSED ARCHITECTURE

Fig. 2 shows the architecture proposed to detect transport
and application layer DoS/DDoS attacks. This architecture
consists of four modules: Flow Collector, Preprocessing,

4 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

DoS/DDoS	Attacks

Slow	headerSlow	body Slow	read DoS	Get DrDoS-DNS

SYN UDP Low-Volume High-Volume

Transport Layer Application Layer

FIGURE 1. Taxonomy of the studied DoS/DDoS attacks.

TABLE 1. Characteristics of the DoS/DDoS attacks studied in this work.

Layer/Rate Low High

Transport SYN flood, UDP flood
Application Slow body, Slow

header, Slow read
HTTP Get flood

Detection, and Flow Manager. We based the design of the
flow collector module on the CICFlowMeter application [28],
[29]. This module gathers the data packets from the network
(1), creates the flows and forwards them to the preprocessing
module (2). The preprocessing module reduces the dimen-
sion of the flow characteristics. For that, the application
performs data cleaning and principal component analysis
(PCA). The Detection module employs a trained model to
classify the preprocessed input flows (3) as suspicious or
benign. The Flow Manager module sends the information of
suspicious flows to the controller (4). This module creates
and visualizes logs of the flows’ classification received from
the Detection module.

The Flow Collector and Flow Manager modules are em-
bedded in an application and installed in the controller. A web
service application contains the Preprocessing and Detection
modules. This web service can be deployed in a differ-
ent physical or virtual server. We call this server Intrusion
Detection Server (IDS). This separation will alleviate the
processing overhead in the controller. Additionally, this ar-
chitecture provides flexibility since it permits improvements
or modifications of the IDS without affecting the rest of the
architecture.

We used the network emulator Mininet [30] and the
ONOS [31] controller to experiment with the proposed archi-
tecture. Mininet is an SDN-based network emulator widely
used in academia. A relevant advantage of Mininet is the
vastly available documentation. Also, we can adapt this
emulator with any open-source SDN controller. ONOS is
a Java-based controller developed by the Open Networking
Foundation (ONF) that supports complex and realistic SDN
application development. This controller is easy to use and
has noteworthy CLI, REST, and GUI interfaces.

We detail the implementation of each module of the pro-

TABLE 2. Characteristics of the Flow Collector module.

CharacteristicDetail Observation

Flow Char-
acteristics

Five Flow ID parame-
ters and 76 Flow char-
acteristics, e.g., Flow
duration.

Flow ID: {Source IP, Source
Port, Destination IP, Desti-
nation Port, Protocol}

Flows
building

Bidirectional TCP and
UDP Flows.

The first packet defines the
flow’s forward direction.

Configurable Flow time out: 600 s for
TCP and UDP, and Idle
time out: 1 s

Characterization according
to [33].

Language Java Deployed on the ONOS con-
troller.

posed architecture in the following sections.

IV. FLOW COLLECTOR MODULE

The available protocol OF v 1.3 in Mininet allows us to
access limited statistics variables. Therefore, we focused
on developing a more complete and inline flow capturing
application, combining the flow processors Flowbag [32] and
CICFlowMeter [28].

CICFlowMeter, developed by the Canadian Institute for
Cybersecurity (CIC), is a network traffic flow generator and
analyzer. This tool generates bidirectional flows, where the
first packet determines the forward (source to destination)
and backward (destination to source) directions. Hence, 76
statistical network traffic features can be calculated sep-
arately in the forward and backward directions. On the
other hand, Flowbag was developed in Go and allows us
to calculate flow statistics from a given packet capture file.
Flowbag was designed with offline processing as the primary
focus. Therefore, the application requires adaptation for on-
line packet processing. The combination of the features of
the CICFlowMeter and Flowbag applications provided us a
powerful flow collector module. The characteristics of this
module are shown in Table 2. The Flow Collector module
outputs flows with a five-tuple identification (ID): {Source IP,
Source Port, Destination IP, Destination Port, Protocol} and
76 features. Details of these features can be found in [28].

VOLUME X, 2021 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

Flow Collector Detection
(ML/DL models)

CONTROLLER

WEB SERVICE

Intrusion Detection Server

Preprocessing
(Data cleaning and PCA)

O
N

O
S

H
ttp

 C
lie

nt

MININET

Flow Manager
(Logs)

1

2 3 4

Se
rv

ic
e

AP
I

FIGURE 2. Proposed architecture for intelligent SDN-based DoS/DDoS attacks detection.

V. PREPROCESSING, DETECTION, AND FLOW

MANAGER MODULES

A. PREPROCESSING MODULE

The Preprocessing module receives a flow from the Flow
Collector module with an ID of five parameters and 76
characteristics. The use of all these flow characteristics will
increase the training complexity and inline prediction delays
of the intelligent mechanisms that are installed in the De-
tection module. Therefore, data cleaning and dimensionality
reduction were performed. We explain in detail the prepro-
cessing methodology in Section VI-B, using two specific
datasets.

B. DETECTION MODULE

The Detection module uses the preprocessed information
to classify the flows as benign or attacks using the trained
ML/DL models.

Fig. 3 shows the taxonomy of the classification models
used in this study. We used three ML models, namely, k-
nearest neighbor (KNN), support vector machine (SVM), and
random forest (RF), and four DL models, namely, multilayer
perceptron (MLP), convolutional neural network (CNN),
gated recurrent units (GRU), and long short-term memory
(LSTM) neural network. All models were selected based
on related works, as they have shown high performance in
detecting DDoS attacks. Next, the relevant characteristics of
each model are briefly explained.

1) RF

Random Forest is an ensemble classifier with low classifi-
cation error that consists of many individual decision trees
uncorrelated, which operate as a single set with the power
of handling large data sets, outliers, and noise in the data.
Each tree produces a classification that helps to achieve
greater accuracy. This method could present slow real-time
prediction because of the formation of many trees. Neverthe-

Classification	Models

ML DL

RF SVM KNN MLP CNN LSTMGRU

FIGURE 3. Taxonomy of the classification models studied in this work.

less, RF has shown high performance in detecting attacks on
networks [20], [34], [35].

2) SVM

SVM is a supervised learning model able to perform non-
linear classification. This model uses what is called the ker-
nel, which implicitly maps its inputs into high-dimensional
feature spaces. SVM can detect intrusions with limited train-
ing data [34], [36].

3) KNN

KNN is a supervised ML algorithm used for solving clas-
sification problems. This model determines the class of a
new data by looking at its nearest K neighbors. KNN uses
different distance functions, namely, Manhattan, Minkowski,
and Euclidean, to calculate the distance between two data.
KNN has shown high performance on attack detection appli-
cations [37].

4) MLP

MLP consists of multiple hidden layers and has powerful
learning and mapping capabilities than a single-layer neu-
ral network. This model consists of three or more layers
of nodes: An input layer, one or more hidden layers, and
an output layer. The MLP uses back-propagation to learn

6 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

the weights and biases of each layer and has shown high
effectiveness in the area of network attack detection [15].

5) CNN

CNN is usually used for object recognition and detection in
images, labeling, and others. Nevertheless, CNN has also
shown effectiveness on attack detection [38]. The conven-
tional form of CNN consists of an input layer, a convolu-
tional layer, a pooling layer, a fully connected layer, and an
output layer. The training process can use forward- and back-
propagation for learning the convolutional filters, weights,
and biases of the layers.

6) GRU

GRU is a type of Recurrent Neural Network (RNN). An RNN
performs the same task for every element of a sequence.
The outputs are dependent on the previous computations.
An RNN is trained using the back-propagation through time
(BPTT) algorithm. However, BPTT for the RNN is usually
hard to use due to the problem known as vanishing/exploding
gradient. GRU networks can tackle this problem. GRUs have
what is called an update gate and a reset gate. Using these two
vectors, the model refines outputs by controlling the flow of
information through the layers. GRU can retain information
over a period. Thus, this model represents a system with
memory. In the attack detection applications, GRU neural
networks have demonstrated high-performance [39].

7) LSTM

LSTM model is another type of RNN capable of tackling
the vanishing/exploding gradient. Its long-term memory ca-
pability could better capture the DDoS behavior in time than
other methods that only include short-term memory, such
as the MLP. The classification error is back-propagated in
the network to update weights of the connections among
the input, hidden, and output layer. LSTM has shown high
effectiveness in detecting complex attacks to networks [14].

C. FLOW MANAGER MODULE

This module is in charge of saving and visualizing the logs
of the predictions received from the Detection module. As
this work is part of a broader project, the next step will
be to complement this module with a mitigation strategy to
countermeasure the DoS/DDoS attacks on the network, based
on the predictions obtained using the ML/DL models.

VI. MODEL TRAINING AND TESTING USING DATASETS

We trained the ML/DL models using two public datasets
that contain our targeted DoS/DDoS attacks. This section
describes the offline flows capturing from the datasets, data
preprocessing, model hyperparameters tunning, and the mod-
els training and testing using datasets.

A. DATASETS

We worked with two public datasets, CICDoS2017 [26] and
CICDDoS2019 [29], from the Canadian Institute for Cyber-

TABLE 3. Datasets’ statistics.

Dataset Events/Attacks Training

events (flows)

Testing events

(flows)

CICDoS Slow-send body 6 (3025) 2 (1002)
2017 Slow read 1 (2133) 1 (2133)

Slow-send header 4 (5436) 3 (3952)
DoS GET 3 (2304) 1 (766)
Improved GET 2 (1222) 1 (532)
DDoS GET 1 (5497) 1 (5015)
Benign 1 (83075) 1 (42473)
TOTAL FLOWS 102692 (65%) 55873 (35%)

CICDDoS SYN 1 (886817) 1 (989944)
2019 UDP 1 (989247) 1 (1022869)

DrDNS 1 (22982) 1 (4902)
Benign 1 (92720) 1 (41853)
TOTAL FLOWS 1991766 (49%) 2059568 (51%)

security (CIC) [19]. These datasets contain pcap files for
different DoS/DDoS attacks. CICDoS2017 dataset carries 24
hours of network traffic simulated on a testbed of application-
layer DoS attacks intermixed with attack-free traces. This
dataset presents six DoS/DDoS application-layer attacks, that
is, slow send body, slow send header, slow read, DoS HTTP
Get flooding, improved DoS HTTP Get flooding, and DDoS
HTTP Get flooding. CICDDoS2019 dataset consists of two
capturing days of the attacks for training and testing. This
dataset contains pcap files of the most up-to-date common
DDoS attacks, including transport and application layer at-
tacks. We filtered (using Wireshark) from this dataset the
three attacks targeted in our study, that is, TCP-SYN flood
attack, UDP flood attack, and DrDNS attack.

We used a flow capturing application, whose implemen-
tation is based on CICflowMeter and Flowbag applications,
to process the pcap files. From this processing, we obtained
comma-separated values (CSV) files containing the captured
flows. Then, we labeled these flows according to the informa-
tion presented in [26] and [29]. These works outline the de-
tails and underlying principles of the datasets CICDoS2017
and CICDDoS2019, respectively.

We divided the flows captured from the two datasets into
training and testing subsets, according to the distributions
presented in Table 3. The CICDoS2017 dataset contains 26
attack events and six different attacks. For them, we used 17
events for model training and nine events for testing. Note
that we included at least one event for each attack type in the
testing set. In terms of the number of flows, we used 65% for
training and 35% for testing.

For the CICDDoS2019 dataset, we captured SYN, UDP,
and DrDNS attack events from the training and testing days.
In this dataset, a small number of benign traffic is present,
compared to attack traffic, which is a problem in the training
phase since benign events are under-represented. Therefore,
we added most of the benign traffic captured from the CIC-
DoS2017 dataset to the CICDoS2019 dataset. In terms of the
number of flows, we used 49% of total flows for training and
51% for testing. This distribution is due to the balance of data
presented in the original dataset CICDDoS2019.

VOLUME X, 2021 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

Read Dataset

Data Cleaning std ≈ 0

Variable selection Cross-correlation

Variable standardization

Dimension Reduction (PCA)

Modelling

FIGURE 4. Preprocessing methodology.

B. PREPROCESSING

Before training the ML/DL models, preprocessing is nec-
essary to improve the data quality. Fig. 4 shows the data
preprocessing methodology executed in this work. First, we
performed data cleaning to eliminate irrelevant variables,
which consists of removing certain variables with missing
or invariable data (std ≈ 0), which do not add important
information for the models. This process resulted in the
elimination of 15 variables for both datasets.

In the next step, we removed highly correlated variables
that represent redundant information. Variables with a cor-
relation higher than 95% are excluded. For each pair of
strongly correlated variables, we conserved the variable that
appears with higher frequencies in the correlation map since
it can replace the higher number of variables. From this
process, the CICDoS2017 dataset excluded 12 variables, and
the CICDDoS2019 dataset excluded 11 variables. After data
cleaning and variable selection, we obtained 49 features for
the CICDDoS2017 dataset and 50 features for the CICD-
DoS2019 dataset, without considering the flow ID (Src IP,
Src Port, Dst IP, Dst Port, and Protocol) and Label variables.

The next step consisted of applying variable standardiza-
tion to put different variables on the same scale. Finally, the
standardized variables pass to the PCA mechanism. PCA
is a dimensional reduction method that retains most of the
variation information of the dataset. From this process, we
obtained a reduced set of 15 parameters (principal compo-
nents) for both CICDoS2017 and CICDDoS2019 datasets
that explain 85% of the variance information of both datasets.

We performed the offline preprocessing using R software.
Once we captured the selected variables and PCA parame-
ters, we implemented and embedded the preprocessing mod-
ule in the IDS.

C. MODELS HYPER-PARAMETERS TUNING

We used the preprocessed data for training the three ML

and four DL models studied in this work. We built the ML
models using the open-source library Scikit-learn [40]. For
DL models, we used Keras [41], an open-source framework
that allows us fast implementations of DL mechanisms. In
addition, we trained and tested the models using Google
Colaboratory, a cloud service based on Jupyter Notebook,
which allowed us free use of Google GPUs and TPUs, with
several ML/DL libraries.

To find the best models’ hyper-parameters, we used the
well-known Random Search approach. In this approach, we
first define a wide search space as a bounded domain of
hyper-parameter values. Then, we randomly sample points
in that domain based on a uniform distribution. Finally, the
hyper-parameters that provided the best performance (accu-
racy) for a model are selected. In the case of DL models,
we used the hyper-parameter optimization tool named Talos
Autonomy [42]. This tool helped us to obtain the best hyper-
parameters following the Random Search approach.

Table 4 finally shows the optimal hyper-parameters for
each proposed model.

D. EVALUATION

We adopted the evaluation metrics widely used to assess
the performance of classification models. These metrics are
Accuracy, Precision, Recall, and F1 Score, with the following
definitions:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (1)

Precision =
(TP)

(TP + FP)
, (2)

F1 − Score =
(2 ∗ TP)

(2 ∗ TP + FP + FN)
, (3)

Recall =
(TP)

(TP + FN)
, (4)

where TP , TN , FP , and FN stand for True Positive, True
Negative, False Positive, and False Negative, respectively.

To better define the models’ performance and compare
them with previous works, we presented both binary and
multiclass metric measures. The binary metrics assessed the
model ability to detect attacks collectively and helped us
evaluate if the method can correctly separate all attacks
from legitimate traffic. The binary metrics are defined using
weighted average scores. Calculating metrics in this manner
is required for unbalanced datasets. Another particular and
important binary metric is the False Positive Rate (FPR), de-
fined as FPR = (FP)/(FP +TN), which allows us to eval-
uate if the model can cause problems on the mitigation part.
Low FPR rates are desirable to avoid eliminating/affecting
legitimate traffic.

The multiclass metrics assess the models in terms of
distinguishing each type of attack. The definitions of each
metric presented before are applied in this evaluation. High
performance on multiclass metrics could allow us to imple-
ment attack-type customized mitigation strategies if required.

8 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

TABLE 4. Optimized models’ hyper-parameters using random search.

Model CICDDoS2019 Dataset CICDoS2017 Dataset

kNN N neighbors=13, metric = ’Euclidean’, weights = ’Uniform’. N neighbors=13, metric = ’Euclidean’, weights = ’Uniform’.
SVM Kernel: Linear (optimized for large dataset), C = 1.0. Kernel = ’Polynomial’, degree = 3, C = 1.4.
RF 350 trees, min. sample split = 4, number of leaf nodes: 5, criterion:

’Gini’ bootstrap=True.
750 trees, max depth=25, criterion=’Entropy’.

MLP Input: [Dense (15), reLU], Hidden: 3 layers ([L1: Dense(10), reLU],
[L2: Dense(8), reLU], [L3: Dense(6), reLU]), output: [L4: Dense (4),
softmax], TP: (optimizer: Adam, LF: sparse categorical cross entropy,
10 epochs, minibatch size = 300).

Input: [Dense (15), reLU], Hidden: 2 layers ([L1: Dense(12),
reLU],[L2: Dense(10), reLU]), output: [Dense(7), softmax], TP: (op-
timizer: Adam, LF: sparse categorical cross entropy, 80 epochs, mini-
batch size = 300).

CNN Input: [Conv1D(128), kernel = 3, padding, reLU], Hidden: 5 layers
([L1: Conv1D(32), kernel = 3, relu, padding], [L2: MaxPooling1D,
poolsize 1], [L3: Flatten], [L4: Dense(100), reLU], [L5: Dropout
(0.75)]), output: [Dense(4), softmax], TP: (optimizer: Adam, LF:
sparse categorical cross entropy, 6 epochs, minibatch size = 200).

Input: [Conv1D(128), kernel = 3, padding, reLU], hidden: 5 layers
([L1: Conv1D(128), kernel = 3, padding, reLU,], [L2: MaxPool-
ing1D, poolsize 1], [L3: Flatten], [L4: Dense(150) neurons, reLU], [L5:
Dropout(0.75)], output: [Dense (7), softmax]), TP: (optimizer: Adam,
LF: sparse categorical cross entropy, 110 epochs, minibatch size = 200).

GRU Input: [GRU(100), reLU], hidden: 4 layers ([L1: GRU(100),
reLU], [L2: Dense(150), reLU], [L3: Dense(128), reLU], [L4:
Dropout(0.25)], output: [Dense(4), softmax]), TP: (optimizer: Adam,
LF: sparse categorical cross entropy, 5 epochs, minibatch size = 100).

Input [GRU(100), reLU], hidden: 3 layers ([L1: GRU(100), reLU], [L2:
Dense(150), reLU], [L3: Dense(128), reLU], [L4: Dropout(0.25)]), out-
put: [Dense(7), softmax]), TP: (optimizer: Adam, LF: sparse categorical
cross entropy, 100 epochs, minibatch size = 250).

LSTM Input: [LSTM(80), reLU], hidden: 4 layers ([L1: LSTM(50), tanh],
[L2: Dense(30), tanh], [L3: Dense(20), reLU], [L4: Dropout(0.25)]),
output: [Dense(4), softmax], TP: (optimizer: Adam, loss function:
sparse categorical cross entropy, 10 epochs, batch size = 2000).

Input: [LSTM(50), reLU], hidden: 4 layers ([L1: LSTM(50), reLU],
[L2: Dropout(0.25)], [L3: Dense(40), reLU], [L4: Dense(25), reLU]),
output: [Dense(7), softmax], TP: (optimizer: Adam, LF: sparse categor-
ical cross entropy, 150 epochs, batch size = 300).

C: Regularization parameter, Ln: nth hidden layer, Dense(N)/Conv1D(N)/GRU(N): N stands for number of neurons, Conv1D: One dimensional
convolution layer, Dropout(P): P stands for dropout probability, tanh/reLU/softmax: activation functions, TP: Training parameters, LF: loss function,
Adam: Adaptive moment estimation.

Table 5 shows the evaluation metrics of the different ML and
DL-based mechanisms on the testing subsets.

E. DISCUSSION

1) Models Performance

According to Table 5, among the ML techniques, KNN
and SVM models were able to identify high-volume at-
tacks (CICDDoS2019) with an accuracy above 99.77%. RF
achieved 96.36% of accuracy. All DL models achieved an
accuracy above 99.13 % to detect high-volume attacks, and
particularly GRU and LSTM showed the highest values on
the accuracy with 99.81%, and 99.88%, respectively. For the
FPRs results, KNN, MLP, and LSTM models presented the
lowest values, in other words, they can better identify benign
traffic. The multiclass metrics were slightly inferior for all
ML/DL techniques, which indicates that it is a little bit more
difficult to identify the high-volume attacks among them than
just with the binary classes. Nevertheless, these differences
were not significant.

In the case of the application-layer attacks (CICDoS2017),
the metrics presented in Table 5 show that these attacks are
more difficult to detect than the high-volume attacks of the
CICDDoS2019 dataset. As in the previous case, DL mech-
anisms showed the highest accuracy values, above 98.13%.
Especially, CNN achieved the highest accuracy (98.88%),
but GRU and LSTM showed lower values of FPR (0.59%
and 0.39%, respectively). Moreover, the slight reduction on
the multiclass metrics, compared to binary metrics, indicates
that the models slightly decreased their accuracy to discern
among different application-layer attacks. However, the dif-
ference was not significant.

2) Complexity of the studied models

Two types of complexity were analyzed: 1) Time complexity,
which defines the execution time of a method and 2) space
complexity, which explains the amount of memory required.
The analyzed complexity was related to the model testing
phase. This analysis is of particular interest when deploying
our model in the simulated testbed. Table 6 shows the results
of this analysis.

In the case of the time complexity, as we proposed to
inspect the traffic through individual flow analysis, we mea-
sured the number of flows per second the ML/DL meth-
ods can analyze, and classify the flows. Thus, we collected
and averaged the rates of 100 different executions for each
ML/DL technique. We conducted this analysis in the Google
Colaboratory platform, which has an Intel Xeon processor
(not specified) with two cores @2.3 GHz, 13 GB RAM.
Moreover, this platform has an NVIDIA Tesla K80 (GK210
chipset), 12 GB RAM, 2496 CUDA cores @560 MHz.

The work in [18] identified that in a real-world scenario
with about 7000 different active hosts, peaks of 1681 flows/s
were achieved on heavy traffic days. Given that the minimum
value of flows/s of all our ML/DL methods was 3754.265
(SVM for CICDoS2017), we concluded that their implemen-
tation is feasible in real-world scenarios.

The time complexity is more critical for high-volume
attacks, most present in the CICDDoS2019 dataset. The high-
volume attacks lead to heavy traffic in the controller. The
processing in the IDS must be as efficient as possible to avoid
long delays that will turn in performance degradation of the
entire network.

For the space complexity analysis, all ML/DL methods
have an equal number of inputs (flows) with the same number
of features (15 principal components). Thus, what makes

VOLUME X, 2021 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

TABLE 5. Multiclass and binary metrics to assess the model on testing sets.

Binary metrics (benign/attack) Multiclass metrics

Dataset Method Accu.

(%)

Prec.

(%)

F1-S.

(%)

Recall

(%)

FPR.

(%)

Accu.

(%)

Prec.

(%)

F1-S.

(%)

Recall

(%)

KNN 99.971 99.972 99.971 99.970 1.816 99.811 99.836 99.812 99.811
SVM 99.774 99.773 99.769 99.774 10.23 99.719 99.718 99.713 99.719
RF 96.361 98.514 97.148 96.361 7.832 95.415 97.517 96.099 95.415
MLP 99.897 99.899 99.898 99.897 1.503 99.281 99.704 99.447 99.281
CNN 99.130 99.335 99.194 99.130 4.392 99.086 99.317 99.156 99.086
GRU 99.808 99.873 99.872 99.8873 4.454 99.809 99.843 99.819 99.819

CICDDoS 2019

LSTM 99.877 99.879 99.878 99.877 1.571 99.849 99.851 99.849 99.848
KNN 99.365 99.371 99.367 99.364 0.654 95.481 97.718 95.450 95.481
SVM 98.776 98.800 98.782 98.776 1.262 97.972 98.101 98.006 97.972
RF 96.182 96.208 96.108 96.182 0.855 90.992 93.036 90.675 90.992
MLP 98.133 98.127 98.124 98.133 0.772 97.328 97.377 97.297 97.328
CNN 98.881 98.886 98.883 98.881 0.974 97.405 97.442 97.395 97.405
GRU 99.427 99.432 99.428 99.427 0.594 98.353 98.402 98.359 98.353

CICDoS 2017

LSTM 99.473 99.474 99.473 99.473 0.389 98.319 98.357 98.293 98.319

TABLE 6. Time and space models’ complexity

Dataset Method Time

(Flows/s)

Space (floating-

point parameters)

KNN 15220 29876490
SVM 10650557 64
RF 33041 3150
MLP 42394 570
CNN 39248 16612
GRU 13744 131081

CICDDoS 2019

LSTM 15893 59154
KNN 6117 1540380
SVM 3754 128280
RF 14215 699546
MLP 28663 639
CNN 32757 75575
GRU 13298 131081

CICDoS 2017

LSTM 19598 36647

them different is the memory space that each trained model
occupies. The space complexity information shown in Table
6 expresses the number of variables represented as 64-
bit double-precision values (floating-point numbers) of each
trained technique. These values are rough estimations and
serve mainly for comparison among the explored techniques.

For the DL methods MLP, CNN, GRU, and LSTM, the
space complexity was estimated by the number of learn-
able parameters of each model (weights and biases). The
KNN method stores all samples of the training set, and
the memory of this method was estimated by the number
of training samples times the number of features (principal
components). We calculated the space requirement of the
RF technique by the total number of nodes of all the trees.
For the SVM method, we used different classifiers for each
dataset. For the CICDoS2017 dataset, the SVM used support
vector classification with a polynomial kernel. We estimated
the memory space by the total number of support vectors
(8552) times the input features (15). For the CICDDoS2019
dataset, the SVM used linear support vector classification.
We calculated the memory space by the number of weights
assigned to the features and the number of constants in the
decision function.

Most ML models need to become very complex (time or
space) to achieve a performance comparable to that obtained
by DL models. In contrast, DL models demonstrated effec-
tiveness with simple structures. In terms of time complexity,
the SVM and the CNN methods were the most efficient for
the CICDDoS2019 and CICDoS2017 datasets, respectively.
The KNN method is the most expensive in terms of space
complexity since it stores the whole training set. The use
of large training datasets for the KNN model, as the CICD-
DoS2019, could represent a problem running the model in
large network environments.

The DL methods provided the best trade-off between the
classification performance and the models’ complexity. As
seen in Table 4, the maximum number of hidden layers used
for all DL models is 4 layers. Remarkably, the MLP model
used only two hidden layers to achieve high performance on
classifying application-layer attacks (CICDoS2017).

GRU and LSTM models provided the best trade-off be-
tween prediction performance and complexity. The config-
uration of the trained LSTM requires less memory than
the GRU. However, the GRU can process flows faster than
LSTM.

3) Comparison with previous works

The metrics presented in this work are comparable with those
demonstrated in the previous studies that used ML/DL mod-
els to detect attacks and that used the CICDDoS2019 dataset.
The authors in [43] applied KNN, Decision Tree (DT), and
RF and achieved accuracy levels less than 95.19%. The
combined LSTM-Fuzzy method presented in [21] achieved
an accuracy of 99.74% and FPR of 0.25%. The work in [16]
combined an RNN with autoencoder and achieved a binary
classification accuracy of 99%. The work in [17] combined
LSTM and CNN models and obtained a detection accuracy
above 98.9% on an altered version of the CICDDoS2019
dataset. This solution was not evaluated in a real or sim-
ulated network environment, though. The authors in [44]
explored DT, Gradient Boosting (GB), and RF techniques
and achieved accuracy up to 99.87% (GB) and FPR of 2.01%.

10 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

However, their security solution was not evaluated online in
a real or simulated testbed. Finally, the recent work presented
in [18] assessed four DL methods, including MLP, CNN,
LTSM, and GRU, and four ML techniques that include SVM,
Logistic Regression, kNN, and Gradient descendent. The
GRU technique was the best technique that demonstrated ac-
curacy higher than 99.94% using the CICDDoS2019 dataset.
However, this work did not present the evaluation using
a simulated or real scenario that could reduce the offline
performance achieved using the datasets.

Regarding the ML/DL models’ performance for the CIC-
DoS2017 dataset, the work in [20], explored six ML tech-
niques, including RF, SVM, and MLP, achieving accuracy
up to 95%. The high performance of the ML achieved in
our work using the same dataset reveals the importance
of our design of the flow collector and the preprocessing
methodology.

We noted that the majority of previous works did not
test their proposals in a real or simulated network. Thus,
our work offers a relevant contribution since several issues
and challenges can appear when deploying the models in
production network environments.

VII. EXPERIMENTAL SETUP

The threats considered in the experimental setup are UDP,
SYN, and DrDNS from the CICDDoS2019 dataset. The
attacks contemplated from the CICDoS2017 dataset are slow
body, slow read, and slow header. We propose to evaluate the
models trained with the CICDoS2017 and CICDDoS2019
datasets in a simulated testbed. The FPR is a fundamental
measure of the performance of an IDS to be implemented
in a production network. Thus, we excluded the SVM and
CNN models from the testbed-based models’ assessment
since these methods presented the worst FPRs using both
datasets (Table 5).

The proposed experimental setup implements a different
network topology to the ones used for the models’ training.
The sizes of the topologies are similar, though. The CICD-
DoS2019 dataset was generated in a testbed that consisted
of two separate networks, that is, the victim and the attack
networks. The victim network has one server, two switches,
and four PCs. The attack network executed the different
types of DDoS attacks to the victim server [29]. The testbed
used to generate the CICDoS2017 dataset consisted of 10
victim web servers. All attacks were deployed sequentially
to these servers, using one attacker at a time [26]. In short,
both configurations used only a few network elements as the
experimental setup proposed in this work.

Fig. 5 shows the experimental setup to test the proposed
architecture. We used a single physical computer to simulate
the Mininet network emulator, the ONOS controller, and the
IDS, although we installed all these applications in different
virtual servers.

A customized topology with three switches and 12 hosts
was deployed using the Mininet network emulator. We set
three victim hosts, h1, h2, and h3, that implemented the vic-

tim servers during DoS/DDoS attacks. Also, we defined three
attacker hosts, h7, h8, and h9, that ran the DoS/DDoS attacks
using different attack tools. To generate benign traffic, we
used the Distributed Internet Traffic Generator (D-ITG) [45].
This tool requires sender and receiver agents. We used three
receivers, h4, h5, and h6, that worked as the D-ITG receiver
agents, and four senders, h10, h11, and h12, that acted as the
D-ITG sender agents.

The proposed architecture works as follows. An appli-
cation installed in the controller runs the Flow Collector
and Logs Manager modules. The Flow collector gathers
the network traffic flows and sends them to the IDS. The
IDS preprocesses the flows by performing variable selection,
standardization, and dimensionality reduction with PCA. We
defined the hyperparameters of the preprocessing execution
during the offline preprocessing definition (Section VI.B).
The trained ML/DL methods use the principal components
to detect attacks. Finally, the IDS sent back the decisions
over each flow back to the application in the controller, which
saves the logs of the detection models.

In future work, we envision replacing the log manager
module with a mitigation module. This module will deploy
threat mitigation policies in the network by leveraging the
programmability feature of the SDN architecture. In a simple
approach, the mitigation module uses the decisions of the
IDS over the individual flows to blacklist recurrent suspicious
connections. These suspicious connections in the blacklist
are blocked in the edge switches until they demonstrate a
legitimate behavior. We will also explore other complete
mitigation solutions, such as using optimization mechanisms
that minimize the legitimate users affected and bandwidth
used by malicious users.

A. BENIGN TRAFFIC PROFILE

We used the benign flows captured from the CICDoS2017
dataset to profile the legitimate traffic to be reproduced on
the experimental testbed. Thus, we identified two packet-
level characteristics and two flow-level characteristics from
the CICDoS2017 benign flows. These characteristics were:

● Packet-level characteristics:

– Inter-departure Time (IDT), in milliseconds.
– Packet Size (Pkt Size), in bytes .

● Flow-level characteristics:

– Flow Duration, in Number of Packets / flow.
– Inter-flow Time (Flow Delay), in milliseconds.

We performed survival and mean excess value analysis.
This analysis demonstrated the four characteristics, IDT, Pkt
Size, flow duration, and flow delay, follow a heavy-tailed dis-
tribution. Therefore, we proceeded with the distribution fit-
ting to the most common heavy-tailed distributions, namely,
Weibull, General Pareto, and Gamma. We determined the
Kolmogorov-Smirnov statistic (K-S) [46],

DN =max
x
∣FN(x) − F (x)∣, (5)

VOLUME X, 2021 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

Variable selection

Standardization

PCA

Classification (ML/DL)

CONTROLLER

SW3
SW2

…

10.0.0.1

Benign Traffic Generators

D-ITG Recv 1

Victim

Server 1

10.0.0.4

D-ITG Recv 3

10.0.0.6 10.0.0.7

Attacker 1

SW1

D-ITG Sender 1

10.0.0.10

Attacker 3

10.0.0.9

…

Victim

10.0.0.3

Victim

Server3

Victim

D-ITG Sender 3

10.0.0.12

…

…

…

…

…

…

MININET

INTRUSION

DETECTION

SERVER

Attack Traffic Generators

Flow collection

HTTP requests

(h1) (h3) (h4) (h6) (h7) (h9) (h10) (h12)

Logs

Flow Collector

[Flow ID: {Benign or Attack}]

FIGURE 5. Experimental setup.

TABLE 7. K-S statistic for each parameter and different distributions.

Distribution Flow

duration

Flow

Delay

Packet

Size

IDT

Weibull 0.20058 0.12613 0.40766 0.21794
Pareto 0.15085 0.12795 0.53355 0.13991

Gamma 0.19655 0.1779 0.4257 0.35071
Exponential 0.33439 0.30994 0.5407 0.78935

where FN(X) is the sample distribution and F (x) is the
empirical distribution of the data. The maximum value of
the difference between these distributions is calculated for
all values in the support of X. The K-S statistic allowed us
to establish the distribution model that can represent each
parameter. Lower values of the K-S statistics indicate a
better fit of the distribution model. As shown in Table 7,
Pareto, Weibull, Weibull, and Pareto were the distribution
models that best represented the parameters flow duration,
flow delay, packet size, and IDT, respectively.

We used D-ITG tool [45] to reproduce the benign traffic
profile in the testbed. D-ITG is a platform capable of gen-
erating IPv4 and IPv6 traffic. This tool accurately replicates
the workload of current Internet applications. We used D-ITG
to generate traffic at the packet level accurately, producing
appropriate stochastic processes for both IDT and Packet Size
random variables. Also, we embedded the commands of the

D-ITG in a Python-based script, which replicated the flow
level characteristics, namely, flow delay and flow duration.

B. ATTACK TRAFFIC

We generated attack traffic using different free tools available
online. Table 8 shows the tools used to generate each attack
type. Moreover, this table shows the attack parameters that
we explored and varied to evaluate the models under different
attack conditions.

C. EXPERIMENTS

To evaluate the robustness of the intelligent classification
mechanisms on the testbed, we ran several experiments vary-
ing the parameters of different tools, according to Table 8.

1) Transport Layer attacks

For transport layer attacks UDP and TCP-SYN, we explored
different attack rates (r), as shown in Table 8. Our purpose
was to evaluate the intelligent classification mechanisms at
different rates r: Low, medium, high, and flood.

Fig. 6 a) shows the running of four experiments for TCP-
SYN attacks. The horizontal axis contains the sequence of
flows captured, and the vertical axis represents the type of
event that each flow represents, a benign or an attack flow. We
started and finished each experiment with legitimate traffic,

12 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

TABLE 8. DoS/DDoS attack tools and parameters explored.

Layer Attack (tool) Attack’s parameters Attackers Victim

UDP (Hping3 [47]) r : {Low, medium, high, flood} h7, h8, h9 h2: SimpleHTTPServer [48]
Transport

SYN (Hping3 [47]) r: {Low, fast, high, flood} h7, h8, h9 h3: SimpleHTTPServer [48]
Slow body (Slowhttptest [49]) r: {200, 300}, c: {1000, 2000, 3000, 4000,

5000}
h7 h1: SimpleHTTPServer [48]

Slow read (Slowhttptest [49]) r: {200, 300}, c: {1000, 2000, 3000, 4000,
5000}

h8 h2: SimpleHTTPServer [48]

Slow header (Slowhttptest [49]) r: {200, 300}, c: {1000, 2000, 3000, 4000,
5000}

h9 h3: SimpleHTTPServer [48]
Application

DrDNS (Hping3 [47]) r : {Flood} h7, h8, h9 h1: SimpleHTTPServer [48]

which allowed us to evaluate whether the model can avoid
false positives in the free-attack condition. In total, we per-
formed 8 experiments for transport layer attacks. We noted
that these attacks in flood mode made the entire network
unavailable for benign users (Fig. 6 a)). In addition, on the
low-rate mode of these attacks, the malicious flows have
similar characteristics to benign traffic, which will make
them more challenging for the intelligent mechanisms to
detect. Nevertheless, if the attackers use too low attack rates,
they will never deny the service to legitimate users.

2) Application-layer attacks

For slow-rate application-layer attacks slow send body, slow
send header, and slow read, we explored different attack con-
nection rates (r) and different numbers of attack connections
(c) for each attack. We performed 10 experiments for each
slow-rate attack, combining the parameters r and c, as shown
in Table 8.

Fig. 6 b) shows six runs for slow read attack. Axis are
represented as in Fig. 6 a). As in the transport layer attacks,
we started and finished the experiments with benign traffic.
In total, we ran 30 experiments for the slow-rate attacks. We
noted that for low r and low c, the slow-rate attacks were
more challenging for the intelligent algorithm to detect since
they have similar characteristics to benign traffic.

In the case of the high-volume attack DrDNS, we used
hping3 to perform the last step of this attack, that is, the
reflection and amplification part. Therefore, UDP packets
with long size were sent at a high rate to the victim host h1

from the attackers (h7, h8 and h9). As in previous cases, we
considered legitimate traffic before and after the attack was
executed.

D. INLINE MODEL EVALUATION

We evaluated the ability of the models to detect attacks on
the experimental testbed. For the dataset-based models’ eval-
uation, we used the classification metrics accuracy, precision,
F1-score, and FPR. Using these metrics in the inline models’
evaluation was not suitable. We performed multiple exper-
iments with different attack conditions. The assessment of
these experiments using classification metrics would have re-
sulted in numerous and possibly confusing tables. Moreover,
different from dataset-based model evaluation, we aimed to
identify the model performance for different attack rates (r).

Therefore, to examine the efficiency of the prediction of each
model, we computed the detection rate.

We defined the detection rate (DR) as the ratio of the
number of attack and benign flows correctly predicted to the
total number of flows predicted by the model,

DR =
Total number of flows correctly predicted

Total number of flows
. (6)

We computed the detection rate for every 1000 flow
arrivals. After obtaining the detection rates, we averaged
them over the attack rate (r). Thus, we presented a clear
comparison of the performance of the ML/DL models.

1) Transport Layer DDoS attacks

Fig. 7 shows the averaged detection rate for TCP-SYN and
UDP attacks using all intelligent models trained with the
CICDoS2019 dataset. As shown in Fig. 7, the LSTM and
GRU models provided the best performance in detecting
SYN and UDP attacks, with an averaged detection rate above
90%. Notably, the GRU model reached an averaged detection
rate above 99%. For the ML techniques, we observed that
KNN and RF provided acceptable performance levels, above
80% for TCP-SYN attacks in fast rate mode.

We were limited in hardware resources since we used a
single personal computer to execute all simulations. This
factor limited us to comprehensively evaluate the ML/DL
models for TCP-SYN attacks in a faster rate and flooding
mode. The limited computational capabilities of the ONOS
controller did not allow us to process flows of TCP-SYN
attacks at high rates and send them to the IDS. A solution
to this issue was discussed in Section VIII.

In the case of UDP attack, LSTM and GRU models pro-
vided the highest averaged detection rates, reaching values
above 85%. As in the TCP-SYN attack, the GRU model pro-
vided the highest performance, achieving averaged detection
rates above 99%. Regarding the ML methods, RF presented
high performance, reaching averaged detection rates superior
to 99%. KNN resulted ineffective in detecting UDP attacks.

2) Application-Layer DoS/DDoS attacks

Fig. 8 shows the averaged detection rate for the application-
layer attacks slow body, slow read, slow header, and DrDNS
using all ML/DL models trained with the CICDoS2017
dataset.

VOLUME X, 2021 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

Syn rate: Low

Syn rate: Medium

Syn rate: High

Syn rate: Flood

(a) (b)

FIGURE 6. Experiment design. (a) Sample of four runs of TCP-SYN attacks. (b) Sample of six runs of slow read attacks

(a) (b)

FIGURE 7. Testbed-based evaluation of transport layer attacks. (a) TCP-SYN. (b) UDP.

For application-layer slow-rate attacks, in general, DL
mechanisms performed better than the ML methods. Most
ML/DL models performed better for high r (300 attack
connections/second), which means that for low values of r,
legitimate and attack flows’ characteristics become identical,
which made it harder for ML/DL models to detect them.
Nevertheless, it is relevant to recognize that for low values
of r, the victim server will never fail, which means that the
services provided by the server will remain available. Thus,
our models are practical to avoid DDoS attacks.

From Fig. 8a) - 8c), we note that LSTM, GRU, and KNN
demonstrated the highest performance for slow-rate attacks.
Particularly, LSTM provided averaged detection rates above
85% for all slow-rate attacks with r = 300 attack connec-
tions/second. MLP showed a high detection rate only for slow
header attack.

In general, the LSTM and GRU neural networks presented
the best performance, with an averaged detection rate above

80% for all slow-rate attacks.

Even though the averaged detection rates for slow-rate
attacks achieved in this work were not as high as the detection
rates for high-volume attacks, their impact is significant, as
explained in the following. The flow arrivals frequency of
slow-rate attacks is low, and they can exhaust all the server
resources and deny the availability to legitimate users with
less bandwidth. Therefore, predicting even a small number
of slow-rate attacks will definitely reduce the impact of these
threats and hence improve the availability of the services
to legitimate users. Moreover, slow-rate attackers need to
maintain a session for long times to complete the attacks.
Hence, we will need to only recognize part of the attack
flows, to identify the attacker direction (IP and Source Port),
in order to mitigate them.

For the application-layer DrDNS attack (Fig. 8 d)), all
ML/DL models presented high performance, with average
detection rates above 98%. This attack is high-volume traffic,

14 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

(a) (b)

(c)

0

0.2

0.4

0.6

0.8

1

(d)

FIGURE 8. Testbed-based evaluation of application-layer attacks. (a) Slow body. (b) Slow read. (c) Slow header. (d) DrDNS.

TABLE 9. Averaged FPR for testbed-based evaluation.

Layer Attack KNN RF MLP GRU LSTM

SYN 0.006 0.005 0.165 0.003 0.155
Transp.

UDP 0.008 0.003 0.276 0.032 0.198
DrDNS 0.003 0.006 0.000 0.002 0.069
Slow body 0.011 0.003 0.003 0.003 0.014
Slow read 0.010 0.009 0.001 0.011 0.009

App.

Slow header 0.012 0.004 0.012 0.005 0.038

which eases the differentiation from the legitimate traffic.
Table 9 presents the average false-positive rate of all

ML/DL techniques and attack types. For application-layer
attacks, we observe that most ML/DL methods provide an
FPR of less than 2%, which means legitimate users will
be minimally affected when deploying mitigation strategies.
For transport layer threats, FPRs are higher due to the high
volume of flows during the attacks that complicate to dis-
criminate a legitimate from an malicious flow. Nevertheless,
most of the models presents a proper FPR for high-volume
DDoS attacks (less than 3%).

Table 10 shows the ranking of the top three models, based

on the detection rate and FPR, for each attack evaluated on
the testbed. GRU and LSTM models performed effectively
high-volume and low-volume attacks in different conditions,
which means these methods were the most robust.

We consider that the two RNN methods, the GRU and
the LSTM, performed better than the other tested methods
because of their ability to retain short-term and long-term
information. Other ML/DL techniques presented in this work
only maintain short-term memory. The GRU and LSTM
methods implement a series of mechanisms called gates to
regulate the learning and forgetfulness rates of data, guaran-
teeing that long-term (pass data) and short-term (new entries)
information is maintained. Thus, both the network’s state
before an attack event occurs and the current analyzed flow’s
behavior are used to generate alarms. These essential features
of the LSTM and GRU methods could have improved the
classification of both benign and malicious flows, generating
high outcomes regarding detection rates.

Moreover, the methods KNN, RF, and MLP performed
successfully for different types of attacks. These results can
help to develop next-generation firewalls to select the appro-

VOLUME X, 2021 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

TABLE 10. Models’ ranking for testbed-based evaluation.

Attacks

Rank SYN UDP DrDNS Slow

body

Slow

read

Slow

header

1 GRU RF GRU GRU LSTM GRU
2 KNN GRU KNN KNN GRU MLP
3 LSTM LSTM RF LSTM KNN LSTM

priate ML or DL model depending on the attack we want to
avoid or minimize.

E. COMPARISON WITH PREVIOUS WORKS

Very few related works have performed an inline assessment
of their security proposals using simulated environments.
The authors in [21] deployed a simulated scenario using
Floodlight controller and Mininet to test an LSTM-FUZZY
model, achieving an accuracy superior to 98%. However,
they used the scenario only to generate datasets to train
and test the model, but not in an inline evaluation manner.
The work in [20] used the ONOS controller and Mininet to
evaluate multiple ML models for detecting low-rate attacks.
However, the accuracy achieved was low.

Unlike previous works, the scope of our study is exten-
sive since we comprehensively evaluated the performance of
seven ML/DL mechanisms in detecting diverse low-volume
and high-volume DDoS attacks. Also, we varied the attack
conditions to assess the robustness of each ML/DL method.
Under this analysis, LSTM and GRU methods demonstrated
to be the most robust detection mechanisms. Finally, the
performances achieved in this work prove that our solution
is realistic and can be implemented in production networks.

VIII. DISCUSSION

Next, we discuss our findings, limitations, and future work.

A. MODELS’ PERFORMANCE AND ADAPTATION

We recognized the high performance of our models on the
test subsets of the CICDoS2017 and CICDDoS2019 datasets.
In these cases, the ML/DL models showed effectiveness for
correctly predicting unseen traffic (testing set). However,
when we changed the network topology, the performance
of the models slightly decreased. The experimental network
topology was different from the network configuration used
for the models’ training. Nevertheless, even in these con-
ditions, the LSTM and GRU models achieved high enough
performance in detecting high/low-volume transport and
application-layer attacks.

Furthermore, generating datasets in our network config-
uration and using them to train the models would increase
the model performance. We performed such experiments for
the LSTM mechanism and achieved an average detection rate
above 96% for DDoS slow-rate attacks. However, we know
that the network environment is a nonstationary system.
Thus, periodic offline training is required to maintain the high
performance of our architecture. Furthermore, in the future,

we will explore adaptive mechanisms to detect attacks even
if the network architecture/environment changes drastically.

B. FUTURE WORK

Future work includes the introduction of the scalability com-
ponent and a mitigation module in our proposed architecture.

1) Scalability

To add more scalability to our proposed architecture (Fig. 2),
we will include the following characteristics in future work.
In the architecture presented in Fig. 2, the flow collector
module gathers all flows from the network devices, which
could introduce a bottleneck in large or high traffic networks.
We aim to implement a packet level filter and a flow level
filter to reduce the traffic monitoring intensity. A packet-
level filter will select only a subset of packets to be used
to build the flows. In the case of slow-rate attacks, we need
to be careful on conserving enough packets, since most of
the application-layer attacks contain flows with only a few
packets, and filtering too many packets will result either in
single-packet flows or completely eliminating some flows,
producing low detection performance [26]. Thus, a flow level
filter is desirable for slow-rate attacks. In the transport layer
DDoS attacks, the packet level filter is appropriate since the
attacks use high-volume traffic. Only part of the packets
to build the flows will be enough to obtain a good model
performance.

We also plan to embed the preprocessing mechanism in the
Flow Collector module in the ONOS controller (see Fig. 2).
We defined the relevant variables in the offline preprocessing
methodology. Therefore, we only need to calculate those
relevant variables of the flows in the flow collector module.
Also, the real-time application of variable standardization
and PCA processing requires PK sums + PK multiplica-
tions, considering the input flow characteristic vector X1×K ,
with K selected features and P principal components. Thus,
we can introduce this preprocessing mechanism in the flow
collector module. These changes will reduce the information
traffic from the controller to the external IDS, which will
improve the scalability of our proposed architecture.

Furthermore, in this work, we considered only one con-
troller in the experimental setup. Nevertheless, using multiple
controllers is also of particular interest in an SDN-based se-
curity system design that can increase the scalability factor of
our proposed solution. This future research line is promising,
and we will consider it in future work.

Finally, we used a simplified network topology in the ex-
perimental setup since we aimed to validate the performance
of ML/DL models under different attack conditions. The
parameters explored were the attack connection rate (r) and
the number of attack connections (c) for each attack. Varying
the number of attackers and evaluating the IDS response is
also of particular importance in our research line, and we
will consider it in future work. We can predict that using
more distributed DDoS attackers will make the attacks even
more challenging for their detection. However, we consider

16 VOLUME X, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

that, because of their high accuracy and low FPR, the trained
models will keep a very acceptable performance.

2) Mitigation module

A mitigation module will be included in our proposed ar-
chitecture, which will countermeasure the attacks studied in
this work. Although we can implement a simple mitigation
strategy using the programmability feature of SDN, such
as closing all suspicious communication through inserting
blocking rules in edge switches, the design of an effective and
efficient mitigation strategy demands solving several chal-
lenges. Among these challenges are how to optimize the use
of computational and storage resources of the controller and
switches to deploy the mitigation policies, how to minimize
the reaction time of the mitigator, how to obtain a scalable
solution, etc. We envision exploring a solution to these issues
in future work.

IX. CONCLUSION

DoS/DDoS attacks are the most harmful threats affecting the
networks. In this work, we designed an intelligent solution
to detect transport and application layer DoS/DDoS attacks.
First, we proposed a modular SDN-based architecture with
components that can be modified or improved separately,
providing flexibility to test different intelligent methods to
detect diverse attacks. Moreover, we explored four DL mod-
els and three ML models that demonstrated an accuracy per-
formance above 99% on the testing phase, using two up-to-
date datasets with real network traces. Our proposed solution
was evaluated in an emulated testbed, using Mininet and the
ONOS controller. In this configuration, the detection rate of
the trained models remained high enough. We presented a
ranking of the best models evaluated on the testbed, and
we concluded that GRU and LSTM models maintained the
highest detection rates in the inline model evaluation. These
models achieved high detection rates, up to 95% for slow-rate
attacks and above 98% for high-volume attacks, demonstrat-
ing high robustness. In general, DL models exhibited higher
detection rates in comparison to ML models, for all types of
attacks studied in this work.

The use of open and complete tools (e.g., ONOS con-
troller) for the deployment of the architecture proposed eases
its migration to production environments. The next step in
our project includes increasing its scalability factor to the
solution. Moreover, for future work, we plan to implement
and experiment with an optimized mitigation strategy.

ACKNOWLEDGMENT

The authors would like to thank Maritza Rosales Hernández,
Fátima Sánchez Suárez, and Martín Helmut Domínguez Ál-
varez, for their assistance in training and testing the ML/DL
models using the datasets and the simulated architecture.

REFERENCES

[1] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service
attacks and its defenses in IoT: a survey,” The Journal of Supercomputing,
pp. 1–44, 2019.

[2] K. Srinivasan, A. Mubarakali, A. S. Alqahtani, and A. D. Kumar, “A
Survey on the Impact of DDoS Attacks in Cloud Computing: Preven-
tion, Detection and Mitigation Techniques,” in Intelligent Communication
Technologies and Virtual Mobile Networks. Springer, 2019, pp. 252–270.

[3] D. Gurusamy, M. Deva Priya, B. Yibgeta, and A. Bekalu, “DDoS risk in
5G enabled IoT and solutions,” Int. J. Eng. Adv. Technol, vol. 8, pp. 1574–
1578, 2019.

[4] Kaspersky, “Kaspersky Q4 2020 DDoS attacks report,” 2021. [Online].
Available: https://securelist.com/ddos-attacks-in-q4-2020/100650/

[5] A. Praseed and P. S. Thilagam, “DDoS attacks at the application layer:
Challenges and research perspectives for safeguarding Web applications,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 661–685,
2018.

[6] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in sdn: A
comprehensive survey,” Journal of Network and Computer Applications,
vol. 159, p. 102595, 2020.

[7] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on SDN
based network intrusion detection system using machine learning ap-
proaches,” Peer-to-Peer Networking and Applications, vol. 12, no. 2, pp.
493–501, 2019.

[8] R. Swami, M. Dave, and V. Ranga, “Software-defined Networking-based
DDoS Defense Mechanisms,” ACM Computing Surveys, vol. 52, no. 2,
2019.

[9] C. Birkinshaw, E. Rouka, and V. G. Vassilakis, “Implementing an intru-
sion detection and prevention system using software-defined networking:
Defending against port-scanning and denial-of-service attacks,” Journal of
Network and Computer Applications, vol. 136, pp. 71–85, 2019.

[10] P. Wang, L. T. Yang, X. Nie, Z. Ren, J. Li, and L. Kuang, “Data-
driven software defined network attack detection : State-of-the-art and
perspectives,” Information Sciences, vol. 513, pp. 65–83, 2020.

[11] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for DDoS detection,” Applied Intelligence, vol. 48,
no. 10, pp. 3193–3208, 2018.

[12] R. Priyadarshini and R. K. Barik, “A deep learning based intelligent
framework to mitigate DDoS attack in fog environment,” Journal of King
Saud University-Computer and Information Sciences, 2019.

[13] N. N. Tuan, P. H. Hung, N. D. Nghia, N. V. Tho, T. V. Phan, and N. H.
Thanh, “A DDoS Attack Mitigation Scheme in ISP Networks Using
Machine Learning Based on SDN,” Electronics, vol. 9, no. 3, p. 413, 2020.

[14] X. Liang and T. Znati, “A Long Short-Term Memory Enabled Framework
for DDoS Detection,” in 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2019, pp. 1–6.

[15] V. Punitha, C. Mala, and N. Rajagopalan, “A novel deep learning model
for detection of denial of service attacks in HTTP traffic over internet,”
International Journal of Ad Hoc and Ubiquitous Computing, vol. 33, no. 4,
pp. 240–256, 2020.

[16] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Ddosnet: A
deep-learning model for detecting network attacks,” in 2020 IEEE 21st In-
ternational Symposium on" A World of Wireless, Mobile and Multimedia
Networks"(WoWMoM). IEEE, 2020, pp. 391–396.

[17] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard: An
Intelligent Edge Defense Mechanism Against IoT DDoS Attacks,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9552–9562, 2020.

[18] M. V. Assis, L. F. Carvalho, J. Lloret, and M. L. Proença Jr, “A GRU deep
learning system against attacks in software defined networks,” Journal of
Network and Computer Applications, vol. 177, p. 102942, 2021.

[19] CIC datasets, “Canadian institute for cybersecurity,” 2020. [Online].
Available: https://www.unb.ca/cic/datasets/index.html

[20] J. A. Pérez-Díaz, I. A. Valdovinos, K.-K. R. Choo, and D. Zhu, “A
flexible SDN-based architecture for identifying and mitigating low-rate
DDoS attacks using machine learning,” IEEE Access, vol. 8, pp. 155 859–
155 872, 2020.

[21] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, “Long Short-
Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation
in Software-Defined Network Environment,” IEEE Access, vol. 8, pp.
83 765–83 781, 2020.

[22] S. Gumaste, S. Shinde et al., “Detection of DDoS attacks in OpenStack-
based private cloud using Apache spark,” Journal of Telecommunications
and Information Technology, 2020.

[23] A. V. Kachavimath and D. G. Narayan, “A Deep Learning-Based Frame-
work for Distributed Denial-of-Service Attacks Detection in Cloud En-
vironment,” in Advances in Computing and Network Communications,
S. M. Thampi, E. Gelenbe, M. Atiquzzaman, V. Chaudhary, and K.-C. Li,
Eds. Singapore: Springer Singapore, 2021, pp. 605–618.

VOLUME X, 2021 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3101650, IEEE Access

N. M. Yungaicela et al.: SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using ML and DL

[24] T. V. Phan, T. R. Gias, S. T. Islam, T. T. Huong, N. H. Thanh, and
T. Bauschert, “Q-MIND: Defeating Stealthy DoS Attacks in SDN with
a Machine-learning based Defense Framework,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[25] N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research trends
in security and DDoS in SDN,” Security and Communication Networks,
vol. 9, no. 18, pp. 6386–6411, 2016.

[26] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Detecting
HTTP-based application layer DoS attacks on web servers in the presence
of sampling,” Computer Networks, vol. 121, pp. 25–36, 2017.

[27] K. Özdinçer and H. A. Mantar, “SDN-based Detection and Mitigation
System for DNS Amplification Attacks,” in 2019 3rd International Sympo-
sium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).
IEEE, 2019, pp. 1–7.

[28] CIC Flow Meter, “Canadian Institute for
Cybersecurity,” 2020. [Online]. Available:
https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter

[29] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing
realistic distributed denial of service (DDoS) attack dataset and taxon-
omy,” in 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE, 2019, pp. 1–8.

[30] Mininet, 2020. [Online]. Available: http://mininet.org/
[31] ONF, “Onos,” 2020. [Online]. Available:

https://www.opennetworking.org/onos/
[32] D. Arndt, “Flowbag,” 2020. [Online]. Available:

https://github.com/DanielArndt/flowtbag
[33] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,

“Characterization of tor traffic using time based features.” in ICISSp, 2017,
pp. 253–262.

[34] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Performance com-
parison of support vector machine, random forest, and extreme learning
machine for intrusion detection,” IEEE Access, vol. 6, pp. 33 789–33 795,
2018.

[35] G. Karatas, O. Demir, and O. K. Sahingoz, “Increasing the Performance
of Machine Learning-Based IDSs on an Imbalanced and Up-to-Date
Dataset,” IEEE Access, vol. 8, pp. 32 150–32 162, 2020.

[36] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A DDoS attack detection
method based on SVM in software defined network,” Security and Com-
munication Networks, vol. 2018, 2018.

[37] H. Polat, O. Polat, and A. Cetin, “Detecting DDoS Attacks in Software-
Defined Networks Through Feature Selection Methods and Machine
Learning Models,” Sustainability, vol. 12, no. 3, p. 1035, 2020.

[38] S. Haider, A. Akhunzada, I. Mustafa, T. B. Patel, A. Fernandez, K.-K. R.
Choo, and J. Iqbal, “A Deep CNN Ensemble Framework for Efficient
DDoS Attack Detection in Software Defined Networks,” IEEE Access,
vol. 8, pp. 53 972–53 983, 2020.

[39] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and M. Ghogho, “In-
trusion detection in SDN-based networks: Deep recurrent neural network
approach,” in Deep Learning Applications for Cyber Security. Springer,
2019, pp. 175–195.

[40] Scikit-learn, 2020. [Online]. Available: https://scikit-learn.org/stable/
[41] Keras, 2020. [Online]. Available: https://keras.io/
[42] Autonomio Talos, “[Computer software],” 2020. [Online]. Available:

http://github.com/autonomio/talos
[43] D. Manikumar and B. U. Maheswari, “Blockchain Based DDoS Mitiga-

tion Using Machine Learning Techniques,” in 2020 Second International
Conference on Inventive Research in Computing Applications (ICIRCA).
IEEE, 2020, pp. 794–800.

[44] J. P. Abreu Maranhão, J. P. Carvalho Lustosa da Costa, E. Pignaton de Fre-
itas, E. Javidi, and R. Timóteo de Sousa Júnior, “Error-Robust Distributed
Denial of Service Attack Detection Based on an Average Common Feature
Extraction Technique,” Sensors, vol. 20, no. 20, p. 5845, 2020.

[45] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-ITG
distributed internet traffic generator,” in First International Conference on
the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings.
IEEE, 2004, pp. 316–317.

[46] M. Bonamente, Statistics and analysis of scientific data. Springer, 2017.
[47] Hping3, 2019. [Online]. Available: https://tools.kali.org/information-

gathering/hping3
[48] Simple Http Server, 2020. [Online]. Available:

https://docs.python.org/2/library/simplehttpserver.html
[49] Slowhttptest, 2020. [Online]. Available:

https://code.google.com/p/slowhttptest/

NOE M. YUNGAICELA-NAULA received his
B.Sc degree in Electronic and Telecommunica-
tion Engineering from the Universidad de Cuenca
(Cuenca, Ecuador), in 2015, and his M.Sc. degree
in Intelligent Systems at Tecnologico de Mon-
terrey in 2018. From November 2017 to March
2018, he was a Visiting Scholar at the Concordia
University, Montreal, QC, Canada. Nowadays he
is pursuing his Ph.D. degree at the Tecnologico de
Monterrey. His current research interest includes

the security automation on new generation networks using techniques of
artificial intelligence.

CESAR VARGAS-ROSALES (M’89—SM’01)
has a Ph.D. and a M.Sc. in Electrical Engineering
from Louisiana State University in Communica-
tions and Signal Processing. Dr. Vargas is a mem-
ber of the Mexican National Researchers System
(SNI), the Mexican Academy of Science (AMC),
and the Academy of Engineering of Mexico. He
is an Associate Editor of IEEE Access and Inter-
national Journal of Distributed Sensor Networks.
He is a Senior member of the IEEE, the IEEE

Communications Society Monterrey Chapter Chair, and the Faculty advisor
of the IEEE-HKN Lambda-Rho Chapter at Tecnologico de Monterrey. He
was also the Technical Program Chair of the IEEE Wireless Communi-
cations and Networking Conference (IEEE WCNC). He is the co-author
of the book Position Location Techniques and Applications (Academic
Press/Elsevier). His research interests are personal communications, 5G/6G,
Cognitive Radio, MIMO systems, stochastic modeling, traffic modeling,
Intrusion/anomaly detection in networks, position location, interference,
network and channel coding, and optimum receiver design.

JESUS ARTURO PEREZ-DIAZ obtained his
B.Sc. degree in computer science from the Au-
tonomous University of Aguascalientes in 1995,
where he received the best student award. He
received his Ph.D. degree in New Advances in
Computer Science Systems from the Universidad
de Oviedo in 2000. He became a full associate pro-
fessor at University de Oviedo from 2000 to 2002.
He was recognized by the COIMBRA group as
one of the best young Latin-American researchers

in 2006 and received a research stay at Louvain le nouveau University in
Belgium. He has been awarded by the CIGRE and by Intel for the devel-
opment of innovative systems. Currently, he is a researcher and professor
at Tecnologico de Monterrey – Campus Querétaro, Mexico and member
of the Mexican National Researchers System. His research field focus in
cyber-security in SDN and design of communications protocols where he
has supervised several master and Ph.D. theses in the field.

18 VOLUME X, 2021

