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Abstract—Recently, the boosting growth of computation-heavy
applications raises great challenges for the Fifth Generation (5G)
and future wireless networks. As responding, the hybrid edge and
cloud computing (ECC) system has been expected as a promising
solution to handle the increasing computational applications with
low-latency and on-demand services of computation offloading,
which requires new computing resource sharing and access
control technology paradigms. This work establishes a software-
defined networking (SDN) based architecture for edge/cloud
computing services in 5G heterogeneous networks (HetNets),
which can support efficient and on-demand computing resource
management to optimize resource utilization and satisfy the
time-varying computational tasks uploaded by user devices.
In addition, resulting from the information incompleteness, we
design an evolutionary game based service selection for users,
which can model the replicator dynamics of service subscription.
Based on this dynamic access model, a Stackelberg differential
game based cloud computing resource sharing mechanism is
proposed to facilitate the resource trading between the cloud
computing service provider (CCP) and different edge computing
service providers (ECPs). Then we derive the optimal pricing and
allocation strategies of cloud computing resource based on the
replicator dynamics of users’ service selection. These strategies
can promise the maximum integral utilities to all computing ser-
vice providers (CPs), meanwhile the user distribution can reach
the evolutionary stable state at this Stackelberg equilibrium.
Furthermore, simulation results validate the performance of the
designed resource sharing mechanism, and reveal the convergence
and equilibrium states of user selection, and computing resource
pricing and allocation.

Index Terms—Edge/cloud computing; software-defined net-
working (SDN), resource pricing and allocation, evolutionary
game; Stackelberg differential game.

I. INTRODUCTION

Recently, computation-heavy applications are experiencing

a dramatic increasing over the Fifth Generation (5G) and

future wireless networks. There is evidence that such appli-

cations, including mining process for Proof-of-Work (PoW)

in blockchain, interactive gaming, virtual reality, video ser-

vices, etc., have become premier drivers of the exponential

computing task growth [1], [2], [3]. To handle such increasing
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computing requirements, hybrid edge and cloud computing

(ECC) systems have been expected to provide low-latency

and on-demand computing services to users [4], [5], [6]. In

ECC systems, cloud computing, as the traditional solution

of computation offloading for user devices, is usually im-

plemented at cloud nodes physically located far from users,

which results in a long latency service response. Aiming

at this problem, edge computing has been proposed as the

complement of cloud computing by enabling users to upload

computational tasks to the edge of networks [7], [8], which

can eliminate the latency and enhance the reliability of ser-

vices. However, with the growing amount of computational

task requirements, computational power limited edge servers

might be overwhelmed with severe performance degradation.

A feasible solution for this problem is forwarding these tasks at

edge nodes to the remote cloud center [9], [10], which can be

considered as computation offloading between edge computing

service providers (ECPs) and the cloud computing service

provider (CCP). Therefore, to achieve the optimal and stable

performance of CCP systems, an efficient cloud computing

resource sharing mechanism plays an important role resulting

from the constrained resource equipped by the CCP and time-

varying user requirements among the CCP system. In addition,

such mechanism is more challenging when the dynamic ser-

vice subscription of users is taken into account [11]. This work

will establish a hybrid ECC system, in which users can upload

their computational tasks to nearby ECPs or the remote CCP

dynamically. In addition, by considering the dynamic service

subscription of users among the CCP and ECPs, this work

will focus on the computing resource sharing and computation

offloading mechanism design in the ECC system to realize

an efficient utilization of computing resource and satisfy the

service requirements of users.

As mentioned previously, the mobility and time varying

service selection of users may bring difficulties to efficient

resource sharing mechanism designs. In addition, there al-

ways exist bidirectional data interactions, including service

subscription, task uploading, service response, etc., between

end users and computing servers located at either the CCP

or ECPs in the ECC system. These frequent interactions

may lead to congestions at different computing providers

(CPs) [12]. To solve these problems, an appropriate network

architecture is necessary to realize an effective management

of the hybrid ECC system. In recent years, software-defined

networking (SDN) has been considered as an advanced net-

work architecture to achieve flexible resource management and
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system performance control [13], [14], which can mitigate

challenges above. Moreover, taking advantage of the available

and accurate information of global system status collected by

the SDN controller, the system can make optimal decisions

to improve resource utilization and service quality [15]. On

the other hand, latency problems, fault and Disruption toler-

ance, and scalability issues brought by the SDN-based fully

centralized control architecture can be well solved by the

integrated cloud and edge computing mechanism. Therefore,

in this work, an SDN-based architecture will be established for

computing resource sharing and computation offloading in the

ECC system. With a centralized controller, SDN will help CPs

to dynamically adjust the resource sharing and computation

offloading strategies, which can match time-varying demands

of users by observing their dynamic service selection.

Considering that the SDN-based fully centralized control

architecture established in Section II will suffer from latency

problems, fault and Disruption tolerance, and scalability is-

sues, this section will introduce an ECC system to realize

A. Related Work

For the integrated ECC system, the computation offloading

mechanism plays a crucial role in improving resource utiliza-

tion and service quality. Such computation offloading involves

two aspects. Specifically, in the aspect of users, both the CCP

and ECPs can offload users’ computational tasks with different

processing latency and transfer latency. On the other hand, re-

sulting from the limited computational power equipped, ECPs

are not qualified for providing services of heavy-computation

tasks processing. Then ECPs have to forward some of these

tasks to the remote CCP, which has powerful and dedicated

computing resource and can provide services on demand.

Such process above can be also considered as computation

offloading between the CCP and ECPs. According to such

two-layered resource sharing among different CPs and users,

how to allocate cloud computing resource among ECPs and

users selecting the CCP will influence the resource utilization

and service quality significantly.

Driven by the supply and demand of computing resource

among the CCP, ECPs and users, the resource trading can be

formed and facilitated, which needs to satisfy the demands

of users selecting different CPs, and meanwhile maximize

the utility of each CP. For these purposes, many researches

have focused on effect and efficient resource allocation and

sharing mechanisms in edge/cloud systems, by introducing

different economic models based on auction [16], [17], con-

tract [18], [19], Stackelberg game [20], [21], [22], etc.. Among

these studies, auction and contract based trading mechanisms

were designed to motivate participants to report their ser-

vice requirements or capacities truthfully, which can deal

with trustworthiness and information asymmetric issues in

the system. On the other hand, Stackelberg game provides

a suitable framework to model the interactions of trading

strategies made in supply and demand sides, including re-

source pricing, requests and proving for communications [23],

storage [24], energy [25], etc., which can facilitate the resource

trading efficiently and dynamically. In [20], a multi-leader

multi-follower Stackelberg game was studied to provide cost-

effective migrations of data centera in edge-cloud environment.

To optimize resource allocation of all cloud and fog computing

nodes, a Stackelberg game was formulated in [21], in which

fog computing relied on a set of low-power fog nodes that were

located close to the end users to offload the services originally

targeting at cloud centers. A two-stage Stackelberg game was

introduced into the blockchain consensus process in order to

incentive the cooperation between the edge/cloud providers

and the miners in a PoW-based blockchain network [22]. Sim-

ilarly, in some current studies, Stackelberg game frameworks

were also formulated to model the interaction between the

edge/cloud nodes and users [26], [27]. However, all these

studies above only considered the computing resource trading

between users and CPs, or between the CCP and ECPs,

while interactions and influences among the three levels were

hardly investigated. In fact, users’ service subscription will

impact computation offloading between the CCP and ECPs.

In addition, computing service qualities received by users se-

lecting different CPs will vary with different resource sharing

strategies made by CPs. Then users will change their selec-

tion strategies for better services, considering that users are

rational. It is difficult to model and analyze these interactions

above, since that the strategies made by the three parties will

impact and be impacted by each other. To solve such interac-

tive issues, this work will establish an evolutionary game based

model to analyze the users’ dynamic service selection among

CPs. In addition, we will propose a Stackelberg differential

game based cloud computing resource sharing mechanism,

which will dynamically determine the optimal resource pricing

and allocation/request strategies for the CCP and ECPs. In

this Stackelberg differential game, the differential equation is

introduced based on the replicator dynamics of user selections,

which can establish the connection between evolutionary game

operated among users and Stackelberg differential game oper-

ated among CPs. According to such hierarchical control and

optimization, computing resource utilization and user service

quality can be both improved.

As mentioned previously, dynamic user selections will bring

challenges to the optimization of resource sharing. Such

joint optimization for users and heterogeneous CPs can be

implemented efficiently by an SDN-based architecture. The

SDN-based architecture design for the ECC systems has

attracted researchers’ great attention, especially in the 5G

heterogeneous environment and various Internet of Things

(IoT) applications [28], [29], [30]. To realize efficient and

secure resource management, data processing and access con-

trol, different SDN-based architectures have been investigated.

In [31], authors introduced a tunnel-less SDN scheme for

scalable realization of virtual tenant networks across the 5G

heterogeneous infrastructure, which could support migrations

of software instances among geo-distributed computing re-

sources. To meet requirements of various applications and

improve the end-to-end system performance efficiently, a novel

integrated framework including SDN, computing, and caching

was designed in [32]. In [33], the cooperation among edge

computing nodes was investigated, and their interactions were

realized by establishing an SDN related mechanism. An SDN-
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based control scheme was designed in [34] for a multi-edge-

cloud environment involves huge data migrations to realize an

efficient traffic flow scheduling. In addition, different SDN-

based distributed and layered network architectures were also

investigated to operate edge/cloud computing systems with

blockchain techniques, which can deal with problems brought

by limited bandwidth, high latency, large volume of data,

and real-time analysis requirements [35], [36]. In summary,

leveraging the SDN-based architecture, flexible management

of heterogonous resource and optimal control of system per-

formance can be implemented to support computation-heavy

applications. Therefore, this work will design an SDN-based

architecture to optimize the computing resource utilization by

considering the dynamic users’ service subscription.

B. Contributions and Organization

Main contributions of this paper are summarized as follows.

• We establish an SDN-based architecture for computing

resource sharing in the ECC system. Taking advantage

of SDN controllers which separate the distributed infras-

tructure and resource management, the dynamic optimal

pricing and allocation strategies can be obtained.

• We design a Stackelberg differential game based cloud

computing resource sharing, which determines the op-

timal resource pricing and allocation/request strategies

dynamically. Then an open-loop Stackelberg equilibrium

is derived as the optimal solution. Comparing with tra-

ditional static strategies, the proposed mechanism can

achieve higher integral utilities in a time horizon and

faster convergence speed of decision making.

• We propose a hierarchical dynamic game framework

composed of evolutionary game in the user layer and

Stackelberg differential game in the edge and cloud layer,

which can incentive the cooperation of cloud computing

resource sharing. Different from the traditional separated

control outside the user layer, this work considers the

dynamic service selections of users among edge and

cloud resource. Based on this consideration, the user

service requirements can be satisfied as well as the

edge/cloud computing resource can be utilized efficiently.

• We analyze the performance of the designed computing

resource sharing mechanism based on the hierarchical

dynamic game. Specifically, the existence and uniqueness

of equilibrium of user selections, as well as their evolu-

tionary stable states, are analyzed. In addition, the opti-

mal dynamic pricing and allocation of cloud computing

resource are derived based on the replicator dynamics of

users’ service selection. Furthermore, simulation results

validate the performance of the designed resource sharing

mechanism, and reveal the convergence and stable states

of user selection, resource pricing and resource allocation.

The rest of this paper is organized as follows. The SDN-

based architecture for the ECC system is established in Sec-

tion II. Section III presents the system model and proposed

hierarchical game framework. An evolutionary game for ser-

vice selection of user devices is designed in Section IV, and

the Stackelberg differential game based computing resource

N

N

M

Fig. 1. Architecture of SDN-based resource pricing, sharing and user
scheduling in an ECC system.

pricing and allocation schemes are proposed in Section V.

Simulations are shown in Section VI, and conclusions are

drawn in Section VII.

II. SDN ARCHITECTURE DESIGN FOR EDGE/CLOUD

COMPUTING SYSTEMS

This section will propose a model of layered edge/cloud

computing service providing system which takes advantage

of SDN paradigms, and show that how to implement such

cross-layer computing service for users in the designed SDN-

based architecture in detail. The SDN-based architecture,

which consists of three levels, i.e., the infrastructure plane,

control plane and management plane, is established based

on the infrastructure in 5G wireless heterogeneous networks

(HetNets), as shown in Fig. 1. According to such SDN-based

management, CPs will provide edge and cloud computing

services to users. In this architecture, the cloud computing

center and edge computing nodes are operated by the CCP

and different ECPs, respectively. These CPs constitute the

infrastructure plane and take charge of providing computing

services to different types of user devices. In addition, we

consider a user layer outside the SDN architecture, in which

user devices such as mobile phones, tablets, etc., can receive

computing services by subscribing to different CPs, according

to their computational tasks’ requirements. Such architecture

can realize a dynamic and real-time information collection of

task requirements and system workload, and decision making

of computation offloading. Next, we will design the function

and operation of the three planes in order to satisfy the

computing requirements of users, and meanwhile manage the

computing resource sharing and providing efficiently.

A. Infrastructure Plane

In the infrastructure plane, the CCP and ECPs provide

remote and edge computing services for users, respectively,

who can access these CCP and ECPs via edge nodes, such

as wireless access points, radio towers, and macro-cell base
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station in 5G HetNets. In addition, surveillance cameras and

servers at the edge of Radio Access Networks (RANs) can be

also operated as edge servers to provide ubiquitous computing

services. In current designed mobile computing systems, edge

nodes can connect to different ECPs through edge gateways

and Device-to-Device (D2D) communication without effecting

the backhaul network [12]. By subscribing to these ECPs,

users can receive fast response with respect to computing

services. Alternatively, users can also select the remote CCP,

who usually possesses richer computational power to provide

higher-speed computing services than ECPs.

Considering the limited computational power of ECPs, the

CCP can share parts of its computational power with ECPs

through wireline connections between the edge gateways and

cloud gateways. Resulting from the dynamic service selection

of users, how to allocate the cloud computing resource among

ECPs and users selecting the CCP will influence the efficiency

of ECC system. Therefore, an efficient and dynamic control

on computing sharing between the CCP and ECPs plays an

important role on optimizing the resource utilization and sat-

isfying the resource requirements of users with fast response.

B. Control Plane

As shown in Fig. 1, the SDN-based architecture sepa-

rates computing resource management from the infrastructure,

which forms a hierarchical game based market of cloud com-

puting resource in the control plane. In this plane, information

collection of users’ subscriptions and strategy distribution for

CPs in the infrastructure plane will be implemented through

the data information interaction between the infrastructure

plane and control plane.

1) Information Collection: Through the controller of re-

quest analysis, the control plane collects the information of

users’ subscriptions among different CPs, as well as the local

computational power of each CP, and then sends such received

information to the management plane in real time. Specifically,

the controllers of request analysis and access control are able

to communicate with the CCP and ECPs through access points,

and then call for the time-varying number of users selecting

the corresponding CP.

2) Strategy Distribution: The control plane receives pricing

and request strategies of cloud computing resource made by

the upper management plane, and then distributes these strate-

gies to the CCP and ECPs through the controller of resource

allocation. In addition, the access controller and core controller

are responsible for resource sharing of cloud resource and

access control between edge gateways and cloud gateways, i.e.,

setting approach network paths between gateways, managing

computation offloading and so on.

C. Management Plane

After receiving the information of users’ subscription and

computational power equipped at each CP, the optimal pricing

and request strategies of cloud resource will be determined at

the management plane. To be specific, the management will

help the CCP to make decisions on dynamic resource pricing,

meanwhile help ECPs to determine how much computational

power should be requested. Then these decisions will be

returned back to the control plane, and then guide the cloud

computing resource sharing between the CCP and ECPs. Such

service response above can be implemented fast considering

the the wire connections between SDN controllers and edge

and cloud gateways, and the powerful processing capacities of

SDN servers.

III. SYSTEM MODEL AND HIERARCHICAL GAME

FRAMEWORK

Considering that the SDN-based fully centralized control

architecture established in Section II will suffer from latency

problems, scalability issues, etc., this section will introduce a

hierarchical game based computation offloading mechanism to

realize real-time and latency-sensitive services close to users.

A. System Model

Consider an ECC system with a finite set N =
{1, 2, · · · , N} ECPs overlaying with one remote CCP and

providing edge computing service to user devices, including

mobile phones, wearable devices, tablets, etc., as shown in

Fig. 2. In this work, we consider that the CCP and ECPs

can be operated by the mobile network operators (MNOs)

or provide the computing service as third parties. These user

devices can access and send computational tasks to different

ECPs by communicating with edge access points, such as

intelligent edge nodes, radio towers, etc., which can upload

these computational tasks or service requests to ECPs through

edge gateways. In addition, to fulfil some high-complex com-

putational tasks, users can also request the cloud computing

resource through base stations and edge access points, which

will upload their computational tasks to the CCP. Accordingly,

the CCP and ECPs will respond to these computing requests

on demand. As compensation, each users needs to pay the CCP

or ECPs for accessing fee. Denote pn as the price charged by

ECP n (n ∈ N ) and pc as the price charged by the CCP,

which are fixed access fees per device per unit of time paid

by users, considering current charging models set by mobile

service operators 1.

In this system, ECPs, performing as light-weight computing

servers, might be deployed at base stations, wireless access

points, etc., and then providing computing services with

shortened latency. In addition, the CCP, which can promise

powerful and stationary computing services, connects to the

N ECPs via cloud gateways in a wireline manner. When ECPs

cannot fulfill the received computational tasks under their con-

strained computing resource, they have to forward some part

of computational tasks to the remote CCP through wireline

backhaul links. Such computation offloading means that ECPs

needs to request the CCP for additional computational power.

For the shared computing resource and possible energy cost

resulting from resource allocation and information exchange

for the CCP, ECPs need to pay the CCP with uniform price p
in monetized payment unit computational power per unit time.

In this work, p is a function of time and can be denoted by

p (t). Once announced by the CCP, p (t) can be observed by

all ECPs in the system through the SDN architecture.

1Price pn and pc can be set by the MNO or the third-party service
providers, depending on who operate these CCP and ECPs.
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Fig. 2. Hierarchical game based resource pricing and sharing in ECC systems.

After observing price p (t), ECP n (n ∈ N ) decides to

request rn (t) ∈ [0, 1) proportion of CCPs computational

power 2 during a continuous observation period [0, T ]. Then

the computing resource allocation state of the system can

be described by vector r = [r1, r2, · · · , rN ]
T

. Let rc (t)
denote the current remaining computational power level of the

CCP at time t. Then we have
∑N

n=1 rn (t) + rc (t) = 1 for

t ∈ [0, T ]. In this resource transaction between the CCP and

ECPs, the CCP, as the computing resource provider, needs

to optimize unit price p (t) to make its resource bring into

maximal efficacy; on the other hand, the ECPs, who are the

resource receivers and buyers, will make the optimal decision

on how many resources to buy to create a tradeoff between

its quality of service and cost.

Consider that the local computational power of ECP n is

Rn for all n ∈ N , the total computational power of CCP is Rc

(Rc > Rn, ∀n ∈ N ), and the number of all user devices in the

system is denoted by K . In addition, let kn (t) and kc (t) be the

numbers of user devices subscribing to ECP n and the CCP at

time t, respectively. Then xn (t) = kn (t)/K (xn ∈ [0, 1]) and

xc (t) = kc (t) /K represent the population share of ECP n
and the CCP accordingly, and we have

∑N
n=1 xn (t)+xc (t) =

1 3. Based on these definitions above, the computational power

allocated to each user selecting ECP n and the CCP can be

calculated as

ωn (x, r) =
Rn +Rcrn (t)

Kxn (t)
, n ∈ N , (1a)

ωc (x, r) =
Rc

(

1−
∑N

n=1 rn (t)
)

Kxc (t)
, (1b)

2In this work, the computational power is considered as the computing
frequency or speed, which can be measured by the computing times per
unit time. In blockchain applications, the unit of computational power can
be defined as H/s.

3In this work, we only consider the users having the requirement of
uploading their conputational tasks to the CCP or ECPs. Therefore, there
exist at least one computing service provider to be selected by users.

respectively, where vector x = [x1, x2, · · · , xN , xc]
T

is the

population distribution state of the ECC system.

B. Hierarchical Game Framework

Based on the computing resource market model above,

the service selection of user devices, pricing strategy of the

CCP and computational power requests of ECPs are time-

varying and interact with each other. To be specific, if too

many users select the same CP, the received computational

power for each of these users will decrease according to (1).

Then these users tend to leave to other CPs with high average

computational power. In addition, CPs (including the CCP and

ECPs) with large number of user devices will expect to obtain

much computational power to satisfy the computing require-

ments from accessing user devices. However, such resource

request behavior also depends on and will further influence

the computing resource price decided by the CCP. To model

interactions among users, ECPs and the CCP analyzed above,

this work designs a hierarchical dynamic game based scheme

to improve the computing service quality and facilitate the

computing resource sharing among CPs in the ECC system.

There are two levels in the hierarchical dynamic game

designed for the computing service selection, pricing and

sharing system, i.e., the user level and the computing resource

level. In the user level, the behavior of users’ dynamic service

selection is formulated and analyzed through an evolutionary

game model. Then to model the computing service providing

and requirement between the CCP and ECPs, a Stackelberg

differential game will be designed to optimize the pricing and

sharing strategies for the limited computational power. Such

hierarchical dynamic game framework is shown in Fig. 2.

1) Evolutionary Game in User Level: According to access

price pc / pn released by the CCP or different ECPs, as

well as the received computational power, each user makes

its computing service selection among these CPs to improve

its utility. For user devices, the access prices are fixed and stay

the same over time. On the other hand, one can notice that the

received computational power for users is time varying, which

depends not only on the number of user devices accessing the

same CP currently, but also the dynamic computing resource

sharing of CCP among different CPs. Therefore, without

complete information, users can hardly make the optimized

service selection globally, i.e., among all CPs and over all

time duration. As a response, each user device will learn and

adapt its selection strategy gradually. To model this learning

and adaptation process, an evolutionary game can be designed

to describe and analyze the dynamic user behavior. Through

replicator dynamics, all user devices in the ECC system will

reach the same individual utility at the equilibrium [37], [38].

2) Stackelberg Differential Game in Resource Level: To

respond to users’ computational task requests on demand,

computational power limited ECPs need to buy more com-

puting resource from the CCP. In addition, to compensate

the potential loss of accessing users and cost resulting from

resource sharing, the CCP will charge corresponding ECP with

time-varying unit price p (t) for the provided computational

power. Such pricing strategy is dynamic according to the
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dynamic computational power sharing/requests and number of

accessing user devices at the CCP. Accordingly, given unit

price p (t), ECPs control their resource requests dynamically

to maximize their own utilities. To analyze such dynamic com-

puting resource pricing of CCP and dynamic resource requests

of ECPs, this work establishes a non-cooperate Stackelberg

differential game, in the two levels of which, all CPs optimize

their own strategies to receive maximized utilities. In this

Stackelberg game, the CCP performs as the leader and ECPs

are followers. These players in the computing resource level

makes their own optimal decisions dynamically according to

the time-varying service selection decisions of user devices.

IV. EVOLUTIONARY GAME FOR SERVICE SELECTION OF

USER DEVICES

In the ECC system, online users with heavy computational

tasks will compete for the limited computing resource by

selecting and accessing different CPs. Initially, every user

selects a candidate CP randomly or by experience. Then to

achieve a better service quality, i.e., large computational power

and/or low access price, these users will adapt their selection

decisions periodically based on the dynamic received compu-

tational power, access price, and the population distribution of

all users among different CPs. During this adaptation process,

users cannot optimize their selection strategies globally, result-

ing from the asymmetry of information. Therefore, to improve

their utilities, users will learn by imitating those selection

strategies with high utilities gradually.

Evolutionary game can be expected as a suitable tool for

modeling such learning and imitating process. Thus this sec-

tion will first formulate the evolutionary game framework and

evolutionary strategy adaptation for user selection dynamics.

Then the evolutionary equilibrium and evolutionary stable state

(ESS) will be investigated for the established model.

A. Evolutionary Game based Service Selection

We first formulate the computing service selection of users

among different CPs as an evolutionary game model.

1) Players: The set of K user devices in the service area

are the players of the evolutionary game.

2) Strategy: S = {1, 2, · · · , n, · · · , N, c}, where n ∈ N
indicates selecting ECP n for computing service, and s = c
means selecting the CCP directly.

3) Population States: The population shares of all ECPs

constitute the population distribution state denoted by vector

x = [x1, x2, · · · , xN , xc]
T ∈ X, where X represents the state

space which contains all possible population distributions.

4) Utility: Given computing resource allocation state r =
[r1, r2, · · · , rN ]

T
and population distribution state x =

[x1, x2, · · · , xN , xc]
T

, the utility function of user device se-

lecting ECP n and the CCP are defined by

πn (n,x, r) =
βωn (x, r)

pn
=

β (Rn +Rcrn (t))

Kpnxn (t)
, (2a)

πc (c,x, r) =
βωc (x, r)

pc
=

βRc

(

1−
∑N

n=1 rn (t)
)

Kpcxc (t)
, (2b)

respectively, β > 0 is a constant denoting the mapping factor.

5) Replicator Dynamic: The replicator dynamic reflects

the evolutionary behavior of the population among different

strategies, i.e., selecting different CPs over time. In this work,

we introduce the definition in [37], [39], [40], and then give

the replicator dynamic as follows,

ẋn(t)=δxn(t)[π(n,x(t) , r(t))−π(x (t) ,x(t) , r(t))] ,

n ∈ N ;
(3a)

ẋc(t)=δxc(t)[π(c,x(t) , r(t))−π(x(t) ,x(t) , r(t))] , (3b)

with initial population distribution state x (0) = x0 ∈ X (∀n ∈
S), where constant δ > 0 is the learning rate of the population

which controls the frequency of strategy adaptation for service

selection. Moreover, in (3),

π (x (t) ,x (t) , r (t)) =
∑N

n=1
xn (t)π (n,x (t) , r (t))

+ xc (t)π (c,x (t) , r (t))
(4)

is the expected utility of the population given population

distribution state x (t) and computing resource allocation state

r (t). Based on the definitions above, we have

ẋn (t) =
δβ

K

[

Rn +Rcrn (t)

pn

−xn(t)





N
∑

m=1

Rm+Rcrm(t)

pm
+
Rc

(

1−
∑N

m=1rm(t)
)

pc







,

(5a)

ẋc (t) =
δβ

K

[(

Rc

pc
−

N
∑

m=1

Rcrm (t)

pc

)

−xc(t)





N
∑

m=1

Rm+Rcrm(t)

pm
+
Rc

(

1−
∑N

m=1rm(t)
)

pc







.

(5b)

According to this replicator dynamics defined above, the

number of user devices selecting ECP n will increase when

π (n,x (t) , r (t)) > π (x (t) ,x (t) , r (t)), and vice versa.

B. Existence and Uniqueness of Equilibrium

According to the population replicator dynamic formulated

in (3) - (5) and the established hierarchical game framework,

there exists interactions between decisions of computing ser-

vice selection made by users and computing resource pric-

ing/allocation controls of CPs. In other words, the evolution

of population distribution state defined in (3) is controlled

by the pricing strategy of the CCP and resource requests of

ECPs. Next, Theorem 1 presents that under these controls,

there exists the unique population distribution state x (t) that

constitutes the solution of (5).

Theorem 1. Consider a dynamic service selection system with

a fixed population. For the evolutionary behavior of users

among different strategies defined as (3) with initial condition

x (0) = x0, if resource allocation vector r (t) is a vector of

measurable functions on [0,∞), then there exists the unique

population distribution state x (t) constitute the solution of (5)

for all t ∈ [0,∞).
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Proof. Given population distribution state x (t) and computing

resource allocation state r (t), let fn (x (t) , r (t)) be the right

side of (3), i.e.,

fn (x (t) , r (t))

,δxn (t) [π (n,x (t) , r (t))− π (x (t) ,x (t) , r (t))] .
(6)

Given a fixed t, the partial derivative of fn (x (t) , r (t)) with

respect to x (t) is continuous. In addition, if r (t) is measurable

on [0,∞), then fn (x (t) , r (t)) is also measurable for fixed

xn (t) on the same interval. Furthermore, when given any

closed bounded set ∆ ∈ X and closed interval [a, b] ∈ [0,∞),
there always exists a positive I to construct an integrable

function [37], [41], [42] by

In (t) =

∣

∣

∣

∣

δβ (Rn +Rcrn (t))

Kpn

∣

∣

∣

∣

+ I |Θ| , (7)

where

Θ=
δβ

K





N
∑

n=1

Rn+Rcrn (t)

pn
+
Rc

(

1−
∑N

n=1 rn (t)
)

pc



 . (8)

Obviously, it holds that |fn (x (t) , r (t))| ≤ In (t) and

|∂fn (x (t) , r (t))/∂xn (t) | ≤ In (t), for all (x, t) ∈ ∆×[a, b].
Therefore, we have |fn (x∗ (t) , r (t))− fn (x (t) , r (t))| =
Θ |x∗ (t)− x (t)|. Denote Θm = max {Θ}, then we can

further derive that

|fn(x
∗ (t) , r (t))−fn(x (t) , r (t))|≤Θm |x∗ (t)−x (t)| , (9)

which implies that fn (x (t) , r (t)) satisfies the global Lip-

schitz condition. According to the analysis above, we can

conclude that the solution to this dynamical population evolu-

tionary system under controls of the CCP and ECPs is unique

and exists globally [37], [43], [44], [45]. This completes the

proof of Theorem 1.

C. Analysis of Evolutionary Stable State (ESS)

Consider a situation where a small proportion of user

devices switching to a different mixed strategy y 6= x.

Then these user devices can be regarded as mutants of the

population. Denote the size of these mutants by a normalized

value ε ∈ (0, 1). Then the population state after mutation can

be given by (1− ε)x + εy [37]. According to definitions

above, we first give the definition of Evolutionary Stable

Strategy (ESS) in Definition 1.

Definition 1. (Evolutionary Stable Strategy) A strategy x∗ is

an ESS, if ∀x 6= x∗, there exist some εx ∈ (0, 1) 4 such that

∀ε ∈ (0, εx), the following inequality holds.

π (x∗, (1− ε)x∗ + εx, r) > π (x, (1− ε)x∗ + εx, r) , (10)

where π(x∗, (1−ε)x∗+εx, r) and π (x, (1−ε)x∗+εx, r) are

the expected utilities of non-mutants and mutants, respectively.

Considering that the ESS is the best response to the evolu-

tionary system, then an ESS is also a Nash Equilibrium (NE).

4εx represents the maximum proportion of users selecting mutant strategies
that can be resisted by the ESS. A large εx indicates that the ESS is robust.

In addition, the evolutionary stability of ESS provides a string

refinement of the NE. Moreover, in the NE, a single user

cannot benefit through deviating from the equilibrium strategy.

On the contrary, the ESS can avoid the deviation behavior of

a set of players. Next, we summarize that the evolutionary

service selection of users presents the globally asymptotical

stability converging to the ESS in Theorem 2.

Theorem 2. Consider a dynamic computing resource selection

system with a fixed population. For the evolutionary behavior

of the population among different strategies defined as (3) with

any initial condition x (0) = x0 (xn, xc ∈ (0, 1), ∀n ∈ S),

the replicator dynamics for resource selection is globally

asymptotically stable and converges to the ESS of game.

Proof. Considering x = [x1, x2, · · · , xN , xc]
T

and the repli-

cator dynamic derived in (5), we have ẋ = Πx+ πo, where

Π is a matrix with dimensional (N + 1)× (N + 1), and

πo =

[

δβ (R1 +Rcr1 (t))

Kp1
, · · · ,

δβ (RN +RcrN (t))

KpN
,

δβRc

(

1−
∑N

m=1 rm (t)
)

Kpc





T

.

(11)

Therefore, the characteristic function of (5) can be derived

as det (γI−Π) = (γ +Θ)
N+1

= 0, where I is the identity

matrix and Θ is determined by (8). In addition, (8) implies that

Θ > 0 for all resource allocation states r (t). Consequently, Π

always has N+1 negative eigenvalues, which means that the

replicator dynamics for service selection is globally asymptot-

ically stable and converges to the ESS of evolutionary game.

This completes the proof of Theorem 2.

V. STACKELBERG DIFFERENTIAL GAME BASED DYNAMIC

COMPUTATIONAL POWER PRICING AND ALLOCATION

The CCP and ECPs need to make the optimal decisions on

computational power pricing and the amount of computational

power requests, respectively, considering the dynamic service

selection of user devices x (t). For the CCP, decreasing price

p (t) might incentivize ECPs to request and buy more remote

computing resource, which will increase the sharing of CCP

resource. However, the user devices accessing the CCP might

then leave for other ECPs since that the amount of their re-

ceived computational power decreases. On the other hand, for

ECPs, increasing the amount of computational power requests

will improve the utilities obtained by user devices according to

(2), which will attract more users’ selection according to the

replicator dynamics as (3). Then further increasing number

of users assessing will reduce the utility obtained by each

user device. To analyze this dynamic and interactive decision

making problem and then facilitate the computing resource

trading between hierarchical CPs, we formulate a Stackelberg

differential game, in which the CCP and ECPs perform as

the leader and followers, respectively. To search the optimal

strategies, an open-loop Stackelberg equilibrium is analyzed

as the solution of the game.
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A. Formulation of Stackelberg Differential Game

As shown in Fig. 2, the single CCP and N ECPs perform as

the players of the Stackelberg game. Specifically, the CCP, as

the game leader, first announces its unit computing resource

price p (t), according to which ECPs, who are the followers

of the game, then make their responding decisions of resource

requests rn (t). In this work, we assume that both the CCP

and ECPs are rational so that they can make the best response

to the system states and strategies of other players, and follow

the strategies made by SDN controllers. In addition, in the

established Stackelberg differential game, the CCP and ECPs

are willing to optimize their integral utilities over the time

horizon [0, T ], but not the current utilities, by dynamically

controlling their pricing and request strategies, responsibility.

As the followers of Stackelberg game, ECPs can optimize

the amount of requesting computational power when observing

the unit price released by the CCP. However, the time-varying

strategies of all ECPs during the time horizon cannot be

observed by the CCP in the present moment. Therefore, this

work considers that the CCP is able to learn and predict the

expected best response of ECPs and then make its pricing

strategy dynamically. Next, we formulate the maximization

problems of integral utility for both the CCP and ECPs.

1) Maximization of Integral Utility for ECPs: Consider that

the utility of each ECP is composed of economic profits and

penalty of resource sharing performance. To be specific, by

setting accessing price pn (∀n ∈ N ), ECP n obtains the

revenue from users selecting to it, which is depends on the

number of subscribed users, i.e., Kpnxn (t). In addition, when

requesting the CCP for proportion of could computational

power rn (t), ECP n will be charged Rcp (t) rn (t) by the

CCP. Moreover, the costs resulting from the mismatch between

resource supply and demand are also taken account of by ECP

n when optimizing its resource request strategy rn (t), from

the performance aspect. This mismatch can be modeled as

the distance between the current computational power require-

ments from all subscribing user devices and the current total

computing resource can be provided after receiving the CCP’s

sharing resource. In the follower layer of Stackelberg game,

each ECP is trying to maximize its own profits while minimize

the costs resulting from the mismatch between resource supply

and demand. Consequently, the instantaneous utility of ECP

n can be given by

un(rn(t) ,x(t) , p(t))=η1pnNxn(t)−η2Rcp(t) rn(t)

−η3[Kϕxn(t)−(Rn+Rcrn(t))]
2,

(12)

where ϕ > 0 is defined as a nominal value of accessible com-

puting rate for all user devices, and η1, η2 and η3 are positive

weight factors. In addition, the third term in (12) reflects the

matching between the computing resource requirement and

available service capacity.

According to the instantaneous utility function (12), the ECP

utility depends not only on the received computational power

shared by the CCP, but also the population distribution of

user devices among different CPs. Therefore, given the pricing

strategy of the CCP, the integral utility maximization problem

for ECPs can be established as an optimal control problem

subject to the population state of evolutionary game operated

in the user-level, which is given by

max
rn(t)

U int
n (rn (t) ,x (t) , p (t))

=

∫ T

0

e−ρt [η1pnNxn (t)− η2Rcp (t) rn (t)

−η3[Kϕxn (t)− (Rn +Rcrn (t))]
2
]

dt;

(13a)

s.t. ẋn (t) =δxn (t) [π (n,x (t) , r (t))

−π (x (t) ,x (t) , r (t))] , ∀n ∈ N ,
(13b)

ẋc (t) =δxc (t) [π (n,x (t) , r (t))

−π (x (t) ,x (t) , r (t))] ,
(13c)

x (0) = x0, (13d)

rn (t) ∈ R, ∀n ∈ N . (13e)

In (13), ρ > 0 denotes the discount rate influencing the

discount value of future utilities.

2) Maximization of Integral Utility for CCP: Similarly, the

CCP optimizes its pricing strategy to maximize the profits paid

by the subscribed users and the ECPs receiving the CCP’s

computational power, while minimize the costs resulting from

the performance discrepancy. Then we have the instantaneous

utility of CCP as follows,

uc(p(t) , rc(t) , r(t)) =ξ1pcNxc(t)+ξ2Rc

N
∑

n=1

p(t) rn(t)

−ξ3

[

Kϕxc(t)−Rc

(

1−
N
∑

n=1

rn(t)

)]2

,

(14)

where ξ1, ξ2 and ξ3 are positive weight factors. Therefore,

the integral utility maximization problem for the CCP can be

also established as an optimal control problem subject to the

population state of evolutionary game operated in the user-

level, which can be formulated as

max
p(t)

U int
c (p (t) ,x (t) , r (t))

=

∫ T

0

e−ρt

[

ξ1pcNxc(t)+ξ2Rc

N
∑

n=1

p (t)rn(t)

−η3[Kϕxn (t)− (Rn +Rcrn (t))]
2
]

dt;

(15a)

s.t. ẋn (t) =δxn (t) [π (n,x (t) , r (t))

−π (x (t) ,x (t) , r (t))] , ∀n ∈ N ,
(15b)

ẋc (t) =δxc (t) [π (n,x (t) , r (t))

−π (x (t) ,x (t) , r (t))] ,
(15c)

x (0) = x0, (15d)

p (t) ∈ R. (15e)

B. Open-Loop Stackelberg Equilibrium Solutions

In this part, we will analyze the open-loop solutions to the

optimal computing resource pricing and requesting problems

established above in (15) and (13) for the CCP and ECPs,

respectively. For these optimization problems, if the CCP and

ECPs choose to commit their strategies from outset, their

information structure can be seen as an open-loop pattern,

and their strategies become functions of the initial state x0,
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r0 and time t, for both the CCP and ECPs. Considering the

Stackelberg differential game operation, it needs to search

the optimal solution for each ECP first for the given CCP’s

pricing strategy, and then the CCP can make the decision on

the computing price based on solutions of resource request

strategies. Next, we will first analyze the optimal resource

request problem for each ECP (follower) in a finite time

period [0, T ], and then the optimal pricing strategy for the

CCP (leader) will be obtained based on the ECPs’ strategies.

In a Stackelberg differential game, an open-loop Stackelberg

equilibrium is regarded as the optimal solution [46], [47]. So

we first introduce the definitions of optimal control strategies

for the CCP and ECPs.

Definition 2. (Optimal Control Strategy) For the CCP, pricing

strategy p∗ (t) is optimal if the following inequality holds for

all feasible control paths p (t) 6= p∗ (t).

U int
c (p∗ (t) ,x (t) , r (t)) ≥ U int

c (p (t) ,x (t) , r (t)) . (16)

Similarly, for ECP n (∀n ∈ N ), the proportion of computa-

tional power request r∗n (t) is optimal if inequality (17) holds

for all feasible control paths rn (t) 6= r∗n (t).

U int
n (r∗n (t) ,x (t) , p (t)) ≥ U int

n (rn (t) ,x (t) , p (t)) . (17)

Based on the definition of the optimal control strategy, we

give the definition of open-loop Stackelberg game equilibrium

in Definition 3.

Definition 3. (Open-loop Stackelberg Equilibrium) Strategy

profile Φ∗ (t) , {p∗ (t) , r∗ (t)} constitutes an open-loop

Stackelberg equilibrium if p∗ (t) and r∗ (t) are the optimal

control strategies for the CCP and ECPs, respectively, given

others’ strategies.

1) Open-loop Stackelberg Equilibrium of ECPs: In order

to get equilibrium solutions of the optimization problem for-

mulated in (13), we need to establish the Hamiltonian system

for each ECP. Then the open-loop equilibrium solutions of

optimization problem can be characterized as the Pontryagin’s

Maximum Principle, which is the necessary conditions to

find the candidate optimal strategies. First, we summarize the

Pontryagin’s Maximum Principle in Definition 4.

Definition 4. (Pontryagin’s Maximum Principle for

ECPs) A set of controls {r∗n (t)} constitutes an open-loop

equilibrium to the optimization problem formulated in (13),

and x∗

f (t) is the corresponding population distribution state

trajectory, if there exists a set of costate functions Λn (t) =
[

λn1 (t) λn2 (t) · · · λnm (t) · · · λnN (t) λnc (t)
]

5

5Considering that rc (t) = 1 −

∑N
n=1 rn (t), then element λnc (t) in

Λn (t) can be eliminated.

such that the following relations are satisfied.

r∗n(t)=argmax
rn(t)

{un(rn(t),x
∗(t), p(t))+Λn(t)ẋ

∗(t)},

(18a)

ẋ∗

n(t)=δx∗

n(t)[π (n,x∗(t) , r∗(t))−π (x∗(t) ,x∗(t) , r∗(t))] ,
(18b)

ẋ∗

c(t)=δx∗

c(t)[π (c,x∗(t) , r∗(t))−π (x∗(t) ,x∗(t) , r∗(t))] ,
(18c)

x∗ (0) = x∗

0, (18d)

Λ̇n (t) = ρΛn (t)

−
∂ [un (rn(t) ,x(t) , p (t))+Λn(t) ẋ(t)]

∂x∗(t)
.

(18e)

In this system, the equilibrium solutions for ECPs are the

solutions of the differential game. Therefore, these solutions

are also constitute the Stackelberg equilibrium for ECPs. Then

we first introduce the Hamiltonian system for each ECP as

follows. Based on the Pontryagin’s Maximum Principle, the

Hamiltonian system of ECP n can be given by

Hn (rn (t) , p (t) ,x (t) ,Λn (t) , t)

,un (rn (t) ,x (t) , p (t)) +Λn (t) ẋ (t) ,
(19)

where costate function Λn (t) is a function associate with

population state x (t), and is defined by (18e). In addition,

each element of costate function Λn (t), i.e., Λnm (t), is the

costate variable of ECP n associated with state xm. Based on

the Hamiltonian function defined in (19), the corresponding

maximized Hamiltonian function is defined as follows:

H∗

n (x (t) ,Λn (t) , t)

,max
rn(t)

{Hn(rn(t) , p (t) ,x(t) ,Λn(t) , t) |rn(t)∈R} . (20)

Lemma 1. The optimal computational power rate solutions

for ECP n (∀n ∈ N ) is

r∗n (t) = −
η2

2η3Rc
p (t)+

Kϕxn (t)−Rn

Rc

+
1

2η3Rc

δβ

K
Λnqn (x) ,

(21)

which also constitutes an open-loop Stackelberg equilibrium

for ECP n. In (21), qn (x) is an N -dimension vector which

is given by

qn (x) =
1

pn
in −

(

1

pn
−

1

pc

)

[

x1 x2 · · · xN

]T
, (22)

where N -dimension vector in is a standard basis, i.e., its n-th

element is 1 and other elements are 0.

Proof. According to the Pontryagin’s Maximum Principle for

ECPs, the optimal control strategy of optimization problem

(13) must also maximize the corresponding Hamiltonian func-

tion. Therefore, all candidates’ optimal strategies have to

satisfy the following necessary optimality conditions:

∂Hn (rn (t) , p (t) ,x (t) ,Λn (t) , t)

∂rn (t)
= 0. (23)

Then plug (2) into (23), and the optimal computing resource
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request can be deduced as

r
∗

n (t) = −
η2

2η3Rc

p (t)+
Kϕxn (t)−Rn

Rc

+
1

2η3Rc

δβ

K
Λnqn (x) .

(24)

Furthermore, according to (18e), we can calculate all ele-

ments of Λn (t), which can be given by

λ̇nm = λnm (ρ+Θ(r (t))) , m 6= n, (25a)

λ̇nn = λnn (ρ+Θ(r (t)))− η1pnK, (25b)

where Θ(r (t)) is defined in (8). This completes the proof of

Lemma 1.

According to the optimal solutions summarized in Lemma 1,

we can observe that the optimal computational power requests

and allocation for ECPs is an decreasing function of pricing

p (t) determined by the CCP.

2) Open-loop Stackelberg Equilibrium of CCP: Similarly,

we can obtain the open-loop equilibrium solutions of (15) for

the CCP based on the dynamic optimal control. In particular,

with the definition of optimal strategy for the CCP as (16) in

Definition 2, the open-loop equilibrium solutions for the CCP

can be characterized as the Pontryagin’s Maximum Principle

for CCP, as summarized in following Definition 5.

Definition 5. (Pontryagin’s Maximum Principle for
CCP) A set of controls {p∗ (t)} constitutes an open-
loop equilibrium to the optimization problem formulated
in (15), and x∗ (t) is the corresponding population dis-
tribution state trajectory, if there exist costate functions

M (t) =
[

µc1 (t) µc2 (t) · · · µcN (t)
]T

and Ψ (t) =
[

Ψ1 (t) Ψ2 (t) · · · ΨN (t)
]T

such that the following re-
lations are satisfied.

p
∗(t)=argmax

ρ(t)
{Hc (p (t),x(t), r(t) ,Λ(t) ,M(t),Ψ(t))} ,

(26a)

ẋ
∗

n(t)=δx
∗

n(t)[π(n,x
∗(t) , r∗(t))−π(x∗(t) ,x∗(t) , r∗(t))] ,

(26b)

ẋ
∗

c(t)=δx
∗

c(t)[π(c,x
∗(t) , r∗(t))−π(x∗(t) ,x∗(t) , r∗(t))] , (26c)

x
∗ (0) = x

∗

0, (26d)

Ṁ (t) = ρM (t)

−
∂Hc (p (t) ,x(t) , r(t) ,Λ(t) ,M(t) ,Ψ(t))

∂x∗ (t)
,

(26e)

Ψ̇n(t) = ρΨn(t)

−
∂Hc (p (t) ,x(t) , r(t) ,Λ(t) ,M(t) ,Ψ(t))

∂Λn (t)
,

(26f)

where the Hamiltonian function of the CCP is given by

Hc (p (t) ,x (t) , r (t) ,Λ (t) ,M (t) ,Ψ (t))

= ξ1pcKxc (t) + ξ2Rcp (t)
N
∑

n=1

rn (t)

− ξ3

[

Kϕxc (t)−Rc

(

1−
N
∑

n=1

rn (t)

)]2

+
N
∑

n=1

µcn (t) ẋn (t) +
N
∑

n=1

(

N
∑

m=1

θnm (t) λ̇nm (t)

)

,

(27)

Λ (t) =
[

Λ1 (t) Λ2 (t) · · · ΛN (t)
]T

determined by

(18e), M (t) =
[

µc1 (t) µc2 (t) · · · µcN (t)
]T

and

Ψ (t) =
[

Ψ1 (t) Ψ2 (t) · · · ΨN (t)
]T

, where Ψn (t) =
[

θn1 (t) θn2 (t) · · · θnm (t) · · · θnN (t)
]T

, are

costate functions for the CCP.

By solving optimization problem (26a) based on Hamilto-

nian function (27), we provide the optimal pricing strategy in

Lemma 2

Lemma 2. The optimal computational power pricing solutions

for the CCP is

p∗ (t) , fp (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (28)

where

fp (x (t) ,Λ (t) ,M (t) ,Λ (t) , t)

,
1

2NB (ξ2 + ξ3RcNB)

{

ξ2

N
∑

n=1

An

+ 2ξ3NB

[

Kϕ

(

1−
N
∑

n=1

xn

)

−Rc

(

1−
N
∑

n=1

An

)]

+
δβB

K

N
∑

n=1

µcn

[

−
1

pn
− xn

(

−
N
∑

n=1

1

pn
+

N

pc

)]

+
δβB

K

N
∑

n=1

N
∑

m=1

θnmλnm

(

−
N
∑

n=1

1

pn
+

N

pc

)}

.

(29)

This optimal pricing p∗ (t) also constitutes an open-loop

Stackelberg equilibrium for the CCP.

Proof. According to Lemma 1, optimal response r∗n (t) of ECP

n can be expressed as

r∗n (t) = An (x (t))−Bp (x) , (30)

where

An (x (t) ,Λn (t))

=
Kϕxn (t)−Rn

Rc
+

1

2η3Rc

δβ

K
Λn (t)qn (x) ,

(31a)

B =
η2

2η3Rc
. (31b)

As assumed previously, the CCP can learn and predict

the optimal response r∗n (t) of ECP n, ∀n ∈ N . Therefore,

plugging (30) into the Hamiltonian function of the CCP (27),

then the Hamiltonian function of the CCP become a concave

function with respect to p (t). Thus the optimal pricing strategy

p∗ (t) is unique for the CCP, which has to satisfy the following

necessary optimality conditions

∂Hc (p (t) ,x (t) , r∗ (t) ,Λ (t) ,M (t) ,Ψ (t) , t)

∂p (t)

,
∂Hc (p (t) ,x (t) ,Λ (t) ,M (t) ,Ψ (t) , t)

∂p (t)
= 0.

(32)

Taking the first derivative of Hc (t) with respect to p (t) and
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then we have
(

2Nξ2B + 2ξ3RcN
2B2

)

p∗ (t)

=ξ2

N
∑

n=1

An

+2ξ3NB

[

Kϕ

(

1−
N
∑

n=1

xn

)

−Rc

(

1−
N
∑

n=1

An

)]

+
δβB

K

N
∑

n=1

µcn

[

−
1

pn
− xn

(

−
N
∑

n=1

1

pn
+

N

pc

)]

+
δβB

K

N
∑

n=1

N
∑

m=1

θnmλnm

(

−
N
∑

n=1

1

pn
+

N

pc

)

.

(33)

Therefore, the optimal pricing strategy denoted by (28) and

(29) can be obtained.

Furthermore, according to (26e) and (26f), we can calculate

all elements of M (t) and Ψ (t), and then we obtain

µ̇cn = µcn (ρ+Θ(r (t)))− ξ1pcK, ∀n ∈ N , (34a)

θ̇nm = θnmΘ(r (t)) , ∀n,m ∈ N , (34b)

where Θ(r (t)) is defined through (8). This completes the

proof of Lemma 2.

3) Open-loop Stackelberg Equilibrium Solutions: Accord-

ing to the optimal resource pricing and allocation strategies

described in Lemma 1 and Lemma 2, p∗ (t) and r∗n (n)
(∀n ∈ N ) can be denoted by

p∗ (t) , fp (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (35a)

r∗n (t) , fr (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (35b)

r∗c (t) = 1−
∑N

n=1
r∗n (t). (35c)

Then substituting (35) into (2), (25), (34a) and (34b), and a

dynamic control system composed of population distribution

state x (t) and all costate variables Λn (t), M (t) and Ψ (t)
can be provided as follows.

x∗ (t) , fx (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (36a)

Λ∗

n (t) , fΛ,n (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (36b)

M∗ (t) , fM (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (36c)

Ψ∗ (t) , fΨ (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) . (36d)

The dynamic control system formulated above is a typical

two-point boundary value problem (TPBVP) [48], [49]. By

solving this problem, optimal controls x∗ (t), Λ∗

n (t), M
∗ (t)

and Ψ∗ (t) can be obtained. Based on the optimal solutions of

TPBVP, the open-loop Stackelberg game equilibrium Φ∗ (t) ,
{p∗ (t) , r∗ (t)} can be further derived.

VI. SIMULATION RESULTS

In this part, we will analyze the service selection behavior

based on the evolutionary game, and then use MATLAB2019b

to evaluate the performance of proposed computing resource

pricing and allocation mechanisms based on the Stackelberg

differential game. First of all, we introduce the scenario setup

of the simulations. In the following simulations, we assume

a typical ECC system, in which there are a single CCP and

multiple ECPs who can access the computing resource of the

CCP. These CPs provide edge and cloud computing services

to K = 100 user devices randomly distributed within the

coverage of an ECC system.

A. Evolution of Population Distribution

For the numerical analysis, we first consider the situation

of two ECPs, i.e., ECP 1 and ECP 2. The local available

computational power of the two ECPs are set as R1 = 2kH/s
and R2 = 1kH/s, and the fixed access prices of the two

ECPs are given by p1 = 0.3 and p2 = 0.2, respectively [37].

In addition, the initial population distribution state is set as

x0 = [x1 (t) , x2 (t) , xc (t)] = [0.3, 0.3, 0.4], and the initial

computing resource request state of ECPs is set as r0 =
[r1 (0) , r2 (0)] = [0, 0], which means that each ECP serves its

users with its own computing resource at the beginning of the

time horizon. Consider different sharable cloud computational

power of the CCP, i.e., Rc = 5kH/s indicating a service

quality with high-computational power and Rc = 2kH/s
indicating a service quality with low-computational power.

Then the CCP fixes its access price pc by selecting values in

{0.5 > max {p1, p2} , 0.2 = min {p1, p2}}, which can reflect

different cost performance of CCP for users. Moreover, set the

learning rate of users as δ = 1.

Then we first investigate the dynamics of population dis-

tribution state and the evolution process of service selection

from initial state x0, which is subject to the control of

resource pricing and allocation strategies. Considering that

the dynamic change of population distribution indicates the

service selection adaptation of users, we record the population

distribution state x (t) = [x1 (t) , x2 (t) , xc (t)] over time,

and the results of which are shown in Fig. 3. Results in

Fig. 3 validate that the proportion of users selecting every

CP converges to an equilibrium state at which there is no user

willing to change its service selection strategy.

Then we analyze the influence of cloud computing capacity

on user selection. As presented in Fig 3(a), when Rc =
5kH/s, the CCP setting a lower access price (pc = 0.2)

tends to attract more users to select its cloud resource directly,

meanwhile share less computing resource to ECPs, although it

possesses a larger computing capacity. On the contrary, when

setting a rather high access price (pc = 0.5), the CCP will

share all of its computing resource to ECPs and then drive

its subscribed users away to ECPs. In this case, the utility of

CCP mainly comes from its sharing resource to ECPs. Then

we analyze the resource selection evolution trajectory when

CCP is limited with computational power, i.e., Rc = 2kH/s,

which are shown in Fig 3(b). In this case, one can notice

that the proportion of users selecting the CCP at equilibrium

when pc = 0.2 is larger than that when pc = 0.5, which

reflects the fact that the lower price will attract more users.

Moreover, results in Fig 3(b) also imply that when the CCP

has limited computing resource, the optimal pricing strategy

for the CCP is reserving its resource to serve users directly

by setting relatively higher unit price p (t). These results can
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Fig. 3. Population distribution state evolution in the ECC system versus
different Rc and pc.

reveal the interaction and influence between the evolutionary

game in the user layer and the Stackelberg game in computing

resource layer, and validate the rational user behaviors and

market rules.

We also test the population distribution dynamic when there

are many ECPs in the ECC system. In particular, consider

there are N = 6 different ECPs selecting the value of their

computational power in {1, 2} (kH/s) and the value of access

price in {0.1, 0.2, 0.3}. For the CCP, set Rc = 10kH/s and

pc = 0.1. In addition, the initial population distribution is set

as x = [0.05, 0.1, 0.15, 0.05, 0.1, 0.15, 0.4]. Then we get the

evolution of population distribution, cloud resource allocation

and user utilities, as shown in Fig. 4. As shown in Fig. 4(a),

one can observe that the proportions of users selecting ECPs

with the same Rn and pn simultaneously converge to the

same equilibrium from different initial distributions. Moreover,

results in Fig. 4(a) also present that the proportion of users

selecting ECP 5 and ECP 6 are the highest among all ECPs,

which indicates that users are more willing to select the ECPs
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Fig. 4. Evolutions of population distribution, resource allocation and user
utilities versus different Rn and pn when the number of ECPs is N = 6.

with lower access price. Next, we investigate how the local

computing capacity and access price affect the cloud resource

allocation in the ECC system. As shown in Fig. 4(b), ECP

5 and ECP 6 request and receive the most cloud computing
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Fig. 5. The convergence time versus increasing learning rate δ and different
Stackelberg game equilibrium control schemes.

shares among the six ECPs, and ECP 1 and ECP 2 are

allocated the least. Combining the results in Fig. 4(a), results in

Fig. 4(b) indicate that ECPs with more population shares tend

to request and receive more computing resource form the CCP,

which can increase the utilities obtained by the users selecting

these ECPs, as formulated in (2), and meanwhile boost the

utilities of both the CCP and ECPs. Furthermore, results in

Fig. 4(c) validate that through the replicator dynamics, all

user devices will reach the same individual utility at the

equilibrium.

Fig. 5 illustrates the influence of user learning rate δ on

the convergence speed of evolutionary game and Stackelberg

differential game towards the equilibrium. As defined in (3),

learning rate δ controls the frequency of strategy adaption of

all users, which will further control the speed of convergence

from initial states towards equilibrium. Results shown in Fig. 5

validate that the convergence speed of replicator dynamics

grows with the learning rate increasing. In this part of simula-

tion, we also introduce a classic static Stackelberg equilibrium

control (SSEC) proposed in [50] and [51] to optimize the

resource pricing and allocation strategies. In SSEC, the CCP

and ECPs make their decisions only based on the users’

selection strategies, but without the considering of dynamic

pricing and allocation strategies among CPs. Then results in

Fig. 5 indicate that the open-loop Stackelberg equilibrium

control (OLSEC) applied in this work can receive a faster

convergence speed than SSEC, resulting from the dynamic

learning and prediction of all CPs’ strategies.

B. Dynamic Pricing and Allocation of Computing Resource

To validate the performance of proposed Stackelberg differ-

ential game based resource pricing and allocation strategies,

and investigate the impact of Rc and pc on these strategies

made in the computing resource level, we still consider the

situation where there are two ECPs in the ECC system. Set

R1 = 2kH/s, R2 = 1kH/s, p1 = 0.3 and p2 = 0.2,

which are the same as the simulation in Section VI-A. Let
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Fig. 6. Dynamic computing resource pricing and allocation in the ECC system
versus different Rc and pc.

Rc select values in {5, 6, 7} (kH/s) and pc choose values in

{0.5 > max {p1, p2} , 0.2 = min {p1, p2}}.

By applying the evolutionary game based service selection

and the Stackelberg differential game based resource pricing

and allocation, we obtain the unit price of cloud computing

resource and the proportion of could computing resource

remaining to the CCP, which are shown in Fig. 6(a) and

Fig. 6(b), respectively. In Fig. 6(a), results illustrate that the

optimal price at equilibrium decreases with increasing total

computational power of CCP. Meanwhile, the proportion of

cloud computing resource remaining to the CCP at equilibrium

increases with growing Rc. In addition, results in Fig 6(a) also

indicate that with the same Rc, the optimal price at equilibrium

set by the CCP with lower access price pc is lower than that

with high pc. Combining the results in Fig. 6(b), this trend

implies that the utility of CCP with lower access price pc
can be optimized by remaining more cloud computing, which

will attract more users selecting the CCP, meanwhile setting a

high pc to reduce the ECPs’ willingness of purchasing cloud

computing resource. In addition, results in Fig. 6 can also
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Fig. 7. Proportions of users selecting the CCP under different population
delays τx and access price of CCP pc.

validate that the strategies of computing resource pricing and

allocation will converge to the Stackelberg equilibrium.

C. Influence of Delay in Replicator Dynamics

Next, we study that how the population distribution states

change with delay in replicator dynamics. As defined in (2),

the utilities of user devices obtained by selecting different

CPs are depends on the service selection strategies of all

users in the evolutionary game. However, the information of

population distribution state is always delayed resulting from

the communication latency. Let τx ≥ 0 denote the delay of

population information. Then the delayed replicator dynamics

based on (3) can be given by

ẋn/c (t) =δxn/c (t− τx) [π (n/c,x (t− τx) , r (t))

−π (x (t) ,x (t− τx) , r (t))] ,
(37)

where n ∈ N . Considering that delayed replicator dynamics

(37) can be rewritten as ẋ (t) = Ax (t− τx) + b, then its

characteristic equation can be given by Θe−γτx + γ = 0,

where Θ has been defined in (8). Here we introduce the

necessary and sufficient condition for the stability of delayed

replicator dynamics proposed in [52], which can be given by

τx < π/2Θ. Therefore, the stable ESS can be guaranteed with

a small population delay. In this simulation, we set τx = 0.7
and τx = 1.7 to test different levels of population delay.

Other parameters are set as R1 = 2kH/s, R2 = 1kH/s,

Rc = 2, p1 = 0.3, p2 = 0.2 and pc = 0.2. By applying the

delayed replicator dynamics, the proportions of users selecting

the CCP are shown in Fig. 7. Results in Fig. 7 validate

that the population distribution state can still converge to the

equilibrium after dynamic fluctuation, when τx is small. On the

contrary, when τx is large, the equilibrium cannot be reached.

VII. CONCLUSION

In this paper, an SDN-based architecture has been estab-

lished for edge and cloud computing services in 5G wireless

HetNets, which can support efficient and on-demand com-

puting resource management to optimize resource utilization

and complete the time-varying computational tasks uploaded

by user devices. In addition, considering the incompleteness

of information, an evolutionary game based service selection

was designed for users, which can model users’ replicator

dynamics of service subscription when they request the CCP or

ECPs for computing resource. To complete these time-varying

computational tasks from users, a Stackelberg differential

game based cloud computing resource sharing mechanism was

proposed to facilitate the resource trading between the CCP

and different ECPs. Moreover, open-loop Stackelberg equilib-

rium solutions for the CCP (leader) and ECPs (followers),

i.e., the optimal resource pricing and allocation strategies,

were derived and obtained, which can promise the maximum

integral utilities of the leader and followers over the time

horizon, respectively. Simulation results have validated the

performance of the designed resource sharing mechanism, and

revealed the convergence and stable states of user selection,

resource pricing, and resource allocation in the ECC system.
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