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Abstract—Multipath TCP is an experimental transport proto-
col with remarkable recent past and non-negligible future poten-
tial. It has been standardized recently, however the evaluation
studies focus only on a limited set of isolated use-cases and
a comprehensive analysis or a feasible path of Internet-wide
adoption is still missing. This is mostly because in the current
networking practice it is unusual to configure multiple paths
between the endpoints of a connection. Therefore, conducting and
precisely controlling multipath experiments over the real “inter-
net” is a challenging task for some experimenters and impossible
for others. In this paper, we invoke SDN technology to make
this control possible and exploit large-scale internet testbeds to
conduct end-to-end MPTCP experiments. More specifically, we
establish a special purpose control and measurement framework
on top of two distinct internet testbeds. First, using the OpenFlow
support of GÉANT, we build a testbed enabling measurements
with real traffic. Second, we design and establish a publicly
available large-scale multipath capable measurement framework
on top of PlanetLab Europe and show the challenges of such
a system. Furthermore, we present measurements results with
MPTCP in both testbeds to get insight into its behavior in such
not well explored environment.

Index Terms—GÉANT, PlanetLab, OpenFlow, Multipath TCP

I. INTRODUCTION

The success of the internet was closely coupled with the
evolution of TCP (Transmission Control Protocol) over the
past decades. Different versions and enhancements of the pro-
tocol have been proposed to emerging network environments
in order to ameliorate user experience from several aspects.
Some TCP variants can achieve better end-to-end throughput,
others mitigate fairness problems, while other approaches
improve responsiveness to varying network conditions. A
particularly interesting and promising candidate is Multipath
TCP, which has been recently standardized by the IETF
(RFC 6182 [1]). Multipath TCP enables the simultaneous use
of several network interfaces of a single host presenting a
regular TCP interface to applications, while in fact spreading
data across several subflows and controlling sending rates of
subflows in a coupled manner. By means of these subflows
traversing different paths at the same time, better resource
utilization, enhanced throughput and smoother reaction to
failures can be achieved.

In spite of its great future potential, MPTCP is well in-
vestigated only for limited use-cases [2], [3]. But a com-

prehensive evaluation and measurements on today’s internet
infrastructure with fixed lines and single-homed users are not
available. Why? The reason is quite clear: ISPs do not provide
multiple connection services to end users1. The currently used
networking paradigm and practice is settled to provide single
path service between the endpoints of a TCP connection.
Among such circumstances, it is hard to obtain multiple paths
in an inter-domain setting, which is clearly an obstacle to
experimenting with and adopting the technology.

In this paper, we invoke the concept of SDN to eliminate this
obstacle and establish a control and measurement framework
where multiple paths can be configured dynamically, and
MPTCP experiments can be orchestrated in a flexible way to
evaluate the protocol. As a platform, we can benefit from the
abundance of free-access real internet testbeds, such as GENI,
Internet2, OFELIA, GÉANT, PlanetLab, PlanetLab Europe,
which have been established with different purposes, features
and services. A key component which we require here is
OpenFlow support. PlanetLab Europe and GÉANT have been
recently extended by this new feature, so we have the chance
to work as early birds with these experimental tools. Thus,
we build our test framework on top of GÉANT and PlanetLab
Europe, respectively, in order to catalyze both the evaluation
and, as we hope, the diffusion of multipath TCP. Our publicly
available test tool [4] can be used either by experimenters and
researchers to test and verify their multipath-related ideas (e.g.,
enhancing congestion control, fairness or multipath routing)
and also by early adopters to enhance their internet connection
even if they are single-homed.

The rest of the paper is organized as follows. In Section II,
the related works on multipath transport mechanisms and eval-
uation of the protocols are summarized briefly. Section III is
dedicated to present our control and measurement frameworks,
and Section IV highlights our main measurements results.
Finally, Section V concludes the paper.

II. RELATED WORK

There were significant efforts on designing and evaluating
different multipath transport protocols during the last decade

1An ISP might use load-balancers, however (i) the experimenter does not
have control over the data paths, (ii) the transport on disjoint links usually
occurs in that ISP’s domain only.
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[5], [6], [7], [8], [9], however none of them has reached the
standardization phase. In contrast to these proposals, Multipath
TCP (MPTCP) has already been standardized, and it got into
the focus of the research community becoming a de-facto
reference work by an available Linux kernel implementation
of the protocol [10].

MPTCP in its current form, however, is not without short-
comings. It is based on TCP Reno [11], which is unable to
efficiently utilize available bandwidth when the connection’s
bandwidth-delay product (BDP) is large. Therefore, MPCubic
[12] transplants the multipath part of MPTCP from Reno to
Cubic to get rid of the traditional conservative congestion con-
trol. Instead of the lost-based Reno, wVegas [13] uses packet
queuing as congestion signals, and achieves finer grained load-
balancing among the multiple paths. Lossy wireless links and
sudden changes in path characteristics have negative effects on
MPTCP’s performance as well. A novel congestion window
adaptation algorithm [14] has been proposed to reduce the
large number of out-of-order packets caused by wireless links.
Fountain code-based Multipath TCP [15] mitigates the nega-
tive impact of the heterogeneity of different paths by specially
encoding the data and distributing it among multiple paths.
Unfortunately, all the above improvements over MPTCP have
been examined analytically or by simulations only. Nonethe-
less, there is an exception. The opportunistic linked increases
algorithm (OLIA) [16] providing better responsiveness has
been studied in a very simple testbed. As a consequence, the
OLIA implementation is now part of the official Linux MPTCP
distribution, which shows an important side-effect of choosing
measurement based evaluation over simulations.

In addition to the OLIA paper, there are only a few
works available that evaluate MPTCP by measurements. Im-
plementers of MPTCP showed its behaviour in a data center
setting, where multiple edge disjoint paths between server
nodes were provided by careful topology design [2]. They
addressed challenging issues of the mobile user-case design,
and measured overall throughput gain [10]. The benefits of
the transport mechanism over parallel 3G and WiFi accesses
are clearly shown in several additional studies [3], [17], [18].
Moreover, it has been demonstrated recently that MPTCP
can achieve ultra high throughput under special circumstances
[19].

TCP versions can be compared based on many performance
metrics [20]; but only a portion of those can be evaluated in nu-
merous simulated and emulated environments2. For instance,
link bandwidths can be easily managed by a flexible tool called
dummynet. Mininet emulates a whole virtual network with real
kernel, switch and application codes running on a single ma-
chine. Emulab allows to specify an arbitrary network topology
by means of PC nodes deployed in a facility. However, these
tools are unsuitable for internet-scale MPTCP experiments.
These experiments are necessary, e.g., to determine the most
appropriate retransmission strategy [1]. On the other hand,
the OpenFlow protocol, or more generally Software Defined

2info.iet.unipi.it/~luigi/dummynet, mininet.org, www.emulab.net

Networking (SDN) enables programmatically creating com-
plex topologies and dynamically configuring their nodes. By
now, several OpenFlow capable real internet testbeds with
free access are in operation. These systems including GENI,
Internet2, OFELIA, GÉANT, PlanetLab, PlanetLab Europe3,
can be a basis of a common measurement platform.

III. CONTROL AND MEASUREMENT FRAMEWORK

This section is devoted to summarize our SDN based control
and measurement framework designed and established on top
of GÉANT and PlanetLab Europe, respectively.

A. On top of GÉANT OpenFlow facility

GÉANT is the pan-European research and education net-
work interconnecting Europe’s National Research and Ed-
ucation Networks. The OpenFlow facility of this backbone
network is launched recently and gives great opportunity for
researchers as provides geographically distributed sites con-
nected by high speed, point-to-point optical links. Currently,
OpenFlow testbed consists of five nodes connected in full-
mesh (see Fig. 1). The OpenFlow switches are implemented
by Open vSwitches4 running on Debian Linux machines.
Connections between virtual ports of Open vSwitches are
realized by Layer2 MPLS tunnels. The host components of the
testbed run as virtual machines on top of dedicated hypervisors
applying XEN paravirtualization technique and connect to
nodes via virtual links. In order to share the facility among
experimenters, a FlowVisor based slicing mechanism is also
applied5.

The architecture of the GÉANT OpenFlow facility provides
precise and flexible control of networking components (e.g.,
provisioning disjoint paths) via dedicated APIs, while lower
layer physical links between geographically distributed hosts
enable real-life scenarios. Moreover, this facility makes pos-
sible to investigate a novel approach to network resiliency
based on multipath transport. Currently, each networking layer
redundantly implements its own recovery mechanism resulting
in more expensive networking equipment and higher opera-
tional costs. The question naturally comes up. Can we get
rid of all these mechanisms below the transport layer and
use multipath transport protocol, e.g., MPTCP, to provide
the required resiliency? Our framework makes it possible to
address this question.

Testbed objective: Our main goal is therefore to implement
a control framework for network resiliency measurements,
which runs on a shared OpenFlow facility (GÉANT) used
by several experimenters and also supports creating edge
disjoint transport paths, the emulation of different recovery
mechanisms, and the use of various transport protocols.

Framework: Our extensible control framework provides
automated orchestration for measuring the characteristics of

3www.geni.net, www.internet2.edu, www.fp7-ofelia.eu, www.geant.net,
svn.planet-lab.org/wiki/Openflow, www.planet-lab.eu/openflow

4http://openvswitch.org
5The presence of FlowVisor poses challenges on designing a general

purpose framework (discussed later).
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Fig. 1. Control and measurement framework on GÉANT OpenFlow testbed

different transport protocols under several error models and
recovery strategies. It is able to emulate pre-scheduled link
down events at different time scales (from 50ms to several
seconds). The components of our framework are shown in
Fig. 1. On the one hand, OpenFlow switches are connected
by physical, point-to-point optical links and controlled by our
dedicated POX-based6 controller via an out-of-band control
channel. On the other hand, we use a separated management
channel in order to orchestrate the measurements, which
includes the configuration of controller and end-hosts, start-
ing logging functions, collecting measured parameters and
providing results in a user-friendly way. The orchestrator
of the measurements can connect to the network from the
public internet. The framework is capable of running mea-
surements with configurable traffic mixes between different
source-destination pairs and pre-configured background traffic.
Several parameters of TCPs can also be tuned (buffer sizes,
initial behavior, etc.) and during an experiment, individual
and overall throughput performances can be shown on-the-
fly. Furthermore, the extended POXDesk component visual-
izes network topology with current link loads, plots per-flow
throughput performance and provides network configuration
options.

Challenges: GÉANT separates concurrent testbed users
with FlowVisor; as a side effect, FlowVisor filters out port
configuration commands. Hence, we need to emulate link
outages by temporarily installing high priority drop rules
into the flow tables of the corresponding switches. Moreover,
the minimal hard timeout of flow entries is one second,
therefore the controller needs to send flow remove messages
after the flow install messages with precise timing. However,
intersending time at the controller differs from the interarrival
time at the switch. Our controller sends barrier messages

6http://www.noxrepo.org/pox/about-pox

to ease the estimation of the actual length of the emulated
outage [21], which makes it possible to determine the accuracy
of the measurement.

The following restoration scenarios are considered and
integrated with our framework, and their impact on the end-to-
end performance can be evaluated. At the optical layer, 50ms
failure restoration is the well-accepted time limit while the
network has to respond to any optical failure and restore the
disrupted connection before any upper layer protocol would
detect and react to these failures. TCP segments which are
lost during this outage are retransmitted after the service is
restored, however this can lead to temporary performance
degradation. As we cannot access the optical devices from
OpenFlow we emulate this behavior with priority drop rules.
The IP recovery component makes it possible to measure the
effects of an OpenFlow-based IP error recovery mechanism
on the performance of transport protocols. The mechanism
contains three steps: (i) detecting the failure at the OpenFlow
switch, (ii) setting up a new route flow entry from the con-
troller (or using another pre-installed one) and (iii) forwarding
the packets using the new flow entry. The reaction time of the
mechanism is inline with the range of the available MPLS/IP
fast re-route and routing re-convergence times.

B. On top of PlanetLab Europe

To take the next step toward real scale scenarios, PlanetLab
Europe (PLE) is a reasonable choice. It has more than 300

nodes at more than 150 sites, and supports the development
and testing of novel network mechanisms and applications
through its additional services, such as the experimental
OpenFlow support7. However, arranging slices, installing,
configuring and integrating the currently available software
components (e.g., MPTCP implementation, network settings,
routing configuration) are not evident even for a qualified
researcher. Furthermore, PLE gives a dedicated large-scale
network, which could be used by end-users to get additional
paths beside their regular internet paths. This raises the idea of
an interesting experimental service for enhancing connections
of simple end-users.

Testbed objective: Our main goal is to build a multipath
playground on top of PLE both for experimenters and educated
end-users. Our experimental framework is to enable experi-
menters to easily set up multipath capable overlay networks
on PLE nodes with conveniently configurable routing, e.g.,
by managing simple configuration files. Additionally, a novel
PLE service for early adopter users is also addressed, which
can improve their internet connection in terms of throughput
and resiliency.

Architecture: Our architecture shown in Fig. 2 follows an
SDN-based approach at different levels. The control logic of
the system is implemented in the POX controller platform
as modules dedicated to distinct tasks. The data plane is
actually an overlay network over PLE nodes consisting of (i)

7By this time, PlanetLab Central also supports OpenFlow but in a lower
level than PLE and they are not compatible with each other.
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Fig. 2. PLE Architecture

sliver-ovs instances8 controlled by our special purpose
OpenFlow controller, and (ii) end hosts, which can be run
on PLE sites as qemu virtual machines or can be external
machines outside from the PlanetLab domain9. Data path
elements are connected by UDP tunnels configured by the
control framework according to given topology information.
For all kinds of control traffic (OpenFlow, JSON-RPC, XML-
RPC, SSH, rsync), we have a dedicated out-of-band channel.

The main steps of experimenting with a typical scenario
are also given in Fig. 2. As an initial step, the experimenter
should create a PLE slice10 comprising the intended nodes
via the PlanetLab Central API (PLC-API) or the manage-
ment GUI. After starting our control framework, the main
module exchanges information on the current slice via PLC-
API. These steps (1, 2) are indicated by numbers beside
the lines corresponding to control messages. In case of two-
way communication (arrows at both line ends), the number
is placed closer to the originator of the message. Based
on current information, properly operating PLE sites can be
chosen. At step 3, sliver-ovs instances are started on the
nodes and connected by dynamically configured UDP tunnels.
The topology information can be read from configuration
file or the topology can be constructed automatically. After
setting up switches, a host can initiate a connection to the
overlay network. In our example, an external host requests
information on the overlay network (step 4) from the host

8OpenFlow support in PLE (sliver-ovs) is built around a modified version
of the Open vSwitch software switch.

9Instead of OpenFlow, one could use NEPI[22] to customize routing on
overlays. We think that an OpenFlow-based approach gives a more universal
framework.

10Or she/he can use a pre-configured one, e.g., our slice.

controller module via JSON-RPC channel. Host controller
can provide a list of currently available overlay nodes after
an internal communication with the main module (step 5-7).
Then the host runs RTT measurements on the obtained list of
PLE nodes in order to choose the closest (or n closest) one.
Based on the result, host sends a connection request to host
controller and a similar communication pattern is realized than
it is shown by step 4-7. At the end, host controller sends back
the connection parameters, which can be used by tunproxy
module to establish the UDP tunnel with the given nodes. As a
last step (8), the routing module pushes flow entries into switch
flow tables via OpenFlow messages according to the selected
routing policy and establishes, for example the disjoint paths.

Our architecture also supports running internal hosts on PLE
sites as qemu virtual machines. In this case, connecting to the
overlay is managed by similar methods. Deploying own virtual
machines enables experimenting with customized versions of
MPTCP in a convenient way. Moreover, we provide pre-
configured images, which can be deployed automatically by
rsync. Beside the main components presented above, we
have several additional building blocks. For example, on
top of POXDesk, we have implemented different topology
and link information viewer services, and a special module
for presenting throughput of running flows on-the-fly. The
communication between our POX and POXDesk components
is based on Ajax. Other useful functions, such as ARP and
DNS responders, can make the experimenter’s life much easier.

IV. EXPERIMENTS AND RESULTS

In this section, we present the results of the measurements
we carried over our testbeds. Our results reinforce some
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Fig. 3. Comparing TCP and MPTCP performance in single-flow scenarios with link failure from 10s to 20s
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Fig. 4. Comparing TCP and MPTCP behavior in case of 100ms link failure at 10s

already known facts about MPTCP, but unforeseen and counter
intuitive features are also discovered.

During the experiments, we use the default TCP version of
current Linux kernel, namely TCP Cubic, and the “coupled”
congestion control for multipath scenarios which is the default
setting of MPTCP. TCP traffic and UDP background traffic are
both generated by iperf.

A. Resilience measurements with simple traffic patterns

Since almost nothing is known about the behavior of the
protocol in the presence of link failures we start with our re-
siliency measurements. First, we show the results of scenarios
having a single flow between a single source-destination pair.
This is a simple setup but brings us closer to understand the
fundamental behavior of the protocol in a tractable fashion. In
Fig. 3, the throughput performance of single TCP and MPTCP
are compared in case of a link failure from 10s to 20s in the
GÉANT testbed. The two plots correspond to scenarios with
and without background traffic, respectively. In case of large
BDP (a), MPTCP is not responsive enough due to its con-
servative additive increase mechanism and shows longer flow
completion times. The poor performance and underutilization
of link capacity is rooted in the Reno-based congestion control
of MPTCP, while single flow TCP is controlled by the more

effective Cubic mechanisms. When lower bottleneck capacity
is available (b), MPTCP outperforms single TCP in the same
environment. (Exp#1 and Exp#2 are different experiments in
both cases.)

Similar experiments are presented in Fig. 4, where the BDP
is reduced by heavy UDP background traffic and a 100ms
link failure is emulated at 10s. Throughput plots (a) indicate
the much better performance of MPTCP with smaller flow
completion time, while the congestion windows (b) help to
explain the phenomenon around the link failure event. Here,
MPTCP is able to recover from losses with fast recovery
mechanism whereas single-flow TCP is forced back to slow
start phase.

In our second set of scenarios, an all-to-all communication
pattern is used, i.e., traffic is generated from all hosts to all
other hosts in the GÉANT testbed. The comparison of flow
completion times (FCT) measured in this case is depicted in
Fig. 5. 20 flows are transferred by single TCP and MPTCP in
two respective experiments. Corresponding flows (between the
same source and destination) are identified by the same num-
bers 11 (and colors). (a) Large BDP has significant impact on
MPTCP performance and FCT results show poor performance
in contrast to single TCP. (b) In case of heavy background

11Y values are slightly randomized to improve visibility.
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Fig. 5. Comparing flow completion times (FCT) in case of all-to-all communication
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traffic (125Mbps UDP, all-to-all), MPTCP shows much better
performance than regular single-path TCP.

B. Measurements with nodes having geographical diversity

Our second set of measurements incorporate massive geo-
graphical diversity. Through this experiment, we can have a
picture about how MPTCP behaves among real-life conditions
bridging distant users. In this scenario, we use our PlanetLab
testbed (also shown in Fig. 2). We have two end-hosts residing
outside of the PLE, one is located at the UK GÉANT site,
while the other is operated in our campus at BME. These hosts
are connected through the regular internet path, but addition-
ally, we configure them to have a second path through a vari-
able intermediate PLE node. Then, we examine the throughput
of MPTCP in comparison to regular TCP. Results are depicted
in Fig. 6, where the different PLE nodes on x axis are sorted
in ascending order regarding to their latency. One can easily
observe that the throughput of the single-path TCP using the
regular internet path provides an approximately constant 47

Mbps (TCP_regular). If the single-path TCP uses the PLE
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path (TCP_overlay), on average its throughput is still above
25 Mbps. This is an acceptable performance knowing that
traffic goes through a research network containing ordinary
PCs. MPTCP_regular and MPTCP_overlay results stand
for the cases when MPTCP is enabled and the primary path12

is the regular and the overlay path, respectively. Interestingly,
the performance can depend on the choice of the primary path.
Nevertheless, in both cases, the performance of MPTCP is
comparable and what is more, in several cases it outperforms
regular TCP.

In our second scenario, we set up different loss rates on
the primary path connecting our hosts. We conducted this
experiment on both testbeds. In case of the PlanetLab testbed,

12The primary path is the path where the connection setup happens.
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the primary path is the regular internet path connecting our
host machine at NTNU Trondheim and in our campus at BME.
Since the GÉANT testbed is fully meshed, the primary path
is the direct path between the GÉANT nodes. The measured
throughput is shown in Fig. 7 with respect to the loss rates. The
outcome is rather counter intuitive, as common sense would
expect that increasing loss rate implies lower throughput. Even
so, after the loss rate reaches 2− 5%, MPTCP starts to make
better use of the secondary path indicating an improvement
in the overall throughput. Putting it differently, one can have
better throughput by simulating traffic loss on its primary path.
On the table in Fig. 7 the properties of our paths are listed.
From the values measured in the GÉANT testbed, we can
see that this phenomenon appears either when the properties
of the paths are different (UK to DE) or similar (HR to
NL). Additionally, we observed that as the loss rate exceeds
50% on the primary path, then the connection is not even
established. Extreme loss rate is fatal for regular TCP as
well, but MPTCP could try to establish connection through
its secondary interface, which could be an easy enhancement
to the current codebase.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown how large-scale SDN based
testbeds can enable, speed up, and simplify the testing and
evaluating emerging networking technologies. More specifi-
cally, we created SDN-based frameworks for evaluating and
promoting the adoption of multipath TCP. The measurements
over these testbeds pointed out clearly that, albeit the current
MPTCP implementation can be used considerably well, it
has also some major issues. Our findings can be the first
steps of a comprehensive performance study on MPTCP. We
close our paper by highlighting these issues to catalyze future
improvements of the protocol.

• The throughput and resiliency of MPTCP highly depends
on the choice of the primary path.

• The connection is not established at all if the primary
path is down or heavily congested.

• In some cases, losses on the primary path results in much
higher overall throughput.

• Sudden changes in the quality of the paths are not handled
appropriately. In case of a link failure, the traffic from the
failed path is redirected very slowly to the other available
paths, which results in poor resiliency.

• The congestion control mechanism performs poorly in
case of paths having large BDP.
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