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The assignment of function to proteins at a large scale is essential for understanding the

molecular mechanism of life. However, only a very small percentage of the more than

179 million proteins in UniProtKB have Gene Ontology (GO) annotations supported by

experimental evidence. In this paper, we proposed an integrated deep-learning-based

classification model, named SDN2GO, to predict protein functions. SDN2GO applies

convolutional neural networks to learn and extract features from sequences, protein

domains, and known PPI networks, and then utilizes a weight classifier to integrate

these features and achieve accurate predictions of GO terms. We constructed the

training set and the independent test set according to the time-delayed principle of

the Critical Assessment of Function Annotation (CAFA) and compared it with two highly

competitive methods and the classic BLAST method on the independent test set. The

results show that our method outperforms others on each sub-ontology of GO. We

also investigated the performance of using protein domain information. We learned from

the Natural Language Processing (NLP) to process domain information and pre-trained

a deep learning sub-model to extract the comprehensive features of domains. The

experimental results demonstrate that the domain features we obtained are much

improved the performance of our model. Our deep learning models together with the

data pre-processing scripts are publicly available as an open source software at https://

github.com/Charrick/SDN2GO.

Keywords: protein function, word embedding, convolutional neural network, deep multi-label classification, deep

learning

1. INTRODUCTION

As an essential structural molecule, protein is a vital component of all biological tissues and cells
and is also the primary bearer of life activities (Weaver, 2011). Understanding protein function is
important both for biology and medicine and pharmacy. For example, clarifying the function of a
protein can provide a target for genetic manipulation, and provide a reliable basis for designing a
new protein or transform an existing protein, etc. So that, accurate annotation of protein functions
is a significant and crucial task. Traditional experimental methods require a lot of resources and
time to determine protein function, despite there are high accuracy and reliability. With the
continuous development of high-throughput sequencing technology and genomics, the sequence
of proteins has been exploded, but just a small percentage of the total known and predicted protein
sequences have been extensively annotated regarding their functions. Currently, only <0.1% of the
more than 179 million proteins in UniProtKB have been experimentally annotated (Consortium,
2019). However, it isn’t straightforward to scale up the experimental method to accommodate
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such a large amount of protein sequence data, which urgently
requires the development of computational methods to assist to
annotate protein functions (Radivojac et al., 2013).

Gene Ontology, launched in 1998, is widely used in the field
of Bioinformatics, and the original intention of GO was to
provide a representative platform for terminology description or
interpretation of words of genes and gene product characteristics.
It enables Bioinformatics researchers to summarize, process,
interpret, and share the data of genes and gene products
(Ashburner et al., 2000). Gene Ontology is a Directed Acyclic
Graph (DAG) type ontology. At present, GO contains more than
45,000 biological concepts include functions and cell locations,
and is divided into three categories, covering three aspects of
biology: Biological Process, Molecular Function, and Cellular
Component. A protein generally has multiple GO annotations;
therefore, protein function prediction is a very large-scale
multi-label classification problem (Zhang and Zhou, 2013), and
accurately assigning GO terms to proteins is a challenging task.

In recent years, some organizations and teams have developed
algorithms, tools, and systems for protein function prediction
using advanced computer technologies, such as machine learning
and deep neural networks (Kulmanov et al., 2018; You et al.,
2018, 2019; Hakala et al., 2019; Lv et al., 2019b; Piovesan and
Tosatto, 2019; Rifaioglu et al., 2019; Kulmanov and Hoehndorf,
2020). Researchers predict protein functions from one or more
of the followings: protein sequences (Kulmanov et al., 2018; You
et al., 2018, 2019; Hakala et al., 2019; Piovesan and Tosatto,
2019; Kulmanov and Hoehndorf, 2020), protein structures (Yang
et al., 2015; Zhang et al., 2018), protein protein interactions
(PPI) network (Kulmanov et al., 2018; Zhang et al., 2018;
You et al., 2019), and others (Kahanda and Ben-Hur, 2017;
Hakala et al., 2019; Piovesan and Tosatto, 2019; Rifaioglu et al.,
2019). For example specifically, GOLabeler (You et al., 2018)
integrated five different types of sequence-based information
and learned from the idea of web page ranking to train an
LTR (learning to rank) regression model to receive these five
types of information to achieve accurate annotation of GO
terms. As a result, this model got the best overall performance
among all submissions of the 3rd Critical Assessment of Function
Annotation (CAFA3). NetGO (You et al., 2019), proposed by
the GOLabeler team, is based on GOLabeler and incorporates
massive amounts of protein-protein interaction (PPI) network
information into the LTR framework. Compared with GOLabler,
it has achieved a significant improvement in protein function
prediction performance. Hakala et al. (2019) developed an
integrated system, which obtain features from several different
tools or methods: BLASTP, InterproScan, NCBI Taxonomy,
NucPred, NetAcet, PredGPI, and Amino Acid Index (Kawashima
and Kanehisa, 2000; Heddad et al., 2004; Kiemer et al., 2005;
Pierleoni et al., 2008; Camacho et al., 2009; Federhen, 2012; Jones
et al., 2014), and then respectively feed all the features to two
classifiers based on neural network and random forest and finally
combined the NN classifier and the RF classifier to achieve the
best prediction performance. DeepGO (Kulmanov et al., 2018)
encodes the amino acid sequence of the protein by trigrams and
maps the trigrams to vector by one-hot encoding and dense
embedding, and then feed it to a convolutional neural network

(CNN) to extract the feature map. Next, a combined feature
vector consisting of CNN features and PPI Network embedding
features entered into the hierarchically structured classification
layers for classification of GO terms. INGA2.0 (Piovesan and
Tosatto, 2019) uses four components, Homology which inferred
from sequence similarity, Domain architecture, protein-protein
interaction networks, and integrated information from the
“dark proteome” which include disordered and transmembrane
regions, to predict protein function. This method has better
capabilities to predict some extremely rare GO terms compared
with others. Overall, these highly competitive models and
systems have proven their outstanding performance in protein
function prediction and are continually being optimized.

The amino acid sequence is crucial for understanding and
analyzing proteins of various species. Some studies have shown
that sequence homology-based BLAST methods are highly
competitive in protein function prediction (Altshul, 1997; Gillis
and Pavlidis, 2013; Hamp et al., 2013). Besides, there are several
high-level physiological functions, such as apoptosis or rhythm
regulation, which are often the result of the interaction of
multiple proteins (Kulmanov et al., 2018), and according to the
so-called “guilt-by-association” principle, interacting proteins
should have some similar functions (Oliver, 2000; Schwikowski
et al., 2000). Those shows that protein sequence information
and PPI network information are essential to predict protein
function. We have also noticed the critical position of the protein
domain in protein-related features. The domain is a structural
motif that exists independently in different combinations, and
orders in the protein (Forslund and Sonnhammer, 2008) and is
a higher-level protein component than the amino acid sequence
(Richardson, 1981). Therefore, it makes sense to analyze and
examine the effect of Domain content on protein function and try
to use it to predict protein function. Besides, Machine Learning
(ML) is currently popular and efficient for bioinformatics
problems (You et al., 2018, 2019; Lai et al., 2019; Tan et al., 2019;
Wang et al., 2019a; Zhu et al., 2019; Dao et al., 2020), especially,
due to its strong ability to fit high-dimensional, sparse, and
highly collinear complex data, deep learning technology has been
widely used in bioinformatics fields, such as protein structure and
function (Sønderby and Winther, 2014; Spencer et al., 2014; Wei
et al., 2018; Kulmanov and Hoehndorf, 2020), gene expression
regulation (Chen et al., 2016; Lanchantin et al., 2016), protein
classification (Asgari and Mofrad, 2015; Sønderby et al., 2015),
and structure and functions of nucleic acid (Zhang et al., 2016;
Lv et al., 2019a; Wang et al., 2019a,b). For these considerations,
here we proposed an integrated deep learning model based on
protein sequences, protein domain content, and known protein-
protein interaction networks to predict protein function. We first
built three different neural network modules to learn features
from protein sequences, domain content, and PPI Net separately,
and then combined the features from these three different sources
and inputted them to the neural network classifier to predict the
probability of each GO term. The experimental results show that
ourmethod of adding domain content to predict protein function
is successful, and our model achieved better performance than
BLAST and two other recent high-performance methods on an
independent dataset constructed using time-delay rules.
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2. MATERIALS AND METHODS

2.1. Data Source
2.1.1. Training Data
• Sequence Data

For our experiments, we downloaded the sequence
information of the proteins needed for the research from the
UniProt database as FASTA-format files (http://www.uniprot.
org/downloads) (Consortium, 2015). Then a CD-hit tool was
used to de-redundant the downloaded protein sequence data.
We grouped proteins with a sequence similarity >60% into
one cluster, and only one protein per cluster was retained.
Finally, we obtained a benchmark for humans contains 13,704
proteins, and a benchmark for Yeast contains 6,623 proteins.

• Annotation Data
We downloaded GO annotation data for proteins from

GOA (http://www.ebi.ac.uk/GOA) (Barrell et al., 2009)
published in December 2013. Please note that the GO
annotation data here is for training only, and all data are
annotated in 2013 or earlier. Finally, the annotation data
contains 13,882 categories (9,221 in BP, 3,483 in MF, and 1,178
in CC) for Human and 4,796 categories (2,439 in BP, 1,733 in
MF, and 624 in CC) for Yeast.

• Protein-Protein interaction (PPI) Network Data
We have added protein-protein interaction (PPI) network

data, which is derived from the STRING database v10 (https://
string-db.org/) (Szklarczyk et al., 2015), to improve the
performance of the experiment. Among them, human PPI data
contains 11,759,455 scored links of 19,257 proteins, and Yeast’s
PPI data contains 1,845,966 scored links of 6,507 proteins.

• Protein Domain Data
We downloaded protein domain data from the public

database interpro (Hunter et al., 2009) (http://www.ebi.ac.
uk/interpro/download/), which contains the all UniProtKB
proteins and the InterPro entries and individual signatures
they match. For a specific protein, we can obtain the types,
quantity, and locations of all the domains it contains, and the
start and the end positions in the protein sequence of a domain
are indicated. We searched by the protein’s UniProt ID to
obtain the domain data of all the proteins we needed. Next, we
performed de-redundancy; for the same domain information
supported by contradictory evidence, we kept only one of
them. In the end, our domain data contains 113,972 pieces of
information of 14,242 domains for Human, and 23,326 pieces
of information of 6,707 domains for Yeast.

2.1.2. Independent Testing Data
The independent test data set is used for comparison with the
competing methods. The collection of data generally follows the
time-delayed rule of the CAFA challenge. We downloaded GO
annotation data for proteins from GOA published in January
2016 and then obtained protein GO annotations added after
2013 (2014 and 2015). Specifically, we removed the annotation
data published in December 2013 from the annotation data
published in January 2016 and only retained the newly added
protein annotation data. Next, we constructed an independent
test benchmark based on the newly added annotation data; please

note that all proteins contained in this benchmark do not have
any GO annotations before 2014. Similarly, we filtered those
proteins that were only annotated by GO terms that are extremely
infrequent. The filtered independent test set contains 68 proteins
for BP, 136 proteins for MF, and 106 proteins for CC.

2.2. Data Representation
2.2.1. Protein Sequence Data
Protein sequence information is one of the inputs to our model.
The sequence of each protein is a string composed of 20 specific
amino acid codes with different lengths. In this experiment,
we only selected proteins with a sequence length not exceeding
1,500. If the sequence length is<1,500, we padded zero at the end
of the sequence to ensure that the length of each input protein
sequence information is fixed. To fully extract the context and
semantic knowledge of the sequence, we utilized the ProtVec
of BioVec (Asgari and Mofrad, 2015), which is a biological
sequence representation and feature extraction method, to map
the sequence information. This method borrows the ideas of
“word embedding” fromNatural Language Processing (NLP) and
obtains vector representations of biological sequences through
training, and ProtVec is used for protein sequences. We followed
ProtVec and used 3-grams encoding for protein sequences, that
is, using a window of length 3 with a step size of 1 to slide the
protein sequence to obtain a 3-grams sequence with a length of
1498 for each protein.

In order to convert 3-grams sequences information into
vectors that can be received by the computing model, we used the
ProtVec-100d-3grams table released by BioVec.We Downloaded
this data from Harvard Dataverse (http://dx.doi.org/10.7910/
DVN/JMFHTN). In this table, the protein vector is a distributed
representation of proteins, and a 100-D vector presents each 3-
gram. For our experiment, according to ProtVec, each protein
will be represented as a 1,498 * 100 vector matrix, and then used
as input to the model. In particular, according to the way we treat
proteins<1,500 in length, if a 3-gram word contains one or more
zeros we have padded, then the 3-gram will be represented as a
100D zero-vector.

2.2.2. Protein Network Data
The protein network data we downloaded is scored links between
proteins. The higher the score, the greater the probability of
interactions between proteins. We filtered all scored links with
400 points, leaving only scored links whose score higher than 400,
and then integrated the filtered protein network data into a PPI
scored matrix. Each row of this matrix is a vector that represents
the interaction of a protein with other proteins. If protein A
interacts with another protein B in selected data, we set the value
at the corresponding position in the vector to the fraction of these
two proteins; otherwise, we set it to 0.

2.2.3. Protein Domain Data
In proteins, the types and number of domains and the relative
positions of different domains will affect the functions of
the protein. To fully discover and extract the comprehensive
information of the type, number, and position of domains in
proteins to improve the performance of the model, we first need
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to sort the domains contained in each protein according to the
information of positions in the domain data, so that we can
obtain the information relative positions of different domains.
However, the position information given by the database is only a
possible range of domains in the protein sequence. For example,
if the database provides the position of domain D in the sequence
of protein P is 60–200, this only indicates that a domain D exists
in the area of 60–200 in protein P, but we cannot obtain the
actual length and location of this domain D. This is the result
of technical limitations, which cause the existence of different
domains to overlap, even a region completely contains another
region, in a protein, and makes it challenging to sort domains.

In our experiments, we proposed a simple sorting method
based on regional center points to solve this problem. Specifically,
in a specific protein, there are three possibilities for the
geographical relationship between any two different domains:
detached, crossing, and containing. If the relationship is
detached, we can quickly sort the two domains. If it is a
cross-relationship or a containing-relationship, we calculated the
center points of the two regions separately, and then put the
domain with a forward center point in front of another one.
After this, the information on the type, quantity, and relative
position of the domain in the protein are obtained. Next, we
learned from the idea of Natural Language Processing and treat
each domain as a biological word, so the information of domains
describing a specific protein is a biological sentence composed of
some domain words in a particular order, while the functions of
a protein are what the biological sentence means. The purpose of
the domainmodule is to receive the biological sentence of protein
and then abstract the features that represent the meaning of the
sentence. Because the number of domains contained in different
proteins is inconsistent, here we also need to solve the problem of
the inconsistent size of model input. We obtained the maximum
number of domains of proteins and used this maximum number
(357 for Human and 41 for Yeast) as a standard and proteins with
fewer domains than the maximum number were padded with 0.
We encoded domains by word Embedding to input it into the
model. Specifically, we utilized PyTorch’s Sparse layer, which can
initialize a simple lookup table to map sparse vectors to dense
vectors, to generate a fixed lookup table for the domains. In this
lookup table, each domain is represented by a 128-dimensional
vector. In principle, the Sparse layer automatically maps high-
dimensional one-hot vectors to low-dimensional dense vectors
and provides the index of the dense vectors. The dimensions
of both the one-hot vectors and the dense vectors are manually
set by the user as needed, and we could get the required dense
vector by entering the index. Therefore, the domains sentence
of Human is represented by a 357*128 two-dimensional matrix,
while the domains sentence of Yeast is represented by a 41*128
two-dimensional matrix. The Sparse layer will be integrated
into the model and trained together, that is, as the model is
continuously optimized, the representation vectors of domains
in the lookup table will become increasingly accurate.

2.2.4. Protein GO Terms
Given that a large number of specific GO terms often only exist
in the annotation sets of a small number of proteins (You et al.,

2018), and considering the calculation limit, we ranked the GO
terms according to the number of annotations in proteins, and
then use a set of thresholds (40 for BP, 20 for MF and 20 for CC)
to select the GO terms, which contains 491 BP terms, 321 MF
terms, and 240 CC terms, for Human, and a set of thresholds
(10 for BP, 10 for MF and 10 for CC) to select the GO terms,
which contains 373 BP terms, 171 MF terms, and 151 CC terms,
for Yeast. We created three binary vectors for each protein to
represent the labels of three sub-ontologies of GO: BP Ontology,
MF Ontology, and CC Ontology. If a protein is annotated by a
GO term, the value at the corresponding position of the label
vector is set as 1, and otherwise is set as zero. Please note that
all GO categories in the label vectors are selected.

2.3. Deep Model
We trained three models for the three sub-ontologies of GO.
We randomly extracted 80% of the training data for iterative
training of the model, and used the remaining 20% to verify
the performance of the model after each iteration, and retained
the model with the best generalization performance. Given
that our model needs to receive input from three aspects of
sequence, domain content, and PPI network information, as
shown in Figure 1, we divided the model into four components:
Sequence sub-model, Domain sub-model, PPI-Net sub-model,
and Weighted Classifier.

2.3.1. Sequence Sub-model
The input of this sub-model is a two-dimensional 3-grams-
vector-matrix that represents protein sequence information. To
extract in-depth high-dimensional features of protein biological
sequences, we design and implement a model based on
convolutional neural networks (CNN). The neural network is
a mathematical algorithm model that mimics the behavioral
characteristics of biological neural networks for distributed and
parallel information processing (Haykin, 1994). In CNN, there
is depth structure, and the input is convolved to obtain the
output (LeCun et al., 1998), the convolution layer contains
multiple convolution kernels, which can make the model extract
more features in different aspects. In our experiment, we used
a 1-Dimensional convolutional neural network, which uses a
one-dimensional convolution kernel to perform convolution
operations on the input data. After the sequence input is
convolved to extract features, the output feature map is passed to
the pooling layer for feature selection and information filtering;
this is because the feature map still contains redundancy. Here,
we use the max-pooling layer to treat the feature map. After
processing, the selected feature map will be passed to the next
layer as input. Specifically, three convolutional layers were set
for the sequence sub-model, which were connected end to end.
The feature map obtained after the convolution operation of
each convolutional layer uses a maximum pooling layer to filter
information to remove redundancy. The in-channels of the first
convolutional layer are the same width as the input sequence
information matrix and are set to 100. The in-channels of
the other two convolutional layers are the same as the out-
channels of the previous layer, and the out-channels of the three
convolutional layers are set as 64, 32, and 16, respectively. For

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 April 2020 | Volume 8 | Article 391

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Cai et al. SDN2GO

FIGURE 1 | The integrated deep learning model architecture. (1) The Sequence sub-model utilizes 1-Dimensional convolutional neural networks to extract features

from sequence input, which was encoded as 3-grams and then mapped to 3-grams-vector-matrix. (2) The PPI Net sub-model is generated to dense the features from

PPI Network using classical neural networks. (3) The Domain sub-model initializes a Sparse layer, which is integrated into the sub-model to optimize, to generate a

lookup table for domains, and the sorted domains sentence processed by the Sparse layer is entered into 1-Dimensional convolutional neural networks to extract

features. (4) All the output features of the three sub-models are combined and entered into the Weighted Classifier, and the output vector represents the probability of

GO terms.
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each convolution layer, a convolution kernel with a size of 16 is
used for the convolution operation with a step size of 1. In order
to completely extract the input features, padding was performed
on the input with 0 before each convolution. Each maximum
pooling layer is filtered using a kernel of size 2 with a step size of 2.
The output feature map of the last pooling layer will be tiled into
one dimension and input to the fully connected (FC) layers for
dimensionality reduction. Finally, a feature vector representing
the protein sequence information was obtained. The number
of nodes in the output layer of the fully connected layer is set
according to the number of three GO sub-ontology. Specifically,
for Human, it was set as 491 for BP, 321 for MF, and 240 for CC,
and for Yeast, it was set as 373 for BP, 171 for MF, and 151 for CC.

2.3.2. PPI-Net Sub-model
In the PPI scored matrix, the feature vectors that characterize
the interaction between proteins and other proteins have large
dimensions, which are 18,901 for Human and 6,054 for Yeast,
respectively, so we built a three-layer trapezoidal neural network
module to dense the PPI features. In this module, the number of
nodes in the input layer is the same as the dimension of the input
feature vector, which is 18,901 for Human and 6,054 for Yeast.
The number of nodes in the hidden layer is set to an intermediate
value according to the number of nodes in the input layer and
the output layer, which are 4,096 for Human and 2,048 for Yeast.
And the size of the output layer is based on different species
and GO sub-ontology, and is the same as the output layer of the
Sequence sub-model.

2.3.3. Domain Sub-model
The input of the Domain sub-model is the sorted protein
domain content information. According to the input data, the
first structure of the module is the integrated Sparse layer, the
number of embedding is 14,243 for Human, and 6,708 for Yeast,
and embedding dim are set as 128. For a specific protein, the
output of the Sparse layer of the domain sentence input is a
two-dimensional matrix. Therefore, similar to the sequence sub-
model, we constructed a convolutional neural networks module
containing two 1-D convolutional layers and two max-pooling
layers. The in-channels of the first convolutional layer are set to
357 for Human, and 41 for Yeast, the in-channels of the second
convolutional layer are consistent with the out-channels of the
previous layer, and the out-channels of the two convolutional
layers are set to 128 and 64. Besides, each convolutional layer used
a convolution kernel of size 2 to perform a convolution operation
with a step size of 2. In order to completely extract the input
features, we padded the input with 0 before each convolution.
The setting of the two maximum pooling layers is the same as the
setting of themaximumpooling layer in the Sequence sub-model.
The feature map output by the last pooling layer is tiled into one
dimension and then input to the fully connected layers to reduce
the dimension and the output layer of the fully connected layer.
The size of the output layer is based on different species and GO
sub-ontology, and is the same as the output layer of the Sequence
sub-model.

FIGURE 2 | The architecture of one single GO classifier in the weighted

classifier.

2.3.4. Weighted Classifier
Weighted Classifier accepts output vectors from three sub-
models: Sequence sub-model, Domain sub-model, PPI-Net sub-
model. Through training, each GO classifier learns and optimal
the weights that receive the features from three sub-models to
achieve the best effect of multi-label classification. Note that the
output vectors of the three modules have the same dimensions.
As a whole, our Weight Classifier is a three-layer non-fully
connected network model. The number of nodes in the input
layer is the sum of the number of output nodes of the three
sub-models, and both the nodes of hidden layer and the nodes
of out layer are the same as nodes of the output layer of the
three sub-models, which are set according to different species and
GO sub-ontology. From the perspective of a single GO classifier,
the structure is shown in Figure 2. For a specific GO classifier,
the hidden node only accepts three features, which are from the
corresponding position of the output vector of three sub-model,
respectively, corresponding to the GO category, and to extract the
corresponding area, we used a binary mask matrix to implement
this connection control. The output node of the Classifier also
only receives the output of the corresponding hidden node, and
we also used a binary mask matrix to implement connection
control. In general, let the entire Weight Classifier as a whole
again, each node in the hidden layer is only connected to the three
corresponding nodes in the output layer, and each node in the
output layer is connected to only one corresponding hidden layer
node. Therefore, the weights between the hidden layer nodes and
the input layer nodes represent the preference of the Classifier
for features from three sub-models, and the weights between the
output layer nodes and hidden layer nodes globally balance the
output values of the Classifier to the same level.
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For all components of the model, we used the Rectified-
linear-unit (ReLU) (Glorot et al., 2011), which could improve the
computational efficiency and retain gradient (Nair and Hinton,
2010), as the activation function. Besides, by running specific
optimization algorithms to minimize the loss function, the DNN
model can be iteratively optimized by updating the weights
and biases. Especially, the model is trained using an adaptive
optimizer, Adam (Kingma and Ba, 2014).

2.4. Evaluate Methods
We evaluate the performance of the model through three
measures, which are F-max, AUPR (area under the precision-
recall curve), and AUC (area under the receiver operator
characteristics curve), where F-max and AUC are used in
the CAFA challenge (Radivojac et al., 2013). We use the
standard provided by CAFA to calculate F-max and the formulas
as follows:

Fmax = max
t
{
2 · pr(t) · rc(t)

pr(t)+ rc(t)
} (1)

where pr(t) and rc(t), respectively represent precision and recall
of the threshold t ∈ [0, 1], and can be calculated by the
following formulas:

pr(t) =
1

m(t)
·

m(t)∑
i=1

pri(t) (2)

and

rc(t) =
1

n
·

n∑
i=1

rci(t) (3)

wherem(t) is the number of proteins that annotated with at least
one GO term using a threshold t, n is the total number of proteins
in the target data set. pri(t) and rci(t) represent the precision and
recall of a specific protein i using a threshold t, and are calculated
by the following formulas:

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Pi(t))
(4)

and

rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Ti)
(5)

where f is a functional term in the ontology, Function I(·) is
the standard indicator function. Ti is the set of true labels for
protein i, and Pi(t) is the set of predicted labels for protein i
using a threshold t. Once the precision and recall that calculated
by different values of t for a particular functional term were
determined overall proteins, we could then calculate the AUPR
using the trapezoid rule. Compared with AUC, AUPR has a
greater penalty for false positives[6].

We also calculate the AUC value for each model of the GO
sub-ontology, and the calculation formulas are as follows:

AUC =

∫ ∞

−∞

TPR(t)(−FPR(t))dt, (6)

TPR(t) =
TP(t)

TP(t)+ FN(t)
(7)

and

FPR(t) =
FP(t)

FP(t)+ TN(t)
(8)

where TP is the number of true positives, FP is the number of
false positives, and TN is the number of true negatives, FN is the
number of false negatives.

2.5. Model Implementation and Computing
Environment
We used PyTorch, a Python-based deep learning framework,
to implement our model. To speed up the training process, we
used a RHEL server with four NVIDIACorporationGM107GL
graphics cards installed and total video memory of 32 GB.
Under a set of parameters, the whole training time for the
most computationally-intensive BP model is <10 h. In terms
of prediction, in the case where the sequence, domain, and PPI
input information of the predicted protein has been processed
in advance, using an optimized model to predict 1,000 proteins
takes about 6 min.

3. RESULTS

3.1. Experiment
Owing to the complexity of our model composition and the
requirement to determine a large number of hyperparameters, we
first pre-trained the three-component sub-models of Sequence,
Domain, and PPI Net. We used the GO annotations of proteins
as a label and calculated the binary cross-entropy between the
predicted values and the actual values, and use this as the loss
to back-propagate to update the weights and biases between
the nodes connected in the model. We manually adjusted the
hyper-parameters, such as the learning rate and batch-size of
each module, and selected the optimal model based on the
validation loss value using the training set. After adjusting the
parameters of the three sub-modules, we used the output of
these three fine-tuned models as input to manually adjusted
the hyperparameters of the Weighted Classifier, and also select
the optimal model based on the validation loss value using the
training set. Tables S1–S4 shows the details of the training of
different hyperparameters.

We used 5-fold cross-validation on the training set to test the
performance of the model, and the results are shown in Table 1.
It is clear that the model has achieved a favorable F-max value for
each sub-ontology of GO, which indicates that our method is an
effective protein function prediction method.

3.2. Evaluating the Performance of Using
Domain Content
Using the comprehensive information of types, quantities,
and positions of protein domain content for prediction of
protein function is the crucial component and emphasis of
this research. In order to explore and explain the critical role
of comprehensive domain information on protein function
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prediction, the deep models without the domain module were
constructed for three sub-ontology of GO, and each model
contained only the Sequence sub-model, PPI-Net sub-model, and
Weighted Classifier, and we named it SN2GO. Among SN2GO,
since the Sequence sub-model and PPI-Net sub-model in the
SDN2GO model are pre-trained separately, the structure and
hyperparameter settings of the Sequence sub-model and the

TABLE 1 | The 5-fold cross validation results of training data.

Method
BP MF CC

Fmax AUPR AUC Fmax AUPR AUC Fmax AUPR AUC

SN2GO (human) 0.473 0.441 0.908 0.546 0.527 0.938 0.587 0.600 0.949

SDN2GO (human) 0.507 0.487 0.921 0.653 0.655 0.957 0.601 0.617 0.952

SN2GO (yeast) 0.414 0.289 0.810 0.548 0.435 0.870 0.520 0.395 0.881

SDN2GO (yeast) 0.415 0.304 0.839 0.611 0.530 0.903 0.528 0.424 0.878

The bold values indicate the best values.

PPI-Net sub-model are the same as those of the corresponding
modules in the SDN2GO model, and the Weighted Classifier
removes the relevant part of the domain from the input layer, the
settings of the hidden layer and output layer are still the same as
those of the SDN2GO Weighted Classifier. To ensure fairness of
comparison, we also manually readjusted the learning rate and
batch size hyperparameters and selected the optimal Weighted
Classifier model for SN2GO.

We observed the performance of SN2GO on the training set
and compared it with SDN2GO. As the same, we used SN2GO
to perform a 5-fold cross-validation experiment on the training
set.Table 1 shows the cross-validation results of SN2GO.We find
that compared with SN2GO, the performance of the SDN2GO
that uses domain information has been significantly improved
on all the sub-ontology of GO, especially in the MF Ontology
of humans, the F-measure value of SDN2GO has been enhanced
by nearly 20% (0.65 vs. 0.55) compared to SN2GO. As shown in
Figure 3, the PR curves of SDN2GO and SN2GO on validation
data of humans, it is clear that the red PR curve surrounds the
other one on each sub-ontology. This result shows that domain

FIGURE 3 | Precision-recall (P-R) curves of SDN2GO and SN2GO. The performances of the two methods were evaluated on the validation data of human in each

sub-ontology of GO (gene ontology).
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information plays an essential role in protein function prediction,
and proves that our coding and processing methods for protein
domain information and the sub deep learning models for
domains are useful and meaningful.

3.3. Comparison With Competing Methods
In order to further verify the performance of SDN2GO, we
compared the two novel methods, NetGO and DeepGO, on
the independent test set. Both of these two methods are
competitive and excellent in protein function prediction and
have achieved outstanding results on some datasets. As a
state-of-the-art machine learning method for protein function
prediction, NetGO provides constructive ideas on how to
integrate features based on different sources. At the same
time, DeepGO is quite representative of using deep learning
technology for protein function prediction. Specifically, NetGO
integrates five different types of sequence-based evidence and
massive network information into the learning to rank (LTR)
framework to predict protein function. We uploaded the
protein sequence of the independent test set in Fasta format
to the AFP (automated function prediction) webserver (http://
issubmission.sjtu.edu.cn/netgo/) released by NetGO and then
downloaded the prediction result of NetGO in txt format
after a while. DeepGO uses convolutional neural networks to
extract protein sequence features and combines known PPI
network information as combined features to predict protein
functions. We downloaded all source code of DeepGO from
GitHub and downloaded the required data, and the fine turned
neural network models saved in PKL format from the provided
webserver (http://deepgo.bio2vec.net/data/deepgo/), and then
entered the test protein sequence in Fasta format to this open-
source tool, and obtained the prediction results of DeepGO.
Besides, the BLAST was also used in comparative experiments.

The comparison results are shown in Table 2. We have
observed that BLAST performs well on every GO sub-ontology,
which illustrates again that the sequence homology-based BLAST
method is still quite competitive. NetGO andDeepGOperformed
well on MFO and BPO, respectively, but did not achieve their
claimed effects on other sub-ontology. We further analyzed the
prediction results of these two methods, and we found that the
false-positive rates of both of them are relatively high, which leads
to their inability to obtain high precision values. Figure 4, which
shows the PR curves of MFO on independent test sets for various
methods, demonstrates our analysis results from one aspect. The
PR curves of BPO and CCO and other specific details can be
seen in Figures S1, S2. Obviously, SDN2GO outperformed other
methods on all sub-ontologies, especially on MFO. Those shows
that our model has excellent generalization performance and is
a currently competitive method for protein function prediction.
In particular, we paid attention to the performance of SN2GO,
which lacks the domain sub-model on the test set. The results
show that its performance on BPO and MFO is far worse than
that of SDN2GO, and prove that extracting features from protein
domains for protein function prediction is feasible, and will
improve the accuracy of GO term labeling for proteins, especially
on BPO and MFO.

TABLE 2 | The comparison results of the competing method on the independent

testing set.

Method
BP MF CC

Fmax AUPR AUC Fmax AUPR AUC Fmax AUPR AUC

BLAST 0.347 0.192 0.771 0.381 0.292 0.873 0.386 0.245 0.860

DeepGO 0.321 0.095 0.729 0.291 0.117 0.784 0.210 0.080 0.687

NetGO 0.173 0.048 0.594 0.386 0.243 0.919 0.217 0.092 0.669

SN2GO 0.132 0.044 0.893 0.423 0.306 0.953 0.384 0.264 0.948

SDN2GO 0.361 0.203 0.917 0.561 0.471 0.964 0.432 0.290 0.947

The bold values indicate the best values.

FIGURE 4 | Precision-recall (P-R) curves of BLAST, DeepGO, NetGO,

SN2GO, and SDN2GO. The performances of the five methods were evaluated

on the independent testing set in MFO (molecular function ontology).

4. DISCUSSION

SDN2GO, an integrated deep learning-based weight model
we have proposed, combines three aspects of information:
protein sequence, protein domain content, and known protein-
protein interaction networks. We constructed three sub-models
for these three aspects of information, and then learned and
extracted three components of features through pre-training
the sub-models. Each GO term of the protein was finally
scored and annotated through the integrated deep learning
weight classifier. The 5-fold cross-validation results show
that SDN2GO is a stable and reliable method for protein
function prediction. In order to further verify the generalization
performance and competitiveness of SDN2GO, we constructed
an independent test set based on the principle of time-delay
for comparison with the novel method and the classic BLAST
method. The comparison results show that our method has
achieved the maximum F-max value for each sub-ontology
of GO.

Many studies illustrated that protein sequence and
PPI network are valid for protein function (Kirac and
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Ozsoyoglu, 2008; Jiang and McQuay, 2011; Nguyen et al.,
2011; Baryshnikova, 2016; Kulmanov et al., 2018). Besides,
some researchers have used protein domain information
to predict protein function (Altshul, 1997; Forslund and
Sonnhammer, 2008), but they only focused on a single
aspect of type or structure of the domain and failed to fully
mine the general characteristics of various aspects of the
domain. We considered this and drowned lessons from the
principle of NLP to encode domains to integrate the type,
quantity, and position information of the protein domains,
and utilized the convolutional neural network to extract the
general characteristics of the domains, which is the advantage
of our model. We built a comparison model SN2GO based
on SDN2GO without domain sub-model and conducted
comparative experiments on both the training data and
the independent test set. The results show that the domain
information has significantly improved the prediction effect of
the model, especially in BPO On MFO; this might be because
the domain information, as a higher-level protein feature than
sequence, is more intuitive in expression and closer to the
functions of the protein. And to a certain extent, the comparison
results illustrated the correctness and generalizability of our
methods of protein domain information processing and
feature extraction.

In the future, we will continue to improve our model,
such as adding more GO annotation categories to expand the
scale of multi-label classification. Besides, we will also try to
integrate more aspects of protein-related features, such as protein
structure information and co-expression information, into our
model to explore the role of different information on protein
function prediction.
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