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Abstract− A low-cost spectrum analyzer is presented, based on a

commercial software defined radio and an open-source application

package. Fundamentals regarding the receiving operation and its

sensitivity are presented, along with measurements, of two 8 and

12-bits software defined radio models. An application, run within

GNU Radio, is presented, deployed to overcome the hardware

analog-to-digital converter limitation to monitor wide bandwidths.

Results are shown for two different frequency ranges, 200 MHz

bandwidth.

Index Terms−GNU Radio, Signal Processing, Software-Defined Radio, Spec-

trum monitoring.

I. INTRODUCTION

The concept of software defined radio (SDR) was first proposed in 1991, according to the lines of a

“radio whose channel modulation waveforms are defined in software” [1], though the exact definition

is blurred, since no exact boundary delimits the degree of hardware reconfigurability needed to label

a platform as a true-SDR [2]. The SDR concept paved the way for Cognitive Radios, where the elec-

tromagnetic environment is continuously sensed, in order to find empty slots and operate accordingly,

dynamically varying the modulation and occupied frequencies. That enables a more efficient and lean

use of the spectrum [3], [4]. Spectrum monitoring is, therefore, a preliminary core function for enabling

a Cognitive Radio.

Besides Cognitive Radio, the electromagnetic spectrum is a very important and decisive asset not only

for communications but also in homeland security and defense, in the area of electronic warfare [5],

where adversary communication channels should be identified, monitored and, if possible, demodulated.

In [6], a 2.3 GHz to 2.7 GHz spectrum sensing system, intended to be used in Cognitive Radio, was built

using a 12-bits USRP SDR, whose samples were saved and later analyzed within Matlab. Another setup,

this time with a low-cost dongle 8-bits RTL-SDR, connected to a Raspberry Pi captured, demodulated

and displayed broadcast AM and FM signals, with the managing algorithm written in Python [7].

Also, using a Raspberry Pi, a system was designed to monitor unused (so-called “white”) portions of

the UHF spectrum, with the RF front end performed by a low-cost RF Explorer spectrum analyzer

[8]. SDRs do not necessarily need a computer to operate, an RTL unit was connected to a Raspberry

Pi2, running on Raspbian operational system, which sampled and demodulated broadcast AM and

FM signals [9]. A channelized receiver, for incoming radar carriers, was implemented in GNU Radio,
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using the RTL SDR for early warning receivers, with band pass filters selecting different sub-bands

covering a 2.4 MHz bandwidth around 940 MHz [5]. An AM-band spectrum analyzer, based on a Si570

VCO (voltage-controlled oscillator) and managed by Labview, had the digital samples made available

online by a Webserver, to be used in educational purposes [10]. Another RTL-SDR was used as a

spectrum analyzer, connected this time to an Android mobile phone running a Java application, both

units connected by a USB cable [11]. Another application, using USRP and GNU Radio, monitors the

band around 2.5 GHz to find empty slots for Cognitive Radio, using an energy detection algorithm

[12]. Broadcast FM and digital TV were monitored and demodulated using both RTL and USRP

SDRs, whose data are sent by TCP/IP by a Raspberry Pi to be remotely analyzed [13]. A system

called SwepSense was devised to monitor a large electromagnetic spectrum bandwidth divided in the

sub-bands 50 MHz-2.2 GHz; 400 MHz- 4.4 GHz and 1.2 GHz-6GHz, with high temporal resolution,

based on an USRP whose local-oscillator chip was connected to a saw-tooth generator circuit [14].

In order to cover two distant sub-bands, two RTL units were used to operate as a low-cost spectrum

monitoring system, each one covering a specific band, controlled within the GNU Radio environment

[15].

This article describes an 8-bit HackRF One SDR used as a spectrum analyzer, controlled by the

open-source GNU Radio environment. In contrast to [15], a Python block inside GNU Radio enables

the automatic monitoring of a wide band frequency range with only one SDR, larger than its 20 MHz

bandwidth limit. Another approach to cover wide frequency ranges employed parallel-processing, with

several host computers connected to an USRP [16], whereas this study is based on a single host PC,

running either Windows or Linux Operational Systems. A minimum sensitivity measurement of two

SDRs is shown, as to investigate their performance with faint signals. A discussion regarding the power

measurement are presented in the appendix, as to show the trade-off between precision and elapsed

time in regard to the used filters.

II. SDR FUNDAMENTALS

After the first commercially available SDR unit, Ettus USRP, was introduced around 2004, many

other different radios were made available, with varying capabilities and prices. One of the most

popular option due to its low profile and cost, the 8-bit RTL, was initially based on the direct frequency

conversion topology, whereas others (like USRP and HackRF One) have an IF (Intermediate Frequency)

which is converted to the digital domain. The RTL family is a receiving-only SDR, whereas HackRF

One and USRP are capable of either transmitting and receiving, though not at the same time for the

former. Radio amateurs, in particular, used variations of SDRs whose IF’s are within the audio band,

therefore the PC audio input can be used to input the down-converted signal to a computer, being

further discretized and processed, enabling the operation as full-fledged transceivers [17].

In regard to the HackRF One SDR, Fig. 1 shows a block diagram of its receiving branch. The RF

input signal from the antenna (SMA connector) can be amplified by a broadband LNA (Low Noise

Amplifier, 14 dB gain, MGA-81563), switchable by the user, where the signal can be bypassed through

the active device. It can be filtered, by an HPF (High-Pass Filter) or LPF (Low-Pass Filter), depending

upon the frequency range chosen by the user. Its quadrature mixer delivers two components, the so-

called in-phase (I) and quadrature (Q). The Local Oscillator (LO) signal, upon acting on a non-linear

component, brings the high frequency input band to the IF range.
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Fig. 1. HackRF One receiving side block diagram.

The PLL (phase locked loop)-stabilized mixer with the VCO (voltage controlled oscillator), RFFC5072

chipset, translates the incoming frequency energy to an IF between 2.3 GHz and 2.7 GHz, later digitized

by the 8-bits ADC (analog-to-digital converter). HackRF One, in particular, has an ADC whose band

covers up to 22 MHz at once, MAX 5864. The maximum SDR is set though to a 20 MHz bandwidth,

whose stream is then sent to a 32-bit ARM Cortex processor, LPC43XX, transferred later to the USB

channel. RTL units, on the other hand, have their IFs in the range of 3.57 MHz or 4.57 MHz (case

of R802 tuner) or even zero-IF (the defunct E4000 tuner). The choice of a low IF provides better

selectivity whereas higher IFs result in lower mixer image responses, therefore there is a trade-off

between selectivity and image response [18].

It is important to stress that time-domain IQ samples are transferred to the USB channel, and in cases

of USRP, Ethernet input. FFT (Fast Fourier Transform) has to be performed in the PC by the respective

application in order to visualize frequency domain information. Nyquist criterion states that in order to

recover the original signal without aliasing losses, the sampling frequency has to be at least twice the

bandwidth of the original signal. Since the samples are complex and not real, the sampling frequency

can be equal to the signal maximum bandwidth, which compensates for the extra complexity of two

mixers instead of a single one, for the case of a purely real frequency conversion [19]. Quadrature

mixing also provides phase information to the recovered signals, enabling a coherent processing, which

is important for radar and imaging applications, to name a few. This phase information is not usually

available for typical spectrum analyzers, since they do not perform the quadrature frequency conversion.

Complex sampling produces twice as many samples as the purely real case, more demanding in terms

of data transfer throughput. Fig. 2 illustrates the process of recovering the original positive frequency

block by summing up the real part of the spectrum (I) with the quadrature (Q) part multiplied by −j,

according to:

xIQ[n] = xI [n]− jxQ[n]. (1)

where xI and xQ are the nth in-phase and quadrature samples respectively and xIQ is the final (real)

result. Fig. 2, for simplicity, the zero-IF case is shown.

III. SDR SENSITIVITY

The SDR RF front-end should be able to detect small signals as well as avoid intermodulation

products caused by high-amplitude carriers, present within its reception band. The amplitude difference
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Fig. 2. Process of IQ sampling, diagram adapted from [20]. In the figure, the zero-frequency or DC is shown in detail as the

f=0 label.

between the faintest and largest signal amplitudes configures the SDR dynamic range, which may be

the principal challenge of a receiver design [2]. The sensitivity can be defined as the weakest signal

that a receiver can still detect and it is determined by the noise figure parameters of the different

circuits along the receiving chain. Much of the SDR RF performance depends on the ADC [2]. For the

HackRF One and RTL units, they have 8-bits converters, whereas USRP and MSI-SDR have 12-bits.

The choice of a converter with a larger number of bits N has to take into account the trade-off of its

bandwidth and power consumption [3]. The signal-to-noise ratio SNRADC in decibels, of an N -bits

analog-to-digital converter can be written as [3]:

SNRADC = [6.02N + 1.76] dB. (2)

for the case where the ADC is excited by a full-scale sinusoidal signal with a given frequency (i.e.

the parameter is frequency-senstive), the quantization noise uniformly distributed between ±
1

2
LSB

(least-significant bit). For an 8-bit ADC results in approximately 50 dB. The effective number of bits

(ENOB) parameter, which accounts for the noise and intermodulation products generated by the ADC

itself, is smaller than the actual number of bits N , though it can be artificially improved with processing

techniques and oversampling. ADC own noise is a critical parameter in the converter design and its

source can be ascribed to two main causes, thermal and quantization. The noise-floor (in dBm) NFl

can be written as [2]:

NFl = 10 log(kTeBW ) +NFtotal. (3)

where k is the Boltzamnn constant (-228 dBW/K.Hz); Te is the temperature in Kelvin and BW the

bandwidth. NFtotal is the total Noise Figure (units in dB) of the receiving chain, which in accordance

with Friis Law depends mostly on the first element of the RF front-end chain, usually the LNA. The

overall sensitivity of a SDR is, however, not univocally defined, depending on several parameters such
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as the frequency band, presence of amplifiers, filtering and averaging acting on the samples, etc.

The MDS ,Minimum Discernible Signal, can be found after:

MDS = 10 log
kT

1mW
+ SNR+ logBW. (4)

The first term can be written as -174 dBm for ambient temperature. The MDS can measured when

signal/(signal + noise) = 3 dB, i.e. the carrier peak in consideration is 3 dB above the noise floor.

Once the MDS is known the overall system SNR can be estimated. Averaging can indeed increase

the overall SNR due to the incoming noise uncorrelated nature. Oversampling and averaging increase

the SNR as long as there is a white noise model characteristic, i.e. uniform power spectral density

over the frequency band of interest. For the case where there are n realizations of a vector, in the best

case if the signal is kept unmodified for all realizations, the SNRavg can reach the maximum value

of:

SNRavg =
SNRi

n
. (5)

where the SNRi is the signal-to-noise ratio of a single-realization. The inclusion of an average routine

along the way implies a delay, which depending on the case turn the data processing unfeasible.

Oversampling, where the sampling frequency is larger than the Nyquist limit, is a technique also used

to improve on the SNR. Since the total power due to quantization error remains the same for a larger

bandwidth associated to higher sampling rate, its density decreases, which can be cut out by means of

a low pass filter [2]. That means smaller bandwidths do not necessarily imply lower noise amplitudes,

like in resistors. There is an optimum BW that minimizes the noise in case of ADCs, which can be

found after measurements involving several influencing parameters. The OSR parameter (oversampling

rate), in particular, is related to the Nyquist limit by:

OSR =
Fs

2BW
. (6)

where Fs is the sampling frequency. This particular equation applies to real values, in case of complex

series the 2 factor is eliminated. The SNR due to the quantization noise improves approximately 3 dB

every time Fs doubles. Decimation can be used to further reduce the quantization noise, where samples

are periodically discarded [21].

For the sake of comparison, HackRF One (8 bits) is compared with a 12 bits SDR (MSI.SDR,

an RSP1 clone). Theoretically, the 8-bits results in 50 dB of SNR whereas the 12-bit provides 74

dB, a 24 dB difference. Measured data for both SDRs were acquired according to Fig. 3 where a

3 GHz maximum frequency RF generator was directly connected to each one of the SDRs. A GNU

Radio application displays the received power, in a PC connected to the radios. The Po peak power is

then read, considered to be 10 dB above the noise floor, without any form of filtering, decimation or

averaging, configuring the worst-case scenario, taking into account only the hardware-limit. Internal RF

and IF amplifiers are also switched off or kept at the minimum possible gain amplitudes. The goal is

to find the specific noise floor of each SDR, parameterized with different settings of their bandwidths.

After Po is read on the GNU Radio application, the power level is read on the generator output, since

GNU Radio amplitude readout is not calibrated.

Fig. 4 shows the results parameterized for different bandwidth settings. Since the MSI SDR has a
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Fig. 3. Setup of the SDR Noise Floor (NoFl) measurement.

lower frequency limit of 10 kHz, whereas HackRF One starts at 10 MHz, the smallest allowed MSI

bandwidth of 500 kHz was used. The displayed red curves contain both SDRs set to 10 MHz bandwidth,

and the 4 bits of difference results in around 30 dB increase of sensitivity for the MSI, taken at 900

MHz - near the theoretical 24 dB difference. The HackRF One has its 10 MHz bandwidth resulting

in the highest sensitivity, though with only 3 dB difference from its maximum 20 MHz sampling rate.

The cheaper 12-bit MSI SDR also had a large sensitivity variation across the frequency band, with best

results around 1 GHz.
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Fig. 4. Measured NoFl for the SDRs with different bandwidths.

Commercial spectrum analyzers, considering bands up to 6 GHz, have on average sensitivities around

-120 dBm. An SDR-based spectrum analyzer compensates its slightly poorer sensitivity with lighter

weights, sensible lower costs and versatility in the application layer, taking advantage of the USB

connection that receives the stream of raw down-converted RF samples, opening the possibility of a

large number of digital data processing and visualization.
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IV. SOFTWARE

Afer the IQ samples are acquired by the PC, they can be analyzed by several different packages.

The RTL family [22] or the 12-bit ADALM PLUTO SDR [3] can be interfaced directly by a Matlab

script. The different available USRP versions, on the other hand, are interfaced by Labview. However,

a very common package used to interface and work with generic SDR data is the GNU Radio. It

is open-source and therefore under constant development, though its support is not as reliable and

consistent as similar commercial tools. The RF front end and digitization tasks are performed by the

SDRs, whereas signal processing and visualization are executed by the GNU Radio application, with

the physical connection between either components established by a USB channel.

GNU Radio has support to many different existing SDRs, and its design follows a graphical block-

oriented application called GNU Radio Companion, similar to Labview from National Instruments and

Simulink, from Matlab. It is written in C++, for critical processing tasks like drives and low level

activities, and Python, for the high-level interface. The final project is compiled into a Python file,

which can be latter run without the need for GNU Radio, requiring only a Python interpreter and the

respective libraries, native in most Linux distributions. The application can make use of existing Python

blocks and even implement its own, written in this language for specific cases. Though GNU Radio

runs in either Linux and Windows, the latter is known to present some problems [23], being not so

intensely developed and patched. Another issue with GNU Radio is the poor handling of large data

chunks by the host computer, such as the cases involving spectrum analysis. Directing the incoming

samples to a binary file, by means of a block named File Sink, rapidly becomes too cumbersome due

to its size. For instance, a 20 MHz bandwidth generates a throughput 320 MB/s, 20 MHz times 8 times

2, the last term accounting for two complex numbers. Few seconds of a raw file with these settings

rapidly result in large files, presenting complications to the storage and further handling.

Alternatively, it is possible to use a kind of server-client TPC/IP socket to transfer the data. Within

GNU Radio, a ZMQ PUB block opens a socket that transfers the raw data from a source to a sink, the

latter placed elsewhere, where further processing can be performed. Another alternative to deal with the

incoming samples is a shell command, available in open libraries, which interface with the hardware

directly from a command line. Due to the easiness of deploying an intuitive interface, and given the

Python language use, the option was to use GNU Radio to perform all the interface and application

development, using a single computer.

V. SPECTRUM ANALYSIS

In contrast to commercial spectrum analyzers, which can perform one-shot, full-bandwidth sweeps,

the maximum bandwidth of SDRs is limited by their ADCs, so there are two basic situations for

spectrum monitoring:

• Breaking the set maximum bandwidth BW into a smaller band (zooming in in the frequency

domain), Fig. 5, top, shown in the red rectangle, or

• covering a frequency range larger than the SDR BW Fig. 5, bottom.

Each situation will be analyzed in detail in the following section.

A. Breaking the bandwidth

One possibility for breaking a large bandwidth into smaller chunks, in cases such as when over-

sampling is used and result in large sampling frequencies, is by the use of the polyphase filter [24],
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Fig. 5. Spectrum analysis, breaking (top) and assembling (bottom) the band of interest. The light blue area represents the

SDR set bandwidth.

available as a default block within GNU Radio. Its T output taps divide the entire bandwidth, defined

by the sample rate variable fs, in T blocks, each one with width fs/T . Fig. 6 illustrates the order

by which the blocks are created. The whole band (width fs) is shown divided in two (L from lower

and U from upper) or three generic sub-bands (L, U and M from middle). After the sub-bands are

selected, further processing can be applied to the specific desired range. As seen in Fig. 4, operating

the SDR with smaller bandwidths as to narrow down the frequency range can decrease the overall RF

sensitivity. So it is advisable to operate with a good enough BW and perform the bandwidth-breaking

operation later on.

Fig. 6. Polyphase filter operation example within GNU Radio, with T=2 (top) and T=3 (bottom).

Fig. 7 shows an application of the polyphase filter with 3 taps, dividing a 20 MHz bandwidth where

a pure 9 MHz CW (continuous wave) signal is used, internally generated by a sinusoidal source. The

whole frequency band BW is divided in three sub-bands, isolating the carrier in the last (named "U")

frequency block. Breaking the larger bandwidth is done in real-time by the filter. Small artifacts are

generated in the other sub-bands, non-existent in the original frequency band, a by-product of the

polyphase operation.

The same procedure is applied to a signal captured by the Hack RF One, with a telescopic antenna, a
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Fig. 7. Polyphase filter operation example, with 3 output taps, input signal generated by an analytical source (sinusoidal).

20 MHz bandwidth around the central frequency of 90 MHz, within the FM broadcast range, shown in

Fig. 8. Again, some by-products non-existent on the original sequence are shown up after the filtering.

Fig. 8. Polyphase filter operation example, with 3 output taps, input from the Hack RF One.

As an alternative to the polyphase filter, a set of bandpass filters can be used in parallel, to break

the large BW , topology known as sequential spectral analysis [25], at expenses of a larger processing

time.

B. Assembling the bandwidth

The need for a large bandwidth can be related, for instance, to transient signals, whose spectrum

energy distribution is not known a priori. Besides it, the 20 MHz maximum range of HackRF One is

not enough to cover some services in the GHz range, such as WiFi IEEE 802.11, since it occupies a

100 MHz slot around 2400 MHz and approximately 700 MHz in the 5800 MHz range.

The logical link between GNU Radio and the SDR Hardware is done by means of a block named

OSMOCOM Source (for receiving), or OSMOCOM Sink (for transmitting). It basically sets the central
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frequency Fc, its sampling rate Fs, alongside eventual gains (RF, IF and Baseband, for the HackRF

One). So, in order to cover a bandwidth larger than the Fs one needs to periodically sweep the central

frequency Fc as to cover the larger range. An alternative is depicted in the block diagram shown in

fig. 9. A square wave oscillator is set to operate at the frequency Fsync, routed to a probe signal block.

A Function Probe block does the polling, checking for its desired operation, in this case its amplitude

level. As it reaches the threshold level a flag is generated. A Python module takes advantage of this

flag to run a piece of Python code that updates a frequency list, sweeping its start and stop values

with a certain step between consecutive items, set by the user. Though this approach runs as expected

when the OSMOCOM source is replaced by an internal sinusoidal signal, the actual SDR connection

results in a not pure synchronous operation with the Fsync timing, so a Python delay routine was

added. Another observation is that the default QT GUI of GNU Radio produced erratic operation, i.e.

the system closed down with a warning. A more stable version of the system runs using the WX GUI,

performing equally well when tested in either Linux Ubuntu and under Windows 10.

Square wave

generator

Fsync

probe Signal

function "level"

OSMOCOM

source

Central Freq.

Fc

Freq. Sink

Central Freq.

Fc

Fc

Fs

Python Block

Function 

probe 

Fig. 9. Block diagram of the Assembly function using GNU Radio. Fc is periodically swept among two limit values,

synchronously with the clock signal Fsync.

Fig. 10 shows the GNU Radio block diagram. A throttle block was left bypassed (in yellow), so in

case a PC hardware overload is detected it can be switched back on.

Fig. 11 shows the results of the SDR set to its maximum bandwidth (20 MHz), sweeping from 10

MHz to 210 MHz and 1.8 GHz and 2 GHz. For the 1.8 to 2 GHz case an external LNA amplifier

was added (NF=4.2 dB and 20 dB gain), and it was employed a printed Log Periodic antenna, shown

in detail in Fig. 11. The internal LNA was switched off for the sake of protection against overload,

and also educing the current drawn from the USB port. The screenshots were manually collected and

assembled outside GNU Radio. It is possible to cover an arbitrary large bandwidth with this approach,

limited by the SDR hardware only.
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Fig. 10. GNU Radio diagram of the assembly operation.

LNA

LPDA antenna

SDR

5 VDC

1800
freq [MHz]

2000

-140

-20

Power [dBm]

Fig. 11. Top, actual components of the measurement, both SDR and LNA are in shielded cases. Result of the bandwidth

swept from 10 MHz to 210 MHz (center) and 1800 MHz and 2000 MHz (bottom). Each light blue rectangular block

represents one separate 20 MHz individual slot.

VI. CONCLUSION

An SDR-based spectrum monitor is presented, with a pure-software solution to achieve wide band-

width coverage, an innovation to circumvent the hardware limit that negatively contrasts to spectrum

analyzers. The system is low-cost and low-profile, with the application software deployed using an

open-source package, running in either Linux or Windows Operational Systems. In addition, a SDR-

based spectrum analyzer is more protected against the obsolescence, since its software application is
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made independent of the hardware, so it can be upgraded independently of the SDR, unlike bulky

commercial spectrum analyzers.

APPENDIX - POWER MEASUREMENT

A core question regarding SDRs and the respective application regards the accuracy and unit of the

displayed received power. Though several different applications show the spectrum power results in

dBm, a proper calibration procedure is needed to ensure the correct readout.

IQ samples delivered to GNU Radio or other application are described by their peak voltages vI and

vQ respectively. Under a 50 Ω system, the signal power can be written as:

PRMS =
V 2

RMS

50
=

v2I + v2Q
2

·
1

50
. (7)

with VRMS representing the RMS voltage of the IQ sample. Converting the linear into dBm results in:

PdBm = 10 log(10 · (v2I + v2Q)). (8)

A GNU Radio program that computes the power in dBm, following Eq. 8, is shown in Fig. 12. A

sinusoidal signal is added to a white noise source. The composed data stream goes through a cascade

of low and high-pass filters, and is submitted to a moving average filter, which has the effect of further

reducing the noise peak-to-peak amplitude, leaving the signal energy unchanged - as long as the moving

average block parameters “scale” and “length” are kept reciprocal to each other. The 10-multiplying

factor and logarithm are further included in the flow. GNU Radio has the possibility of using probes to

operate on the data, in the diagram it captures the data stream amplitude level. A Function Probe block

polls the probe signal and displays it in a GUI label block. Both Time and Frequency Sinks spread

along the chain sample the stream and plot the data in frequency and time domains.

Fig. 12. Example of GNURadio program to compute the power of a signal, in dBm.

The result is shown in Fig. 13. The sinusoidal source polluted by the noise is seen, on the top time

domain plot. The bottom plot shows the combined effect of the LPF and HPF, leaving the signal peak

visible. The probe label is shown down (10.53 dBm). The amplitude of the sinusoidal signal is unitary,

which results a theoretical 10 dBm according to the eq. 8. The noise amplitude, set to 2, accounts for

the observed computed difference with the analytical expected value.
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Fig. 13. Output relative to the program shown in Fig 12.

In order to quantify the improvements caused by the filtering, a sampling rate of 10 MHz was

used in the program shown in Fig. 12, where a 3 MHz sinusoidal source was added to a uniform

white-noise source; both delivering complex numbers. Table I shows the filter bandwidth effect on

the computed power. Transition frequencies of both filters were set to 100 kHz and their bandwidths

are limited between Fmin and Fmax. It can be seen that as the filter bandwidths decrease the noise

effects are weighed out and the power result converges to the theoretical value of the signal alone,

10 dBm. Naturally, as the bandwidth and transition width parameters become narrower, the time it

takes for the power readout increases, so it is a factor to be considered especially when dealing with

time-varying carriers. In addition to this procedure involving filtering and averaging, for the case of

an actual connection to a SDR and antenna, a calibration with a known signal generator is needed, in

order to create a correction equation between the actual and displayed power levels.

TABLE I. INFLUENCE ON THE MEASURED POWER OF THE FILTER BANDWIDTH - SIGNAL WAS SINUSOIDAL, 3 MHZ.

Fmin (set by the HPF) [MHz] Fmax (set by the LPF) [MHz] Measured Power [dBm]

1.00 5.00 13.14

2.00 4.00 11.82

2.50 3.50 11.00

2.75 3.25 10.50
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