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ABSTRACT Wi-Fi fingerprinting-based indoor localization has received increased attention due to its

proven accuracy and global availability. The common received-signal-strength-based (RSS) fingerprinting

presents performance degradation due to well-known signal fluctuations, but more recently, the more stable

channel state information (CSI) has gained popularity. In this paper, we present SDR-Fi, the first reported

Wi-Fi software-defined radio (SDR) receiver for indoor positioning using CSI measurements as features for

deep learning (DL) classification. The CSI measurements are obtained from a fast-prototyping LabVIEW-

based 802.11n SDR receiver platform. SDR-Fi measures CSI data passively from pilot beacon frames from

a single access point (AP) at almost 10 Hz rate. A feed-forward neural network and a 1D convolutional

neural network are examined to estimate location accuracy in representative testing scenarios for an indoor

cluttered laboratory area, and an adjacent, covered outdoor area. The proposed DL classification methods

leverage CSI-based fingerprinting for low AP scenarios, as opposed to traditional RSS-based systems,

which require many APs for reliable positioning. Demonstration results are threefold: (a) A fast-prototyping

SDR platform that passively extracts CSI measurements from Wi-Fi beacon frames, providing a genuine

possibility for vendor network cards to provide such measurements, (b) two state-of-the-art DL classification

methods outperforming traditional RSS-based methods for low AP scenarios, (c) a testing methodology for

performance evaluation of the proposed indoor positioning system.

INDEX TERMS Channel state information, deep learning, fingerprinting, indoor positioning, neural

networks, software-defined radio.

I. INTRODUCTION

Location-based services and navigation have become ubiq-

uitous in the mobile computing era. An example of a

popular navigation system is the Global Positioning Sys-

tem (GPS) [1], which uses a trilateration technique but has

the limitation of working only outdoors. Because of this

limitation, the necessity for an indoor positioning system

(IPS) is anticipated for many applications such as navigat-

ing in airports and shopping malls, location-based informa-

tion retrieval for marketing purposes, or locating people in

need of medical assistance [2]. Due to its wide deployment

and availability, wireless local area network (WLAN), com-

monly known as Wi-Fi, has recently been adopted for indoor
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positioning. There are many WLAN-based IPS methods pro-

posed in literature that use analytical methods similar to GPS

trilateration such as time-of-arrival [3], and time-difference-

of-arrival [4], and triangulation such as angle-of-arrival [5]

to estimate an indoor location. Other analytical solutions

utilize complex tailored propagation models that typically

require line-of-sight [6]. Further WLAN-based methods use

fusion algorithms with additional hardware such as sensors

and antennas [7], [8]. Empirical methods such as fingerprint-

ing (FP) [9], have gained popularity in recent years because

of their simplicity and proven accuracy (2-3 m).

The FP-based method uses two stages: offline and online.

In the offline stage, characteristic radio-frequency signals

are collected for a discrete grid of locations in an indoor

setting to build a database, the radio-map. For each discrete

location, a unique signature, a fingerprint, is generated from
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the collected radio-frequency signals. This radio-map is then

used in the online phase where the user navigates in the

indoor area by matching collected radio-frequency signals to

the fingerprint radio-map via classification algorithms. These

classification algorithms explore deterministic approaches,

such as K-nearest-neighbor (KNN) [9], probabilistic meth-

ods such as maximum likelihood estimation (MLE) [10],

and more recently, machine learning approaches such as

support-vector machines (SVM) [11], [12], and deep learn-

ing (DL) [13]–[15].

Some FP-based IPS rely on sensor data such as magnetic

and light [16]. Although, most FP-based IPS have adopted

received signal strength (RSS) available in mainstream

WLAN signal measurements for radio-map construction and

online navigation [9]. However, it suffers from performance

degradations in complex environments due to the well-known

multipath fading phenomena, which eventually cause severe

fluctuations in the measurements [13], [14]. These phenom-

ena translate to an accuracy degradation in radio-map con-

struction and classification due to unpredictable oscillations

and measurement miss-rate [17]. In addition, reported RSS-

based methods are feasible only in environments with dense

deployments of Wi-Fi access points (AP) to ensure signature

uniqueness and address measurement oscillations.

Recent literature has proposed a different fingerprint from

WLAN signals, which potentially causes fewer fluctuations:

the channel estimate. The channel estimate describes the

indoor environment due to multipath fading and other phe-

nomena such as reflections and refractions. These estimates

characterize a specific indoor location with fine-grained

information from the fading phenomena [12], [18]. There-

fore, the channel estimate was recently adapted as a fin-

gerprint, as opposed to less-stable RSS measurements. Due

to said limitations, reported accuracies for RSS-based IPS

are around 2-3 m [9], whereas channel-state-information-

based (CSI) IPS have achieved more stable near-one-meter

accuracies [18]. This accuracy is desired for precise indoor

navigation in narrow hallways and commercial buildings.

The channel estimate can be measured from either

time-based or frequency-based signals by approximating pre-

defined training sequences or ‘‘preambles’’ contained in the

received signal. The time-based channel estimate is called

the channel impulse response (CIR), and the frequency-based

channel estimate is the channel frequency response (CFR).

While some solutions propose CIR exploration obtained

from specialized equipment such as vector analyzers [19],

[20], and ultra-wideband systems [21], recent FP-based

solutions propose the CFR or so-called CSI from orthog-

onal frequency-division multiplexing-based (OFDM) sys-

tems. As per classification with CSI, probabilistic methods

such as MLE [20], [22]–[25], and DL are most commonly

used [13]–[15], [18], [26]–[30].

Most state-of-the-art CSI-based FP solutions obtain CSI

from hacked hardware on a network interface card (NIC),

e.g., Intel 5300 [31], or Atheros AR9580 [32]. As an alter-

native to obtaining the CSI, this work proposes SDR-Fi,

a fast-prototyping WLAN OFDM-based software-defined

radio (SDR) receiver for CSI measurement extraction. To the

best of our knowledge, we are the first to propose an

SDR-based solution that is able to extract the subcarrier (SC)

channels from an OFDM symbol in passive mode from vis-

ible WLAN broadcast frames. Such broadcast frames are

standardized frames transmitted by APs to identify Wi-Fi

networks, and obtainable by conventional OFDM-capable

NICs. Furthermore, both hacked solutions require dedicated

connections and firmware modifications to the NIC and AP,

making the setup cumbrous. Authors in [28] proposed an

OFDM-based SDR transceiver but required synchronization

of the transmitter and receiver via a hardware clock. Our

SDR collects measurements asynchronously and in a real-

time manner from genuine WLAN APs based on the 802.11

protocol [33]. The described SDR receiver achieves real-time

packet collection at almost 10 Hz by use of acceleration

features from a fast-prototyping software platform [17], [34].

Thus, we exploit SDR fast-prototyping features to assess

a real-life application to an IPS where no modification to

the WLAN infrastructure is required. This offers a genuine

possibility for vendor network cards to provide suchmeasure-

ments.

In terms of classification, we explore state-of-the-art

DL methods on variants of CSI measurements obtained

from SDR-Fi. Specifically, two neural network algorithms

are designed and explored: a feed-forward neural network

(FFNN) and 1D convolutional neural network (CNN). The

motivations for using the selected networks are as follows.

In previous work [12], machine learning methods for SVM

and DLwere compared where the latter showed higher classi-

fication accuracy. Thus, FFNN has been selected as a superior

representative model. Additionally, recent work in [15] has

compared 1D and 2DCNNs for CSI-based FP; the former has

shown higher accuracy for CSI data along with the benefits of

a simpler network model. Therefore, in this work, we adopt

state-of-the-art FFNN and 1D CNN models, and we tune

them further for improved classification. Another popular

category used recently in CSI-based DL classification is the

long short-term memory (LSTM) network. LSTM networks

use sequential time-series measurements of CSI and RSSI as

inputs, thus, computing trajectory-based positioning due to

a correlation between consecutive samples in time [35], [36].

Similarly, LSTMnetworks have also been reported for human

activity recognition [37]. In this paper, our study focuses

on the advantageous aspects of SDR platform’s use for FP,

and it is demonstrated for traditional snapshot-like FP. The

platform can be also used for LSTM-like processing, which

can be addressed in future work. Additionally, the proposed

neural networks are assessed on variable configurations,

as well as compared to two existing representative methods:

(a) RSS-based Horus [10]; (b) and CSI-based DeepFi [13].

Finally, SDR-Fi is examined in two representative testing

scenarios for a single AP: (a) an indoor cluttered laboratory

area and (b) an adjacent covered outdoor (less cluttered)

area.
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TABLE 1. Comprehensive list of acronyms for reading easiness.

The contributions of this paper are summarized as follows:

(a) the first to propose a real-timeWLANOFDM-based SDR

receiver that obtains CSI measurements in passive mode,

i.e., beacon frame acquisition without dedicated connec-

tion, and without modifications to the WLAN infrastruc-

ture; (b) exploration of two state-of-the-art CSI-based DL

methods with said SDR passive measurements for a single

AP scenario; and (c) a testing methodology for performance

evaluation of the proposed IPS.

Additionally, Table 1 presents a list of acronyms for read-

ing easiness that can be used in the following discussion.

The remainder of this paper is organized as follows.

Section II presents a WLAN overview and state-of-the-art

IPS. Section III discusses the proposed SDR-Fi receiver archi-

tecture and WLAN data collection structure. In Section IV,

two proposed neural network classification methods are

described. An experimental methodology along with testing

configurations, performance metrics, and performance anal-

yses is presented in Section V. Section VI discusses related

FIGURE 1. OFDM SCs for 20 MHz non-HT frame (top), and HT frame
(bottom).

work. Finally, Section VII presents conclusive remarks and

future work.

II. WLAN OVERVIEW AND STATE-OF-THE-ART

A. OFDM TECHNOLOGY OVERVIEW

Two main technologies are found in all releases of the 802.11

standard: DSSS and OFDM. One of the first releases was

802.11b, which is DSSS-based, deployed in the 2.4 GHz

band, and is considered the legacy standard. As for OFDM,

its first releases were 802.11a and 802.11g in the 5 GHz

and 2.4 GHz bands, respectively, and have 20 MHz channel

bandwidth; both, capable of up to 54 Mbps speeds. Later

came 802.11n and 802.11ac releases, which extend to wider

bandwidths, e.g., 40 MHz and 80 MHz, MIMO capabilities,

up to 600 Mbps speeds, and use 2.4 and 5 GHz bands concur-

rently.

As for the PHY layer, OFDM-based WLAN releases

(802.11a/g/n/ac) utilize a specific OFDM symbol format.

Its total channel bandwidth of 20 MHz is comprised

of 64 orthogonally overlapping SCs, each 312.5 MHz wide.

The SCs, which communicate modulated bits, use frequency

bin indices from −32 to 31 [31]. The center SC (zero bin)

is not used; similarly, it has side null SCs as guard bands.

Of the usable subcarriers, four are used as pilot SCs and the

rest as data SCs. The initial OFDM release, i.e., 802.11a/g,

uses 48 data SCs and four pilot SCs, from indices −26 to

+26 in its symbol. Later release 802.11n, internally termed

HT, extended to 52 data SCs and four pilot SCs ranging

from frequency indices −28 to +28. Fig. 1 shows the OFDM

symbol arrangement for non-HT and HT formats.

The first proposed WLAN-based IPS have been based on

passive WLAN measurement collection [7], [9], [10]. This

translates to passive beacon frame capturing from visible

broadcasting APs. The beacon frame is a broadcast PPDU

containing the necessary information to identify the AP.

They are of the management frame category and contain a

PHY preamble for synchronization as well as information

fields relevant to the AP, such as the MAC address and the

SSID [17]. These beacon frames are typically collected by

commercial NICs to compute RSS and CSI data internally
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from a givenAP, and eventually report visibleWi-Fi networks

(CSI is typically not made available by commercial NICs).

A deployed WLAN network using the most recent 802.11

release equipment, unless manually configured through the

AP, employs the non-HT symbol format for broadcasting

beacon frames by default [33].

As opposed to RSS measurements, which are reported

on non-modified commercial off-the-shelf WLAN NICs, the

CSI is not commonly accessible directly. Recently, modified

firmware on the Intel 5300 NIC called CSI Tool, has been

made available to access CSI measurements [31]. Similarly,

Atheros CSI Tool is available for Atheros NICs [32]. Such

tools extract the CSI from a particular OFDM-based preamble

frame. Specifically, the tools leverage an internal sound-

ing mechanism found on the 802.11n and later releases to

enable spatial diversity channels between the AP and the

NIC. The mechanism occurs via an exchange of sounding

preambles using the HT frame format. The tool then extracts

CSI from either 30 or 56 SC indices from said preambles.

Said HT preambles are used for MIMO technology for mul-

tiple antenna-capable NICs and, thus, can be sent in dif-

ferent spatial streams and in extended channel bandwidths

of 40MHz [33]. Before the sounding mechanism is triggered,

a prior established communication is expected between the

AP and NIC for 802.11 protocol compatibility matching, e.g.,

the AP can have compatibility up to the 802.11ac release, and

the NIC only up to 802.11g. Thus, the connection employs

technology relevant to the oldest release among both. Due

to this dedicated connection, most state-of-the-art CSI-based

IPS report a single AP [13]–[15], [18], [20], [23], [24], [26].

Another limitation is the availability of said tools to a few

NIC vendors. Furthermore, the Atheros CSI Tool requires

firmware modifications to both the NIC and the AP, making

the setup complex. Finally, the sounding mechanism has to be

triggered via pings between theNIC andAP using an imposed

Java program [13].

Because the sounding mechanism was introduced in a

later OFDM-based release (802.11n), not all OFDM-capable

single-antenna NICs have said mechanism, and thus, do not

recognize HT frames. Nonetheless, all OFDM legacy NICs

are, per the standard, required to transmit and receive non-

HT frames. This is because broadcast OFDM beacon frames

are sent on OFDM legacy non-HT frame format. Therefore,

passive measurement collection on non-HT frames for non-

modified WLAN infrastructure and legacy compatibility is

anticipated. Each captured beacon frame contains 52 SCs

for CSI measurements, as opposed to the sounding mecha-

nism containing 56 SCs. Table 2 shows the SCs frequency

indices that are transmitted in the full and decimated sounding

frames, corresponding to 30 and 56 SCs, versus the full and

decimated SCs that are available from SDR-Fi, corresponding

to 28 and 52 SCs. The decimated beacon frame assimilates the

decimated sounding SCs index pattern. For this assimilation,

we removed the indices −28, 27, and 28 that are not present

in non-HT frames, and added SC 26, thus having 28 instead

of 30 SCs. We use said decimated frame and the full beacon

TABLE 2. OFDM Subcarrier channels index for different frames.

frame as a comparison against the HT frame SCs for our

proposed methods.

B. STATE-OF-THE-ART CSI-BASED LOCALIZATION

Since the development of the CSI Tool, most CSI-based

IPS have been explored using 30 complex-valued SCs

per antenna. Few reported IPS used Atheros CSI Tool to

obtain 56 SCs due to setup complexity [29], [30]. PinLoc

first explored the stability of CSI for FP. They divided an

indoor area into 1 m x 1 m spots and attempted war driving

(access point mapping) with a robot to build the radio-map;

in the online phase, they assessed a log-likelihood function to

detect such spots using either phase or magnitude [23]. FIFS

attempted grouping 30 SC magnitudes into four values to use

as a prior distribution per RP on a MLE [22]. CSI-MIMO

aggregates 90 SCs from three antennas to 30 SCs and uses

the difference of normalized amplitudes and phases between

consecutive SCs as a signature [24].PhaseFi averaged 90 SCs

into 30 and applied a phase calibration assuming the SCs are

symmetric. They feed the calibrated phases into a DL-based

autoencoder network. It trains the network in a layer-by-

layer manner using the greedy algorithm with a stack of

RBMs [14].BiLoc used similar method to compute the phases

but in the 5 GHz band [27]. Similar network architecture

is also exploited in [13], but they use 30 SC magnitudes

instead. ConFi is the first to leverage a CSI-based CNN.

They generate ‘‘images’’ by organizing 30 SC amplitudes

into a time-frequency matrix [18]. Similarly, CiFi uses a 2D

CNN but obtains phase differences from 30 SCs to form an

angle-of-arrival image as input [26]. Authors in [15] used

30 SC magnitudes in a far less complex 1D CNN. Another

category is so-called device-free localization. Authors in [25]

form a radio-map with pairs of APs and NICs at fixed

locations, assuming the user is device-free. The radio-map

construction consists of placing several heights, shapes, and

orientations of users per RP. In the online phase, if the user

disrupts the line-of-sight and matches the radio-map patterns,

a location is estimated with potential false alarms. An SDR

in [28] is proposed by using two USRP units synchronized

by a clock and using similar OFDM symbol structure as the

WLAN standard. They collected 52 SCs and applied a 1D

CNN as in this work. Nevertheless, the reported system does
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not represent a full asynchronous WLAN OFDM receiver.

Finally, authors in [20] convert CSI values into CIR via FFT.

They attempt a super-resolution algorithm to obtain high-

granularity path-delay signatures from the estimated CIR for

localization.

III. PROPOSED OFDM SOFTWARE RECEIVER

A. RECEIVER OVERVIEW

SDR is defined as having a front-end where received signals

are digitized and a software aspect where digitized data are

processed. SDR solutions become popular because of pro-

viding full control of receiver modules, so the researchers

can integrate and test their methods without redesign-

ing all receiver chains. This becomes an advantage for

SDR-based research for fast-prototyping [12], [34]. The

proposed single-antenna SDR mimics legacy OFDM-based

NICs that are capable of passively listening for available

networks and decoding non-HT beacon frames.

The receiver is implemented by the Software Communica-

tions and Navigation Systems Laboratory at The University

of Texas at San Antonio. We implemented an OFDM-based

WLAN receiver in a platform-based environment by using

LabVIEW, a platform from National Instruments that uses

a visual programming language [34]. LabVIEW interfaces

between the host PC, where the software resides, and the

front-end. The receiver uses LabVIEW built-in function

blocks along with custom baseband blocks compiled in C++

as DLLs. Such custom blocks are integrated into the receiver

via a Call Library Function Node block. Further acceleration

features that are inherent from LabVIEW are also utilized for

real-time operation [12].

The architecture of the receiver is based on the

producer-consumer loop design. This design allows Lab-

VIEW to handle real-time continuous data acquisition from

the front-end in the producer loop. After this, the consumer

loop dequeues the raw data from a FIFO buffer and sends it to

the custom baseband blocks. LabVIEW uses native NI-USRP

drivers to interface with the front-end seamlessly. The core of

the receiver occurs at the baseband processing blocks in the

consumer loop. The reader is directed to [12] for additional

software architecture details.

B. OFDM BEACON FRAME FORMAT

This section presents an overview of the OFDM PPDU bea-

con frame format. Fig. 2 shows the detailed structure of the

frame. The L-STF is two OFDM symbols long and is used for

packet detection and coarse CFO estimation and correction.

The L-LTF is also two symbols long and is used for symbol

timing, fine CFO estimation and correction, and channel

estimation. The L-SIG field is a single OFDM symbol and

contains the RATE and LENGTH fields along with a parity

bit. These fields contain the modulation type and total length

in symbols, which are used to decode the DATA field. The

DATA field composed of multiple symbols contains a MAC

header, which specifies the frame type and subtype. We filter

only management type and beacon frame subtype.

FIGURE 2. OFDM legacy PPDU beacon frame format and description
fields.

TABLE 3. Implemented baseband blocks on proposed receiver.

C. BASEBAND BLOCKS

The consumer loop is built as a sequential state machine,

which is divided into four main states: (1) the packet detect

state, (2) timing sync state, (3) L-SIG decode state, and (4)

payload decode state. These four states are based on the

corresponding fields L-STF, L-LTF, L-SIG, and DATA,

respectively. Table 3 lists the baseband blocks that were

implemented based on the state machine, whether it is a

LabVIEW-based or custom DLL block, and the method used.

Some states use certain blocks more than once. We use an

optimized FFT library for most of our methods [38].

State (1) is the most computationally intensive, as it runs

a sliding window continually for packet detection. Specifi-

cally, an FFT-based autocorrelation method from [39] is used

on the L-STF. Afterward, a coarse CFO estimation method
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is used [40]. For state (2), symbol timing is achieved via

FFT-based cross-correlation with the L-LTF local replica.

A fine CFO is implemented as in state (1). The channel

estimation uses a frequency-domain zero-forcing equalizer

with the L-LTF in LabVIEW blocks. This is where the CSI is

measured (the 52 SCs), which is used thereafter to equalize

the rest of the payload data. In state (3), the L-SIG symbol

is decoded to obtain the RATE and LENGTH for further

demodulation. The L-SIG symbol is first equalized, and a

phase correction is applied based on the pilot tones. After-

ward, OFDM symbol demodulation occurs via a DLL IFFT.

Subsequently, a quadrature amplitude demodulator found in

LabVIEW built-in blocks is used. Similarly, deinterleaving,

Viterbi decoding, and parity check are applied prior to L-SIG

header extraction. The Viterbi decoder is ported to a custom

DLL from a highly efficient single-input multiple-data rou-

tine [41]. Once the L-SIG is decoded, state (4) applies similar

steps as in (3) but with a polynomial-based data descrambler

and a checksum computation of the frame. The checksum

uses a cyclic redundancy check, the CRC32, with a known

polynomial in the standard. If it passes, it then proceeds to

measure RSS, and log beacon frame data from a particular AP

such as MAC address, and SSID. Overall, all these baseband

block implementations are described in the standard [33].

D. SLEEP-MODE FOR REAL-TIME OPERATION

As of the current version of SDR-Fi, the receiver is not able

to operate in real-time since the most demanding operation

of constant correlation in a sliding window manner occurs

in state (1). Specifically, this state makes the receiver run

three times slower than real-time operation. However, since a

continuous operation of the receiver is not required, a sleep-

mode has been implemented based on the beacon broadcast

interval of 102.4 milliseconds per AP [17]. The receiver is

put to ‘‘sleep’’ after detecting a beacon frame packet. This is

done by commercial NICs to save power and, thus, is imitated

in the SDR implementation. With sleep-mode, the receiver

achieves real-time packet collection rates up to 9.5 Hz, which

is close to the theoretical maximum of 9.76 Hz [17].

IV. NEURAL NETWORK MODELS

In this work, we adopt a FFNN and a 1D convolutional neu-

ral network for classification. The models for the proposed

IPS are less complex compared to the algorithms discussed

in [13], [15], and [18]. Furthermore, the parameters for these

models are selected based on the data set. The details of

the custom network models are discussed in the following

subsections.

A. SDR-BASED CSI MEASUREMENTS

As has been demonstrated previously in [13] and [18], the sig-

nature in CSI measurements contains fine-grained informa-

tion of a relevant location. It has been observed that different

locations can be characterized separately based on specific

patterns in the CSI waveforms. In terms of neural networks,

each CSI pattern denotes a location or a class. This is why

FIGURE 3. Normalized CSI magnitudes for a single RP for 52 SCs (top),
and 28 SCs (bottom).

neural networks have been attempted to learn said patterns

for location estimation. The CSI measurement for each SC is

denoted as complex-valued:

CSIi = |CSIi| e
j 6 CSIi (1)

where |CSIi| and 6 CSIi are the magnitude and phase of the

i-th SC, respectively [13]. As mentioned in Section II-B,

many conjugations of the CSI magnitude and phase have

been used in previous reported IPS. In this work, we use

CSImagnitudes as inputs for our network configuration along

with calibrated RSS values in dBm. For calibration, we test

RSS values alongside a reported commercial NIC. We also

explore the effects of having the full SCs from a beacon

frame for network training. Fig. 3 shows a batch of 2000 CSI

normalized measurements collected for a specific RP in our

experiments. The top plot shows 52 SCs, and the bottom

shows 28 SCs. The bottom plot closely relates to the 30 SCs

available from the CSI Tool.

B. FEED-FORWARD NEURAL NETWORK

A FFNN works similar to the neurons of a human brain,

through interactive learning. The neurons learn by associating

patterns through complex interconnections. The architecture

of the proposed FFNN is a specific type of pattern recognition

network called PatternNet from MATLAB [42]. The overall

training of the FFNN occurs through a multilayer backprop-

agation training algorithm called SCG [43]. The outputs of

each layer are weights and biases, which are mapped to a

nonlinear activation function called hyperbolic tangent sig-

moid, or tansig. This activation function calculates the layer’s

outputs based on its net inputs within a range [−1,1]. Overall,

the SCG algorithm adjusts the weights and biases tominimize

the gradient.
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FIGURE 4. Structure of the FFNN.

In the context of IPS, the neural network is trained to

classify inputs, which are CSI measurements, to N target

classes, which are the radio-map locations. Fig. 4 shows an

overview of the FFNN structure. The input dimensions are

corresponding to the SCs, i.e., either 28×N or 52×N . Each

hidden layer has Lk neurons, where typically L1 > L2 >

Li, k ∈ {1 . . .K }, for K layers. The output layer always has

N neurons. Initially, the inputs are computed and passed as

weights and biases assigned to the neurons of the first hidden

layer. During the training, the gradient is minimized based on

a MSE loss function defined as:

ε =
1

2N

N
∑

j=1

(

RPj − RP′
j

)2
(2)

where ε is the MSE, RPj is the true j-th location, and RP′
j is

the estimated location. The interaction between HLs occurs

in a similar way: the newly adjusted weights of the neurons

are passed as a vector input to each neuron of the next hidden

layer. The overall training process runs until the minimum

gradient is reached; this signifies a well-trained model. As for

the data, the model randomly divides the data into training,

validation, and testing subsets. The output layer implements

a softmax function to map the output weights to the estimated

classes (N locations). Therefore, each output neuron corre-

sponds to an RP, and these final weights are the estimated

probabilities for each location. The softmax is based on an

exponential function that returns values in the range of [0, 1]:

yj =
e
w
T
j xi

∑N
j=1 e

w
T
j xi

(3)

where yj is the output weight corresponding to the j-th loca-

tion, wj is a weight vector from the last hidden layer con-

nected to the output neuron, and xi is the i-th output of the

last hidden layer.

C. CONVOLUTIONAL NEURAL NETWORK

CNNs are proven to be effective in 2D image classifica-

tion and pattern detection [44]. However, we describe a 1D

CNN for flattened CSI-based inputs to simplify our proposed

model. Similar to [15], we optimize our 1D CNN further for

our data sets.

FIGURE 5. Structure and workflow of the 1D CNN.

The basis of CNN is similar to FFNN in terms of a layered

structure. However, typical CNN comprises additional layers

such as a convolutional layer, pooling layer, activation layer,

and fully connected layer. Fig. 5 shows the structure and

workflow of a 1DCNN. The structure uses so-called convolu-

tional blocks (ConvNet), which consist of all or some of these

four layers: a convolutional layer, which processes the input

samples based on a 1Dfilter [44]; a batch normalization layer;

an activation layer; and a pooling layer, which resamples

the data according to the next input size. The model can

have several convolutional blocks; however, we observed a

degradation depending on the experimental scenario.

On each convolutional block, the convolutional layer con-

sists of optimized filters of sizes 1 × 50 or 1 × 26 for our

flattened 1D CSI data. Additionally, we use P of these filters.

Afterward, the batch normalization is applied between the

convolutional layer and the activation layer. This achieves

faster training and reduces initial parameter sensitivity. In the

activation layer, a nonlinear transfer function is applied as a

threshold to remove negative values. The rectified linear unit

is chosen as the activation function for all the layers except

the output layer. It is defined as follows:

f (x) =

{

x, x ≥ 0

0, x < 0
(4)

where x is the input element. The result is then downsampled

with a max-pooling layer to produce more compact features.

The last two layers consist of a fully connected layer and a

softmax output layer. The fully connected layer resamples the

features from previous ConvNets to match the output layer.

In this case, it hasN neurons matching the locations. As in the

FFNN, the softmax layer outputs probabilities of N locations

based on the learned features in the CNN hierarchy.

The training of the model utilizes a SGDM [45] algorithm.

It accumulates the gradient of the past steps to update the

parameters while minimizing the loss function. Similar to

the FFNN, the minimization occurs at each iteration along the

direction of steepest descent. The momentum term reduces

the oscillation during the minimization. The training function
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is defined as follows:

wl+1 = wl − α∇L (wl) + γ (wl − wl−1) (5)

where wl is the weight vector of the l-th iteration, L (wl) is

the loss function, α is a learning rate,∇ is a gradient operator,

and γ is the contribution of the previous gradient step to

the current iteration. The algorithm evaluates the gradient

and updates the weights in each iteration using a subset of

the training data. The cross-entropy with L2 regularization

(weight decay) is chosen as the loss function to avoid over-

fitting [46], [47]. It is defined as follows:

LR (w) =
−1

M





M
∑

i=1

N
∑

j=1

I {zi = j} log
e
w
T
j xi

∑N
l=1 e

w
T
l xi





+
λ

2

L
∑

i=1

N
∑

j=1

w2
i,j (6)

whereM is the training set size, N is the number of RPs, I {·}

is an indicator function, xi is the i-th RP location output of the

previous layer, zi is the RP location where CSI measurements

are collected, λ is a regularization factor, and L is the size of

w, i.e., number of neurons in the fully connected layer. The

training process in the ConvNet is iterated until the features

are appropriately discriminative. These features are then fed

to the fully connected layer. With the downsampling and

the shared weights between layers, the CNN reduces the

number of trainable parameters, i.e., weights. Finally, similar

to FFNN, the model performs cross-validation by dividing

the data into randomized sets such as training, validation, and

testing.

V. EXPERIMENTAL VALIDATION

This section presents an experiment methodology followed

by a description of the performance metrics used in the

experimental validation. We present several testing configu-

rations and a comparative analysis of the results. In this work,

we evaluate the performance of the IPS on a 2D coordinate

system.

A. EXPERIMENT METHODOLOGY

We perform data collection at two representative scenarios

for our experimental validation: (a) at the indoor laboratory

(cluttered indoor area); and (b) at an adjacent (less cluttered)

covered outdoor area. For the lab, we survey 69 RPs with

a granularity of 60.96 cm (2 ft) between RPs. We choose

16 TPs in-between RPs for validation. The indoor lab depicts

a cluttered environment with desks, chairs, and lockers.

Fig. 6 shows the indoor layout with a single AP. The total area

is around 60m2 (646 ft2), and the sides are around 10m× 6m

(32.8 ft × 19.7 ft). The adjacent outdoor area depicts an open

space, and we use the same indoor AP for the survey. We use

36 RPs spaced at 76.2 cm (2.5 ft) apart. Likewise, we use

eight interlaced TPs for validation. The adjacent outdoor area

is 3.81 m × 6 m (12.5 ft × 20 ft).

FIGURE 6. Indoor laboratory layout (left) and adjacent (right) outdoor
layout for testing.

We define a sample as a successful collection of a beacon

frame at the receiver, providing an RSS measurement, and

28 or 52 CSI measurements. For each RP and TP, we collect

2000 and 500 samples, respectively. We use a NI-USRP

9232 front-end along with an ASUS ROG GL552VW laptop

(quad-core Intel i7-6700HQ processor, 32 GB RAM, and

Windows 10), and the proposed SDR-Fi v4.3. With this ver-

sion, it takes us around 3.5 min to collect 2000 samples, and

1 min to collect 500 samples. A total of 210,000 samples are

collected for RPs, and 12,000 samples for TPs.

B. PERFORMANCE METRICS

In the training phase of the neural network, the RPs are used

as classes and the SCs as features to generate a network

model. In the online phase, each TP sample is evaluated

against the trained model. The model returns probability

weights for each known trained class, which corresponds

to 69 classes (RPs) for indoors, and 36 for outdoors. This

means each TP evaluation returns, e.g., 69 probability values

such that when combined they add up to 1. To compute

the performance metric, we use the mean error by using

the weights of each output class (based on the RPs) per

TP evaluation, thus, computing a 2D centroid location, i.e.
(

x̂TP, ŷTP
)

. Furthermore, we subtract the coordinates from the

known TP coordinates used in said evaluation. We evaluateK

TPs to compute the mean error ε as follows:

ε =
1

K

K
∑

l=1

√

(

x̂TP,l − xTP,l

)2
+

(

ŷTP,l − yTP,l

)2
(7)

Additionally, we generate a CDF based on all K evaluated

TP distance errors and compute the mean, standard deviation,

50th percentile, and 90th percentile. We perform the same

metric evaluation for all our comparative results in the fol-

lowing subsections.

C. TESTING CONFIGURATIONS

For our IPS evaluation, we use the MATLAB Deep Learn-

ing Toolbox [42] to construct customized FFNN and 1D

CNN configurations. We evaluate both networks along with

CSI-based DeepFi, and RSS-based Horus methods, respec-

tively. Table 4 shows several configurations evaluated for

both our networks. For FFNN, we evaluate 2, 3, and 4 HL

configurations. We vary the neurons in the hidden layers
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TABLE 4. Testing configurations for the performance evaluation.

as the highest value being the first as listed in Table 4,

e.g., 300/150/100 would be a 3 HL configuration. Further,

the training of the FFNN models for indoors use 90% of

samples for training and 10% for validation, whereas for

outdoors we use 75% for training, 15% for validation, and

10% for testing. These percentages are used for hyperparam-

eter tuning during the training stage, and we have selected

them for optimal performance. For all the 1D CNN varia-

tions, the learning rate is set at 0.001. For DeepFi, we opti-

mize the configuration to adjust to our indoor and outdoor

environments. For indoors, we configure four HLs and use

200/50/30/69 neurons, respectively. Similarly, for outdoors,

we use 4 HLs and 70/50/30/36 neurons. Thus, we report

an optimized version of DeepFi in our results. Additionally,

DeepFi originally uses 90 SCs from 3 antennas; in this work,

we input the SC measurements from the single-antenna SDR

into DeepFi, e.g., 52 SCs.

D. RESULTS ANALYSIS

1) COMPARISON WITH EXISTING METHODS

We compare the proposed neural networks with Horus and

optimizedDeepFi. We use our most optimized configurations

for FFNN and 1D CNN. Specifically, we use two HLs with

300/150 neurons per layer for the indoor setting, and 4 HLs

with 300/150/100/36 neurons for outdoors, for the FFNN. For

1D CNN, we use one convolutional layer and 2048 filters

for indoors, and three convolutional layers and 2048 filters

per layer for outdoors. We use 52 SCs as feature inputs and

2000 training samples per RP. Table 5 shows results for the

indoor environment. The best performance is observed for

the 1D CNN method with 0.99 m mean error while FFNN

achieves 1.37 m mean error, both outperforming DeepFi and

Horus. The 1DCNNand FFNNoutperformDeepFi by 42.5%

and 20.7%, respectively. Fig. 7 shows the CDF plot for all four

methods. We can observe that 1D CNN and FFNN outper-

form DeepFi and Horus by comparing their 50th percentiles.

TABLE 5. Comparative positioning performance results of proposed
methods for indoor environment.

TABLE 6. Comparative positioning performance results of proposed
methods for outdoor environment.

FIGURE 7. Indoor CDF distance error comparison with existing methods.

Similarly, Table 6 shows results for the outdoor environ-

ment. In the less cluttered scenario, we observe performance

degradation in mean error with 1.52 m for 1D CNN and

1.47 m for FFNN when compared with indoors. The same

degradation is observed for DeepFi. Fig. 8 shows the CDF

for the outdoor environment. In contrast, Horus shows an

improvement in the outdoor vs indoor setting from 2.83 m

to 2.40 m; thus exploiting the less-cluttered outdoor environ-

ment for RSS-based FP.

We can see both 1D CNN and FFNN performing similarly

but still outperforming DeepFi and Horus. Overall, we prove

our hypothesis of unique signatures in the high-grained CSI

measurements by observing a more stable performance in the

more cluttered environment (indoors) against a noisier out-

door setting (see Fig. 7 and Fig. 8). Conversely, an improve-

ment is seen for RSS-based Horus in this same trend.

2) IMPACT ON THE NUMBER OF SCS

We compare the FFNN and 1D CNN against varying SCs

obtainable by SDR-Fi. We use the same configuration as in

Section V-D.1, but we vary the number of SCs between the

decimated 28 SCs (see Section II-A) and the full 52 SCs.

Table 7 shows mean error and std. dev. results for both 52 and

28 SCs evaluation on the indoor environment. For 1D CNN,

145792 VOLUME 7, 2019



E. Schmidt et al.: SDR-Fi: Deep-Learning-Based Indoor Positioning via SDR

FIGURE 8. Outdoor CDF distance error comparison with existing methods.

TABLE 7. Comparison results for number of SCs for indoor environment.

FIGURE 9. Indoor CDF distance error comparison with varying SCs for
both models.

we see a mean error improvement of 17.2% when using all

52 SCs; however, the improvement on the std. dev. is 21.3%.

For FFNN, we see an improvement of 27.2% and 35.5% for

the mean and std. dev., respectively. Fig. 9 shows the CDF

for the four-combination scenarios. We can clearly observe

improvement in the CDF curves when using the 52 SCs from

the OFDM symbol for both 1D CNN and FFNN, against

28 SCs. Also, we observe an improvement on the std. dev.

(as opposed to the mean) due to a finer resolution in the SCs.

In other words, the higher number of SCs translates to overall

precision improvement because the network trains with an

enhanced channel estimate.

3) IMPACT ON THE NUMBER OF TRAINING SAMPLES

We assess the number of training samples entered into both

the FFNN and 1D CNN models for the indoor setting.

We use the same network configurations as in Section V-D.1,

but we use 500, 1000, and 2000 training samples per RP.

FIGURE 10. Indoor CDF distance error comparison with varying training
samples for FFNN (top), and 1D CNN (bottom).

TABLE 8. Comparison results for training samples for indoor
environment.

Table 8 shows the comparative results for different training

samples on the models. We observe a gain of 18.5% in

the mean error for 1D CNN and 32.9% for FFNN when

increasing training samples from 500 to 2000. We con-

clude that the 1D CNN is at its optimum performance for

CSI-based training, as not much gain is observed. Addition-

ally, 1D CNN training performance with 500 samples outper-

forms FFNN training with 2000 samples. Thus, the 1D CNN

has better compatibility for CSI-based training. Fig. 10 shows

a zoomed-in CDF plot for different training samples for

FFNN on the top, and 1D CNN on the bottom. This also

showsmore curve variations for FFNNagainst 1DCNNwhen

training samples are increased.

4) IMPACT ON THE NUMBER OF HIDDEN LAYERS

We assess the impact on the number of hidden layers for

the FFNN. We test with 2, 3, and 4 HLs. Table 9 shows the

comparative results for our indoor setting. We observe a
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TABLE 9. Comparison results for hidden layers on the FFNN for indoor
environment.

TABLE 10. Comparison results for number of convolutional layer filters.

FIGURE 11. Indoor CDF distance error comparison for FFNN with varying
HLs.

decrease in performance as the hidden layers are increased.

We conclude that the complexity does not add to better loca-

tion estimation in the FFNN. In fact, we see a similar perfor-

mance for 4 HLs as in DeepFi (see Table 5). Thus, our 2 HL

model is better tuned for the indoor setting. Fig. 11 shows

a zoomed-in CDF comparison for different HLs. For the

indoor setting, an evident underperformance is observed as

the complexity of the network is increased.

5) IMPACT ON THE NUMBER OF CONVOLUTIONAL LAYER

FILTERS

To achieve the best-optimized model for our 1D CNN,

we assess the impact on the number of ConvNet filters. The

1D CNN configuration for indoors is listed in Section V-D.1,

but we vary the number of filters as in Table 4. Table 10 shows

the comparative results for our indoor setting. We see a gain

of 26.6% for the mean error, and 39% for the std. dev. when

comparing 512 filters and 2048 filters. We see an improve-

ment in precision (std. dev.) with the increase in filters on

the 1D CNN. Fig. 12 shows the CDF comparison for these

varying filters. We also observe that 1D CNN training is

more susceptible to number of filters compared to number

of training samples (see Fig. 10 bottom).

VI. RELATED WORK

Indoor positioning has observed increasing research in the

last two decades for numerous types of technologies such

FIGURE 12. Indoor CDF distance error comparison for varying
convolutional layer filters.

as WLAN, Bluetooth, FM radio, ultrasound, magnetic fields,

among others [7]. Nonetheless, WLAN-based has been the

most predominant due to its extensive deployment and avail-

ability. Beginning from [9], FP-based IPS have presented

numerous methods in recent years, with DL being the most

recent (and best performing) for classification [18], and RSS

and CSI the most used features. We narrow our proposed

methods within the CSI-based FP using DL for classifi-

cation. Several testing methodologies have been proposed,

having a broad range of options such as number of APs,

evaluation on RPs or evaluation on TPs, the type of survey

environment whether open space or cluttered and the type of

metric used for reporting accuracy, e.g., mean error and CDF

percentiles. In this light, we consider the best representa-

tive testing methodology for overall performance as follows:

(a) 1 AP or more, the former to show a potential worst-case

scenario for emergency situations; (b) performance evalua-

tion on TPs rather than RPs; (c) both a cluttered and a less

cluttered area; and (d) mean error as well as CDF percentile

as performance metrics. Said methodology suitably evaluates

an IPS for an improved representation of its performance.

We present a comprehensive list of representative FP-based

IPS in Table 11 by categorizing them into FP features, clas-

sification method, number of APs used, testing evaluation on

either RPs or TPs, and their self-reported accuracy metrics.

To the best of our knowledge, we present the best accuracy in

terms of the aforementioned representative testing method-

ology, with 0.99m mean error and 0.77m 50th percentile

error, for our CNN scheme. Additionally, all CSI-based IPS

in Table 11 except SDR-Fi and ResNet1D use the CSI Tool

and Atheros CSI Tool, which rely on dedicated connections

to a single AP and complex setup and firmware modifica-

tions to both the AP and NIC, as mentioned in Section II-A.

Additionally, having all 56 SCs from the HT frame did not

provide any substantial gain in accuracy against the 52 SCs

from the reported non-HT frame in SDR mode [29], [30].

As an example, BP obtained mean error accuracy of 1.57m

using a representative testing methodology and 56 SCs from

Atheros CSI Tool, but we obtained 1.37m mean error using
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TABLE 11. Self-reported accuracy comparison for representative WLAN IPS.

52 SCs. In terms of classification, 1D CNN has the best

performance overall, but any method is suitable. For number

of APs, device-free methods such as in [25] and [15] require

fixed location of APs and NICs, thus, requiring pairs of

transmitters and receivers for the radio-map collection (see

Section II-B). For the evaluation, some reported using the

same RPs for training and testing, but we obtained centimeter

accuracy in such tests since the classification for RPs and

TPs is the same. CSI-MIMO reported a single TP for testing,

but we evaluated our system with a single TP and obtained a

mean error of 0.22m for our best TP. Hence, using several TPs

renders a better statistical figure for the overall performance.

Finally, the accuracy is reported in several metrics, but these

numbers can vary among CDF values and the overall mean

error. ResNet1D reported accuracy in percentage since they

trained and evaluated the system with RPs only, but SDR-Fi

obtained 99.99% accuracy with this same testing methodol-

ogy. ConFi provided the second-lowest self-reported mean

accuracy of 1.37m with a representative testing methodology

similar to that proposed in this work.

VII. CONCLUSION AND FUTURE WORK

This paper presents SDR-Fi, a fast-prototyping SDR receiver

capable of extracting RSS and CSI measurements pas-

sively from WLAN OFDM-based beacon frames for an

IPS. As opposed to commercial NICs that only provide

RSS, and hacked NIC versions, e.g., CSI Tool, that pro-

vide CSI from a restricted sounding mechanism and limited

NIC vendors, SDR-Fi captures beacon frames in a passive

manner. The receiver achieves packet collection rates up to

9.5 Hz and is able to capture from simultaneous visible APs.

The demonstrated SDR capabilities for fast-prototyping evi-

dently enhance potential research areas to assess real-life

WLAN FP-based IPS with no modifications to the WLAN

infrastructure.

In this work, we proposed two of the latest state-of-the-art

deep learning models: a feed-forward neural network, and a

1D convolutional neural network. These models used partial

and full SCs as features from non-HT beacon frames collected

from the SDR. We used RPs for model training and TPs for

online navigation. Hence, the models estimated the closest

location for a TP sample. A good set of parameters was

selected for the DL models through exhaustive experiments.

We verified the efficacy of the models in location estimation

compared to existing methods. We presented comparative

results of our optimized 1D CNN and FFNNmodels against a

CSI-based DeepFi method, and a RSS-based Horus method.

Our 1D CNN model demonstrated an accuracy of 0.99 m

and 0.63 m std. dev., and our FFNN model demonstrated an

accuracy of 1.37 m and 0.87 m std. dev., both for an indoor

cluttered scenario with a single AP. This one-meter accuracy

is suitable for indoor navigation. Additionally, we analyzed

comparative results on the impact for varying number of SCs,

training samples, number of hidden layers for the FFNN, and

number of filters for the 1D CNN. We concluded that the

full number of SCs provided from SDR-Fi offer improved

precision (std. dev.) over the commonly knownCSI Tool, thus,

strengthening fast-prototyping SDR research.

For future work, multiple AP scenarios are proposed, as the

receiver can passively capture broadcast beacon frames from

visible networks. The passive CSI measurement collection

provides a possibility for vendor network cards to provide
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such measurements in the future; this can leverage future IPS

deployment at a fractional cost. Furthermore, LSTMmethods

for human activity recognition can be explored with SDR-

Fi. Methods related to sparse processing [48] can be applied

to a 3D space model, i.e., SCs, APs, and RPs, respectively.

Similarly, legacy WLAN technologies such as DSSS are

also to be explored with techniques similar to those seen in

previous work [12].
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