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Abstract

We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12CO (1–0)
observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present
resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the
star formation efficiency (SFE) and gas fraction ( fgas) for these galaxies separately in the central “bulge” regions
and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates
most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in
their disks, supporting an “inside-out” model of galaxy quenching. For the two galaxies where SFE can be
reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline
in fgasis the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the

disks, there exist common correlations between the sSFR and SFE and between sSFR and fgason kiloparsec

scales—the local SFE or fgasin the disks declines with local sSFR. Our results support a picture in which the

sSFR in bulges is primarily controlled by fgas, whereas both SFE and fgasplay a role in lowering the sSFR in
disks. A larger sample is required to confirm if the trend established in this work is representative of the green
valley as a whole.

Key words: Galaxies: evolution

1. Introduction

It has been known for more than a decade that the
distributions of galaxy properties are bimodal in either the
color–magnitude diagram (CMD) or the relation between
the star formation rate (SFR) and stellar mass (Blanton et al.
2003; Kauffmann et al. 2003; Baldry et al. 2004). Galaxies in
between the blue cloud and the red sequence, the so-called
“green valley” galaxies (see Salim 2014 for a review on this
topic), are often thought to be in transition from the star-
forming phase to the quiescent phase (Bell et al. 2004; Faber
et al. 2007; Martin et al. 2007). Under this framework, the
scarce density of green valley galaxies implies that either the
fraction of star-forming galaxies undergoing star formation
quenching is low or the quenching process is fast enough so
that the life time in the green valley phase is short. Properties of

these green valley galaxies thus carry important information on

how the star formation is quenched.
A study carried out by Schawinski et al. (2014) has shown

that the color-selected transitional galaxies are dominated by

galaxies with late-type (disk) morphology with a slowly

declining star formation history, rather than morphologically

early-type (elliptical) galaxies of which the star formation is

shut down abruptly (also see Smethurst et al. 2015). However,

it remains unclear what physical mechanism plays the

dominant role in suppressing the star formation of galaxies

and produces these two types of green valley galaxies.

Furthermore, the underlying star formation history of green

valley galaxies can be even more complicated if galaxies are

rejuvenated by accreting fresh gas through minor mergers

(Haines et al. 2015; Lacerna et al. 2016).
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A variety of scenarios have been proposed to explain the
shutdown of star formation in galaxies, usually split into so-
called “nature” processes—referring to the consequences of
internal evolution of galaxies, and “nurture,” or the impact of
the environment a galaxy lives in. If “nature” processes
dominate, galaxies would be expected to grow, evolve, and die
inside-out (White & Frenk 1991; Mo et al. 1998). Recent IFU
observations demonstrate that many nearby spiral galaxies
show negative gradients in stellar ages and metallicities,
supporting this inside-out picture (González Delgado et al.
2014; Sánchez-Blázquez et al. 2014; Li et al. 2015; Belfiore
et al. 2017; Goddard et al. 2017). On the other hand, if
“nurture” dominates galaxy evolution, external processes such
as ram-pressure stripping (Gunn & Gott 1972), high speed
galaxy encounters (Moore et al. 1996), galaxy mergers (Mihos
& Hernquist 1994), and “strangulation” (Larson et al. 1980;
Balogh et al. 2000; Peng et al. 2015) are responsible for
quenching. In this picture, star formation quenching is likely to
occur globally or in the outer regions of galaxies first due to the
lack of continuous supply for the cold gas reservoir.

Previous works in the area of green valley galaxies faced two
main limitations. First, earlier optical studies on transitional
galaxies largely rely on the single-fiber SDSS spectroscopy,
which lacks spatial information and covers only the central part
of nearby galaxies. Second, although the star formation
histories (including recent and on-going SFR) of galaxies can
be inferred from UV, optical, to infrared data based on the
broadband SEDs (spectral energy distributions) and spectral
lines, a complete picture of the galaxy evolution processes
requires an understanding of the cold molecular gas, which
serves as the fuel of star formation. In this work, we present the
ALMA CO observations of three green valley galaxies selected
from the SDSS-IV Mapping Nearby Galaxies at Apache Point
Observatory (MaNGA; Bundy et al. 2015; Law et al. 2016;
Yan et al. 2016a, 2016b). The focuses of this work are to
characterize the role of cold molecular gas in the star formation
quenching and to probe the sequence of quenching among
substructures of galaxies (e.g., bulge versus disk) by combining
spatially resolved observations of the stellar population and
molecular gas. Specifically, we will address whether the
declining star formation activity is caused by a depletion of
gas or by a suppression of star-forming efficiency in different
galactic regions.

Throughout this paper, we adopt the following cosmology:
H 0=100h -km s 1 Mpc−1, W = 0.3m , and W =L 0.7. We use
a Salpeter IMF and adopt the Hubble constant h=0.7. All
magnitudes are given in the AB system.

2. Data

2.1. MaNGA Targets

MaNGA is an on-going integral field unit (IFU) survey on
the SDSS 2.5 m telescope (Gunn et al. 2006), as part of the
SDSS-IV survey (SDSS Collaboration et al. 2016; Blanton
et al. 2017). MaNGA makes use of a modification of the BOSS
spectrographs (Smee et al. 2013) to bundle fibers into hexagons
(Drory et al. 2015). Each spectra has a wavelength coverage of

3500–10,000Å, and instrumental resolution ∼60 km s−1. After
dithering, MaNGA data have an effective spatial resolution of
2 5 (FWHM; Law et al. 2015), and data cubes are gridded with
0 5 spaxels.

We make use of the Pipe3D pipeline (Sánchez et al. 2016a)
to model the stellar continuum with 156 templates with 39 ages
and 4 stellar populations that were extracted from a combina-
tion of the synthetic stellar spectra from the GRANADA library
(Martins et al. 2005) and the MILES project (Sánchez-
Blázquez et al. 2006; Vazdekis et al. 2010; Falcón-Barroso
et al. 2011). Details of the fitting procedures are described in
Sánchez et al. (2016b). In short, a spatial binning is first
performed in order to reach an S/N of 50 accross the entire
field of view (FoV) for each datacube. A stellar population fit
of the coadded spectra within each spatial bin is then computed.
The stellar population model for spaxels with continuum
S/N > 3 is then estimated by rescaling the best fitted model
within each spatial bin to the continuum flux intensity in the
corresponding spaxel, following Cid Fernandes et al. (2013)
and Sánchez et al. (2016a). The stellar mass surface density
(
*
S ) is then obtained using the stellar mass derived for each
spaxel and then normalized to the physical area of one spaxel.
We derive the emission line fluxes following the same
procedure described in Belfiore et al. (2016). Briefly speaking,
the fittings are performed on continuum subtracted spectra
using sets of Gaussians (one per line) with a common velocity.
The dust attenuation is corrected by using the Balmer
decrement, adopting the Calzetti (2001) attenuation curve with
Rv=4.05 and a theoretical value for the Balmer line ratio
(Hα/Hβ=2.86) taken from Osterbrock & Ferland (2006),
assuming case B recombination. SFR is then estimated based
on this extinction corrected Hαflux using the conversion given
by Kennicutt (1998a) with the Salpeter IMF. Similarly, we
convert the spaxel-based SFR into the SFR surface density
(S SFR) by normalizing it to the spaxel area. At at fixed
extinction curve and IMF, the uncertainty in the SFR estimate
is proportional to that of the Hαflux and is less than 33% given
that we only limit to our analysis to spaxels with
S/N (Hα)>3.
We show in the left panel of Figure 1, the locations of the

sSFR, defined as the SFR divided by the stellar mass (
*

M ),
versus

*
M for 2730 MaNGA galaxies (black dots), from an

internal release (labeled MPL5), very closely equivalent to
Data release 13 (SDSS Collaboration et al. 2016), by
integrating the Pipe3D results from individual MaNGA
spaxels. The three green valley targets (MaNGA 1-596678,
1-114956, and 1-596598) for the ALMA follow-up, high-
lighted by the color-coded stars, were drawn from the first 118
galaxies observed by MaNGA at the time when the ALMA
proposal was prepared. They are randomly selected to be
massive galaxies that lie below the star-forming main-sequence
relation with different separations from the main sequence,
ΔsSFR, defined as the offset in log(sSFR) relative to the main-
sequence value (i.e., log(sSFR)–log(sSFRMS)). Previous studies
have revealed significant differences in the slope and normal-
ization of the main sequence (e.g., see Speagle et al. 2014).
The selection of the star-forming population, the method
determining the star formation rate and stellar mass, as well
as the IMF, have a strong effect in determining the properties
of the main sequence. In light of this complexity, we compute
our own value of sSFRMS based on the Pipe3D results to be
self-consistent. The sSFR of the main sequence is determined
to be ∼ -10 10.18 yr−1, as shown in the blue solid line, by taking
the median sSFR of galaxies with log(sSFR/yr−1)>−10.6.
Our derived sSFRMS is close to the ~z 0 value (sSFR
∼

-10 10.09 yr−1) derived using the empirical sSFR versus

2
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redshift relation given in Equation (13) of Elbaz et al. (2011).

We also require the targets to be accessible by ALMA and we

do not impose the constraint on the predicted CO abundance

when selecting the targets. We number them 1 to 3 (hereafter

Galaxy 1, Galaxy 2, and Galaxy 3) according to their ΔsSFR

(see Table 1). Although Galaxy 1 lies close to the lower edge of

the star-forming main sequence on the global sSFR

—
*

M plane, all three galaxies are referred to as “green valley

galaxies” loosely in this work.
These three objects were recently observed as part of the

H I-MaNGA program at the Robert C. Byrd Green Bank

Telescope (GBT), which is obtaining H I 21 cm observations

of a large sample of MaNGA galaxies (AGBT17A_012, PI:

K. Masters). Galaxies 1 and 2 have H I gas fractions

comparable to that of the normal H I galaxies, while Galaxy

3 is below the ALFALFA scaling relation (see Figure 2(c) of

Huang et al. 2012). In addition, Galaxy 1 and Galaxy 2 were

also observed in CO (2–1) with JCMT (PI: Ting Xiao) and CO

(1–0) with IRAM (Saintonge et al. 2012), respectively, from

which the total H2 mass can be derived. The beam size of

JCMT is 22″ and is 32 5 for IRAM. The general properties of

the three green valley galaxies are summarized in Table 1. We

assume the CO(2–1) to CO(1–0) ratio to be 0.7 when

calculating the total H2 mass of Galaxy 1.

Figure 1. Left panels: the positions of the three green valley galaxies on the global sSFR vs. stellar mass plane derived from the Pipe3D analysis of MaNGA data.
Each MaNGA MPL5 galaxy is shown as a black dot. The large stars show the 3 green valley galaxies: Galaxy 1 (blue), Galaxy 2 (green), and Galaxy 3 (red). The
horizontal line represents a constant log(sSFR/yr−1)=−10.18, denoting the typical value of the star-forming population. Right panels: the resolved SFR surface
density vs. stellar mass surface density of the three green valley galaxies (from top to bottom: galaxy 1, Galaxy 2, and Galaxy 3). MaNGA 0 5 spaxels belonging to
the bulges are shown as solid circles (note that these are not all independent data point as the effective resolution of MaNGA is 2 5) while the contours show the
distributions of the spaxels in the disks. The black diamond symbols denote the median values for both disk and bulge components. The blue dashed line represents the

best-fit of the resolved relation for the main-sequence galaxies (Hsieh et al. 2017), corresponding to sSFR= -10 10.33 yr−1, while the upper and lower dotted–dashed

lines show sSFR= -10 9.83 and -10 10.83 yr−1, respectively. SFR for the bulge of Galaxy 3 are shown as upper limits due to possible AGN contaminations.

Table 1

Properties of the Three MaNGA Galaxies

ID MaNGA ID R.A. Decl. Redshift log(M/ M )
log -( )M

SFR

yr 1 ΔsSFR log(MH2/ M ) log(MH I/ M ) log -( )SFE

yr 1

b

(Dr
a
)

1 1-596678 332.89284 11.79593 0.02695 10.88 0.46 −0.24 9.47c 10.21 −9.0

(114.7 Mpc)

2 1-114956 332.79873 11.80073 0.02702 10.36 −0.3 −0.48 8.98d 9.87 −9.2

(115.0 Mpc)

3 1-596598 331.12290 12.44263 0.02659 10.98 0.075 −0.73 L 9.7e L

(113.2 Mpc)

Notes.
a
Comoving radial distance.

b
The global SFE estimated based in the single-dish CO measurements.

c
Data taken with JCMT by Ting Xiao et al.

d
Data taken from Saintonge et al. (2012).

e
Galaxy 1 is in the edge of the GBT beam (5.5′ away) of Galaxy 3 and both galaxies are at very similar redshifts, so the H I can be attenuated flux from the H I linked

to that in the edges of the beam. If there is no H I detected linked to Galaxy 3, the upper limit (assuming a width of 400 km s−1) would be log(MH I/ M )=9.22
instead.

3
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2.2. ALMA Observations

Molecular gas observations in 12CO(1–0) were carried out

with ALMA in Cycle 3 on 2016 January using the Band 3

receiver (project code: 2015.1.01225.S; PI: Lihwai Lin). The

baseline ranges from 15 to 310 meters. The largest structure

that we expect to be sensitive to is about 36″ (∼20 kpc). Thus,

the missing flux should be negligible. Uranus was observed as

the flux calibrator for Galaxy 2, and Neptune was used for

Galaxy 1 and Galaxy 3. The phase and bandpass of the

observations of Galaxy 1 and Galaxy 2 were calibrated with

J2232+1143 and J2222+1213 , respectively, and J2200+1030

and J2148+0657 for Galaxy 3. The on-source time is ∼1 hr for

each galaxy.
Our spectral setup includes one line targeting 12CO (1–0).

The window has a bandwidth of 0.937 GHz (2500 km s−1),

with a channel width of 3906.250 kHz (10.1 km s−1). The data

were processed by pipeline (version r35932 and r36660) in the

Common Astronomy Software Applications package (CASA,
version 4.5.1 r35996 and 4.5.3 r36115).
The task CLEAN was employed for deconvolution with a

robust=0.5 weighting (Briggs). We adopted a user-specified
image center, pixel size, and restoring beamsize to match the
image grid and the spatial resolution of the MaNGA images
during the CLEAN process. The user-specified image center is
∼0 1 away from the original center in the ALMA observa-
tions. We adopt a geometric mean beamsize of the user-
specified beam, 2 5×2 5 (∼1.4×1.4 kpc), similar to that of
the native beamsize reported by the CLEAN (2 6×2 2). We
have confirmed that all results remain unchanged if we instead
use the original image center and restoring beamsize.
Sensitivities of the three observations are almost identical.
The final cubes have channel widths of 10.1 km s−1 and rms
noise (srms) of ∼0.5 mJy beam−1. Integrated intensity maps
were created from the cubes with a clip in noise of 1.5-srms.
Varying the clipping threshold from 2σ to 1.3σ results in a

Figure 2. Maps of various quantities for the three green valley galaxies (from top to bottom: Galaxy 1, Galaxy 2, and Galaxy 3). The first column shows the SDSS gri

composite images with the MaNGA hexagon overlaid in pink. The second column displays S SFRbased on the MaNGA Hαobservations. The S SFRin the central
region of Galaxy 3 must be interpreted as an upper limit because its Hαemission is likely contaminated by AGN contributions. The third column shows the H2 mass
surface density map based on ALMA CO(1–0) observations. The fourth and last columns show the distributions of SFE and fgas, respectively. In the second to fifth

columns, the “bulge” and “disk” regions are defined as those spaxels within the white solid circles and outside the dashed circles, respectively.

4
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change of the CO flux from −15% to +10% with respect to the
case using 1.5σ. Since the ALMA observations have larger
fields of view than MaNGA, the edge of ALMA maps were cut
off to match the image size of MaNGA. The H2 mass surface
density (SH2

) is computed from the CO surface density by
adopting a conversion factor (aCO) of 4.3 M (K km s−1 pc2)−1

(e.g., Bolatto et al. 2013).
We can compare the total CO flux and/or H2 mass obtained

by integrating the ALMA results with those based on single-
dish observations for two of our targets. We find that the total
ALMA CO(1–0) flux for Galaxy 1 is in good agreement with
that derived from the JCMT CO(2–1) observation if adopting a
conventional CO(2–1)/CO(1–0) ratio=0.7. For Galaxy 2,
which is part of the COLD GASS sample, its ALMA-integrated
H2 mass is a factor of 1.9 lower than the value listed in the
COLD GASS catalog when applying the same aCO. We
suspect that this discrepancy may be related to the method of
aperture correction used in the COLD GASS estimation for this
object.

3. Results

To separate the bulge and disk regions in our data, we
perform the two-component fitting using GALFIT (Peng et al.
2002, 2010) in the SDSS -r band images. For the bulge and
disk components, we fix the Sérsic index to be n=4 and
n=1, respectively, when fitting other parameters. The
effective radii (Re) are determined to be 2 77, 0 7, and 1 23
for Galaxies 1, 2, and 3, respectively. Once we obtain Re of the
bulge, we compute the observed effective radius (Re

obs
) by

convolving it with the PSF size of both MaNGA and ALMA
beams (∼2 5). We define the “bulge” region to be <r Re

obs,
and in order to mitigate contamination from any overlap region,
we define the “disk” region to be > ´r R2 e

obs. These regions
are indicated by white circles in Figure 2.

3.1. Resolved S SFRversus *S Relation

Recently, it has been found that kiloparsec-scaleS SFRtraces
well with the underlying

*
S for star-forming galaxies (Sánchez

et al. 2013; Cano-Díaz et al. 2016; Abdurróuf & Akiyama
2017; Hsieh et al. 2017). This relation may be responsible for
the observed tight correlation between the global SFR and

*
M .

In the right panel of Figure 1, we show the kiloparsec-scale
S SFRversus *

S relation for the three green valley galaxies.
The data points from the bulge and disk regions are shown in
solid circles and contours, respectively. The dotted line
represents the best-fit of the resolved main-sequence relation
obtained for the MaNGA star-forming population (Hsieh et al.

2017): log -
( )M

SFR

yr 1 =−10.33 + log *

( )M

M
. For Galaxy 1, the

disk almost lies on the resolved main sequence, while the bulge
is only slightly below the line. On the other hand, the bulge of
Galaxy 2 shows significant departure from the resolved main
sequence. We note that the central Hαemission of Galaxy 3 is
dominated by broad emission lines associated with an AGN,
and therefore theS SFRfrom Hαis an upper limit in the central
part of this galaxy. In spite of this, it is clear that both the bulge
and disk regions of Galaxy 3 are systematically below the
resolved main-sequence relation. There is also a trend that the
disk sSFR declines from Galaxy 1 to Galaxy 3, following a
similar behavior of the global sSFR. Assuming galaxies evolve
with declining sSFR, our results would indicate that the sSFR

in the bulge departs from the resolved main sequence first,
followed by the disk as the global sSFR decreases.20

3.2. Gas Fraction, Star Formation Efficieny, and
Specific Star Formation Rate

Figure 2 shows the optical image, S SFR, SH2
, star formation

efficiency (SFE; defined as SFR/MH2
), and the gas fraction

( fgas; defined as SH2
/(
*
S +SH2

)) for the three green valley
galaxies. We can see that the spatial distributions of these
quantities are diverse among the three galaxies. For example,
both S SFRand SH2

peak in the central part of Galaxy 1,
whereasSH2

is more evenly distributed in Galaxy 2 and greater
in the outskirts in Galaxy 3. Interestingly, all three galaxies
show increasing fgaswith radius. We note that MaNGA
achieves nearly uniform sensitivity across its IFU bundles,
which is sufficient to detect the continuum at high S/N in the
outskirts of these objects. The observed increases in gas
fraction is, therefore, not driven by low S/N in the outskirts of
galaxies. To quantify these differences, we next compare the
relations among various quantities. The upper panels of
Figure 3 show the SH2

versus
*
S relation. For Galaxy 1,

SH2
scales with

*
S for both bulge and disk regions. On the

other hand, for Galaxies 2 and 3, SH2
is quite uniform across

the bulges, despite the fact that the SH2
correlates with

*
S in

disks. The lower panel shows the median gas fraction as a
function of

*
S in bulges (circles) and disks (stars). The gas

fraction in the bulges varies significantly among the three
galaxies by 1.6 dex, being lower toward the Galaxy 3. On the
other hand, the gas fractions in disks are comparable in the
three cases, although slightly lower in Galaxy 3. Except for
Galaxy 1, fgasin the bulges is significantly lower than in the
disks for the other two galaxies.
Next, we explore the relation between the SFR surface

density and the gas surface density, the so-called “Kennicutt-
Schmidt” relation (Kennicutt 1998a), shown in the upper
panels of Figure 4. Only spaxels with S/N (CO) > 2 are
displayed. The SFE versus

*
S is shown in the lower panel.21

Except for Galaxy 3 for which the central Hαemission is
contaminated by the broad-line region associated with the
AGN, the SFEs of the other two bulges are at a similar level
and are moderately lower compared to their corresponding
disks. Similarly, the disk regions show a wider spread in the
resolved SFE. Even though the SFEs are similar in some
regions among the three galaxies, their median values system-
atically decline from Galaxies 1 to 3 by a factor of 3. Since two
of our targets also have single-dish CO observations, we can
compare the resolved SFE with the global SFE measurements
as listed in Table 1. The global SFE is in good agreement with
the resolved SFE for Galaxy 1. On the other hand, the global
SFE is close to the lower end of the resolved SFE distribution
for Galaxy 2. We note that the later is caused by the factor of
1.9 excess in the total CO (1–0) flux estimated by the COLD
GASS single-dish measurement compared to the integrated
ALMA flux (see Section 2.2).
To address the relative importance in controlling the sSFR

between gas fraction and SFE, we plot fgasand SFE against
sSFR and compute the Spearman’s correlation coefficient ρ as

20
It is not necessarily true that these three galaxies form an evolutionary

sequence, in particular, because Galaxy 2 is less massive than the other two. In
addition, the sSFR of galaxies may not monotonically decline with time as the
SFR can be reignited by various processes during the life time of galaxies.
21

Here we only consider the molecular gas, not the H I gas mass.
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shown in Figure 5. The data points associated with the bulge
regions in Galaxy 3 are excluded in this analysis given that we
cannot measure the SFR directly due to the AGN contamina-
tion. For bulges, the relation between fgasan sSFR is stronger

than that between SFE and sSFR as indicated by the ρ values,
suggesting that the sSFR of bulges is mainly controlled by fgas.

On the other hand, it is observed that both local fgasand SFE

correlate with local sSFR in disks, and the local relations are
common among the three disks. For comparison, we also plot
the global SFE versus sSFR relations of the COLD GASS
sample for galaxies with secure CO detections (Saintonge et al.

2011) in Figure 5 after correcting for the differences in the
adopted IMF and aCO. Our data points in the disk regions are
systematically below the best-fit lines of the COLD GASS
sample. This discrepancy may come from the fact that these two
samples are averaged over different physical scales. The spatially
resolved observations tend to sample CO bright regions,
resulting in lower SFE than the global averages. An alternative
explanation is that green valley galaxies may form a different
correlation from the main sequence. Observations covering a
wider range of galaxy populations are needed to conclude
whether the observed SFE versus sSFR relation is universal.

Figure 3. Top panels: the gas surface density vs. the stellar mass surface density relation for Galaxy 1, Galaxy 2, and Galaxy 3 (from left to right). Spaxels belonging
to the bulges are shown as small dots, while the contours show the distributions of the spaxels in the disks. The sharp boundary in SH2corresponds to the S/N=2
cutoff in the CO flux density. The gray arrows denote bulge spaxels falling below the detection limit. The three dashed–dotted lines correspond to constant gas
fractions of 0.1, 0.01, and 0.001 (from top to bottom). Bottom panel: the gas fraction as a function of the stellar mass surface density. The median values for the bulges
and disks are shown as circles and stars, respectively. The symbols are color-coded to represent different galaxies (blue: Galaxy 1; green: Galaxy 2; red: Galaxy 3).
The error bars denote the uncertainties in the median values, calculated as the standard deviation normalized by the square root of the number of independent spaxels.
In some cases, the error bars are smaller than the size of the symbols and hence are invisible from the plots.

Figure 4. Top panels: the relation between the SFR surface density and the gas surface density for Galaxy 1, Galaxy 2, and Galaxy 3 (from left to right). The dashed

line corresponds to a constant SFE of -10 9.1 yr−1, the averaged result from the HERACLES sample (Leroy et al. 2008), while the upper and lower dotted–dashed lines

correspond to constant gas fractions of -10 8.6 and -10 9.6 yr−1, respectively. Bottom panel: the star formation efficiency as a function of stellar mass surface density.

The dashed line shows a constant SFE of -10 9.1 yr−1. Colors, symbols, and the method used to compute the uncertainties are the same as those in Figure 3.
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4. Discussion

The above analyses suggest that fgasin bulges declines

dramatically from Galaxy 1 to Galaxy 3, while keeping a
similar level of SFE compared to the disks. On the other hand,
there is a significant decrease in the disk SFE when the global
sSFR of galaxies drops. To first order, the sSFR ∼ fgas× SFE.

If we assume that green valley galaxies evolve with a declining
global sSFR, a plausible scenario is that the bulge first
quenched due to the reduction on the cold gas available,
followed by a subsequent quenching in the disk because of the
decrease in both the SFE and fgas. This is consistent with the

inside-out quenching scenario in which the star formation
ceases in bulges first.

The physical cause of the inside-out quenching, however,
remains unanswered. Using the sample drawn from the HERA
CO-Line Extragalactic Survey (HERACLES; Leroy et al. 2008),
Huang & Kauffmann (2015) found that the gas depletion time is
shorter for the bulge than for the disk, consistent with an earlier
work carried out by Leroy et al. (2013). Although the galaxies
used in their works is part of an H I-selected sample, which is
mainly composed of normal star-forming galaxies on the main
sequence, their result indicates that the greater SFE of the bulge
may be responsible for reducing the amount of cold gas for the
bulge, leading to the quenching of star formation if there is no
further gas supply for the bulge. The observation of our three
green valley galaxies does not seem to share the same trend, in
particular, that the bulge SFEs of green valley galaxies are
similar or even lower than what is observed in their disks, similar

to the findings by Fisher et al. (2013) based on a combined
sample of the BIMA SONG (Helfer et al. 2003), CARMA
STING (Rahman et al. 2012), and PdBI NUGA (García-Burillo
et al. 2003) surveys. Our Galaxy 1, which is closest to the main
sequence, shows comparable SFE and fgasbetween its bulge and
disk, suggesting that star formation alone cannot explain the
faster reduction of the cold molecular gas in the bulges; some
other processes are required to efficiently reduce or remove the
cold molecular gas in the central parts of galaxies when galaxies
migrate to the quiescent population.
One of the commonly accepted pictures refers to the so-

called AGN feedback, which heats up or expels the surround-
ing gases, preventing galaxies from subsequent star formation,
particularly for massive galaxies. This scenario is supported by
the observation of low gas fraction in AGN host galaxies (e.g.,
Brusa et al. 2015; Kakkad et al. 2017), as well as the AGN-
driven molecular gas outflow (Cicone et al. 2014; Feruglio
et al. 2015). In addition, it has been reported that AGN hosts
preferentially lie in the green valley or below the main
sequence (Nandra et al. 2007; Salim et al. 2007; Silverman
et al. 2008; Ellison et al. 2016; Smith et al. 2016), suggesting
that AGN could drive the transition from the star-forming to the
quiescent phases. Recently, a spatially resolved star formation
rate study using MaNGA galaxies also finds that the resolved
sSFR of unbarred AGN hosts is below the resolved main
sequence (L. Bing et al. 2017, in preparation) across the entire
galaxies, similar to the three cases presented in this work. As
noted earlier, one of our three green valley galaxies, Galaxy 3,
shows broad-line features and hence potentially hosts an AGN.

Figure 5. Left panels: the gas fraction as a function of specific star formation rate. Right panels: the star formation efficiency as a function of specific star formation
rate. The dashed lines show the COLD GASS results based on a sample of galaxies with secure CO detections (see Table 1 of Saintonge et al. 2011). The small dots in
the upper two panels represent spaxels located in the bulges. In the bottom two panels, the contours in the lower two panels represent the distributions in the disks. The
solid circles and stars show the median values of the bulge and disk regions, respectively. The red arrows in the top-left panel indicate the upper limits for Galaxy 3.
Colors, symbols, and the method used to compute the uncertainties are same as those in Figure 3. The Spearman’s correlation coefficient ρ is also shown in the lower-
right corner of each panel.
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It is consistent with the AGN feedback framework that the
presence of AGN diminishes the available cold gas in the bulge
and even in the disks. On the other hand, although the
morphological quenching (Martig et al. 2009) also predicts low
SFE in the disks that are stabilized against gas fragmentation
due to the presence of massive bulges, it may not be relevant to
the three systems discussed in this work since morphological
quenching is only effective in bulge dominated systems, unlike
our green valley galaxies.

5. Conclusions

We have observed three MaNGA-selected green valley
galaxies with ALMA CO (1–0) to study the role of gas in star
formation quenching. The three galaxies are referred to as
Galaxies 1, 2, and 3 according to their separation from the main
sequence on the global sSFR and

*
M relation (1: closest; 3:

farthest). Specifically, we study the relations among sSFR,
SFE, and fgason kiloparsec scales. Our results are summarized
below.

1. The resolved MaNGA data show that the disk sSFR
declines with the decreasing global sSFR. There is an
indication that the bulge departs from the resolved main
sequence first, followed by the disk as the global sSFR
declines.

2. For Galaxies 2 and 3, which are clearly below the star-
forming main sequence, the gas fraction in the bulges is lower
compared to that in the disks. The gas fraction in the bulges
drops by 1.6 dex from Galaxy 1 to Galaxy 3.

3. The SFE in the bulge is moderately lower than that in the
disk for Galaxy 1 and Galaxy 2. In addition, the SFE of disk
decreases from Galaxy 1 to Galaxy 3.

4. The resolved sSFR is found to correlate with both fgasand
SFE. However, the sSFR of bulges have a stronger dependence
on fgas. On the other hand, the resolved sSFR in disks are

sensitive to both fgasand SFE.

Our results suggest that the fgasis the dominant factor
determining the sSFR of bulges, while the sSFR of disks
declines because of the drop in both SFE and fgaswhen the
global sSFR declines. Assuming the three galaxies represent a
sequence of transitional stages, our results would favor an
inside-out quenching—the SF is ceased in the bulge first
because of the lack of available cold gas, followed by the
quenching in the disk due to subsequent decline in SFE as well
as in fgas. Our results fit into the AGN feedback scenario in
which the AGN activity may heat up or eject the cold gas out,
resulting in a reduction of available cold gas to fuel the star
formation in the bulges (and possible in the disks), although it
remains unclear what drives the declination of SFE in the disks
when galaxies move away from the main sequence. However,
such a evolution sequence may be oversimplified as it has been
shown that green valley galaxies can have diversity in terms of
their quenching timescales, suggesting different pathways of
star formation quenching (Schawinski et al. 2014; Smethurst
et al. 2015). Moreover, galaxies may be rejuvenated if there is
fresh gas accreted when experiencing minor mergers or galaxy
interactions (Thomas et al. 2010; Haines et al. 2015; Lacerna
et al. 2016) and hence may not evolve monotonically with a
decreasing global sSFR. Detailed stellar population analyses
regarding the star formation and stellar mass assembling
histories (e.g., Ibarra-Medel et al. 2016) together with resolved
gas observations for a larger sample of green valley galaxies is
required to confirm the picture presented in this work.

We thank the anonymous referee for valuable suggestions
that significantly improve the contents of this paper. We thank
C. Maraston, E. Emsellem, M. Cappellari, and A. Aragon-
salamanca for helpful suggestions. The work is supported by
the Ministry of Science & Technology of Taiwan under the
grant MOST103-2112-M-001-031-MY3 and 106-2112-M-
001-034. R.M. and F.B. acknowledge support by the UK
Science and Technology Facilities Council (STFC). R.M.
acknowledges ERC Advanced Grant 695671 “QUENCH.”
This paper makes use of the following ALMA data: ADS/

JAO.ALMA#2015.1.01225.S. ALMA is a partnership of ESO
(representing its member states), NSF (USA), and NINS
(Japan), together with NRC (Canada), NSC, and ASIAA
(Taiwan), and KASI (Republic of Korea), in cooperation with
the Republic of Chile. The Joint ALMA Observatory is
operated by ESO, AUI/NRAO, and NAOJ. This project also
makes use of the MaNGA-Pipe3D data products. We thank the
IA-UNAM MaNGA team for creating it, and the ConaCyt-
180125 project for supporting them. The Green Bank
Observatory is a facility of the National Science Foundation.
This work used data from project AGBT17A_012: “H I-
MaNGA: H I Followup of MaNGA galaxies,” PI Karen L.
Masters.
Funding for the Sloan Digital Sky Survey IV has been

provided by the Alfred P. Sloan Foundation, the U.S.
Department of Energy Office of Science, and the Participating
Institutions. SDSS-IV acknowledges support and resources
from the Center for High-Performance Computing at the
University of Utah. The SDSS website iswww.sdss.org.
SDSS-IV is managed by the Astrophysical Research Con-
sortium for the Participating Institutions of the SDSS
Collaboration including the Brazilian Participation Group, the
Carnegie Institution for Science, Carnegie Mellon University,
the Chilean Participation Group, the French Participation
Group, Harvard-Smithsonian Center for Astrophysics, Instituto
de Astrofísica de Canarias, The Johns Hopkins University,
Kavli Institute for the Physics and Mathematics of the Universe
(IPMU) / University of Tokyo, Lawrence Berkeley National
Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP),
Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-
Planck-Institut für Astrophysik (MPA Garching), Max-Planck-
Institut für Extraterrestrische Physik (MPE), National Astro-
nomical Observatory of China, New Mexico State University,
New York University, University of Notre Dame, Observatário
Nacional / MCTI, The Ohio State University, Pennsylvania
State University, Shanghai Astronomical Observatory, United
Kingdom Participation Group, Universidad Nacional Autón-
oma de México, University of Arizona, University of Colorado
Boulder, University of Oxford, University of Portsmouth,
University of Utah, University of Virginia, University of
Washington, University of Wisconsin, Vanderbilt University,
and Yale University.

ORCID iDs

Lihwai Lin https://orcid.org/0000-0001-7218-7407
Hsi-An Pan https://orcid.org/0000-0002-1370-6964
Pei-Ying Hsieh https://orcid.org/0000-0001-9155-3978
Shan Huang https://orcid.org/0000-0001-9588-8775
Bau-Ching Hsieh https://orcid.org/0000-0001-5615-4904
Karen Masters https://orcid.org/0000-0003-0846-9578
Kevin Bundy https://orcid.org/0000-0001-9742-3138
Dmitry Bizyaev https://orcid.org/0000-0002-3601-133X

8

The Astrophysical Journal, 851:18 (9pp), 2017 December 10 Lin et al.

http://www.sdss.org
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0001-7218-7407
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0002-1370-6964
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9155-3978
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-9588-8775
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0001-5615-4904
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0003-0846-9578
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0001-9742-3138
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X
https://orcid.org/0000-0002-3601-133X


Niv Drory https://orcid.org/0000-0002-7339-3170
Héctor Ibarra-Medel https://orcid.org/0000-0002-
9790-6313
Ivan Lacerna https://orcid.org/0000-0002-7802-7356
Tim Haines https://orcid.org/0000-0002-4344-7262
David V. Stark https://orcid.org/0000-0002-3746-2853

References

Abdurróuf, & Akiyama, M. 2017, MNRAS, 469, 2806
Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681
Balogh, M. L., Navarro, J. F., & Morris, S. L. 2000, ApJ, 540, 113
Belfiore, F., Maiolino, R., Maraston, C., et al. 2016, MNRAS, 461, 3111
Belfiore, F., Maiolino, R., Tremonti, C., et al. 2017, MNRAS, 469, 151
Bell, E. F., Wolf, C., Meisenheimer, K., et al. 2004, ApJ, 608, 752
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28
Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. 2003, ApJ, 594, 186
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207
Brusa, M., Feruglio, C., Cresci, G., et al. 2015, A&A, 578, A11
Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7
Calzetti, D. 2001, PASP, 113, 1449
Cano-Díaz, M., Sánchez, S. F., Zibetti, S., et al. 2016, ApJL, 821, L26
Cicone, C., Maiolino, R., Sturm, E., et al. 2014, A&A, 562, A21
Cid Fernandes, R., Pérez, E., García Benito, R., et al. 2013, A&A, 557, A86
Drory, N., MacDonald, N., Bershady, M. A., et al. 2015, AJ, 149, 77
Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2011, A&A, 533, A119
Ellison, S. L., Teimoorinia, H., Rosario, D. J., & Mendel, J. T. 2016, MNRAS,

458, L34
Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265
Falcón-Barroso, J., Sánchez-Blázquez, P., Vazdekis, A., et al. 2011, A&A,

532, A95
Feruglio, C., Fiore, F., Carniani, S., et al. 2015, A&A, 583, A99
Fisher, D. B., Bolatto, A., Drory, N., et al. 2013, ApJ, 764, 174
García-Burillo, S., Combes, F., Eckart, A., et al. 2003, in ASP Conf. Ser. 290,

Active Galactic Nuclei: From Central Engine to Host Galaxy, ed. S. Collin,
F. Combes, & I. Shlosman (San Francisco, CA: ASP), 423

Goddard, D., Thomas, D., Maraston, C., et al. 2017, MNRAS, 466, 4731
González Delgado, R. M., Pérez, E., Cid Fernandes, R., et al. 2014, A&A,

562, A47
Gunn, J. E., & Gott, J. R. I. 1972, ApJ, 176, 1
Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332
Haines, T., McIntosh, D. H., Sánchez, S. F., Tremonti, C., & Rudnick, G. 2015,

MNRAS, 451, 433
Helfer, T. T., Thornley, M. D., Regan, M. W., et al. 2003, ApJS, 145, 259
Hsieh, B. C., Lin, L., Lin, J. H., et al. 2017, ApJL, in press (arXiv:1711.09162)
Huang, M.-L., & Kauffmann, G. 2015, MNRAS, 450, 1375
Huang, S., Haynes, M. P., Giovanelli, R., & Brinchmann, J. 2012, ApJ,

756, 113
Ibarra-Medel, H. J., Sánchez, S. F., Avila-Reese, V., et al. 2016, MNRAS,

463, 2799
Kakkad, D., Mainieri, V., Brusa, M., et al. 2017, MNRAS, 468, 4205
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS,

341, 33

Kennicutt, R. C., Jr. 1998a, ApJ, 498, 54
Kennicutt, R. C., Jr. 1998b, ARA&A, 36, 189
Lacerna, I., Hernández-Toledo, H. M., Avila-Reese, V., Abonza-Sane, J., &

del Olmo, A. 2016, A&A, 588, A79
Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692
Law, D. R., Cherinka, B., Yan, R., et al. 2016, AJ, 152, 83
Law, D. R., Yan, R., Bershady, M. A., et al. 2015, AJ, 150, 19
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782
Leroy, A. K., Walter, F., Sandstrom, K., et al. 2013, AJ, 146, 19
Li, C., Wang, E., Lin, L., et al. 2015, ApJ, 804, 125
Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009, ApJ, 707, 250
Martin, D. C., Wyder, T. K., Schiminovich, D., et al. 2007, ApJS, 173, 342
Martins, L. P., González Delgado, R. M., Leitherer, C., Cerviño, M., &

Hauschildt, P. 2005, MNRAS, 358, 49
Mihos, J. C., & Hernquist, L. 1994, ApJL, 431, L9
Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Natur,

379, 613
Nandra, K., Georgakakis, A., Willmer, C. N. A., et al. 2007, ApJL, 660, L11
Osterbrock, D. E., & Ferland, G. J. (ed.) 2006, Astrophysics of Gaseous

Nebulae and Active Galactic Nuclei (2nd ed.; Sausalito, CA: Univ. Science
Books)

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H. W. 2002, AJ, 124, 266
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097
Peng, Y., Maiolino, R., & Cochrane, R. 2015, Natur, 521, 192
Rahman, N., Bolatto, A. D., Xue, R., et al. 2012, ApJ, 745, 183
Saintonge, A., Kauffmann, G., Wang, J., et al. 2011, MNRAS, 415, 61
Saintonge, A., Tacconi, L. J., Fabello, S., et al. 2012, ApJ, 758, 73
Salim, S. 2014, SerAJ, 189, 1
Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267
Sánchez, S. F., Pérez, E., Sánchez-Blázquez, P., et al. 2016a, RMxAA, 52, 21
Sánchez, S. F., Pérez, E., Sánchez-Blázquez, P., et al. 2016b, RMxAA, 52, 171
Sánchez, S. F., Rosales-Ortega, F. F., Jungwiert, B., et al. 2013, A&A,

554, A58
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006,

MNRAS, 371, 703
Sánchez-Blázquez, P., Rosales-Ortega, F. F., Méndez-Abreu, J., et al. 2014,

A&A, 570, A6
Schawinski, K., Urry, C. M., Simmons, B. D., et al. 2014, MNRAS, 440, 889
SDSS Collaboration, Albareti, F. D., Allende Prieto, C., et al. 2016,

arXiv:1608.02013
Silverman, J. D., Mainieri, V., Lehmer, B. D., et al. 2008, ApJ, 675, 1025
Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146, 32
Smethurst, R. J., Lintott, C. J., Simmons, B. D., et al. 2015, MNRAS, 450, 435
Smith, K. L., Mushotzky, R. F., Vogel, S., Shimizu, T. T., & Miller, N. 2016,

ApJ, 832, 163
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS,

214, 15
Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., & Silk, J. 2010,

MNRAS, 404, 1775
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS,

404, 1639
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52
Yan, R., Bundy, K., Law, D. R., et al. 2016a, AJ, 152, 197
Yan, R., Tremonti, C., Bershady, M. A., et al. 2016b, AJ, 151, 8

9

The Astrophysical Journal, 851:18 (9pp), 2017 December 10 Lin et al.

https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-7339-3170
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-9790-6313
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-7802-7356
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-4344-7262
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://orcid.org/0000-0002-3746-2853
https://doi.org/10.1093/mnras/stx936
http://adsabs.harvard.edu/abs/2017MNRAS.469.2806A
https://doi.org/10.1086/380092
http://adsabs.harvard.edu/abs/2004ApJ...600..681B
https://doi.org/10.1086/309323
http://adsabs.harvard.edu/abs/2000ApJ...540..113B
https://doi.org/10.1093/mnras/stw1234
http://adsabs.harvard.edu/abs/2016MNRAS.461.3111B
https://doi.org/10.1093/mnras/stx789
http://adsabs.harvard.edu/abs/2017MNRAS.469..151B
https://doi.org/10.1086/420778
http://adsabs.harvard.edu/abs/2004ApJ...608..752B
https://doi.org/10.3847/1538-3881/aa7567
http://adsabs.harvard.edu/abs/2017AJ....154...28B
https://doi.org/10.1086/375528
http://adsabs.harvard.edu/abs/2003ApJ...594..186B
https://doi.org/10.1146/annurev-astro-082812-140944
http://adsabs.harvard.edu/abs/2013ARA&amp;A..51..207B
https://doi.org/10.1051/0004-6361/201425491
http://adsabs.harvard.edu/abs/2015A&amp;A...578A..11B
https://doi.org/10.1088/0004-637X/798/1/7
http://adsabs.harvard.edu/abs/2015ApJ...798....7B
https://doi.org/10.1086/324269
http://adsabs.harvard.edu/abs/2001PASP..113.1449C
https://doi.org/10.3847/2041-8205/821/2/L26
http://adsabs.harvard.edu/abs/2016ApJ...821L..26C
https://doi.org/10.1051/0004-6361/201322464
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..21C
https://doi.org/10.1051/0004-6361/201220616
http://adsabs.harvard.edu/abs/2013A&amp;A...557A..86C
https://doi.org/10.1088/0004-6256/149/2/77
http://adsabs.harvard.edu/abs/2015AJ....149...77D
https://doi.org/10.1051/0004-6361/201117239
http://adsabs.harvard.edu/abs/2011A&amp;A...533A.119E
https://doi.org/10.1093/mnrasl/slw012
http://adsabs.harvard.edu/abs/2016MNRAS.458L..34E
http://adsabs.harvard.edu/abs/2016MNRAS.458L..34E
https://doi.org/10.1086/519294
http://adsabs.harvard.edu/abs/2007ApJ...665..265F
https://doi.org/10.1051/0004-6361/201116842
http://adsabs.harvard.edu/abs/2011A&amp;A...532A..95F
http://adsabs.harvard.edu/abs/2011A&amp;A...532A..95F
https://doi.org/10.1051/0004-6361/201526020
http://adsabs.harvard.edu/abs/2015A&amp;A...583A..99F
https://doi.org/10.1088/0004-637X/764/2/174
http://adsabs.harvard.edu/abs/2013ApJ...764..174F
http://adsabs.harvard.edu/abs/2003ASPC..290..423G
https://doi.org/10.1093/mnras/stw3371
http://adsabs.harvard.edu/abs/2017MNRAS.466.4731G
https://doi.org/10.1051/0004-6361/201322011
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..47G
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..47G
https://doi.org/10.1086/151605
http://adsabs.harvard.edu/abs/1972ApJ...176....1G
https://doi.org/10.1086/500975
http://adsabs.harvard.edu/abs/2006AJ....131.2332G
https://doi.org/10.1093/mnras/stv989
http://adsabs.harvard.edu/abs/2015MNRAS.451..433H
https://doi.org/10.1086/346076
http://adsabs.harvard.edu/abs/2003ApJS..145..259H
http://arxiv.org/abs/1711.09162
https://doi.org/10.1093/mnras/stv709
http://adsabs.harvard.edu/abs/2015MNRAS.450.1375H
https://doi.org/10.1088/0004-637X/756/2/113
http://adsabs.harvard.edu/abs/2012ApJ...756..113H
http://adsabs.harvard.edu/abs/2012ApJ...756..113H
https://doi.org/10.1093/mnras/stw2126
http://adsabs.harvard.edu/abs/2016MNRAS.463.2799I
http://adsabs.harvard.edu/abs/2016MNRAS.463.2799I
https://doi.org/10.1093/mnras/stx726
http://adsabs.harvard.edu/abs/2017MNRAS.468.4205K
https://doi.org/10.1046/j.1365-8711.2003.06291.x
http://adsabs.harvard.edu/abs/2003MNRAS.341...33K
http://adsabs.harvard.edu/abs/2003MNRAS.341...33K
https://doi.org/10.1086/305588
http://adsabs.harvard.edu/abs/1998ApJ...498..541K
https://doi.org/10.1146/annurev.astro.36.1.189
http://adsabs.harvard.edu/abs/1998ARA&amp;A..36..189K
https://doi.org/10.1051/0004-6361/201527844
http://adsabs.harvard.edu/abs/2016A&amp;A...588A..79L
https://doi.org/10.1086/157917
http://adsabs.harvard.edu/abs/1980ApJ...237..692L
https://doi.org/10.3847/0004-6256/152/4/83
http://adsabs.harvard.edu/abs/2016AJ....152...83L
https://doi.org/10.1088/0004-6256/150/1/19
http://adsabs.harvard.edu/abs/2015AJ....150...19L
https://doi.org/10.1088/0004-6256/136/6/2782
http://adsabs.harvard.edu/abs/2008AJ....136.2782L
https://doi.org/10.1088/0004-6256/146/2/19
http://adsabs.harvard.edu/abs/2013AJ....146...19L
https://doi.org/10.1088/0004-637X/804/2/125
http://adsabs.harvard.edu/abs/2015ApJ...804..125L
https://doi.org/10.1088/0004-637X/707/1/250
http://adsabs.harvard.edu/abs/2009ApJ...707..250M
https://doi.org/10.1086/516639
http://adsabs.harvard.edu/abs/2007ApJS..173..342M
https://doi.org/10.1111/j.1365-2966.2005.08703.x
http://adsabs.harvard.edu/abs/2005MNRAS.358...49M
https://doi.org/10.1086/187460
http://adsabs.harvard.edu/abs/1994ApJ...431L...9M
https://doi.org/10.1046/j.1365-8711.1998.01227.x
http://adsabs.harvard.edu/abs/1998MNRAS.295..319M
https://doi.org/10.1038/379613a0
http://adsabs.harvard.edu/abs/1996Natur.379..613M
http://adsabs.harvard.edu/abs/1996Natur.379..613M
https://doi.org/10.1086/517918
http://adsabs.harvard.edu/abs/2007ApJ...660L..11N
https://doi.org/10.1086/340952
http://adsabs.harvard.edu/abs/2002AJ....124..266P
https://doi.org/10.1088/0004-6256/139/6/2097
http://adsabs.harvard.edu/abs/2010AJ....139.2097P
https://doi.org/10.1038/nature14439
http://adsabs.harvard.edu/abs/2015Natur.521..192P
https://doi.org/10.1088/0004-637X/745/2/183
http://adsabs.harvard.edu/abs/2012ApJ...745..183R
https://doi.org/10.1111/j.1365-2966.2011.18823.x
http://adsabs.harvard.edu/abs/2011MNRAS.415...61S
https://doi.org/10.1088/0004-637X/758/2/73
http://adsabs.harvard.edu/abs/2012ApJ...758...73S
https://doi.org/10.2298/SAJ1489001S
http://adsabs.harvard.edu/abs/2014SerAJ.189....1S
https://doi.org/10.1086/519218
http://adsabs.harvard.edu/abs/2007ApJS..173..267S
http://adsabs.harvard.edu/abs/2016RMxAA..52...21S
http://adsabs.harvard.edu/abs/2016RMxAA..52..171S
https://doi.org/10.1051/0004-6361/201220669
http://adsabs.harvard.edu/abs/2013A&amp;A...554A..58S
http://adsabs.harvard.edu/abs/2013A&amp;A...554A..58S
https://doi.org/10.1111/j.1365-2966.2006.10699.x
http://adsabs.harvard.edu/abs/2006MNRAS.371..703S
https://doi.org/10.1051/0004-6361/201423635
http://adsabs.harvard.edu/abs/2014A&amp;A...570A...6S
https://doi.org/10.1093/mnras/stu327
http://adsabs.harvard.edu/abs/2014MNRAS.440..889S
http://arxiv.org/abs/1608.02013
https://doi.org/10.1086/527283
http://adsabs.harvard.edu/abs/2008ApJ...675.1025S
https://doi.org/10.1088/0004-6256/146/2/32
http://adsabs.harvard.edu/abs/2013AJ....146...32S
https://doi.org/10.1093/mnras/stv161
http://adsabs.harvard.edu/abs/2015MNRAS.450..435S
https://doi.org/10.3847/0004-637X/832/2/163
http://adsabs.harvard.edu/abs/2016ApJ...832..163S
https://doi.org/10.1088/0067-0049/214/2/15
http://adsabs.harvard.edu/abs/2014ApJS..214...15S
http://adsabs.harvard.edu/abs/2014ApJS..214...15S
https://doi.org/10.1111/j.1365-2966.2010.16427.x
http://adsabs.harvard.edu/abs/2010MNRAS.404.1775T
https://doi.org/10.1111/j.1365-2966.2010.16407.x
http://adsabs.harvard.edu/abs/2010MNRAS.404.1639V
http://adsabs.harvard.edu/abs/2010MNRAS.404.1639V
https://doi.org/10.1086/170483
http://adsabs.harvard.edu/abs/1991ApJ...379...52W
https://doi.org/10.3847/0004-6256/152/6/197
http://adsabs.harvard.edu/abs/2016AJ....152..197Y
https://doi.org/10.3847/0004-6256/151/1/8
http://adsabs.harvard.edu/abs/2016AJ....151....8Y

	1. Introduction
	2. Data
	2.1. MaNGA Targets
	2.2. ALMA Observations

	3. Results
	3.1. Resolved ΣSFR versus Σ* Relation
	3.2. Gas Fraction, Star Formation Efficieny, and Specific Star Formation Rate

	4. Discussion
	5. Conclusions
	References

