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Abstract—This paper proposes a Sensorless Direct Torque 

Control (SDTC) neural network traction control approach of an 

Electric vehicle (EV) without differential gears (electrical 

differential system). The EV is in this case propelled by two 

induction motor (one for each wheel). Indeed, using two electric 

in-wheel motors give the possibility to have a torque and speed 

control in each wheel. This control level improves the EV 

stability and the safety. The proposed traction control system 

uses the vehicle speed that is different from wheels speed 

characterized by slip in the driving mode, as an input. In terms 

of the analysis and the simulations carried out, the conclusion 

can be drawn that the proposed system is feasible. Simulation 

results on a test vehicle propelled by two 37-kW induction 

motors showed that the proposed SDTC neural network 

approach operates satisfactorily. 

Keywords—Electric vehicle propulsion, Direct torque   

control, Neural networks. 

I. INTRODUCTION

Electric vehicles are an important step toward solving the 

environmental problems created by cars with internal 

combustion engines. Besides energy efficiency and virtually 

lack of pollution, an advantage of the EV is the availability of 

electric energy through electric distribution systems. The 

principal advantages of the EV design for personal mobility 

are the development of a non polluting high safety,

availability of electric energy through electric distribution 

systems and comfortable vehicle. Taking into account these 

advantages, our interest has been focused on the 2×4 

electrical vehicles, with independent driving in-wheel motor 

at the front and with classical motors on the rear drive shaft. 

Among disadvantages, EVs have a low energy density and 

long charging time for the present batteries. Therefore, 

optimal energy management is very important in EVs; in 

addition optimum design of the motor, selection of a proper 

drive, and optimal control strategy are the other major factors 

in the EVs. 

Techniques have been applied for induction motors [1-2]. 

Among these techniques, DTC [3-4], appears to be very 

convenient for EV applications. The required measurements 

for this control technique are only the input currents. Flux, 

torque, and speed are estimated. The input of the motor 

controller is the reference speed, which is directly applied by 

the pedal of the vehicle. Torque control can be ensured by the 

inverter, so this vehicle does not require differential gears. 

However, one of the main issues in the design of this vehicle 

(without mechanical differential) is to assume the car 

stability. During normal driving condition, all the drive wheel 

system requires a symmetrical distribution of torque in both 

sides. This symmetrical distribution is not sufficient when the 

adherence coefficient of tires is changing: the wheels have 

different speeds; so the needs for traction control system [5]. 

This is still an open problem as illustrated by a limited 

available literature [6-7]. 

Sensorless control of induction motor drives is now

receiving wide attention [8]. The main reason is that the speed 

sensor spoils the ruggedness and simplicity of IM. In a hostile 

environment, speed sensors cannot even be mounted. However, 

induction motors have highly nonlinear dynamic behaviors and 

their parameters vary with time and operating conditions. In 

this paper, a speed sensorless control approach is proposed. In 

this case, speed estimation is based on a Recurrent Neural 

Network (RNN) with two hidden layers [7-8]. 

II. VEHICLE MODEL

Compared to previous works, the proposed control 

strategy takes into account the vehicle aerodynamics, and is 

not applied to the sole induction motors. This model is based 

on the principles of vehicle mechanics and aerodynamics [9]. 

The total tractive effort is then given by 

= + + + +
te rr ad hc la wa

F F F F F F         (1) 

Where Frr  = is the rolling resistance force; 

   Fad  = is the aerodynamic drag; 

   Fhc  = is the hill climbing force; 

Fla = is the force required to give linear  

 acceleration; 

Fwa = is the force required to give angular  

  acceleration to the rotating motor. 
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It should be noted that Fla and Fwa will be negative if the 

vehicle is slowing down and that Fhc will be negative if it is 

going downhill. The power required to drive a vehicle at a 

speed v has to compensate counteracting forces. 

( )= = + + + +
te te rr ad hc la wa

P vF v F F F F F      (2) 

The efficiency of the motor and its controller are usually 

considered together, as it is more convenient to measure the 

efficiency of the whole system. We saw that motor efficiency 

varies considerably with power, torque, and also motor size 

[8]. The efficiency is quite well modeled by 

2 3m

c i

T

T k T k k Cω

ω
η =

ω + + ω + ω +
       (3) 

Where kc is the copper losses coefficient, ki is the iron 

losses coefficient, kw is the windage loss coefficient and C 

represents the constant losses that apply at any speed. Table 1 

shows typical values for these constants for two motors that 

are likely candidates for use in electric vehicles.

Table 1. Typical values for the parameters of (3). 

Parameters Lynch type PM motor, 

with brushes, 2-5 kW 

100 kW, high speed 

induction motor 

kc 1.5 0.3 

ki 0.1 0.01 

kω 10-5
5.0×10-6

C 20 600 

III. DIRECT TORQUE CONTROL

The DTC method selects one of the inverter six voltage 

vectors and two zero vectors in order to keep the stator flux 

and torque within a hysteresis band around the demand flux, 

torque magnitudes and a switching logic table selecting the 

appropriate voltage inverter switching configurations [9-11]. 

Figure 1 gives the global configuration of a DTC scheme and 

also shows how the EV dynamics will be taken into account. 

The input voltage and current of the motor in the stationary 

reference frame can be expressed as 
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Fig. 1. DTC blok diagram. 

s ds qs

s ds qs

V V jV

I I jI

= +


= +
            (4) 

The actual stator flux can be estimated from the equivalent 

circuit of the motor as follows 

( )

( )
2 2

1
tan

ds ds s ds

qs qs s qs

s ds qs

qs

s

ds

V R i dt

V R i dt

−
λ

λ = −

λ = −

 λ = λ + λ

 λ 
θ =  

λ  

∫
∫

          (5) 

where λs is the flux vector rms value, and Rs is the stator 

resistance. The electromagnetic torque produced by the 

induction motor can be expressed as (while the mechanical 

equation is (6)) 

( )3

2 2
em ds qs qs ds

P
T i i= λ − λ          (6) 

m

B L m

d
J T T T

dt

ω
+ + =           (7) 

A switching table is used for inverter control such that the 

torque and flux errors are kept within the specified bands. 

More details of the system are explained as follows. 

The stator flux can be estimated by 

2

qs

2

dss

•••

+= λλλ             (8) 

The stator phase voltages are estimated using 

2 1 1

1 2 1
3

1 1 2

a a

DC bus

b b

c c

v S
V

v S

v S

−

− −    
    = − −    
    − −    

&

&

&

      (9) 

where VDC-bus is the dc link voltage of inverter (battery 

voltage) and Sa, Sb, Sc are the switching functions which can 

equal to 1 or 0. 

2 1 1

3 0 3 3

a

ds DC bus

b

qs

c

S
v V

S
v

S

−

 
− −    =     −      

&

&
      (10) 

The estimated developed torque of the motor is 

( )3

2 2
em ds qs qs ds

p
T i i= λ − λ& && & &          (11) 

The torque and flux errors are indicated by ∆T and ∆λ

respectively, and defined as [12] 
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T em ref em

ref s

T T−

λ

∆ ≡ −


∆ ≡ λ − λ

&

&
           (12) 

Table 2. Switching table for DTC technique 

N 1 2 3 4 5 6 

∆λ = 

1

∆T = 1 110 010 011 001 101 100 

∆T = 1 111 000 111 000 111 000 

∆T = 1 101 100 110 010 011 001 

∆λ = 

0

∆T = 1 010 011 001 101 100 110 

∆T = 1 000 111 000 111 000 111 

∆T = 1 001 101 100 110 010 011 

Where ( ) ( ) ( )1 1
6 3 6 3

sN N N
π π π π 

− + − ≤ θ − − 
 

   (13) 

defines the stator flux position over six control regions (60°). 

N is the sector number. ∆T, ∆λ are calculated as follows [12]. 

if ∆T > εT then ∆T = 1 

if -εT ≤ ∆T < εT then ∆T = 0 

if ∆T < -εT then ∆T = -1 

if ∆λ > ελ then ∆λ = 1 

if ∆λ > -ελ then ∆λ = 0 

Where εT and ελ are the acceptable predefined torque and flux 

errors, respectively. 

IV. THE NEURAL NETWORK CONTROLLER

The RNN model-based speed estimator replaces the 

adaptive current model. In this case, each output neuron uses 

the linear activation function. The solution of the voltage 

model generates the desired flux components. These signals 

are compared with the RNN output signals and the weights 

are trained on-line so that the error ξ(k + 1) tends to zero. It is 

assumed that the training speed is fast enough so that the 

estimated speed and actual speed can track well [13]. 

The current model equations can be discretized and 

written as 

( )
( )

( )
( )

( )
( )

1 0
1

1
1 0

s m s

r ss s s

r rdr dr ds

s s s

qr qr qss m s

r s

r r

T L T
T

T Tk k i k

k k i kT L T
T

T T

   
− −ω        λ + λ   = +        λ + λ          ω −   

      
                (14) 

where Ts is the sampling time, Lm the magnetizing inductance, 

and Tr the rotor time constant. The above equation can also be 

written in the form 

3111 21

3212 22

( 1) ( ) ( )0

0( 1) ( ) ( )

     λ + λ   
= +       

λ + λ             

s s s

dr dr ds

s s s

qr qr qs

k k i kWW W

WW Wk k i k
(15) 

Where W11 = 1 – Ts / Tr, W21 = – ωr Ts, W12 = ωr Ts, W22 = 1 – 

Ts / Tr, and W31 = W32 = Lm Ts / Tr. 

The internal structure of the designed RNN speed 

estimator is shown by Fig. 2, where black circles represent 

context nodes and white circles represent the input, hidden 

and output nodes [13]. The RNN with a linear transfer 

function of unity gain satisfies equation (15). Note that out of 

the six weights in the network, only W21 and W12 (circled in 

the figure) contain the speed term; therefore, for speed 

estimation, it is sufficient if these weights are considered 

trainable, keeping the other weights constant (assuming that 

Tr and Lm are constants) for speed estimation. However, if all 

the weights are considered trainable, the speed as well as the 

rotor time constant can be tuned. 

V. ELECTRIC DIFFERENTIAL AND IMPLEMENTATION

Figure 3 illustrates the implemented system (electric and 

mechanical components) in the Matlab-Simulink
®
 environment. 

The proposed control system principle could be summarized 

as follows: (1) A speed network control is used to control 

each motor torque; (2) The speed of each rear wheel is 

controlled using speed difference feedback. Since the two rear 

wheels are directly driven by two separate motors, the speed 

of the outer wheel will need to be higher than the speed of the 

inner wheel during steering maneuvers (and vice-versa). This 

condition can be easily met if the speed estimator is used to 

sense the angular speed of the steering wheel. The common 

reference speed ωref is then set by the accelerator pedal 

command. 

The actual reference speed for the left drive ωref-left and the 

right drive ωref-right are then obtained by adjusting the common 

reference speed ωref using the output signal from the RNN 

speed estimator. If the vehicle is turning right, the left wheel 

speed is increased and the right wheel speed remains equal to 

the common reference speed ωref. If the vehicle is turning left 

the right wheel speed is increased and the left wheel speed 

remains equal to the common reference speed ωref [14-15]. 
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Fig. 3. EV propulsion and control systems schematic diagram. 

Usually, a driving trajectory is quite enough for an 

analysis of the vehicle system model. We have therefore 

adopted the Ackermann-Jeantaud steering model as it is 

widely used as a driving trajectory. In fact, the Ackermann 

steering geometry is a geometric arrangement of linkages in 

the steering of a car or other vehicles designed to solve the 

problem of wheels on the inside and outside of a turn needing 

to trace out circles of different radii. Modern cars do not use 

pure Ackermann-Jeantaud steering, partly because it ignores 

important dynamic and compliant effects, but the principle is 

sound for low speed maneuvers [16]. It is illustrated in Fig. 4. 
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From this model, the following characteristic can be 

calculated. 

tan

L
R =

δ
              (16) 

Where δ is the steering angle. Therefore, each wheel drive

linear speed is given by 

( )

( )
1

2

/ 2

/ 2

V

V

V R d

V R d

 = ω −


= ω +
           (17) 

and their angular speed by 

( )

( )

1

2

/ 2 tan

/ 2 tan

est V

est V

L d

L

L d

L

 − δ
ω = ω


+ δω = ω

         (18) 

where ωV is the vehicle angular speed according to the centre 

of turn. 

The difference between wheel drive angular speeds is then 

1 2

tan
est est V

d

L

δ
∆ω = ω − ω = − ω        (19) 

and the steering angle indicates the trajectory direction. 

0

0

0

Turn left

Straight ahead

Turn right

δ > ⇒


δ = ⇒
δ < ⇒

         (20) 

In accordance with the above described equation, Fig. 5 

shows the electric differential system block diagram as used 

for simulations, where K1 = 1/2 and K2 = – 1/2. 

VI. SIMULATIONS RESULTS

In this section, simulation results are presented to show 

the efficiency and dynamic performances of the proposed 

SDTC neural network traction control approach of an electric 

vehicle without differential gears. 
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Fig. 5. Block diagram of the electric differential system. 

Numerical simulations have been carried out, on an EV 

propelled by two 37-kW induction motor drives. The test 

cycle is the urban ECE-15 + sub-urban cycle (Fig. 6). A 

driving cycle is a series of data points representing the vehicle 

speed versus time. This driving cycle represents urban 

driving. It is characterized by low vehicle speed (maximum 

50 km/h) and is useful for testing electrical vehicle 

performances in urban areas. 

The RNN speed estimator performances are illustrated by 

Fig. 7 that shows the measured speed and the estimated one. 

The electric differential performances are first illustrated by 

Fig. 8 that shows each wheel drive speeds during steering for 

0 < t < 1200 sec. It is obvious that the electric differential 

operates satisfactorily. 
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Fig. 6. (ECE-15 + sub-urban) driving cycle. 
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Fig. 7. Estimated and measured vehicle speed. 
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Fig. 8. Vehicle wheels speed. 

263



Figures 9 and 10 illustrate the developed torque and stator 

current in each induction motor (left and right wheel drives), 

with changes in the acceleration pedal position and a varied 

road profile (rising and downward portions). 

Figures 11 to 14 show the DC bus battery voltage and the 

efficiency of each induction motor and their controllers. One 

can notice that they are well affected according to changes in 

the acceleration pedal position and the road profile variation. 

This proves the electric differential good operation. More 

particularly, Fig. 12 clearly shows the battery regenerative 

operation during decelerations. 

Figure 15 illustrates stator flux estimation robustness. 

Indeed, the flux estimation was not affected by the proposed 

neural network control strategy. 
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Fig. 9. Motor torque. 
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Fig. 10. Stator current. 
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Fig. 11. DC bus battery voltage. 
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Fig. 12. Zoom on the DC bus battery voltage. 
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Fig. 13. Efficiency of the left motor and its controller. 
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Fig. 14. Efficiency of the right motor and its controller. 
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VII. CONCLUSION

In this paper, the SDTC neural network traction control 

algorithm for an electrical vehicle with two separate wheel 

drives has been proposed. This algorithm is necessary to 

improve the EV steerability and stability during trajectory 

changes. An electrical differential was implemented and take 

account of the speed difference between the two wheels when 

cornering. Moreover, as traction control systems impose a 

very precise knowledge of the vehicle dynamics, a vehicle 

dynamics model was exhaustively detailed and applied. 

Furthermore the SDTC neural network traction control 

algorithm provide quick response, simple configuration and 

be a good candidate for electric vehicle propulsion system. 

The proposed scheme is capable of providing four quadrants 

operation along with regenerative braking with partial 

recovery of kinetic energy to charge the battery and therefore 

improving the overall efficiency of the system. 

The neural network controller (RNN) speed estimator

eliminates the need for an expensive speed transducer with a 

reasonable accuracy. It is shown that the proposed method 

estimates the speed accurately over the entire speed range 

from zero to full speed. Moreover, it has robust speed 

estimation performance even at step load change or under 

variable speed operation. 

APPENDIX

RATED DATA OF THE SIMULATED INDUCTION MOTOR

37 kW, 50 Hz, 400/230 V, 64/111 A, 24.17 Nm, 2960 rpm 

Rs = 85.1 mΩ, Rr = 65.8 mΩ
Ls = 31.4 mH, Lr = 29.1 mH, Lm = 29.1 mH 

J = 0.23 kg.m² 

EV MECHANICAL AND AERODYNAMIC PARAMETERS

m = 1540 kg (two 70 kg passengers), A = 1.8 m2, r = 0.3 m 

µrr1 = 0.0055, µrr2 = 0.056, Cad = 0.19, G = 104, ηg = 0.95 

T = 57.2 Nm (stall torque), v0 = 4.155 m/sec 

g = 9.81 m/sec2, ρ = 0.23 kg/m3
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