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This work presents Neural Equivariant Interatomic Potentials (NequIP), a SE(3)-equivariant10

neural network approach for learning interatomic potentials from ab-initio calculations for molecular11

dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions12

and only act on scalars, NequIP employs SE(3)-equivariant convolutions for interactions of geometric13

tensors, resulting in a more information-rich and faithful representation of atomic environments. The14

method achieves state-of-the-art accuracy on a challenging set of diverse molecules and materials15

while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three16

orders of magnitude fewer training data, challenging the widely held belief that deep neural networks17

require massive training sets. The high data efficiency of the method allows for the construction18

of accurate potentials using high-order quantum chemical level of theory as reference and enables19

high-fidelity molecular dynamics simulations over long time scales.20

INTRODUCTION21

Molecular dynamics (MD) simulations are an22

indispensable tool for computational discovery in fields23

as diverse as energy storage, catalysis, and biological24

processes [1–3]. While the atomic forces required to25

integrate Newton’s equations of motion can in principle26

be obtained with high fidelity from quantum-mechanical27

calculations such as density functional theory (DFT),28

in practice the unfavorable computational scaling of29

first-principles methods limits simulations to short time30

scales and small numbers of atoms. This prohibits31

the study of many interesting physical phenomena32

beyond the time and length scales that are currently33

accessible, even on the largest supercomputers. Owing34

to their simple functional form, classical models for35

the atomic potential energy can typically be evaluated36

orders of magnitude faster than using first-principles37

methods, thereby enabling the study of large numbers38

of atoms over long time scales. However, due to39

their limited mathematical form, classical interatomic40

potentials, or force fields, are inherently limited in41

their predictive accuracy which has historically led42

to a fundamental trade-off between obtaining high43

computational efficiency while also predicting faithful44

dynamics of the system under study. The construction45

of flexible models of the interatomic potential energy46

based on Machine Learning (ML-IP), and in particular47
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Neural Networks (NN-IP), has shown great promise in48

providing a way to move past this dilemma, promising49

to learn high-fidelity potentials from ab-initio reference50

calculations while retaining favorable computational51

efficiency [4–13]. One of the limiting factors of NN-IPs52

is that they typically require collection of large training53

sets of ab-initio calculations, often including thousands54

or even millions of reference structures [4, 9, 10, 14–16].55

This computationally expensive process of training data56

collection has severely limited the adoption of NN-IPs57

as it quickly becomes a bottleneck in the development of58

force-fields for new systems. Kernel-based approaches,59

such as e.g. Gaussian Processes (GP) [5, 8] or Kernel60

Ridge Regression (KRR) [17], are a way to remedy this61

problem as they often generalize better from limited62

sample sizes. However, such methods generally tend63

to exhibit poor computational scaling with the number64

of reference configurations, in both training (cubic in65

training set size) and prediction (linear in training set66

size). This limits both the amount of training data67

they can be trained on as well as the length and size of68

simulations that can be simulated with them.69

70

In this work, we present the Neural Equivariant71

Interatomic Potential (NequIP), a highly data-efficient72

deep learning approach for learning interatomic73

potentials from reference first-principles calculations.74

We show that the proposed method obtains high75

accuracy compared to existing ML-IP methods across76

a wide variety of systems, including small molecules,77

water in different phases, an amorphous solid, a reaction78

at a solid/gas interface, and a Lithium superionic79

conductor. Furthermore, we find that NequIP exhibits80

exceptional data efficiency, enabling the construction of81

accurate interatomic potentials from limited data sets82

of fewer than 1,000 or even as little as 100 reference83

ab-initio calculations, where other methods require84

orders of magnitude more. It is worth noting that on85

small molecular data sets, NequIP outperforms not only86

other neural networks, but is also competitive with87

kernel-based approaches, which typically obtain better88

predictive accuracy than NN-IPs on small data sets89

(although at significant additional cost scaling in training90

and prediction). We further demonstrate high data91

efficiency and accuracy with state-of-the-art results on a92

training set of molecular data obtained at the quantum93

chemical coupled-cluster level of theory. Finally, we94

validate the method through a series of simulations95

and demonstrate that we can reproduce with high96

fidelity structural and kinetic properties computed from97

NequIP simulations in comparison to ab-initio molecular98

dynamics simulations (AIMD). We directly verify that99

the performance gains are connected with the unique100

SE(3)-equivariant convolution architecture of the new101

NequIP model.102

103

Related Work104

First applications of machine learning for the105

development of interatomic potentials were built on106

descriptor-based approaches combined with shallow107

neural networks or Gaussian Processes [4, 5], designed108

to exhibit invariance with respect to translation,109

permutation of atoms of the same chemical species,110

and rotation. Recently, rotationally invariant graph111

neural networks (GNN-IPs) have emerged as a powerful112

architecture for deep learning of interatomic potentials113
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that eliminates the need for hand-crafted descriptors114

and allows to instead learn representations on graphs115

of atoms from invariant features of geometric data (e.g.116

radial distances or angles) [9–11, 13]. In GNN-IPs,117

atomic structures are represented by collections of118

nodes and edges, where nodes in the graph correspond119

to individual atoms and edges are typically defined120

by simply connecting every atom to all other atoms121

that are closer than some cutoff distance rc. Every122

node/atom i is associated with a feature hi ∈ R
h,123

consisting of scalar values, which is iteratively refined124

via a series of convolutions over neighboring atoms j125

based on both the distance to neighboring atoms rij126

and their features hj . This iterative process allows127

information to be propagated along the atomic graph128

through a series of convolutional layers and can be129

viewed as a message-passing scheme [18]. Operating130

only on interatomic distances allows GNN-IPs to be131

rotation- and translation-invariant, making both the132

output as well as features internal to the network133

invariant to rotations. In contrast, the method outlined134

in this work uses relative position vectors rather than135

simply distances (scalars), which makes internal features136

instead equivariant to rotation and allows for angular137

information to be used by rotationally equivariant filters.138

Similar to other methods, we can restrict convolutions139

to only a local subset of all other atoms that lie closer140

to the central atom than a chosen cutoff distance rc, see141

Figure 1, left.142

143

A series of related methods have recently been144

proposed: DimeNet [11] expands on using pairwise145

interactions in a single convolution to include angular,146

three-body terms, but individual features are still147

comprised of scalars (distances and three-body angles148

are invariant to rotation), as opposed to vectors used149

in this work. Another central difference to NequIP150

is that DimeNet explicitly enumerates angles between151

pairs of atoms and operates on a basis embedding152

of distances and angles, whereas NequIP operates on153

relative position vectors and a basis embedding of154

distances, and thus never explicitly computes three-body155

angles. Cormorant [19] uses an equivariant neural156

network for property prediction on small molecules.157

This method is demonstrated on potential energies of158

small molecules but not on atomic forces or systems with159

periodic boundary conditions. Townshend et al. [20] use160

the framework of Tensor-Field Networks [21] to directly161

predict atomic force vectors. The predicted forces are162

not guaranteed by construction to conserve energy since163

they are not obtained as gradients of the total potential164

energy. This may lead to problems in simulations of165

molecular dynamics over long times. None of these three166

works [11, 19, 20] demonstrates capability to perform167

molecular dynamics simulations.168

169

In this work we present a deep learning energy-170

conserving interatomic potential for both molecules171

and materials built on SE(3)-equivariant convolutions172

over geometric tensors that yields state-of-the-art173

accuracy, outstanding data-efficiency, and can with high174

fidelity reproduce structural and kinetic properties from175

molecular dynamics simulations.176
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FIG. 1: Left: a set of atoms is interpreted as an atomic graph with local neighborhoods. Middle: every atom carries
a set of scalar and vector features with it. Right: atoms exchange information via filters, that are again scalars and

vectors. The interactions of features and filters define five interactions.

RESULTS177

Equivariance178

The concept of equivariance arises naturally in179

machine learning of atomistic systems (see e.g. [22]):180

physical properties have well-defined transformation181

properties under translation and rotation of a set of182

atoms. As a simple example, if a molecule is rotated183

in space, the vectors of its atomic dipoles or forces184

also rotate accordingly, via equivariant transformation.185

Equivariant neural networks are able to more generally186

represent tensor properties and tensor operations of187

physical systems (e.g. vector addition, dot products,188

and cross products). Equivariant neural networks189

are guaranteed to preserve the known transformation190

properties of physical systems under a change of191

coordinates because they are explicitly constructed from192

equivariant operations. Formally, a function f : X → Y193

is equivariant with respect to a group G that acts on X194

and Y if:195

DY [g]f(x) = f(DX [g]x) ∀g ∈ G, ∀x ∈ X (1)

where DX [g] and DY [g] are the representations of196

the group element g in the vector spaces X and Y ,197

respectively. In this work, we focus on equivariance198

with respect to SE(3), i.e. the group of rotations and199

translations in 3D space.200

Neural Equivariant Interatomic Potentials201

Given a set of atoms (a molecule or a material), we aim202

to find a mapping from atomic positions ~ri and chemical203

species (identified by atomic numbers Zi) to the total204

potential energy and the forces acting on the atoms:205

f : {~ri, Zi} → Epot (2)

Forces are obtained as gradients of the predicted206

potential energy with respect to the atomic positions,207

which guarantees energy conservation:208

~Fi = −∇iEpot (3)

Gradients can be obtained with relatively low209

computational overhead in modern auto-differentiation210

frameworks such as TensorFlow or PyTorch [23, 24].211

Following previous work [4], we further define the total212
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potential energy of the system as a sum of atomic213

potential energies:214

Epot =
∑

i∈Natoms

Ei,atomic (4)

These atomic local energies Ei,atomic are the scalar node215

attributes predicted by the graph neural network. Even216

though the output of NequIP is the predicted potential217

energy Epot, which is invariant under translations218

and rotations, the network contains internal features219

that are tensors which are equivariant to rotation.220

This constitutes the core difference between NequIP221

and existing scalar-valued invariant GNN-IPs. The222

remainder of this section will discuss the design of the223

network in further detail.224

225

A series of methods has been introduced to realize226

rotationally equivariant neural networks [13, 21, 25, 26].227

Here, we build on the layers introduced in Tensor-Field228

Networks (TFN) [21], which enable the construction of229

neural networks that exhibit equivariance to translation,230

permutation, and rotation. Every atom in NequIP231

is associated with a feature comprised of tensors of232

different order: scalars, vectors, and higher-order233

tensors. Formally, these features are geometric objects234

that comprise a direct sum of irreducible representations235

of the SO(3) symmetry group. Second, the convolutions236

that operate on these geometric objects are equivariant237

functions instead of invariant ones, i.e. if a feature at238

layer k is rotated, then the output of the convolution239

from layer k → k + 1 rotates accordingly. In practice,240

the features are implemented as a dictionary V
(l)
acm with241

keys l, where l = 0, 1, 2, ... is a non-negative integer and242

is called the “rotation order”, labeling the irreducible243

representations. The indices a, c, m, correspond to the244

atoms, the channels (elements of the feature), and the245

representation index which takes values m ∈ [−l, l],246

respectively.247

248

Convolution operations are naturally translation249

invariant, since their filters act on relative interatomic250

distance vectors. Moreover, they are permutation251

invariant since all convolution contributions are summed.252

Note that while atomic features are equivariant to253

permutation of atom indices, globally, the total potential254

energy of the system is invariant to permutation. To255

achieve rotation equivariance, the convolution filters are256

constrained to be products of learnable radial functions257

and spherical harmonics, which are equivariant under258

SO(3) [21]:259

F (~rij) = R(rij)Y
(l)
m (r̂ij) (5)

where if ~rij denotes the relative position from central260

atom i to neighboring atom j, r̂ij and rij are261

the associated unit vector and interatomic distance,262

respectively. It should be noted that all learnable weights263

in the filter lie in the rotationally invariant radial function264

R(rij). This radial function is implemented as a small265

neural network with one hidden layer and a shifted266

softplus activation function [9], operating on interatomic267

distances expressed in a basis of choice, R(rij) : R
Nb →268

R
h, where Nb is the number of basis functions and h is269

the feature dimension:270

R(rij) = W2 ln(0.5 exp(W1B(rij)) + 0.5) (6)
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where W1 ∈ R
Nhidden×Nb and W2 ∈ R

h×Nhidden are271

weight matrices, h is the dimension of the feature and272

Nhidden is the dimension of the hidden layer in the273

feed-forward neural network (in our experiments, we use274

Nhidden = Nb, resulting in comparatively small neural275

networks for the radial function). Radial Bessel functions276

and a polynomial envelope function fenv discussed in277

recent work [11] are used to expand the interatomic278

distances:279

B(rij) =

√

2

rc

sin(nπ
rc
rij)

rij
fenv(rij , rc) (7)

where rc is a local cutoff radius, restricting interactions280

to atoms closer than some cutoff distance and fenv is281

the polynomial defined in [11] with p = 6 operating282

on the interatomic distances normalized by the cutoff283

radius
rij
rc
. The use of cutoffs/local atomic environments284

allows the computational cost of evaluation to scale285

linearly with the number of atoms. Similar to [11], we286

initialize the Bessel functions with n = [1, 2, ..., Nb] and287

subsequently optimize nπ via backpropagation rather288

than keeping it constant. For systems with periodic289

boundary conditions, we use the neighbor list290

functionality as implemented in the ASE code [27] to291

identify appropriate atomic neighbors and then convolve292

over them.293

294

Finally, in the convolution, the input feature tensor295

and the filter have to again be combined in an296

equivariant manner, which is achieved via a geometric297

tensor product, yielding an output feature that again298

is rotationally equivariant. A tensor product of two299

geometric tensors is computed via Clebsch-Gordan300

coefficients, as outlined in [21]. Since NequIP deals301

with force vectors, the network design is simplified by302

only using scalar (l=0) and vector (l=1) representations.303

Thus, we can enumerate five distinct products or304

“interactions” between l = 0 and l = 1 filters and l = 0305

and l = 1 features that correspond to simple operations306

between scalars and vectors:307

• 0⊗ 0 → 0 (product of two scalars)308

• 0⊗ 1 → 1 (scalar multiplication of a vector)309

• 1⊗ 0 → 1 (scalar multiplication of a vector)310

• 1⊗ 1 → 0 (dot product of two vectors)311

• 1⊗ 1 → 1 (cross product of two vectors)312

It is trivial to include higher-order interactions, and313

previous works have increased the rotation order beyond314

l = 1 [20, 28]. However, it should be noted that315

every interaction comes with additional trainable radial316

functions and hence additional weights, which thus317

adds to the model capacity, increasing the number of318

model weights and the memory footprint of the model.319

Omitting all higher-order interactions that go beyond320

the 0 ⊗ 0 → 0 interaction will result in a conventional321

GNN-IP with invariant convolutions over scalar features,322

similar to e.g. SchNet [9]. Finally, as outlined in [21],323

a full convolutional layer L implementing an interaction324

with filter f acting on an input i producing output o:325

lf ⊗ li → lo is given by:326
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L(lo)
acmo

(~ra, V
(li)
acmi

) =
∑

mf ,mi

C
(lo,mo)
(lf ,mf )(li,mi)

∑

b∈S

R
(lf ,li)
c (rab)Y

(lf )
mf (r̂ab)V

(li)
bcmi

(8)

where a and b index the central atom of the convolution327

and the neighboring atom b ∈ S, respectively, and328

C indicates the Clebsch-Gordan coefficients. As an329

example of this, we write out a full 1⊗ 1 → 1 operation330

(corresponding to a cross-product) in the Methods331

section. After every convolution, output tensors of a332

rotation order l stemming from different tensor products333

are concatenated on a per-atom basis. To update334

atomic features, the model also leverages self-interaction335

layers similar to SchNet [9], corresponding to dense336

layers that are applied in an atom-wise fashion with337

weights shared across atoms. While different weights338

are used for different rotation orders, the same set of339

weights is applied for all representation indices m of a340

given rotation order l. Shifted softplus nonlinearities341

[9] are used as rotation-equivariant nonlinearities as342

introduced in [21], which are applied to the Euclidean343

norm of the input feature, the output of which is in turn344

combined with the input tensor, thus preserving overall345

equivariance.346

347

The NequIP network architecture, shown in Figure 2,348

is built on an atomic embedding, followed by a series of349

interaction blocks, and finally an output block:350

• Embedding: following SchNet, the initial feature351

is generated using a trainable embedding, that352

operates on the atomic number Zi (represented353

via a one-hot encoding) alone, implemented via a354

trainable self-interaction layer.355

• Interaction Block: interaction blocks encode356

interactions between neighboring atoms: the core357

of this block is the convolution function, outlined in358

equation 8. For every output rotation order lo, the359

features from different tensor product interactions360

are concatenated to give a new feature, which is361

in return refined with atom-wise self-interaction362

layers and equivariant non-linearities. We equip363

interactions blocks with a ResNet-style update [29]364

where the input feature x is updated atom-wise365

via the output of an interaction block f(x) that366

gives the final feature r(x) = f(x) + x (features367

are added element-wise in the m-dimension). Note368

that this operation is equivariant since the addition369

of an equivariant feature x and an equivariant370

function f(x) preserves equivariance. While later371

interaction blocks include all five interactions372

outlined above, the first interaction block operates373

on the l = 0 embedding with a 0 ⊗ 0 → 0 and a374

0⊗ 1 → 1 only.375

• Output Block: the l = 0 feature of the final376

convolution is passed to an output block, which377

consists of another atom-wise self-interaction layer,378

an equivariant non-linearity, and a final atom-wise379

self-interaction layer.380

The scalar atomic outputs of the final layer can381

be interpreted as atomic potential energies which are382

summed to give the total predicted potential energy383

of the system (Equation 4). Forces are subsequently384

obtained as the negative gradient of the predicted385

total potential energy, thereby ensuring both energy386
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FIG. 2: The NequIP network architecture. Left: atomic numbers are embedded into l = 0 features, which are
refined through a series of interaction blocks, creating l = 0 and l = 1 features. An output block generates atomic
energies, which are pooled to give the total predicted energy. Middle: the interaction block consists of a series of
convolutions, interweaved with self-interaction layers, equivariant nonlinearities and concatenation. Right: the
convolution combines the radial function R(r) which operates only on interatomic distances with the spherical

harmonics based on unit vector r̂ via a tensor product.

conservation as well as rotation-equivariant forces (see387

equation 3).388

Experiments389

We validate the proposed method on a series of diverse390

and challenging data sets: first we demonstrate that we391

improve upon state-of-the-art accuracy on MD-17, a data392

set of small, organic molecules that is widely used for393

benchmarking ML-IPs [9, 11, 17, 30, 31]. Next, we show394

that NequIP can also accurately learn forces obtained on395

small molecules at the quantum chemical CCSD(T) level396

[31], opening the door to scalable and efficient molecular397

dynamics simulations with beyond-DFT accuracy. To398

broaden the applicability of the method beyond small399

isolated molecules, we explore a series of extended400

systems with periodic boundary conditions, consisting401

of both surfaces and bulk materials: water in different402

phases [15, 32], a chemical reaction at a solid/gas403

interface, an amorphous Lithium Phosphate [12], and404

a Li superionic conductor [13]. Details of the training405

procedure are provided in the Methods section.406

MD-17 small molecule dynamics407

We first evaluate NequIP on MD-17 [17, 30, 31],408

a data set of eight small organic molecules in which409

reference values of energy and forces are generated by410

ab-initio MD simulations with DFT. For training we411

use N=1,000 structure configurations for each molecule,412

sampled uniformly from the full data set, the same413

number of configurations for validation, and evaluate414



9

the test error on all remaining configurations in the415

data set. The mean absolute error in the force416

components is shown in Table I in units of [meV/Å].417

We compare results using NequIP with those from418

published leading ML-IP models that were also trained419

on 1,000 structures: in particular SchNet [9], DimeNet420

[11] (both graph neural networks), sGDML [31], and421

FCHL19/GPR (kernel-based methods) [33]. We find422

that NequIP outperforms SchNet and sGDML on all423

molecules in the data set, DimeNet on 7 out of 8424

molecules (on par on the remaining one), and performs on425

par with FCHL/19GPR. The consistent improvement in426

accuracy upon sGDML and the comparable performance427

to FCHL19/GPR are particularly surprising, as these are428

based on kernel methods, that typically tend to be more429

sample efficient. It should be noted, however, that the430

evaluation cost of kernel methods scales linearly with the431

number of training configurations. Note also that on432

some molecules, NequIP trained on 1,000 configurations433

even performs as well as SchNet trained on 50,000434

structures [9]: on aspirin and naphthalene, for example,435

the NequIP network trained on 1,000 structures produces436

mean absolute errors in the forces of 15.1 meV/Å and 4.2437

meV/Å, respectively, compared to 14.3 meV/Åand 4.8438

meV/Å of SchNet trained on 50x more molecules, hinting439

that NequIP exhibits exceptional data efficiency. On440

other molecules such as ethanol, however, SchNet trained441

with 50,000 molecules still clearly outperforms NequIP442

trained with 1,000 molecules (2.2 meV/Å for SchNet for443

N=50,000 vs 9.0 meV/Å for NequIP for N=1,000).444

Force training at quantum chemical accuracy445

Ability to achieve high accuracy on a comparatively446

small data set opens the door to training models447

on expensive high-order ab-initio quantum chemical448

methods. It has been shown that DFT can fail to449

capture important subtleties in the potential energy450

surface, potentially even identifying the wrong ground451

states [31]. This problem can be remedied through452

the use of more accurate reference calculations, such as453

coupled cluster methods CCSD(T), typically regarded454

as the gold standard of quantum chemistry. However,455

the high computational cost of CCSD(T) has thus far456

hindered the use of reference data structures at this level457

of theory, prohibited by the need for large data sets458

that are required by available NN-IPs. Leveraging the459

high data efficiency of NequIP, we evaluate it on a set460

of molecules computed at quantum chemical accuracy461

(aspirin at CCSD, all others at CCSD(T)) [31] and462

compare the results to those reported for sGDML [31].463

The training/validation set consists of a total of 1,000464

molecular structures which we split into 950 for training465

and 50 for validation (sampled uniformly), and we test466

the accuracy on all remaining structures (we use the467

train/test split provided with the data set, but further468

split the training set into training and validation sets).469

We find that NequIP achieves lower errors on four out470

of five molecules, performing on par with sGDML on the471

fifth molecule, as shown in Table II.472

Liquid Water and Ice Dynamics473

To demonstrate the applicability of NequIP beyond474

small molecules, we evaluate the method on a series of475
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Molecule NequIP SchNet sGDML DimeNet FCHL19/GPR
Aspirin 15.1 58.5 29.5 21.6 20.7

Benzene [17] 8.1 13.4 n/a 8.1 n/a
Benzene [31] 2.3 n/a 2.6 n/a n/a

Ethanol 9.0 16.9 14.3 10.0 5.9
Malonaldehyde 14.6 28.6 17.8 16.6 10.6
Naphthalene 4.2 25.2 4.8 9.3 6.5
Salicylic Acid 10.3 36.9 12.1 16.2 9.6

Toluene 4.4 24.7 6.1 9.4 8.8
Uracil 7.5 24.3 10.4 13.1 4.6

TABLE I: MAE of force components on the MD-17 data set, trained on 1,000 configurations, forces in units of
[meV/Å]. For the benzene molecule, two different data set exists from [17], [31] with different levels of accuracy in

the DFT reference data.

Molecule NequIP sGDML
Aspirin 14.7 33.0
Benzene 0.8 1.7
Ethanol 9.4 15.2

Malonaldehyde 16.0 16.0
Toluene 4.4 9.1

TABLE II: Force MAE for molecules at
CCSD/CCSD(T) accuracy, reported in units of
[meV/Å], with 1,000 reference configurations).

extended systems with periodic boundary conditions. As476

a first example we use a joint data set consisting of liquid477

water and three ice structures [15, 32], computed at the478

PBE0-TS level of theory. This data set contains [15]:479

a) liquid water, P=1bar, T=300K, computed via path-480

integral AIMD, b) ice Ih, P=1bar, T=273K, computed481

via path-integral AIMD c) ice Ih, P=1bar, T=330K,482

computed via classical AIMD d) ice Ih, P=2.13 kbar,483

T=238K, computed via classical AIMD. The liquid water484

system consists of 64 H2O molecules (192 atoms), while485

the ice structures consist of 96 H2O molecules (288486

atoms). A DeepMD NN-IP model was previously trained487

[15] for water and ice using a joint training set containing488

133,500 reference calculations of these four systems. To489

assess data efficiency of the NequIP architecture, we490

similarly train a model jointly on all four parts of the data491

set, but using only 133 structures for training, i.e. 1000x492

fewer data. The 133 structures were sampled uniformly493

from the full data set available online, consisting of494

water and ice structures, made up of a total of 140,000495

frames, coming from the same MD trajectories that were496

used in the earlier work [15]. We also use a validation497

set of 50 frames and report the test accuracy on all498

remaining structures in the data set. Table III shows the499

comparison of the predictive force accuracy of NequIP500

trained on the 133 structures vs DeepMD trained on501

133,500 structures. We find that with 1000x fewer502

training data, NequIP significantly outperforms DeepMD503

on all four parts of the data set.504

Heterogeneous catalysis of formate dehydrogenation505

Next, we demonstrate application of NequIP to a506

catalytic surface reaction. In particular, we investigate507

the dynamics of formate undergoing dehydrogenation508

decomposition (HCOO∗ → H∗ + CO2) on a Cu509

< 110 > surface (see Figure 3). This system is highly510

heterogeneous, with both metallic and covalent types of511

bonding as well as charge transfer occurring between512

the metal and the molecule, making this a particularly513

challenging test system. Different states of the molecule514
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System NequIP, 133 data points DeepMD, 133,500 data points
Liquid Water 35.9 40.4
Ice Ih (b) 25.9 43.3
Ice Ih (c) 16.6 26.8
Ice Ih (d) 13.5 25.4

TABLE III: Root mean square error (RMSE) of force components on liquid water and the three ices in units of
[meV/A]. Note that the NequIP model was trained on < 0.1% of the training data of DeepMD.

Element MAE
C 55.8
O 86.7
H 42.0
Cu 54.5
Total structure 55.6

TABLE IV: MAE of force components for Formate on
Cu system, per-element basis. The training set consists

of 2,500 structures, force units are [meV/A]

also lead to dissimilar C-O bond lengths [34, 35].515

Training structures consist of 48 Cu atoms and 4 atoms516

of the molecule (HCOO* or CO2+H*). The MAE of517

the predicted forces using a NequIP model trained on518

2,500 structures is shown in Table IV, demonstrating519

that NequIP is able to accurately model the interatomic520

forces for this complex reactive system. A more detailed521

analysis of the resulting dynamics will be subject of a522

separate study.523

524

FIG. 3: Perspective view of atomic configurations of (a)
bidentate HCOO (b) monodentate HCOO and (c) CO2

and a hydrogen adatom on a Cu(110) surface. The
blue, red, black, and white spheres represent Cu, O, C,
and H atoms, respectively. The subset shown in each

subplot is the corresponding top view along the
< 110 > orientation.

Lithium Phosphate Amorphous Glass Formation525

FIG. 4: Quenched glass structure of Li4P2O7. The
insets show the P-O-O tetrahedral bond angle (bottom

left) as well as the O-P-P bridging angle between
corner-sharing phosphate tetrahedra (top right).

To examine the ability of the model to capture526

dynamical properties, we demonstrate that NequIP527

can describe structural dynamics in amorphous lithium528

phosphate with composition Li4P2O7. This material is529

a member of the promising family of solid electrolytes530

for Li-metal batteries [12, 36, 37], with non-trivial531

Li-ion transport and phase transformation behaviors.532

The training data set consists of two 50ps-long AIMD533

simulations, one of the molten structure at T=3000534

K, followed by another of a quenched glass structure535

at T=600 K. We train NequIP on a subset of 1,000536

structures of the molten trajectory, each consisting of537
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208 atoms, and sampled uniformly from the full data538

set of 25,000 AIMD frames. We use a validation set of539

100 structures, and evaluate the model on all remaining540

structures. Table V shows the test set error in the force541

components on both the test set from the AIMD molten542

trajectory and the full AIMD quenched glass trajectory.543

To then evaluate the physical fidelity of the trained544

model, we use it to run a MD simulation of length 50545

ps at T=600 K in the NVT ensemble and compare the546

total radial distribution function (RDF) without element547

distinction as well as the angular distribution functions548

(ADF) of the P-O-O (P central atom) and O-P-P (O549

central atom) angles to the ab-inito trajectory at the550

same temperature. The P-O-O angle corresponds to551

the tetrahedral bond angle, while the O-P-P corresponds552

to a bridging angle between corner-sharing phosphate553

tetrahedra (Figure 4). Figure 5 shows that NequIP554

can accurately reproduce the RDF and the two ADFs,555

in comparison with AIMD, after training on only 1,000556

structures. This demonstrates that the model generates557

the glass state and recovers its dynamics and structure558

almost perfectly, having seen only the high-temperature559

molten training data.560

Lithium Thiophosphate Superionic Transport561

To show that NequIP can model kinetic transport562

properties from small training sets at high accuracy, we563

study Li-ion diffusivity in LiPS (Li6.75P3S11) a crystalline564

superionic Li conductor, consisting of a simulation cell of565

83 atoms [13]. MD is widely used to study diffusion;566

however, training a ML-IP to the accuracy required567

to accurately predict kinetic properties has in the past568

required large training set sizes ([38] e.g. uses a569

data set of 30,874 structures to study Li diffusion in570

Li3PO4). Here we demonstrate that not only does571

NequIP obtain small errors in the force components, but572

it also accurately predicts the diffusivity after training on573

a data set obtained from an AIMD simulation. Again,574

we find that very small training sets lead to highly575

accurate models, as shown in Table V for training set576

sizes of 10, 100, 1,000 and 2,500 structures. We run577

a series of MD simulations with the NequIP potential578

trained on 2,500 structures in the NVT ensemble at the579

same temperature as the AIMD simulation for a total580

simulation time of 50 ps and a time step of 0.25 fs,581

which we found advantageous for reliability and stability582

of long simulations. We measure the Li diffusivity in ten583

Nequip-driven MD simulations (computed via the slope584

of the mean square displacement), all of length 50 ps and585

started from different initial velocities, randomly sampled586

from a Maxwell-Boltzmann distribution. We find a mean587

diffusivity of 1.42 x 10−5 cm2/s, in excellent agreement588

with the diffusivity of 1.38 x 10−5 cm2/s computed from589

AIMD, thus achieving a relative error of as little as 3%.590

Figure 6 shows the mean square displacements of Li for591

an example run.592

System Data Set Size MAE
LiPS 10 157.1
LiPS 100 50.0
LiPS 1,000 25.1
LiPS 2,500 24.1
Li4P2O7, melt 1,000 63.2
Li4P2O7, quench 1,000 36.9

TABLE V: Force MAE for LiPS and Li4P2O7 for
different data set sizes in units of [meV/A]. The model
for Li4P2O7 was trained exclusively on structures from
the melted trajectory, the reported test errors show the
MAE on both the test set of the melted trajectory as

well as the full quench trajectory.
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FIG. 5: Left: Radial Distribution Function, middle: Angular Distribution Function, bridging oxygen, right: Angular
Distribution Function, tetrahedral bond angle. All are defined as probability density functions.

FIG. 6: Comparison of Lithium mean square
displacement of AIMD and NequIP trajectories.

Data Efficiency593

In the above experiments, NequIP exhibits594

exceptionally high data efficiency, i.e. it can be595

trained successfully to state-of-the-art accuracy from596

unexpectedly small training sets. It is interesting to597

consider the reasons for such high performance and verify598

that it is connected to the equivariant nature of the599

model. First, it is important to note that each training600

configuration contains multiple labels, thus increasing601

the total number of labels available beyond just the602

potential energy label associated with each structure.603

In particular, for a training set of M first-principles604

calculations with structures consisting of N atoms, the605

total number of labels available is M(3N +1) since every606

force component on every atom constitutes a label and607

so does the total energy of the reference calculation (we608

only train to atomic forces and not energies, thus using609

3MN force components as labels).610

In order to gain insight into the reasons behind611

increased accuracy and data efficiency, we perform a612

series of experiments with the goal of isolating the effect613

of using equivariant convolutions of geometric tensors614

compared to invariant convolutions over scalars. In615

particular, we run a set of experiments for a system616

with a fixed number of training configurations in which617

we explicitly turn on or off interactions of higher order618

than l = 0. This defines two settings: first, we train the619

network with both l = 0 and l = 1 features and all five620

interactions as previously outlined in this work. Second,621

when all interactions involving l = 1 are turned off, this622

turns the network into a conventional invariant GNN-IP,623

involving only invariant convolutions over scalar features624

in a SchNet-style fashion. As a test system we chose bulk625

water: in particular we use the data set introduced in626

[39], consisting of 1,593 bulk liquid water structures with627

64 water molecules each. We train a series of networks628

with identical hyperparameters, but vary the training set629

sizes between 10 and 1,000 structures, sampled uniformly630

from the full data set, as well as a validation set consisting631

of 100 structures. We then evaluate the error on all632



14

remaining structures for a given training set size. As633

shown in Figure 7, we find that the equivariant setting634

(using l = 0 and l = 1) significantly outperforms the635

invariant setting (using only l = 0) for all data set sizes636

as measured by the MAE of force components. This637

suggests that it is indeed the use of tensor (in our specific638

case vector) features and equivariant convolutions that639

enables the high data efficiency of NequIP. We further640

note, that in [39], a Behler-Parrinello Neural Network641

(BPNN) was trained on 1303 structures, yielding a642

RMSE of ≈ 120 meV/Å in forces when evaluated on643

the remaining 290 structures. We find that NequIP644

models trained with as little as 50 and 100 data points645

obtain RMSEs of 122.9 meV/Å and 93.3 meV/Å on their646

respective test sets (note that Figure 7 shows the MAE).647

This provides further evidence that NequIP exhibits648

significantly improved data efficiency in comparison with649

existing methods.650

FIG. 7: Log-log plot of the predictive error in forces of
NequIP with l = 0 vs. l = 0/l = 1 interactions as a

function of data set size, measured via the force MAE.

Computational Efficiency651

Finally, we report the computational efficiency of652

NequIP and compare it to that of the ab-inito methods653

on two examples shown in this work: for a molecular654

system, we choose the Toluene molecule, computed at655

the CCSD(T)-level of theory [31]; for a material with656

periodic boundary conditions, we choose the Formate on657

Cu system, in which reference data were obtained with658

DFT. For both systems, we report the time required for659

a single force call on a CPU node with 32 cores. The660

results are shown in Table VI. In both cases, NequIP661

gives a large speed-up over the ab-initio methods. In the662

case of the Toluene system, this means that 58.4 minutes663

of a NequIP simulation can obtain the simulation time664

equaling one century of a CCSD(T) simulation.665

DISCUSSION666

We demonstrate that the Neural Equivariant667

Interatomic Potential (NequIP), a new type of graph668

neural network built on SE(3)-equivariant convolutions669

exhibits state-of-the-art accuracy and exceptional670

data efficiency on data sets of small molecules and671

periodic materials. Furthermore, we find that we672

can reproduce structural and kinetic properties from673

molecular dynamics simulations with very high fidelity674

in comparison to ab-initio simulations. The ability to675

both learn from small numbers of reference samples,676

while retaining high computational efficiency opens the677

door to performing simulations of large systems over678

long time-scales at quantum mechanical accuracy, using679

DFT or higher order methods such as coupled-cluster or680

quantum Monte Carlo data as reference. We expect the681

new method will enable researchers in computational682

chemistry, physics, biology, and materials science to683

conduct molecular dynamics simulations of complex684

reactions and phase transformations at increased685

accuracy and efficiency.686
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System Number of atoms NequIP Ab-initio Speed-up
Toluene 15 16 ms 4 hours* 900,000

Formate on Cu 52 58 ms 1045.6 s 18,028

TABLE VI: Time required for a single force call for NequIP in comparison to CCSD(T) for Toluene and DFT for
Formate on Cu; * personal communication with Stefan Chmiela and Alexandre Tkatchenko.

METHODS687

Reference Data Sets688

689

MD-17 : MD-17 [17, 30, 31] is a data set of690

eight small organic molecules, obtained from MD691

simulations at T=500K and computed at the692

PBE+vdW-TS level of electronic structure theory,693

resulting in data set sizes between 133,770 and694

993,237 structures. The data set was obtained from695

http://quantum-machine.org/gdml/#datasets.696

697

Molecules@CCSD/CCSD(T): The data set of698

small molecules at CCSD and CCSD(T) accuracy699

[31] contains positions, energies, and forces for five700

different small molecules: Asprin (CCSD), Benzene,701

Malondaldehyde, Toluene, Ethanol (all CCSD(T)).702

Each data set consists of 1,500 structures with the703

exception of Ethanol, for which 2,000 structure are704

available. For more detailed information, we direct705

the reader to [31]. The data set was obtained from706

http://quantum-machine.org/gdml/#datasets.707

708

Liquid Water and Ice: The data set of liquid waters709

and ice structures [15, 32] was generated from classical710

AIMD and path-integral AIMD simulations at different711

temperatures and pressures, computed with a PBE0-TS712

functional [15]. The data set, obtained from http:713

//www.deepmd.org/database/deeppot-se-data/,714

contains a total of 140,000 structures, of which 100,000715

are liquid water and 20,000 are Ice Ih b),10,000 are Ice716

Ih c), and another 10,000 are Ice Ih d).717

718

Formate decomposition on Cu: The decomposition719

process of formate on Cu involves configurations720

corresponding to the cleavage of the C-H bond, initial721

and intermediate states (monodentate, bidentate formate722

on Cu < 110 >) and final states (H ad-atom with a723

desorbed CO2 in the gas phase). Nudged elastic band724

(NEB) method was first used to generate an initial725

reaction path of the C-H bond breaking. 12 short726

ab initio molecular dynamics, starting from different727

NEB images, were run to collect a total of 6855 DFT728

structures. The CP2K [40] code was employed for the729

AIMD simulations. Each trajectory was generated with730

a time step of 0.5 fs and 500 total steps. We train731

NequIP on 2,500 reference structures sampled uniformly732

from the full data set of 6,855 structures, use a validation733

set of 250 structures and evaluate the mean absolute734

error on all remaining structures. Due to the unbalanced735

nature of the data set (more atoms of Cu than in the736

molecule), we use a per-element weighed loss function in737

which atoms C, O1, O2, and H and the sum of all Cu738

atoms all receive equal weights.739

740

Li4P2O7 glass: The Li4P2O7 ab-initio data were741

generated using an ab-initio melt-quench MD simulation,742

starting with a stoichiometric crystal of 208 atoms (space743

http://quantum-machine.org/gdml/#datasets
http://quantum-machine.org/gdml/#datasets
http://www.deepmd.org/database/deeppot-se-data/
http://www.deepmd.org/database/deeppot-se-data/
http://www.deepmd.org/database/deeppot-se-data/
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group P21/c) in a periodic box of 10.4 × 14.0 × 16.0744

Å. The dynamics used the Vienna Ab-Initio Simulation745

Package (VASP) [41–43], with a generalized gradient746

PBE functional [44], projector augmented wave (PAW)747

pseudopotentials [45], a NVT ensemble and a Nosé-748

Hoover thermostat, a time step of 2 fs, a plane-wave749

cutoff of 400 eV, and a Γ-point reciprocal-space mesh.750

The crystal was melted at 3000 K for 50 ps, then751

immediately quenched to 600 K and run for another752

50 ps. The resulting structure was confirmed to be753

amorphous by plotting the radial distribution function754

of P-P distances. The training was performed only755

on the molten portion, and the MD simulations for a756

quenched simulation.757

758

LiPS: Lithium phosphorus sulfide (LiPS) based759

materials are known to exhibit high lithium ion760

conductivity, making them attractive as solid-state761

electrolytes for lithium-ion batteries. Other examples of762

known materials in this family of superionic conductors763

are LiGePS and LiCuPS-based compounds. The training764

data set is taken from a previous study on graph neural765

network force field [13], where the LiPS training data766

were generated using ab-initio MD of an LiPS structure767

with Li-vacancy (Li6.75P3S11) consisting of 27 Li, 12 P,768

and 44 S atoms respectively. The structure was first769

equilibrated and then run at 520 K using the NVT770

ensemble for 50 ps with a 2.0 fs time step. The full data771

set contains 25,001 MD frames. We set aside 10,000772

frames as a fixed test set. From the remaining frames,773

we choose training set sizes of 10, 100, 1,000, and 2,500774

frames with a fixed validation set size of 100. In order775

to generate a diverse training set, we sample both the776

training and validation sets in a way such that 30% of777

both of them are comprised of the structures with the778

shortest interatomic distances out of all frames not in779

the test set and the remaining 70% of the training and780

validation set are uniformly sampled.781

782

Liquid Water, Cheng et al.: The training set used783

in the data efficiency experiments on water consists784

of 1,593 reference calculations of bulk liquid water at785

the revPBE0-D3 level of accuracy, with each structure786

containing 192 atoms, as given in [39]. Further787

information can be found in [39]. The data set was788

obtained from https://github.com/BingqingCheng/789

ab-initio-thermodynamics-of-water.790

791

Molecular Dynamics Simulations. To run MD792

simulations, NequIP force outputs were integrated with793

the Atomic Simulation Environment (ASE) [27] in which794

we implement a custom version of the Nosé-Hoover795

thermostat. We use this in-house implementation for the796

both the Li4P2O7 as well as the LiPS MD simulations.797

The thermostat parameter was chosen to match the798

temperature fluctuations observed in the AIMD run.799

The RDF and ADFs for Li4P2O7 were computed with800

a maximum distance of 10 Å (RDF) and 2.5 Å (both801

ADFs).802

803

Training. Networks are trained using a loss function804

based on atomic forces:805

L =
1

3N

N
∑

i=1

3
∑

α=1

|| −
∂Ê

∂ri,α
− Fi,α||

2 (9)

where N is the number of atoms in the system and806

Ê is the predicted potential energy. Note that we do807

https://github.com/BingqingCheng/ab-initio-thermodynamics-of-water
https://github.com/BingqingCheng/ab-initio-thermodynamics-of-water
https://github.com/BingqingCheng/ab-initio-thermodynamics-of-water
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not train on energies since atomic forces are the only808

quantities required to integrate Newton’s equations of809

motion. Since the predicted forces are computed as the810

gradient of a scalar potential, they are still conservative.811

If energies are of interest, however, one can add them to812

the loss function and determine the relative weighting813

via a trade-off parameter as done in previous works814

[9, 11]. In a similar fashion, it is trivial to add other815

quantities of interest to the loss function (e.g predicting816

atomic charges or multipole tensors can be of interest817

for modeling long-range interactions), where they may818

be scalar fields, vector fields, or higher-order tensor fields.819

820

Hyperparameters. Training of models was821

performed on NVIDIA Tesla V100 GPUs. Throughout822

all experiments shown in this work, we use a feature823

dimension of h = 64, 6 interaction blocks, Nb = 8 Bessel824

basis functions and radial neural networks with one825

hidden layer, also of hidden dimension Nhidden = 8,826

giving light-weight radial functions with a comparatively827

small number of parameters. The final interaction block828

is followed by the output block, which first reduces829

the feature dimension to 16 through a self-interaction830

layer. An equivariant non-linearity is applied and831

finally through another self-interaction layer the feature832

dimension is reduced to a single scalar output value833

associated with each atom that is then summed over834

to give the total potential energy. Weights were835

initialized with the uniform Xavier initialization in the836

radial networks and orthogonal initialization in the837

self-interaction layers, biases were initialized with a838

constant value of 0. In all experiments, we use the Adam839

optimizer [46] with the TensorFlow 1.14 default settings840

of β1 = 0.9, β2 = 0.999, and ǫ = 10−8. We decrease841

the initial learning rate of 0.001 by a decay factor of842

0.8 whenever the validation RMSE in the forces has843

not seen an improvement for a given number of epochs:844

for the small molecule tasks, we set this learning rate845

patience to 1,000, for all other tasks we use 100. We846

continuously save the model with the best validation847

RMSE and use the model with the overall best RMSE848

for evaluation on the test set and MD simulations. We849

stop the training if either a maximum number of 50,000850

epochs (one epochs equals a full pass over the training851

set) has been reached, or the validation force RMSE852

has not improved for 2,500 epochs, or the maximum853

training time has been exceeded, whichever occurs first.854

All systems were trained for a maximum of 8 days855

(consisting of four runs of 48-hour time-limited compute856

jobs, which are restarted from the best saved model, i.e.857

potentially including repeats in the training) with the858

exception of the Li4P2O7, which was trained for 12 days859

(six 48-hour compute jobs) and the LiPS systems, which860

were trained for 4 days (two 48-hour compute jobs). We861

use a batch size of 5 structures for all small molecule862

tasks, and a batch size of 1 structure for all other tasks.863

We found small batch sizes to be important for obtaining864

high predictive accuracy. We also found it important to865

choose the radial cutoff distance rc appropriately. A list866

of the cutoff radii in units of [Å] that were used for the867

different systems is given in Table VII.868

869

Example of a tensor product interaction. To870

illustrate that the interactions outlined in this work871

reduce to a set of five simple operations, we write out the872

example of a full 1⊗1 → 1 interaction, i.e. a convolution873

that uses a l = 1 filter to operate on a l = 1 feature,874

yielding again a l = 1 output. This corresponds to875
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li = lf = lo = 1, facilitating a cross-product interaction876

between two l = 1 tensors. In this case, the Clebsch-877

Gordan coefficients reduce to the Levi-Civita symbol [21]:878

C
(l0=1,mo)
(lf=1,mf ),(li=1,mi)

∝ ǫofi =































1 (o, f, i) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

−1 (o, f, i) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)}

0 else

(10)

Evaluating equation 8 as well as ǫofi and using the879

relationship Y (1)(r̂) ∝ r̂, we recognize the output as880

the vector cross product, taken here between the relative881

positions and the input feature element V
(l=1)
bc :882

L(lo=1)
ac (~ra, V

(li=1)
ac ) =













∑

b∈B Rc(rab)r̂2V
(l=1)
bc3 −

∑

b∈B Rc(rab)r̂3V
(l=1)
bc2

∑

b∈B Rc(rab)r̂3V
(l=1)
bc1 −

∑

b∈B Rc(rab)r̂1V
(l=1)
bc3

∑

b∈B Rc(rab)r̂1V
(l=1)
bc2 −

∑

b∈B Rc(rab)r̂2V
(l=1)
bc1













(11)

Data Set Cutoff
MD-17 [17, 30, 31] 4.0
Molecules, CCSD/CCSD(T) [31] 4.0
Water+Ices, DeepMD [15, 32] 6.0
Formate on Cu 5.0
Li4P2O7 [12] 5.0
LiPS [13] 5.0
Water, data efficiency tests [39] 4.5

TABLE VII: Radial cutoff in units of [Å].

DATA AVAILABILITY883

The code and data sets will be made available upon884

publication.885
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Figures

Figure 1

Left: a set of atoms is interpreted as an atomic graph with local neighborhoods. Middle: every atom
carries a set of scalar and vector features with it. Right: atoms exchange information via filters, that are
again scalars and vectors. The interactions of features and filters define five interactions.

Figure 2

The NequIP network architecture. Left: atomic numbers are embedded into l = 0 features, which are
refined through a series of interaction blocks, creating l = 0 and l = 1 features. An output block generates
atomic energies, which are pooled to give the total predicted energy. Middle: the interaction block consists
of a series of convolutions, interweaved with self-interaction layers, equivariant nonlinearities and
concatenation. Right: the convolution combines the radial function R(r) which operates only on
interatomic distances with the spherical harmonics based on unit vector rˆ via a tensor product.



Figure 3

Perspective view of atomic configurations of (a) bidentate HCOO (b) monodentate HCOO and (c) CO2
and a hydrogen adatom on a Cu(110) surface. The blue, red, black, and white spheres represent Cu, O, C,
and H atoms, respectively. The subset shown in each subplot is the corresponding top view along the <
110 > orientation.



Figure 4

Quenched glass structure of Li4P2O7. The insets show the P-O-O tetrahedral bond angle (bottom left) as
well as the O-P-P bridging angle between corner-sharing phosphate tetrahedra (top right).



Figure 5

Left: Radial Distribution Function, middle: Angular Distribution Function, bridging oxygen, right: Angular
Distribution Function, tetrahedral bond angle. All are defined as probability density functions.

Figure 6

Comparison of Lithium mean square displacement of AIMD and NequIP trajectories.



Figure 7

Log-log plot of the predictive error in forces of NequIP with l = 0 vs. l = 0/l = 1 interactions as a function of
data set size, measured via the force MAE.
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