
Sea ice extent mapping using Ku band scatterometer data

Quinn P. Remund and David G. Long
Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah

Abstract. Although spaceborne scatterometers such as the NASA scatterometer have
inherently low spatial resolution, resolution enhancement techniques can be used to
increase the utility of scatterometer data in monitoring sea-ice extent in the polar regions,
a key parameter in the global climate. The resolution enhancement algorithm produces
images of A and B , where A is the normalized radar backscatter coefficient so at 408
incidence and B is the incidence angle dependence of so. Dual-polarization A and B
parameters are used to identify sea ice and ocean pixels in composite images. The A
copolarization ratio and vertically polarized B are used as primary classification
parameters to discriminate between sea ice and open ocean. Estimates of the sea-ice
extent are obtained using linear and quadratic (Mahalanobis distance) discriminant
boundaries. The distribution parameters needed for the quadratic estimate are taken from
the linear estimate. The so error variance is used to reduce errors in the linear and
Mahalanobis ice/ocean classifications. Noise reduction is performed through binary image
region growing and erosion/dilation techniques. The resulting edge closely matches the
NASA Team algorithm special sensor microwave imager derived 30% ice concentration
edge. A 9-month data set of global sea-ice extent maps is produced with one 6-day
average map every 3 days.

1. Introduction

Several factors motivate the interest in monitoring the ex-
tent of sea ice. Sea-ice extent is a critical input to global climate
and geophysical models. Polar ice sheets act as insulating lay-
ers between the relatively warm ocean and cool atmosphere
and can radically change the albedo of the Earth’s surface. It
also plays a vital role in the planetary water exchange cycle.
Moreover, sea-ice extent may be used as a sensitive indicator
of global climate change [Budd, 1975]. Hence monitoring the
extent of sea ice is of great interest to the remote sensing
community.

In addition to climatological reasons, sea-ice mapping is
needed for retrieval of ocean wind velocities from scatterom-
eter measurements. The NASA scatterometer (NSCAT) was
designed to infer surface wind speed and direction over the
ocean. If measurements are included that are corrupted by
nonocean surfaces such as sea ice, the wind estimates are
degraded. Thus accurate knowledge of the location of sea ice
is required. In this paper, an adaptive technique for mapping
the sea-ice extent using NSCAT data is developed and com-
pared to special sensor microwave imager (SSM/I) derived ice
maps. Using the methods discussed in this paper, 6-day aver-
age ice extent maps are processed every 3 days over the 9
months of NSCAT data. The ice maps are used in the final
reprocessing of the NSCAT data.

Historically, spaceborne scatterometers have been employed
primarily in atmospheric and oceanic studies. Rapid repeat
coverage makes these instruments valuable in these applica-
tions. The low spatial resolution of scatterometers is suitable
for studying such large-scale phenomena. Spaceborne scat-
terometers have also been used to study nonocean surface
parameters [Long and Drinkwater, 1994, Hosseinmostafa et al.,

1995]. However, for land and ice studies, the low resolution can
limit the utility of this data.

The scatterometer image reconstruction with filter (SIRF)
algorithm was developed to enhance scatterometer image res-
olution by combining data from multiple passes of the satellite
[Long et al., 1993]. It uses multiple so values to increase the
effective resolution of the data. Over a limited incidence angle
range of [208, 558], so (in decibels) is approximately a linear
function of u,

so~u ! 5 A 1 B~u 2 408! (1)

where A and B are functions of surface characteristics, azimuth
angle, and polarization. A is the so value at 408 incidence and
B describes the dependence of so on u. A and B provide
valuable information about surface parameters. Forty degrees
is chosen as a midswath value, but any interior swath angle can
be used. The SIRF algorithm produces both A and B images
from NSCAT so measurements.

This paper describes the development and implementation
of an adaptive sea-ice extent mapping method and its compar-
ison to SSM/I derived maps. Section 2 describes the resolution-
enhanced parameters used in the multivariate analysis of the
data. Section 3 gives an overview of the sea-ice mapping tech-
nique and discusses each of the steps in detail. The technique
is applied to NSCAT polar data and the results are given in
section 4. The final section contains the conclusions drawn
from the analysis.

2. Polar NSCAT Data

The NASA scatterometer, launched in August 1996, is a
real-aperture, dual-polarization Ku band radar scatterometer
designed to measure the normalized radar backscatter coeffi-
cient so of the Earth’s surface. Using the SIRF algorithm,
dual-polarization A and B images with an effective resolution
of 8–10 km can be generated with 6 days of data. NSCAT
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vertical polarization (v pol) images can be produced with only
3 days of data since there are more v pol antenna beams than
horizontal polarization (h pol) beams. However, 6 days are
used to ensure that the h pol data provide enough coverage to
create the reconstructed image. Since the v pol images are
reconstructed with more measurements, the qualities of the A

and B estimates are subjectively superior to the h pol images.
We recognize that sea-ice dynamics may cause the ice edge to

change significantly during a 6-day interval. As a result, the ice
maps generated by this technique must be regarded as average
ice extents during the imaging period. The method can be
applied with data over shorter intervals (especially in the Arc-
tic region), with some loss of coverage and degradation of the
h pol image quality.

The dual-polarization A and B values for each pixel provide
four parameters that can be used to detect sea ice. In addition,

Figure 1. Scatterometer image reconstruction with filter (SIRF) enhanced resolution NASA scatterometer
(NSCAT) Antarctic images for the day range 1996 Julian Day (JD) 337–342, showing (a) v pol so at 408
incidence ( A

v
), (b) h pol so at 408 incidence Ah, (c) v pol incidence angle dependence of so B

v
, (d) h pol

incidence angle dependence of so Bh, (e) copol ratio g, and (f) so error standard deviation k.
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so error standard deviation is also useful. These parameters
are described in the remainder of this section. Their utility in
the discrimination between sea ice and open ocean is also
discussed.

2.1. Copolarization Ratio

A useful parameter in the discrimination of sea ice and
ocean is the copolarization (copol) ratio, defined as the ratio of
s

vv

o and shh
o [Yueh et al., 1997]. This can be extended to a copol

ratio of the incidence angle normalized so values. For the
purposes of this paper, the copol ratio g is defined as the ratio
of the A

v
and Ah values:

g 5 A
v
/Ah. (2)

In log space this is equivalent to taking the difference between
the v and h components. Sample A

v
and Ah images are shown

in Figures 1a and 1b. The corresponding g image is shown in
Figure 1e.

The copol ratio is sensitive to the surface-scattering mech-
anisms. For smooth, conductive surfaces such as calm seawa-
ter, the reflection coefficients for vertically and horizontally
polarized incident waves differ. In general, vertically polarized
waves reflect more than their horizontal counterparts. Thus
the copol ratio (in decibels) is positive. For rough surface
dielectric layers with randomly oriented scatterers such as ice
or snow, multiple reflections of the incident radiation tend to
depolarize it. As a result, vertical and horizontal waves are
scattered similarly and the copol ratio is closer to 0 dB. Fur-
ther, the copol ratio is sensitive to the presence of ice or water
even in single (Bragg) scattering situations. In these scenarios
the polarization ratio is determined by the relative permittivity
of the material. Since sea ice has a much lower permittivity
than ocean water, g is also much lower. Because of these
differences in scattering mechanisms, g is useful in discrimi-
nating between different ice and ocean surfaces. While the
ocean generally has high g values and sea ice (with low water
content) generally has low values, in high wind conditions
some ocean areas may exhibit low copol ratios. The winds
induce roughness on the ocean surface, which depolarizes the
scattering and drives g down. In order to overcome this, other
parameters are used to assist in the classification.

2.2. Incidence Angle Dependence

The incidence angle dependence of so, represented by B , is
also sensitive to the presence of sea ice [Drinkwater, 1998;
Rouse, 1969; Gohin and Cavanie, 1994; Gohin, 1995]. Figures
1c and 1d give examples of B

v
and Bh enhanced resolution

images, respectively. Owing to the increased scattering isot-
ropy of sea ice [Early and Long, 1997] relative to the ocean,
these regions tend to have less incidence angle dependence.
On the other hand, ocean so measurements are strongly de-
pendent on incidence angle, with the low incidence angles
exhibiting higher so. Thus this parameter can be used to lim-
ited degrees of accuracy in differentiating between the ice and
ocean. While it may be useful to use both B

v
and Bh, this study

found a strong correlation between B
v

and Bh. Noting that B
v

values are less noisy than Bh owing to the greater number of
vertical polarization measurements, only B

v
is used for the

discriminant analysis.

2.3. The s
o Estimate Error Standard Deviation

In addition to the copol ratio and incidence angle depen-
dence, the standard deviation of the error in the so estimates

also contains information about polar surfaces. This metric,
denoted k, is a measure of the amount of surface response
change over the ensemble of so measurements due to tempo-
ral or azimuthal variability.

In order to understand k, we examine the measurement
collection process and its relation to image reconstruction. For
NSCAT, each fan beam antenna illumination pattern is re-
solved in the along-beam direction through Doppler filtering
along iso-Doppler lines in the footprint [Naderi et al., 1991].
The beam is resolved into 25 cells at different incidence angles.
The size of each cell depends upon its relative location in the
beam with near-nadir cells covering a smaller area on the
surface. The cells have a hexagonal shape determined by the
Doppler filtering, motion of the satellite, and azimuth beam-
width of the antenna [Naderi et al., 1991].

Figure 2 shows an example NSCAT cell overlaid on a SIRF
resolution grid. SIRF produces A and B estimates for each
resolution element. The forward projection of the A and B

values yields an estimate for so given by

ŝo 5
1

N
O
i5Lk

Rk

O
j5Bk

Tk

hk~i , j!@A~i , j! 1 B~i , j!~u 2 408!# (3)

where N is the number of pixels in the cell; Lk, Rk, Tk, and Bk

define a bounding rectangle for the kth hexagonal so measure-
ment cell; hk(i, j) is the weighting function for the (i, j)th resolu-
tion element (for NSCAT a simplified weighting can be used),

hk~i , j! 5 H 1 pixel in kth cell

0 otherwise
(4)

A(i , j) is the A estimate for the (i , j)th resolution element,
and B(i , j) is the B estimate for that pixel (see Figure 2). For
each NSCAT so measurement, we compute the associated
forward projection ŝo. The difference between the measured
and forward projected so, (so 2 ŝo) for each pixel is com-
puted. The parameter k is defined as the standard deviation of

Figure 2. An integrated NSCAT so cell overlaying the high-
resolution grid. Only the shaded square grid elements have
nonzero values of the resolution element weighting function
h( x , y). The bounding rectangle is also indicated. Figure is
adapted from Long et al. [1993] (@ 1993 IEEE).
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the measurements in the ensemble of this random variable for
each pixel:

k 5 ÎO
l

~s l
o 2 ŝ l

o!2 (5)

where the s l
o are the vertical polarization measurements

touching the pixel. While this study used the SIRF A and B

estimates to compute k, estimates obtained from linear regres-
sion and simple binning may also be used, although the result-
ing k images would have lower spatial resolution.

Figure 1f illustrates an example k image. Ideally, the stan-
dard deviation k would be zero if SIRF perfectly reconstructed
the measurements into the A and B images. However, tempo-
ral change of the surface, noise in the so measurements, and
azimuthal anisotropy of so may cause k to increase, though,
unfortunately, the time and azimuth components are insepa-
rable in this metric. The ocean response tends to be very
dynamic in both time and azimuth owing to varying wind-

induced surface roughness, resulting in large k values. Al-
though higher k values are expected in ocean regions than for
sea ice, consistently calm ocean areas during the data collec-
tion period may produce low k values. Sea-ice response, on the
other hand, is less time dependent, although ice melt/freeze
events or ice motion may cause some variance. Azimuthal
anisotropy in sea-ice regions is generally less than 1 dB for C
band ERS 1 data [Early and Long, 1997]. Albeit in a different
year and season, a duplicate study was performed for NSCAT
data and showed that the anisotropy was less than 0.6 dB in the
same study regions [Remund et al., 1997]. We recognize that
sea-ice conditions may be different in these study regions ow-
ing to the different data time frames. Regardless, we expect
that azimuthal variability is lower for sea ice than open ocean.

3. Sea-Ice Extent Mapping Technique

The parameters discussed in section 2 provide the informa-
tion needed to map sea-ice extent in the polar regions.

Figure 3. Binary images at different stages of the ice/ocean discrimination process for a single quadrant of
the Antarctic 1996 Julian Day (JD) 337–342 image. The images are the (a) linear discriminant estimate, (b)
Mahalanobis distance estimate, (c) with k correction applied, and (d) the result of the erosion, region-growing,
and dilation procedures.
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Through proper processing, the presence or absence of sea ice
can be inferred from the g, B

v
, and k images. This section

discusses a technique for generating polar ice extent maps
from these parameters. First, an overall strategy is described by
enumerating the individual steps. Next, a description and anal-
ysis of each step is presented.

3.1. Technique Overview

Several steps are combined to define an ice extent mapping
technique that adaptively handles the time variant parameter
distributions. The technique can be summarized as follows: (1)
Produce the enhanced resolution g, B

v
, and k images. (2)

Generate g versus B
v

bivariate distribution of the images. (3)

Perform linear discrimination (LD) to obtain a first estimate of
the sea-ice extent, finding the optimal linear discrimination
boundary and performing pixel by pixel classification. (4) Com-
pute the means, variances, and covariances of the ice and
ocean regions for both parameters. (5) Perform the Mahalano-
bis distance (MD) discrimination, finding the Mahalanobis
quadratic discrimination boundary and performing pixel by
pixel classification. (6) Apply the k correction by thresholding
k at 3.3 for all pixels for which the LD and MD estimates
differ. (7) Perform edge filtering to reduce noise, so region
growing removes isolated noise patches and erosion/dilation
techniques low-pass filter the edge.

Illustrative examples of the binary output images at different

Figure 4. Antarctic ice-masked image using the NSCAT technique for 1996 JD 337–342.
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stages of the detection technique are shown in Figure 3 for one
quadrant of the Antarctic image. Figure 4 illustrates an A

v

image masked by the ice extent estimate generated by our
method.

3.2. Multiparameter Discrimination

The three parameters g , B
v
, and k contain varying degrees

of information about the surface response that can be used to
differentiate between sea-ice and open ocean pixels in the
images. Of the three parameters, g and B

v
are the most sen-

sitive to sea-ice presence. This can be seen in the example
images in Figure 1. The k image has the most ambiguity in
differentiating between the different surfaces. Indeed, when a
simple threshold discrimination is implemented with each pa-
rameter individually, k has the weakest performance. For this
reason, g and B

v
are used as the primary discrimination pa-

rameters. However, the k images can be used to reduce resid-
ual errors in localized regions when the other two are used.
This will be shown in section 3.3.

The two-dimensional distribution of nonland pixels for the
two primary parameters contains two distinct modes that cor-
respond separately with sea-ice and ocean pixels. An example
is shown in Figure 5 with its corresponding contour plot.
Through the proper choice of a discriminant boundary, the
modes can be separated to obtain an ice extent estimate. Ow-
ing to the seasonal variations in ice extent and scattering char-
acteristics, the distribution is season dependent. Thus the op-
timal mode-separating boundary must adapt to the specific
distribution for each 6-day imaging period.

Two major steps are used in the sea-ice extent mapping
technique: linear discrimination and Mahalanobis distance dis-
crimination. The first uses a linear boundary to separate the
modes of the bivariate data, while the second uses a quadratic
boundary.

3.2.1. Linear discrimination. If the underlying ice and
ocean component distributions of the joint distribution are
Gaussian, the optimum linear discriminant boundary passes
through the saddle point of the distribution function and is
perpendicular to the line passing through the peaks of the two

modes. This line can be found in an automated fashion. First,
the mode peaks are located by a 5 3 5 bin search of the
bivariate distribution. These are found by starting two separate
searches in regions of the g-B

v
plane known to be in the

different modes of the distribution. The search procedure as-
cends to each local peak. A 5 3 5 window is used to ensure that
the search does not get hung on any local maxima. The saddle
point is then located along the line connecting the two peaks of
the distribution at the bin with the minimum value along the
line. The linear discriminant boundary is computed as the line
passing through the saddle point and perpendicular to the
peak-to-peak line.

Using the linear boundary, each pixel is classified as ice or
ocean by observing its associated parameter values. Pixels on
one side of the line are considered ice, while the others are
classified as ocean. Figure 6 shows the g versus B

v
distribution

contour plots of images from four different NSCAT time
frames. The linear discriminant boundary is also plotted. Note
that as the distribution characteristics change with season, the
technique adaptively assigns an optimum decision boundary.
The result of the linear discrimination is a binary image of ice
and ocean locations.

Once an ice extent estimate image is produced, the means,
variances, and covariances are computed for the ice pixels and
the ocean pixels. These are used as statistical estimates for the
Mahalanobis distance classification.

3.2.2. Mahalanobis distance discrimination. The Mahal-
anobis distance aids in separating the modes of a multimodal
distribution where each component distribution is Gaussian
with different variances [Duda and Hart, 1973]. It accounts for
the variance differences through the use of a quadratic rather
than a linear boundary. The squared Mahalanobis distance is
given by

r2 5 ~x 2 m!T S21~x 2 m! (6)

where x is the vector of parameters for the test pixel, m is the
reference vector containing the component distribution means,
and S is the covariance matrix.

Subjectively noting that the underlying component distribu-

Figure 5. (left) Two-dimensional distribution of copolarization (copol) g versus B
v

values and (right) its
corresponding contour plot for NSCAT data from 1996 JD 337–342. The two modes represent ice and ocean
pixels. Each mode clearly has different mean and variance values. The upper left mode is sea ice, while the
other represents ocean pixels.
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tions of the bivariate g-B
v

distribution appear nearly Gauss-
ian, the Mahalanobis distance can be applied in the discrimi-
nation of sea ice and ocean pixels. For each pixel of interest,
two Mahalanobis distances are computed, r ice and rocean. If r ice

is less than rocean, the pixel is flagged as ice; otherwise, the pixel
is considered ocean. Figure 6 shows the distribution contours
plotted with the Mahalanobis and the linear discriminant
boundaries. Clearly, the boundaries adapt for the particular
characteristics of a given imaging period distribution.

3.3. The k Correction

The linear discriminant and Mahalanobis distance binary ice
extent images both provide visually good estimates of the ice
extent. In general, the same ice edges are observed in the LD
and MD estimates, with the exception of relatively small local-
ized errors. Local errors in the LD estimates tend to overesti-
mate the ice edge. On the other hand, the MD edges usually do
not show these overestimation errors but have some localized
regions where the ice edge is underestimated. As described
previously, consistently high winds during the data collection
period may drive g down, resulting in false ice detection when

the LD method is applied. The same weather mechanism that

causes this error also increases k since high winds over the time

frame of the data collection induce higher azimuthal anisot-

ropy and temporal variance of so. The overestimation error

regions of the LD images have characteristically high k values.

The correlation between LD errors and high k suggests that k

can be used as a secondary discrimination parameter to correct

for errors in the LD and MD images.

The k correction is applied to the set of all pixels for which

the LD and MD images disagree. Thus k becomes the deciding

factor when LD and MD yield different discrimination out-

puts. The set consists of all LD overestimation pixels and all

MD underestimation pixels. An empirical analysis of the k data

over this set of pixels for several sample images showed that k

is generally above 3.3 for the LD error pixels. The correction is

then applied by thresholding k over the error set using the

following discrimination rule:

pixelij 5 H ice k i, j , 3.3

ocean k ij $ 3.3
(7)

Figure 6. Contour plots of four g versus B
v

distributions. The Mahalanobis and linear discriminant bound-
aries are also plotted. The decision boundaries are adapted to be optimum for each individual distribution.
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where k i , j is k for the i , jth pixel in the set of pixels for which
LD and MD disagree.

3.4. Ice Map Filtering

The k correction results in a binary image illustrating the
location of sea-ice and ocean regions. However, some residual
high-wind-induced noise over the ocean can cause ocean pixels
to be misclassified as ice for reasons previously addressed. This
noise is manifested in the binary image as patches of ocean that
have been classified as sea ice. Other physical mechanisms may
also cause patches of ice to be misclassified as ocean. The
former is much more common than the latter. These anomalies
often occur in isolated regions disconnected from the actual
edge but may also occur on the edge itself. Each of these is
handled separately in the filtering step.

Region growing techniques are used to eliminate the iso-
lated misclassification patches in the ocean and ice. The region
growing method starts with a small region known to be within
the ice area (the land mass for the Antarctic region). It then
expands this region within the ice area of the binary ice mask
image. The region continues to grow until it gets to the outer
edge of the ice region and cannot expand further. This elimi-
nates all the isolated patches of pixels misclassified as ice in the
ocean. The region growing method is then inverted to grow
from the outer edge of the image inward until it reaches the
binary threshold edge. This eliminates all the patches of pixels
misclassified as ocean in the ice.

Once the region growing is complete, some residual noise
exists on the edge itself as high spatial frequency edge charac-
teristics and as small lobes attached by only a few pixels to the
main body of ice. To remove these, image erosion and dilation
techniques are used [Rush, 1995]. Two erosion iterations sep-
arate the smaller misclassified lobes from the main body. Re-
gion growing is then performed again to eliminate these sep-
arated lobes. To restore the edge (a low-pass-filtered version),
two iterations of image dilation are performed. We recognize
that small fingers of ice extending from the main ice pack may
be filtered out along with the edge noise. The result is a binary

image mask that can be applied to the original A or B images
(see Figure 3).

The filtering operation is designed to map the sea-ice extent
rather than absolute sea-ice coverage. Consequently, open wa-
ter regions within the ice pack are filtered out by the inverse
region growing step. The filtering can be modified to preserve
these regions by eliminating the inverse region growing step.

4. Results

The technique is implemented for all data during the
NSCAT mission. Each enhanced resolution image is con-
structed using 6 days of data with 3 days of overlap in consec-
utive time frames. The result is a long time series of sea-ice
extent images that can be used in a variety of applications
including the ice masking needed in wind retrieval reprocess-
ing of NSCAT data. In this section, the NSCAT and NASA
Team algorithm SSM/I derived ice maps are compared and the
seasonal ice extent as generated by both methods is observed.

4.1. Comparison With NASA Team Algorithm SSM/I
Derived Ice Maps

Because of the limited amount of high-resolution data dur-
ing the NSCAT mission, validation is difficult. To provide
validation for our technique, the NSCAT ice maps are com-
pared with SSM/I derived ice concentration images. This prod-
uct is derived from passive multifrequency, dual-polarization
special sensor microwave imager observations using the NASA
Team algorithm [Cavalieri et al., 1991, 1984]. The NSCAT
images use a polar stereographic projection similar to the pro-
jection used for the SSM/I images but are produced at a higher
pixel resolution. Daily SSM/I ice concentration images were
obtained from the National Snow and Ice Data Center
(NSIDC). For each NSCAT image the corresponding six
SSM/I images were averaged together. For comparison with
NSCAT results, the SSM/I average ice concentration image for
the same time period is thresholded at the desired concentra-
tion level to create a binary ice map. This image is then inter-

Figure 7. Percentage of the sea-ice area that the NSCAT and special sensor microwave image (SSM/I) ice
extent maps disagree as a function of SSM/I ice concentration. This metric is computed by finding the ratio
of the area for which the two methods disagree to the area classified as ice for either method. Four sample
NSCAT images were used. The minimum generally occurs very close to 30%.
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polated to the NSCAT pixel resolution by determining which
NSCAT pixels correspond to each SSM/I pixel and filling them
with the associated SSM/I pixel value.

Four sample time periods were used for the validation. The
images are each spaced by approximately 1 month to illustrate
the changes in sea-ice extent throughout the yearly melt cycle.
The resulting ice extent maps are compared with various
NASA Team algorithm ice concentration images thresholded
at various levels from 10% to 50%. To provide a quantitative
measure of correlation between the two ice maps, the disagree-
ment percentage is used. While this is not an ideal metric, it is
easily defined as the ratio of the area of the pixels where the
NSCAT and the NASA Team methods disagree and the area
of the pixels that are classified as ice by either method. Figure
7 shows this metric as a function of NASA Team algorithm ice
concentration for the four sample images. In most cases the
minimum occurs at approximately 30%. We conclude that the

NSCAT ice edge corresponds most closely with a 30% ice
concentration.

Figure 8 shows several sample SIRF A
v

images for a quad-
rant of Antarctica with the associated NSCAT and NASA
Team 30% ice edge estimates. These images consist of the
quadrant of Antarctica from 908 west longitude (lower edges of
the images) to 08 longitude (right edges of the images). Sub-
jectively, there is a high correlation between the edges. For the
images with time periods 1996 Julian day (JD) 307–312 and
337–342 and 1997 4–9 and 34–39, the disagreement percent-
ages are 2.19%, 3.24%, 5.47%, and 3.56%, respectively. Some
of the disagreement is due to the differences in image resolu-
tions and pixel spacing since the enhanced resolution NSCAT
images have higher spatial resolution than the SSM/I images.

The disagreement percentage metric is also calculated for
every image in the NSCAT data set using the corresponding
NASA Team 30% ice concentration images and is shown in

Figure 8. NSCAT scatterometer image reconstruction with filter (SIRF) resolution enhanced A
v

images of
a portion of Antarctica. The NSCAT ice edge is plotted in white. The NASA Team algorithm SSM/I derived
30% ice concentration edge is plotted in black.
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Figure 9. The set consists of 80 images spanning the time
period from 1996 JD 277–282 to 1997 JD 166–171. For the
most part the disagreement percentage is between 2% and 5%.
The mean value is 3.34%, and the standard deviation is 1.01%.
The correlation between the NSCAT and NASA Team ice-
mapping techniques is strong throughout the NSCAT mission
period.

The time period when the disagreement percentage is the
greatest is during the ice retreat phase. During this time
the NSCAT estimated ice extent is generally greater than the
SSM/I ice extent. Figure 8 (top right) illustrates this effect. The
NSCAT edge identifies a portion of the ice pack that the
SSM/I does not. Fetterer et al. [1992] observed a similar trend in
comparing NASA Team and Geosat radar altimeter ice edges.

4.2. Seasonal Sea Ice Extent

We now consider the seasonal area of the sea-ice extent as

computed from the NSCAT and NASA Team ice maps. The

sea-ice extent area for a particular image is computed by find-

ing the area for each ice-flagged pixel according to the polar

stereographic projection. These areas are summed to obtain

the total extent. It should be noted that this is the total ice

extent rather than the total ice area since polynyas are not

masked out in the images. Figure 10 shows the seasonal ice

extent computed for the complete NSCAT data set. The

NSCAT and NASA Team signatures are very similar. For

both, the melt cycle along with a portion of the freeze cycle is

evident. These results are similar in form to those of Gloersen

Figure 9. Plot of disagreement percentage metric computed by taking the ratio of surface area where the
two methods disagree and the area for which either method classifies the surface as sea ice. The images each
represent 6 days of data with 3 days of overlap between consecutive images. The Julian days given on the
horizontal axis correspond to the first days of each imaging period.

Figure 10. Seasonal Antarctic sea-ice extent in square kilometers using both the NSCAT and NASA Team
methods. The data set extends from 1996 JD 277–282 to 1997 JD 166–171. The first Julian day of each imaging
period is represented on the horizontal axis.
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et al. [1992] who computed the ice extent using the scanning
multichannel microwave Radiometer (SMMR) from 1978 to
1987, although the maximum and minimum of the cycle are
more extreme in 1996–1997.

We note that during the ice retreat phase, NSCAT often
estimates a greater ice extent than the NASA Team algorithm.
This result is similar to the findings of Fetterer et al. [1992]
during midsummer, in which the Geosat altimeter measured a
greater ice extent than the NASA Team SSM/I derived prod-
uct. During ice advance the NASA Team method consistently
predicts a larger sea-ice extent than NSCAT. The differences
occur primarily in the Weddell and Amundsen Seas. The geo-
graphical correlation suggests that a geophysical cause is re-
sponsible for the discrepancy. Both of these areas are regions
of rapid ice advance. The physical mechanisms behind these
differences are presently not understood but may be related to
differences in the detection of new ice formation for active and
passive sensors similar to the differences noted by Fetterer et
al. during ice retreat. The evolution of the sea-ice extent is
shown in Figure 11. The latitude of the four sample ice edges
is plotted as a function of longitude, illustrating the recession
of the ice edge from October to February.

The ice extent mapping technique can also be applied to
Arctic NSCAT data. Figure 12 shows an example Arctic SIRF
A

v
ice-masked images for 1997 JD 4–9, with the associated

NASA Team edge plotted over it. Again, the resulting ice edge
is similar to the NASA Team algorithm SSM/I derived edge.

5. Discussion

NSCAT dual-polarization Ku band data in concert with the
SIRF resolution enhancement algorithm can be used to effec-
tively determine sea-ice extent in the polar regions. The copol
ratio and the incidence angle dependence of so are used as
primary classification parameters since they appear to be the
most sensitive to the presence of sea ice. The k parameter, on
the other hand, is useful for correcting errors in the linear and
quadratic ice extent estimates owing to its sensitivity to classi-
fication error inducing high winds in ocean regions. The tech-
nique requires no a priori information and adapts to the tem-

poral variability of the underlying parameter distributions.
When applied, the sea-ice detection method closely matches
the NASA Team algorithm SSM/I derived 30% ice concentra-
tion extent. While we have used only scatterometer data to
estimate the sea-ice extent, we believe that scatterometer data
can be coupled with radiometer data to improve the accuracy
of ice maps and ice classifications.

Application of the described technique has resulted in a
large data set composed of 6-day average ice extent images
every 3 days of the polar regions during the 9-month NSCAT
mission. This data set can be applied to a wide range of studies,
including global climate studies and wind processing. By ex-
cluding regions with ice cover, the probability of error in ex-
tracting wind speed and direction from the backscatter data
goes down.

The loss of the ADEOS satellite prematurely terminated the
flow of NSCAT data. While the ice-mapping technique was
developed to be used with NSCAT data, it can be extended to
work for future Ku band scatterometers with only minor
changes. Two future scatterometers are of interest: QUIK-
SCAT will be launched in late 1998 and SeaWinds in 2000.
These differ from NSCAT in several ways. First, they are
dual-polarization, scanning pencil beam scatterometers. The
inner scan is at 478 incidence and is horizontally polarized
[Ah(47)], while the outer scan operates at 558 and is vertically
polarized [A

v
(55)] [Spencer et al., 1997]. Hence they do not

contain the information needed to obtain an estimate of so

incidence angle dependence. Also, since the vertical and hor-
izontal so data are at different incidence angles, the copol
ratio is undefined for QUIKSCAT and SeaWinds. However, by
using two different primary classification parameters, Ah and
A

v
(55)/Ah(47), the ice-mapping technique can still be applied.

We found that using simulated SeaWinds data, the sea ice can
still be mapped although the occurrence of error went up
slightly.

An advantage of the QUIKSCAT and SeaWinds instru-
ments over NSCAT is the increased coverage of the Earth’s
surface. Both have a wider swath than NSCAT and have no
nadir gap, allowing QUIKSCAT and SeaWinds polar images

Figure 11. Latitude of the sea-ice edge as a function of longitude for four sample images illustrating yearly
melt. The edges were generated using the NSCAT ice extent mapping technique.
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to be produced using only 1–2 days of data rather than the 6
days required for NSCAT. As a result, the ice extent maps can
be produced at 1- to 2-day intervals with quality and resolution
similar to the NSCAT 6-day ice extent estimates. In this case,
sea ice dynamics become less of a factor in discrimination
errors near the edge. Alternatively, 6 days of QUIKSCAT or
SeaWinds data can be used, resulting in a higher confidence ice
extent map owing to the increased quality of parameter estimates.
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