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Sea-level rise exponentially 
increases coastal flood frequency
Mohsen Taherkhani 1, Sean Vitousek  1,2*, Patrick L. Barnard  2, Neil Frazer 3, 

Tiffany R. Anderson3 & Charles H. Fletcher3

Sea-level rise will radically redefine the coastline of the 21st century. For many coastal regions, 
projections of global sea-level rise by the year 2100 (e.g., 0.5–2 meters) are comparable in magnitude 
to today’s extreme but short-lived increases in water level due to storms. Thus, the 21st century will see 
significant changes to coastal flooding regimes (where present-day, extreme-but-rare events become 
common), which poses a major risk to the safety and sustainability of coastal communities worldwide. 
So far, estimates of future coastal flooding frequency focus on endpoint scenarios, such as the increase 
in flooding by 2050 or 2100. Here, we investigate the continuous shift in coastal flooding regimes by 
quantifying continuous rates of increase in the occurrence of extreme water-level events due to sea-
level rise. We find that the odds of exceeding critical water-level thresholds increases exponentially 
with sea-level rise, meaning that fixed amounts of sea-level rise of only ~1–10 cm in areas with a narrow 
range of present-day extreme water levels can double the odds of flooding. Combining these growth 
rates with established sea-level rise projections, we find that the odds of extreme flooding double 
approximately every 5 years into the future. Further, we find that the present-day 50-year extreme 
water level (i.e., 2% annual chance of exceedance, based on historical records) will be exceeded annually 
before 2050 for most (i.e., 70%) of the coastal regions in the United States. Looking even farther into 
the future, the present-day 50-year extreme water level will be exceeded almost every day during peak 
tide (i.e., daily mean higher high water) before the end of the 21st century for 90% of the U.S. coast. Our 
findings underscore the need for immediate planning and adaptation to mitigate the societal impacts of 
future flooding.

Sea-level rise is slow, yet consequential1 and accelerating2. Upper-end sea-level rise scenarios could displace hun-
dreds of millions of people by the end of the 21st century3. However, even small amounts of sea-level rise can 
disproportionately increase coastal �ood frequency4,5. A multitude of oceanic processes a�ect both mean and 
extreme water levels, such as the tide, tropical and extratropical storms, climatic cycles (e.g., El Nino/Southern 
Oscillation), oceanic eddies, and circulation patterns6–11. Hence, the frequency and severity of coastal �ooding 
varies on a multitude of time scales. Yet, the persistent trend and acceleration of sea-level rise have a profound 
interaction with transient extreme events12. In theory, sea-level rise progressively increases the frequency and 
severity of �ooding5. In practice, the monotonic increase in �ooding, driven by elevating long-term mean sea 
level, is o�en overshadowed by interannual variability in extreme events13, which will likely continue through the 
middle of the 21st century14.

Many have quanti�ed future increases in potential coastal �ood frequency by deriving ‘multiplying factors’15, 
‘ampli�cation factors’16, or ‘factors of increase’5 in exceedance probability or, equivalently, reductions in return 
period of extreme water-level events due to sea-level rise by 2050 or 210013,17,18. Large-scale studies of future 
‘�ooding’ typically investigate potential increases in the water-level hazard in the absence of site-speci�c exposure 
(as is the case in the current paper as discussed below in Application). �e reported factors of increase in �ood 
hazard potential are o�en exceedingly large, ranging from 10 to 1000 for even modest sea-level rise scenarios of 
0.5 m or less. Yet, focusing on SLR scenarios and their impacts by 2050 or 2100 is perhaps inappropriate, given 
that signi�cant changes in coastal �ooding have been observed in recent years19,20 and are expected to change 
dramatically in the coming decades5,21–23, and planning horizons rarely exceed thirty years. While the incre-
mental (e.g., ‘stair-cased’) factors of increase are staggering, they do not e�ectively illuminate the continuous, 
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time-dependent transition between present and future �ood hazard regimes that we will inevitably experience in 
the coming decades.

Taking a new approach, Sweet et al. (2017)24 and Stephens et al. (2018)25 identi�ed the decade in the future 
that present-day, extreme water-level events become common-place (e.g., ~5 times per year). �ey found that 
many coastal cities transition to dramatically higher �ood hazard regimes before 2050 for even moderate sea-level 
rise scenarios based on probabilistic projections. �is new approach, establishing new �ood hazard regimes based 
on a calendar date, e�ectively communicates the urgency for sea-level rise planning and adaptation. �is con-
cept has been further expanded by introducing the concept of a ‘trigger’22 or an ‘adaptation pathway’26,27, i.e., the 
combination of an intermediate sea-level threshold and an associated time frame when decisions must be made, 
in order to provide su�cient lead-time to e�ciently adapt in a cost-e�ective manner before more critical �ood 
hazard thresholds are exceeded.

Here, we estimate the timing of dramatic shifts in coastal flooding frequency by considering the rate of 
increase in �ood frequency. We argue that the rate of �ooding increase is a critical yet poorly understood com-
ponent to address future sea-level rise impacts: sea-level rise is a continuous process, and thus increment-based 
assessments may misrepresent the underlying issue. As considered in previous works15,28 and based on the the-
oretical arguments presented in Methods, we focus on characterizing exponential rates of increase in extreme 
events driven by persistent shi�s in mean water level due to sea-level rise. Note that an exponential increase 
implies a doubling in the frequency of extreme events over a given amount of sea-level rise or a given period of 
time, although the particular form of exponential growth used here has not been explicitly considered until now. 
Given well-established sea-level projections29 and water-level records at a number of long-running tide gauges 
around the U.S., we estimate sea-level and time scales associated with doubling the odds of exceeding extreme 
water-level thresholds, de�ned here as the present-day 50-year return level (i.e., 2% annual chance of exceed-
ance; see Methods for details). For the most susceptible sites around the U.S., we �nd that the odds of exceeding 
extreme water-level thresholds are likely to double approximately every 5 years into the foreseeable future.

Application
We utilize water-level observations at the long-standing network of tide gauges around the U.S. (obtained from 
the National Oceanic and Atmospheric Association (NOAA) Tides and Currents database, https://tidesandcur-
rents.noaa.gov/) to predict changes in future �ood regimes due to sea-level rise. Although hundreds of tide sta-
tions exist around the U.S., we limit our analysis to 202 long-standing tide stations (Fig. 1A), based on the criteria 
described in Methods. In general, most tide gauges are located in harbors and embayments and thus are sheltered 
from the e�ects of waves. Hence, the analysis presented here is valid for the many sheltered coastal cities that 
are not directly exposed to wave setup, runup, and overtopping. In the current study, we focus our analysis on 
extreme water-level events (due to tides and storm surge but not waves) at the present-day 50-year return period, 
since most coastal engineering works in the U.S. are designed for return periods of 50 years or less30.

As is common among many large-scale assessments of sea-level rise impacts, we use extreme water level as a 
proxy representing coastal �ood hazard potential, while acknowledging that site-speci�c �ooding results from 
the complex interaction of extreme water levels, topography, and the built environment (e.g., coastal defense 
structures and drainage systems). For large-scale assessments of sea-level rise impacts, the practice of linking 
extreme water levels and coastal �ooding is common throughout the scienti�c literature5,13,15–18, despite the fact 
that high-resolution topographic data and computationally onerous modeling e�orts are required to properly 
characterize site-speci�c exposure to �ood hazards31 (which are not considered here).

Using maximum likelihood estimates, we �t Generalized Extreme Value (GEV) probability distributions to 
the top three annual maxima of hourly water-level events at each tide gauge (See Methods; Fig. 1B). �e GEV 
distribution models the probability of ‘block’ maxima, i.e., the maxima of a random variable occurring in a �xed 
time interval. �e GEV distribution [see Eq. (7) in Methods] is de�ned in terms of three parameters µ, σ, and k, 
which represent the location (i.e., characteristic value), scale (i.e., characteristic width or variability), and shape 
(i.e., family type) of the distribution, respectively32. In the following analysis, we use the GEV model to categorize 
the extreme water-level behavior based on these three representative parameters. Later, we examine continuous 
rates of growth in extremes due to sea-level rise using empirical distributions of water levels rather than a particu-
lar statistical model like GEV.

Figure 1 shows the network of tide stations used in the current study (panel A) and an example of a GEV �t 
to the top 3 annual maxima water-level events observed at the Honolulu, HI tide gauge (panel B). Panel B plots 
the relationship between the magnitude of extreme water level and the expected return period, TR, which is given 
by Eq. (12) in Methods. Figure 1 panels C, D, and E show ‘pair plots’ depicting the mutual relationship between 
the three best-�t parameters of the GEV distribution (i.e., µ, σ, and k) for each station. Among the GEV param-
eters, we �nd only a notable relationship between the �rst two parameters, µ and σ (i.e., panel C), with a Pearson 
correlation coe�cient of 0.55. For all the sites, we apply the K-means algorithm33 to cluster the GEV parameters 
into four groups (Fig. 1A,C–E) with distinct parameter values that characterize the behavior of extreme water 
level. Although the stations are not directly classi�ed based on their geographic location, the clusters do exhibit 
consistent geographical patterns due to the underlying pattern of the water-level hazard.

In this study, the site-speci�c thresholds representing dramatic shi�s in coastal �ood regimes were deter-
mined by the di�erence in extreme water level, namely the ∆Water Level (∆WL), between the 50-year and 1-year 
extreme water level, denoted by ∆WL50yr→1yr (see e.g., Fig. 1B and Eq. (21) in Methods). We also determine 
∆WL50yr→MHHW, which is the di�erence between the 50-year extreme water level and Mean Higher High Water 
(MHHW), i.e., the water level associated with the daily peak high tide (Fig. 1B; Eq. (22)). Although there are many 
analogous water-level metrics for the study of coastal �ooding, we focus on the value of ∆WL50yr→1yr because it 
represents a regime shi� from a ‘once-in-a-lifetime’ occurrence (or rather, a ‘once-in-the-design-lifetime’ of an 
engineering structure) to an annual occurrence. Likewise, the ∆WL50yr→MHHW metric for the 50-year water-level 
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event becoming the MHHW event represents a regime shi� from a ‘once-in-a-lifetime’ occurrence to a daily 
occurrence. �e ∆WL metrics can be linked to sea-level rise; an amount of sea-level rise equal to ∆WL50yr→1yr 
would cause the present-day 50-year water-level event to be exceeded every year. For example, ∆WL50yr→1yr for 
Honolulu is only 11 cm (Fig. 1B), which represents the di�erence between the TR = 50 year water level (0.713 m) 
and the TR = 1 year water level (0.601 m). �us, a sea-level increase on the order of 11 cm would be expected to 
cause large changes in the return period of coastal �ooding for this site.

Figure 2 depicts ∆WL50yr→1yr (le�) and ∆WL50yr→MHHW (right) as a function of the GEV shape parameter, k, 
for the 202 long-standing tide stations used in the current study (with labels provided for a few important tide 
stations). �e color of each tide station shown in Fig. 2 represents the GEV scale parameter, σ, which o�en relates 
to the station’s susceptibility to sea-level rise, as discussed in the following section. �e parameter k is a stronger 
factor in increasing ∆WL, particularly when k > 0 (as indicated by the contours of σ on Fig. 2). However, the 
majority of the sites (82%) have a negative shape parameter (i.e., k < 0). ∆WL50yr→1yr exhibits a more obvious 
gradation with σ and k than ∆WL50yr→MHHW (Fig. 2). �is is likely because ∆WL50yr→1yr is uniquely character-
ized by the GEV parameters, while ∆WL50yr→MHHW is also in�uenced by the tidal characteristics, which are not 
fully described by the GEV parameters (since the GEV distribution only pertains to extreme water-level events). 
Nevertheless, there remains a clear relationship between the best-�t GEV parameters and both ∆WL metrics 
across each tide station: increasing σ and k increases ∆WL.

For more than 90% of our U.S. sites, the di�erence between the water level of the 50-year event and the 1-year 
event (i.e., ∆WL50yr→1yr) is less than 0.5 m. �e di�erence in water level between the 50-year water-level event and 
MHHW (i.e., ∆WL50yr→MHHW) is on average approximately 0.85 m, with a standard deviation of 0.32 m. For 73% 
of the tide gauges used in this study, the di�erence in water level between the 50-year water-level event and the 
daily average highest tide (i.e., ∆WL50yr→MHHW) is less than 1.0 m. �is is notable because most high-end sea-level 
rise projections exceed 1.0 m by 2100 (see e.g., Garner et al., (2018)34), which indicates that present-day extremes 
may occur daily in the future. Further, most low-end sea-level rise projections exceed 0.5 m by 210035, indicating 
that present-day extremes may occur annually even in the best-case scenario.

Next, we apply spatiotemporally variable sea-level rise projections from Kopp et al. (2014)29 at each sta-
tion to �nd the year in the future when sea-level rise exceeds the ∆WL50yr→1yr and ∆WL50yr→MHHW scenarios 
(Fig. 3). �e sea-level rise projections are based on the Representative Concentration Pathways (RCP36) 8.5 
(“business-as-usual”) emission scenario (two lower emissions scenarios, RCP2.6 and 4.5, are discussed later). 

Figure 1. �e network of 202 long-standing tide gauges used in the current study (A) and an example of the 
extreme water-level data and GEV �t for a single station at Honolulu, HI (B). (C–E) show ‘pair plots’ depicting 
the mutual relationship between the three best-�t parameters of the GEV distribution (µ, σ, and k) for each of 
the 202 tide stations used here. �e color of each tide station depicts the K-means cluster to which each station 
belongs (i.e., red, yellow, green, or blue).
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Each data point includes 95% con�dence levels representing the spread of the probabilistic sea-level rise projec-
tions from Kopp et al., (2014)29. In general, increasing σ and k delays the shi�s of both �ooding regime changes.

Focusing on the ensemble median sea-level rise scenarios, all of the labeled tide stations transition from 
50-year water-level events to annual events before 2050. For nearly 70% of the tide stations used in this study, 
sea-level rise causes �ood regime shi�s from the present-day 50-year water-level event to an annual occurrence 
before the year 2050. 99% of tide stations in the U.S. transition from a 50-year occurrence to an annual occurrence 
before 2100. Considering the even more dire scenario of a �ood regime transition from a 50-year occurrence to a 
near-daily occurrence (i.e., during a MHHW event), we �nd that only 6% of stations transition before 2050, but 
the number climbs to 62% before 2075. 93% of tide stations in the U.S. will transition from a 50-year recurrence of 

Figure 2. �e ∆Water Level metrics for 202 long-standing tide stations in the U.S. (with labels provided for a 
few important tide stations). �e ∆WL50yr→1yr metric (le�) and the ∆WL50yr→MHHW metric (right) are shown as 
a function of the GEV shape parameter, k. �e color of each tide station represents the magnitude of the GEV 
scale parameter, σ. In general, increasing σ and k increases ∆WL.

Figure 3. �e year (y-axis) when the present-day 50-year water-event is exceeded annually (le�), and, likewise, 
the year (y-axis) when the present-day 50-year water-level event is exceeded during a daily MHHW tide 
event (right), as a function of the GEV shape parameter, k, (on the x-axis) for the 202 tide stations used in the 
current study (with labels provided for a few important tide stations). As in Fig. 2, the color of each tide station 
represents the magnitude of the GEV scale parameter, σ. �e results indicate when the sea-level rise projections, 
based on the RCP 8.5 emissions scenarios in Kopp et al., (2014)29, exceed the ∆Water Level results shown in 
Fig. 2. Each data point includes 95% con�dence levels, which bound the probabilistic sea-level rise projections29. 
In general, increasing σ and k delays when the 50-year to 1-year and the 50-year to MHHW regime shi�s occur.

https://doi.org/10.1038/s41598-020-62188-4


5SCIENTIFIC REPORTS |         (2020) 10:6466  | https://doi.org/10.1038/s41598-020-62188-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

an extreme �ooding event to a daily occurrence before 2100. �e impact of this �nding bears repeating: sea-level 
rise will likely cause ‘once-in-a-lifetime’ coastal �ooding events to occur nearly every day before 2100.

�us far, our analyses provide insights into the di�erence in water level between critical thresholds and the 
timing of apparent regime shi�s. However, they do not illuminate the continuous rates of change in sea-level rise 
impacts, which are critical to understand since the e�ects foreshadowing these two regime shi�s (which represent 
fairly dire scenarios) will be experienced much earlier.

Figures 4 and 5 analyze the rate of change in �ood frequency due to sea-level rise. Figure 4 illustrates the rela-
tionship between sea-level rise and the relative increase in the odds of exceeding the present-day 50-year 
water-level event, O/O0. In Extended Data Figs. 1 and 2, we also explore the relationship between sea-level rise 
and the relative increase in the probability of exceeding the present-day 50-year water-level event, E E/ 0. Here, we 
focus on the (rarely-used) metric of the increase in the odds of exceedance, O/O0, as opposed to the increase in 
exceedance probability, E E/ 0, (considered previously5,16) as the odds increase is well suited to describe persistent 
rates of growth. Unlike exceedance probability (which is bounded with a probability of 1), the odds of �ooding 
increases without bounds due to sea-level rise (see Extended Data).

We calculate the increased odds, = −O E E/(1 ), from the future exceedance probability E, which is calculated 
from the present-day empirical exceedance probability distribution, E x( )0 , where x represents all values of 
recorded hourly water level for each individual tide station. Here, the future exceedance probability distribution 
is calculated by shifting the present-day distribution by a variable amount of sea-level rise, according to 

µ= −E E x( )0 SL
. �is shi� of the distribution corresponds to increasing the mean value of x by an amount 

SL
µ . 

In this case, the role of µ
SL

 is equivalent to the role of sea-level rise, which increases the mean of the water-level 
distribution at a given site (see e.g., Fig. 8 in Methods). In the following analysis, we quantify growth rates in the 
odds of exceeding the 50-year extreme water-level threshold, however, similar growth rates can be quanti�ed for 
arbitrary thresholds. Here, the 50-year extreme water-level threshold is calculated from the GEV distribution (see 
Methods, Eq. (12)) and the same threshold is applied to represent the 50-year extreme water level in the empirical 
distribution for the purposes of the following growth rate analysis.

Figure 4 panel A shows the results of the normalized increase in the odds of exceedance (y-axis) vs. sea-level 
rise (i.e., µ

SL
 on the x-axis). �e x- and y-axes of Fig. 4A are on linear and (base-two) logarithmic scales, respec-

tively. Hence, relationships that follow straight lines correspond to exponential growth with sea-level rise on the 

Figure 4. �e relationship between sea-level rise and the relative increase in the odds of exceeding the present-
day 50-year water-level event, O/O0. Each colored solid line corresponds to the relationship (O/O0 vs. sea-level 
rise) for a single tide station, and each station is colored according to its classi�cation shown in Fig. 1 (however, 
some transparency is applied to each line to reduce occlusion). Panel A shows a plot of the relative odds O/O0 vs. 
the amount of sea-level rise (µ

SL
), where the x- and y-axes of the panel are on linear and (base-two) logarithmic 

scales, respectively. Hence, relationships that follow a straight line correspond to exponential growth (i.e., 
doubling) with a �xed amount of sea-level rise on the x-axis. �e red, black, and green dashed lines on panel B 
correspond to doubling the of odds of exceedance with every 1 cm, 5 cm, and 25 cm of sea-level rise, 
respectively, according to Eq. (5) in Methods. Panel B shows a plot of the base-two logarithm of the relative 
odds, i.e., O Olog ( / )

2 0  vs. the normalized amount of sea-level rise ( /
SL
µ σ), where the parameter σ is derived from 

the average slope of the curves in panel A. �e straight, one-to-one line (i.e., the thick dashed line) on panel B 
corresponds to the relationship O O/ 20

/
SL
~

= µ σ (from Eq. (5) in Methods). �e thin dashed lines on Panel B 
enclose areas that are within a factor of 4 of the relationship in Eq. (5).
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x-axis. Each solid line on Fig. 4A corresponds to the relationship between O/O0 and sea-level rise for one of the 
202 tide station used, which is colored according to its K-means cluster shown in Fig. 1. �e red, black, and green 
dashed lines on Fig. 4A correspond to a doubling of exceedance odds with every 1 cm, 5 cm, and 25 cm of sea-level 
rise, respectively, according to Eq. (5). Hence, for susceptible, low-latitude sites (red clusters in Fig. 4), one cen-
timeter of sea-level rise can cause a doubling of the exceedance odds at the 50-year water level threshold. 
Figure 4B shows a plot of the base-two logarithm of the relative odds, i.e., O Olog ( / )

2 0  vs. the normalized amount 
of sea-level rise (µ σ/

SL
), where the doubling parameter σ is derived from the average slope of the curves in 

Fig. 4A. �e straight, one-to-one line (i.e., the thick dashed line) on panel B corresponds to the relationship 

=
µ

σ2
O

O

SL

0

 a�er Eq. (5) in Methods. �e behavior of the exponential increase in odds of exceedance (evident in 

Fig. 4) is further discussed in the following section.
Here, we focus on results derived from the empirical exceedance distribution, E x( )0 , since it is nonparametric 

and, thus, the rates of increase do not depend on the behavior of any particular statistical model, e.g., the GEV 
model. Further, we apply an empirical distribution of all values of recorded water level, rather than a distribution 
representing the extreme water level, which is necessary when investigating the regime shi�s from rare to com-
monplace events37. We compare three di�erent representations of the exceedance distribution, E x( )0 : (1) the 
empirical distribution of all values of x, (2) the empirical distribution of extreme values of x, and (3) the best-�t 
GEV model for extreme values of x (see Extended Data Figs. 1 and 2). �is comparison showed that, when calcu-
lating the odds increase, the rates of growth are fairly insensitive to the form of the exceedance distribution used.

Figure 5 shows the variability of σ, the amount of sea-level rise that doubles the odds of exceeding the 
present-day 50-year water-level event. Here, we derive σ from the average slope of the trend between sea-level rise 
and the relative increase in the odds of exceeding the present-day 50-year water-level event (see Fig. 4A). Across 
all sites, σ ranges between 1.9 cm and 27.5 cm with a mean of approximately 9.2 cm and a standard deviation of 
8.2 cm (Fig. 5B).

Figure 6 illustrates the relative increase in the odds of exceeding the present-day 50-year water-level event, 
O/O0, with respect to time for di�erent sea-level rise scenarios. �e increases in odds are calculated from the 
ensemble median sea-level rise projections of Kopp et al., (2014)29 (depicted in the �rst column of Fig. 6, i.e., 
panels A, C, and E) at each tide station. �e sea-level projections at each tide station are colored according to their 
classi�cation shown in Fig. 1. �e black solid lines on Fig. 6 correspond to a few tide stations where sea-level rise 
is projected to decrease with time in the short-term over the next few decades (which are mostly located at high 
latitudes) due to local land upli�. As in Fig. 4, the second column of Fig. 6 (e.g., panels B, D, and F) applies the 
empirical exceedance distribution resulting from all values of the recorded hourly water level to calculate the odds 
increase. We compare di�erent representations of the exceedance distribution, E x( )0 , in Extended Data Figs. 3 
and 4. Yet, we �nd that the rates of growth are somewhat insensitive to the form of the exceedance distribution 
used (see Extended Data Figs. 3 and 4). In general, the sites follow exponential behavior (i.e., doubling in a �xed 
amount of time) with subtle di�erences in growth rates associated with each sea-level projection, as discussed in 
the following section.

Next, we examine the spatial and temporal variability of the time scale τ, which represents the number of years 
until sea-level rise doubles the odds of exceeding the present-day 50-year water-level event (see Fig. 7 and Eq. 6 in 
Methods). Using the temporal trends in the odds of exceeding the present-day 50-year water-level event, O/O0 
(Fig. 6B), τ is derived from the average slope of these curves. Panel A and C show the spatial variability of τ for the 
time period 2000–2050 and 2025–2075, respectively, under the RCP 8.5 scenario at the long-standing tide stations 

Figure 5. �e variability of σ, the amount of sea-level rise that doubles the odds of exceeding the present-day 
50-year water-level event according to Eq. (5) in Methods. Panel A shows the spatial variability of σ at the tide 
stations used in the present study, and Panel B shows the histogram of σ for all stations. �e di�erent colors (i.e., 
red, yellow, green, or blue) of the histogram in panel B depict the K-means cluster associated with the distinct 
groups of tide station as shown in Fig. 1.

https://doi.org/10.1038/s41598-020-62188-4


7SCIENTIFIC REPORTS |         (2020) 10:6466  | https://doi.org/10.1038/s41598-020-62188-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

along the U.S. coast used in the current study. We selected the two time periods (2000–2050 and 2025–2075) to 
represent a present-day/near-future period and a future period centered on 2050, respectively, to demonstrate the 
role of accelerated sea-level rise on the doubling time. Across all sites, the median value of τ is approximately 9.9 
years for the time period 2000–2050 (Fig. 7A,B), and decreases to 4.9 years for the time period 2025–2075 due to 
the acceleration of sea-level rise (Fig. 7C,D). �e di�erent colors (i.e., red, yellow, green, or blue) on Fig. 7B,D  
depict the K-means cluster associated with the distinct groups of tide station as shown in Fig. 1. �e spatial and 
temporal patterns of τ are discussed in the following section.

Discussion
�e parameters de�ning the GEV distribution at each station are location-dependent and spatially coherent, as 
indicated by the position of the K-means clusters shown in Fig. 1A. Similar to the geographic distribution of the 
GEV parameters shown in Vitousek et al. (2017)5 and Rueda et al. (2017)38, latitude exerts a strong in�uence on 
the cluster location, and more speci�cally, the value of the GEV scale parameter, σ. In general, the tropics experi-
ence small values of σ (i.e., the red clusters in Fig. 1A), mid-latitudes experience intermediate values of σ (i.e., the 
yellow clusters in Fig. 1A), and high-latitudes experience large values of σ (i.e., the green clusters in Fig. 1A). �e 
increase in σ with latitude is largely driven by higher extratropical storm activity and tide ranges moving north 
along the U.S. coastline. It is well known that decreasing σ increases the susceptibility to higher event frequencies 
with sea-level rise5,15,38–40. Hence, the red, yellow, and green clusters also generally represent high, medium, and 
low susceptibility to increases in �ood frequency associated with sea-level rise, respectively. �e gradient in σ 
(and therefore the gradient in susceptibility to sea-level rise) with latitude is particularly evident on the U.S. West 
Coast (as shown in Fig. 1A). Conversely, the clustering of the GEV parameters for stations on the U.S. East Coast 
is less coherent, as the East Coast is punctuated by stations experiencing high values of the GEV shape parameter, 
k, (i.e., the blue clusters on Fig. 1A). As reported previously5,38,41,42, values of k 0>  are typically found in tropical 
cyclone regions, where exceedingly large yet rare wave heights and/or water-level events can occur. A minority 
(18%) of our sites had positive values of the GEV shape parameter, k, which corresponds to unbounded probabil-
ity distributions, i.e., distributions with non-zero probabilities for events of arbitrarily large magnitude. �is 
unbounded nature of extreme events is, of course, not physically realistic, but arises from the occurrence of out-
liers among data sets of limited duration.

Here, we consider a stationary approach to extreme value theory, meaning that the exceedance probability 
distributions (or parameters thereof) remain constant with time, except for the shi�ing mean due to sea-level rise. 
Non-stationary methods43,44, on the other hand, allow for extreme distributions (or their parameters) to vary with 
time, but typically require longer records of data. Devlin et al. (2017a,b, 2019)45–47 and Haigh et al. (2019)48 inves-
tigated non-stationary, non-astronomical changes in tidal amplitudes due to changes in mean sea level, which can 
alter the probabilities of exceeding �ood levels during high‐tide events. Vousdoukas et al. (2018)18 investigated 
non-stationary changes in extreme water-level events at the 100-year return period due to climate model projec-
tions of di�erent emissions scenarios. �ey found relatively small changes (<10 cm changes in absolute value) in 
the 100-year extreme water levels for most of the globe, except at high-latitudes. Furthermore, Vousdoukas et al., 
(2018)18 found that the contribution of non-stationary changes in extreme water level decreases rapidly relative to 
sea-level rise as a function of time and higher emission scenarios. Hence, we consider the e�ect of non-stationary 
changes to the mean of the extreme water-level distributions, but do not consider any non-stationary (i.e., 
time-dependent) changes to the distribution’s variance or skewness resulting from increases/decreases in storm-
iness due to climate change or tide/sea-level interactions.

�ere is a strong geographic link between lower values of the scale, σ, and shape parameters, k, of the GEV 
distribution (red and yellow colors on Fig. 1) and increased susceptibility to sea-level rise impacts quanti�ed via 
the ∆Water Level metrics (Fig. 2). �e relationship between the sites’ shape parameter, k, and the amount of 
sea-level rise needed to shi� �ooding regimes (e.g., ∆Water Level in Fig. 2) reveals a rough correspondence to 
their geographic location: cities on the West Coast (with smaller values of k) are further to the le� on Fig. 2 than 
those on the East Coast (with larger values of k). Furthermore, high-latitude cities generally experience larger 
values of ∆Water Level and thus require greater amounts of sea-level rise to induce a �ooding regime shi�, 
owing to the general increase in σ with latitude.

�e exponential growth of the odds of exceedance with sea-level rise appears slightly jagged (Fig. 4A,B) 
because these (empirical) distributions arise from observations and, thus, are not smooth in contrast to curves 
resulting from theoretical distribution such as GEV (see Extended Data Fig. 2). Unsurprisingly, we �nd that the 
low-latitude stations belonging to the red cluster are highly susceptible to this doubling, with the most susceptible 
of these sites (e.g., Hawaii and the Caribbean) experiencing a doubling in exceedance probability with nearly 
every centimeter of sea-level rise. On the other hand, stations belonging to the blue cluster, which indicates a 
higher value of the GEV shape parameter, k, are much less susceptible, since they require larger amounts of 
sea-level rise (~10–25 cm) to double in frequency. �e rate of growth in the odds of exceedance due to sea-level 

rise is well predicted by the doubling function based on Eq. (5), i.e., =
µ

σO O/ 20

SL
. �e thin dashed lines on 

Fig. 4B enclose areas that are within a factor of 4 of the relationship in Eq. (5), and growth rate curves at 90% of 
the sites fall within a factor of 4 of Eq. (5) over ten doubling periods (i.e., 210, which represents more than a 
thousand-fold increase in the odds). Although previous works have estimated the amount of sea-level rise asso-
ciated with a single doubling event (e.g., Vitousek et al. (2017)5), we demonstrate here, for the �rst time, the near 
constancy of the amount of sea-level rise that doubles the odds of exceedance over several doubling events, which 
is characteristic of exponential growth. Slight deviations from the pure form of exponential growth (i.e., the thick, 
dashed line in Fig. 4B) exist across the sites used here. For example, stations with large values of µ and σ (colored 
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in green) appear to taper away from the theoretical result a�er about ten orders of magnitude. On the other hand, 
stations with small values of µ and σ (colored in red), which are the most susceptible to sea-level rise, generally �t 

Figure 6. �e relative increase in the odds of exceeding the present-day 50-year water-level event, O/O0, with 
respect to time. In this case, the odds increase is driven entirely by the sea-level rise scenarios of Kopp et al. 
(2014)29, which are shown in panels A, C, and E that correspond to RCP 8.5, 4.5, and 2.6 emissions scenarios, 
respectively. As in panel A of Fig. 4, panels B, D, and F calculate the odds from the empirical exceedance 
distribution resulting from all values of the recorded hourly water level. �e x- and y-axes of panels B, D, 
and F are on linear and (base-two) logarithmic scales, respectively. Hence, relationships that follow a straight 
line correspond to exponential growth (i.e., doubling) with a �xed amount of time on the x-axis. Each solid 
line corresponds to the relationship between O/O0 and sea-level rise for a single tide station, and each station 
is colored according to its classi�cation shown in Fig. 1 (however, some transparency is applied to each 
line to reduce occlusion). �e black solid lines correspond to tide stations where sea-level rise is projected 
to decrease with time in the next few decades (which are generally located at high latitudes due to Glacio-
isostatic adjustment). �e red, black, and green dashed lines in panels B, D, and F correspond to a doubling of 
exceedance odds with every 1 yr, 5 yr, and 25 yr period, respectively, according to Eq. (6) in Methods.
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the theoretical result the best among the di�erent groups. Finally, we note that the amount of sea-level rise causing 
a doubling in the odds of exceeding the present-day 50-year water-level event, σ, is closely related to the GEV 
scale parameter σ (see Extended Data Fig. 5), particularly for stations with small and intermediate values of µ and 
σ, and near-zero values of k. However, σ and σ are not the same. Further, both σ and σ, individually, represent 
relevant parameters to describe the nature of (present-day and future) extreme water level events (as discussed 
further in Extended Data Fig. 5).

�e amount of sea-level rise that doubles the odds of the exceeding the present-day 50-year water-level event, 
σ, is somewhat dissimilar between the U.S. East and West Coasts (Fig. 5). �e U.S. West Coast, in general, experi-
ences much smaller values of σ, with a mean of approximately 5.3 cm. However, the mean of σ on the U.S. East 
Coast is approximately 10.8 cm. �e U.S. East Coast is punctuated with locations that exhibit very large values of 
σ at tide stations exposed to tropical storms. �e highly susceptible sites (e.g., the red cluster in Fig. 1 and Fig. 5, 
with small values of the GEV parameters µ, σ, and k) are associated with small values (typically < 5 cm) of σ. On 
the other hand, the stations exposed to tropical storms (with large values of the GEV parameter k), which are 
shown in blue, typically experience much larger values (typically > 5 cm) of σ. �e histogram in panel B is fairly 
skewed towards smaller values of σ: nearly two-thirds (65%) of all stations used here have values of σ less than 
10 cm.

As with the amount of sea-level rise (Fig. 4), an exponential relationship also exists between the doubling of 
the odds of exceedance and time (Fig. 6). For most sites, this relationship most closely parallels a trend corre-
sponding to a doubling in the odds of �ooding every 5 years (Figure 6B,D,F). Once more, low latitude stations 
(in red) have their odds of �ooding increased much faster than higher latitude stations. �e stations that show 
the lowest growth rates occur where sea level is projected to fall in the short term (e.g., black lines on Fig. 6) due 
to local upli� from continental rebound associated with the melting glaciers and Greenland (i.e., Glacio-isostatic 
adjustment). For these few stations, impacts due to sea-level rise are delayed until about 2050 or later. For the rest 
of the stations considered here, the odds of exceedance increase by a factor of ~100 or more by 2050 for high-end 
sea-level rise scenarios. For the most susceptible sites, shown in red, even the lower RCP 2.6 emissions scenarios 
provide only a brief respite from the impacts of sea-level rise. �e RCP 2.6 scenario sea-level rise projections are 
more than enough to double the �ood frequency several times over at the most susceptible sites. Impacts occur-
ring at the higher-latitude stations (shown in green) and the tropical-storm exposed stations (shown in blue), on 
the other hand, do seem to be delayed by a few decades under the RCP 2.6 sea-level rise scenario compared with 
the RCP 8.5 scenario.

Figure 7. �e spatial and temporal variability of the time scale, τ, over which sea-level rise doubles the odds of 
exceeding the present-day 50-year water-level event, following Eq. (6) in Methods. Panels A and C show the 
spatial variability of τ at tide stations along the U.S. coast under the RCP 8.5 scenario for the time periods 2000–
2050 and 2025–2075, respectively. Panels B and D show histogram plots of τ for the time periods 2000–2050 
and 2025–2075, respectively.
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Unlike σ, which demonstrates spatial inconsistency between the U.S. West and East Coasts, the timescale over 
which sea-level rise doubles the odds of exceeding the present-day 50-yr water level event, τ, is surprisingly con-
sistent across sites, particularly for the period 2025–2075 (Fig. 7D), which is likely due to the high rates of relative 
sea-level rise on the U.S. East Coast due to land subsidence. Like σ, the magnitude of τ at highly susceptible sites 
are much shorter ( 5τ ≤~  years) than the other sites (Fig. 7B,D). Within the 2025–2075 time period, τ is centered 
on 5 years: 70% of tides stations used here have values of the doubling time scale greater than 4 years and less than 
6 years. 91% of all stations used here have values of τ < 7 years for the period 2025–2075.

Finally, we discuss the �nding of the fairly consistent 5-year time scale to double the odds of exceeding the 
50-year extreme water level. �e amount of sea-level rise that doubles the odds of exceedance (with units of 
length), σ, and the time scale that doubles the odds of exceedance (with units of time), τ, are related by the rate of 
sea-level rise (with units of length per time). Based on the sea-level rise projections of Kopp et al., (2014)29, the 
average rate of sea-level rise over the period of 2025–2075 is 1.68 cm/year for RCP 8.5. Simply dividing the mean 
value of  σ, 9.2 cm, by this average rate of sea-level rise results in a time scale of 5.5 years. Hence, we have simpli-
�ed our understanding of the relative impacts of sea-level rise at a given site to an interaction between three var-
iables: the present-day variance of extreme water levels, the amount that sea-level rise modi�es that extreme 
water-level variance, and the time scales over which this modi�cation occurs due to sea-level rise projections. 
Although coastal water-level hazards vary across a multitude of spatiotemporal scales, nonlinear processes, and 
interactions, the consequences of sea-level rise alone on a stationary extreme water-level climate are profound, 
even without considering potential changes in storminess.

Conclusions
�e long-term trend in mean sea level has profound consequences on the nature of extreme events. Present-day 
extreme water-level events will become commonplace within the next few decades. Given established emissions 
trajectories and sea-level projections, the odds of extreme coastal �ooding will double every 5 years into the fore-
seeable future at most locations in the U.S. �e near-constancy (in space and time) of the 5-year doubling period 
found here is particularly consequential: Sea-level rise will likely increase the odds of �ooding by a thousand-fold 
(i.e., 210) in a half-century. By 2100, today’s ‘once-in-a-lifetime’ (e.g., 50-year return period) coastal �ood level 
may be exceeded every day during the highest tide at over 90% of our 202 considered U.S. sites. With increased 
�ood frequency, we expect a corresponding acceleration of a number of related coastal hazards, such as beach and 
cli� erosion49–51. Our society has yet to fully comprehend the imminence of the projected regime shi�s in coastal 
hazards and the consequences thereof.

Methods
Extreme value theory. Following the well-known frequentist interpretation of extreme statistics, we cir-
cumvent the temporal dependence of extreme events by considering the exceedance probability distribution, 
which is given by

E x F x( ) 1 ( ), (1)= −

where F x( ) is the cumulative probability distribution and x is the magnitude of a random variable, e.g., extreme 
water level. Exceedance distributions are monotonically decreasing functions ranging from 1 to 0 with increasing 
x. When x represents the extremes of a random variable, the probability/exceedance distributions are typically 
characterized using the Generalized Extreme Value (GEV) or the Generalized Pareto Distribution (GPD) statis-
tical models32,52–54, as discussed below. As the mean of the exceedance distribution is increased, in this case due to 
sea-level rise, the probability of an event exceeding a particular threshold increases relative to the previous state. 
Since the distribution’s mean increases with time (e.g., due to the time-dependence of sea-level rise projections), 
so too does the exceedance probability increase with time. Yet, in taking this so-called “stationary” approach, we 
have isolated the rate of increase with time due to sea-level rise from the multitude of dynamic, yet transient 
sea-level �uctuations, which may cause “non-stationary” (e.g., seasonal and long-term) changes to the underlying 
exceedance distribution.

Many probability distributions exhibit an exponential decay in probability with the magnitude of the ran-
dom variable55. Hence, a shi�ing baseline (or increased mean) of the random variable results in an exponential 
increase in the probability of exceeding a given threshold. By applying the Gumbel distribution with a shi�ing 
mean due to sea-level rise, Hunter (2012)15 found that the number of extreme events exceeding a particular 
threshold increases exponentially with sea-level rise, given by

µ

σ
=











N

N
exp ,

(2)0

SL

where N  is the number of expected events under higher sea-level rise, N0 is the current number of events without 
sea-level rise, µ

SL
 is the sea level increase, and σ is the scale parameter of the Gumbel distribution. Eq. (2) is mod-

i�ed when accounting for the family type of the extreme value distribution42. Here, we further explore sea level’s 
role in increasing the frequency of �ooding events by focusing on a di�erent form of exponential growth. We 
investigate an exponential function of the form

E

E
2 ,

(3)0

SL

=
µ

σ
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where E is the exceedance probability distribution of extreme water level under future sea-level conditions, and 

E0 is the exceedance probability distribution in present-day conditions (see Extended Data Figs. 1 and 3). In the 
present study, we focus on the exceedance probabilities of the 50-year water-level event. �e ratios of the exceed-
ance probability in Eq. (3) represents the commonly used ‘multiplying factors’15, ‘ampli�cation factors’16, or ‘fac-
tors of increase’5, as discussed below. In Eq. (3), 

SL
µ  is once again the sea-level increase, and σ is the amount of 

sea-level rise needed to double the exceedance probability. σ is comparable to the GEV/GPD scale parameter, σ, 
but the two variables are not the same due to the in�uence of the GEV/GPD family-type parameter, k, as dis-
cussed below and in Extended Data Fig. 5.

We suggest that the functional form 2x is slightly more intuitive than xexp( ), since the argument x in the func-
tion 2x clearly indicates the number of doubling events. For example, when σ is found to be 5 cm, then 5 cm of 
sea-level rise ( 5

SL
µ =  cm; / 1

SL
µ σ = ) doubles the exceedance probability corresponding to a particular thresh-

old. An additional 5 cm of sea-level rise ( 10
SL
µ =  cm; µ σ =/ 2

SL
) doubles the exceedance probability again. 

Vitousek et al. (2017)5 found global-scale estimates of the amount of sea-level rise needed for a single frequency 
doubling to be around 5–10 cm, with lower-end values needed in the tropics. �ey estimated the amount of 
sea-level rise required for a single frequency doubling by estimating the di�erence in water level between the 
50-year and 25-year events. Here, we examine the continuous process of doubling via the relationship between 

E E E x E x/ ( )/ ( )0 0 50 SL 0 50µ= −  and µ
SL

, where x50 is the magnitude of the 50-year water level event. Note that 

E x( )0 SL
µ−  simply represents a translation of the initial exceedance probability distribution by the amount µ

SL
 

as illustrated in Fig. 8. For this relationship, 1σ−  is the slope of the relationship between E Elog ( / )
2 0  and µ

SL
. In the 

equations given above, the exceedance distribution E x( ) can be estimated from a variety of methods and models. 
For example, E x( ) can be obtained empirically from data or can be �t to a popular extreme value model such as 
GEV or GPD, as described below. �e equations given here are agnostic to the underlying form of E x( ).

In addition to estimating the increase in the exceedance probability, we also examine the rate of increase in the 
odds of occurrence, O x( ), which is de�ned as

=

−

.O x
E x

E x
( )

( )

1 ( ) (4)

�e odds of occurrence in Eq. (4), represents the ratio of the probability of an event exceeding a particular 
threshold to the probability of an event NOT exceeding the threshold. Likewise, we examine the exponential 
growth rate in the odds of exceedance, which is given by


O

O
2

(5)0

SL

= .
µ

σ

We consider the analysis of Eq. (5) to be preferable to Eq. (3) because the factor of increase in the odds, i.e., 
O/O0, is unbounded, whereas E E/ 0 is not. �e factor of increase in exceedance probability, E E/ 0, exhibits an upper 
bound since E has an upper bound of 1. �e odds, O, on the other hand, is unbounded. �e unbounded nature of 
Eq. (5) renders it valid for a much larger range of sea-level rise, i.e., µ

SL
, compared to that for Eq. (3). For example, 

Eq. (3) might only be valid for the �rst �ve or six ‘doubling’ events (as seen in Extended Data Figs. 1 and 2), 
whereas the Eq. (5) appears valid for at least ten ‘doubling’ events for the 90% of the tide stations used here, as 

Figure 8. Schematic showing the current methodology to calculate the rate of growth in the exceedance 
probability and odds due to sea-level rise in panels A and B, respectively. Panels A and B both apply the GEV 
model with µ σ µ= . = . = . = .k0 3 m, 0 15 m, 0 0, 0 5 m

SL
 as motivating examples for the exponential rates of 

growth described in Eqs. (3) and (5), respectively. �e growth rate parameter is given by σ σ= . = .0 7 0 105 m in 
this example. As seen in panel A, the growth rate (E E/ 0) becomes bounded for large values of sea-level rise. On 
the other hand, the growth rate in the odds of exceedance (O O/ 0) is not bounded for large values of sea-level 
rise, as shown in panel B. Y-axes are on a logarithmic scale.
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discussed in the Results section pertaining to Fig. 4. �e appearance of upper bounds on the factor of increase, 

E E/ 0, in the current analysis are discussed further in Extended Data Figs. 1 and 3. A schematic showing the 
exceedance probability and the odds of increase of the GEV distribution are shown in Fig. 8, which illustrates the 
current methodology to calculate E E/ 0 and O/O0. Figure 8A,B also motivate our consideration of the exponential 
rates of growth described in Eqs. (3) and (5), respectively.

Because sea-level rise is a function of time and space, we investigate a slight modi�cation of Eq. (5), given by

O

O
2 ,

(6)

t

0

= τ

where t is time and τ represents the time scale for doubling. �e results in Figs. 6 and 7, apply Eq. (6) for the dou-
bling time τ at individual tide stations subject to the site-speci�c sea-level rise curves of Kopp et al. (2014)29.

Generalized Extreme Value (GEV) distribution. �e cumulative probability function of the Generalized 
Extreme Value (GEV) distribution is given by

( )( )F x k e( ; , , ) , (7)
k

x
1

k1/

µ σ =
µ

σ
− +

− −

where x is a random, independent variable (in this case, x represents the set of =r 3 independent annual maxima 
observations of the hourly water level as discussed below in Application), e xexp( )x =  is the exponential function, 
and µ, σ, and k represent the location, scale, and shape parameters, respectively32. �e location, scale, and shape 
parameters represent proxies for the distributions mean, standard deviation (e.g., width), and tail behavior. 
Depending on the sign of the shape parameter, k, the function F x( ) may exhibit an upper bound (i.e., when <k 0) 
or a lower bound (i.e., when >k 0). �e GEV distribution generalizes three families of extreme value distribu-
tions: Gumbel (type I), Fréchet (type II) and Weibull (type III), corresponding to values of the shape parameter 
k 0= , >k 0, and k 0< , respectively.

From Eq. (7), the distribution of the exceedance probability, i.e., the probability that a given water level x is 
exceeded, is given by

( )( )E x k F e( ; , , ) 1 1 (8)
k

x
1

k1/

µ σ = − = − .
µ

σ
− +

− −

�e factor of increase in exceedance probability of an elevated sea-level condition (µ > 0
SL

) relative to a neu-
tral baseline (µ = 0

SL
) is thus given by
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Although Eq. (9) is exact for known parameters, it is unwieldy. We simplify Eq. (9) to an approximate form 
that illuminates the critical role of the sea-level rise parameter, µ

SL
. A�er approximating the exponential func-

tions in Eq. (9) using Taylor series, e s1s s s

2 ! 3 !

2 3

= + + + + ..., and retaining only the �rst two terms in the 
expansion, the factor of increase in exceedance probability becomes
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The Taylor series approximation is valid for small values of the arguments of the exponential function, 
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, in Eq. (9), which correspond to large event levels, x. 

Letting the shape parameter →k 0, Eq. (10) becomes
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Eq. (11) shows that, to a good approximation, the probability of �ooding increases exponentially with sea-level 
rise with an exponent inversely proportional to scale parameter, σ. Notably, the factor of increase is independent 
of x. However, the Taylor series expansion and limit as k 0→ , have the e�ect of making the approximation (11) 
most accurate for large events x and small absolute values of  k.

Applying the Gumbel distribution (i.e., =k 0), Hunter (2012)15 found that the expected number of exceed-
ance events, N , increases exponentially with sea-level rise relative to σ according to Eq. (11). Here, we demon-
strate the relevance of that result to understand both the probability of exceedance and the behavior of the GEV 
distribution. For the majority of the cases where k 0<  (e.g., 82% of the stations used in the current study),  
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Eq. (11) represents a lower bound to the growth rate. Nevertheless, the simpli�ed formulation, Eq. (11), provides 
important insights into the expected growth rates of �ood frequency.

An increase in the exceedance probability of extreme events is equivalent to a decrease in the return period, 

TR, given by

=T
r

E x( )
,

(12)
R

i

in which ri is the recurrence interval from the observed data. For example, a 100-year event has an exceedance 
probability of 0.01, that is, a 1% chance of occurring in a given year (with =r 1i  year, i.e., a distribution �t to the 
annual maxima). �e return period concept is o�en more intuitive than the probability of rare events. We can 
estimate the factor of decrease in return period at the new sea-level state ( 0

SL
µ > ) relative to the neutral baseline 

(µ = 0
SL

) as

T x k

T x k
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Eq. (13) demonstrates that an increase in exceedance probability corresponds to a decrease in the return 
period that is governed by the inverse of Eq. (9), and approximately by the inverse of Eq. (11). �us, an expo-
nential increase in �ooding frequency or exceedance probability corresponds to an exponential decay in return 
period at that event level.

Generalized Pareto distribution (GPD). We show that the exponential form of increase remains valid 
for the generalized Pareto distribution (GPD), i.e., the probability distribution of values exceeding a threshold or, 
likewise, the distribution of the asymptotic tail of a random variable53,54. �e cumulative probability function of 
the Generalized Pareto distribution is given by

F x k k
x

( ; , , ) 1 1 ,
(14)

k1/

µ σ
µ

σ
= −





+




− 









−

where x is a random, independent variable representing the water level and µ, σ, and k represent the location, 
scale, and shape parameters, respectively32. �e exceedance probability distribution of the GPD is given by

E x k k
x

( ; , , ) 1
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�us, the factor of increase in exceedance probability of a new sea-level condition (µ > 0
SL

) relative to a neu-
tral baseline (µ = 0

SL
) is given by
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Note that the unapproximated result for the GPD given in Eq. (16) is identical to the approximated result (i.e., 
using Taylor series approximation) of the GEV increase function f

inc
, Eq. (10). Interestingly, this behavior might 

be expected because the GPD, Eq. (14), represents the �rst two terms in a Taylor series expansion of the GEV 
distribution (7). Furthermore, this behavior is consistent with the theory that the GPD represents the tails of 
another distribution and that retaining the �rst two terms in a Taylor series expansion renders the distribution 
valid for the largest event levels x, which comprise the tails of the GEV distribution. Also as expected, in the 
limit that  →k 0, Eq. (16) becomes Eq. (11).

Number of exceedances. Hunter (2012)15 investigates the increase in the frequency of extreme water-level 
events using the expected number of exceedances, N , rather than the increase in exceedance probability (or 
decrease in return period).

�e number of exceedances, N , is related to the cumulative probability distribution, F by

= .−F e (17)N

Based on the GEV cumulative probability distribution (given in Eq. (7)), Eq. (17) can be expressed as

( )( )
N x k

k

( ; , , )
1

1
(18)

x
k1/

µ σ =

+

.
µ

σ

−

In the limit that the shape parameter k 0→ , Eq. (18) becomes

N x k e( ; , , ) (19)
x

µ σ = .
µ
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−
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Eq. (19) is identical to previous formulations in Hunter (2012)15, who considered the Gumbel form k( 0)=  of 
the GEV distribution. Based on Eq. (19), the factor of increase in the number of exceedances as a function of 
sea-level rise can be written as

N
N x k

N x k
f e

( ; , , )

( ; , , ) (20)
inc

SL
inc

SLµ µ σ

µ σ
=

+
= = .

µ

σ

Eq. (20) demonstrates that the increase in the number of exceedances as a function of sea-level rise mimics the 
approximate form of the increase in exceedance probability, given by Eq. (11). �e number of exceedances,  
Eq. (20), may be preferable to the exceedance probability, Eq. (11), or return period, Eq. (13), because, like the 
GPD, the Taylor series approximation is not required to produce the simpli�ed exponential expression. However, 
to obtain the purely exponential behavior we again require k 0→ . Nevertheless, there appears to be strong theo-
retical grounds indicating an exponential increase in both the probability and/or number of exceedance events 
associated with a baseline trend in the random variable. In the theoretical results discussed above, the natural 
exponential function ( xexp( )) clearly plays a critical role. Yet, in practice, we have demonstrated that alternate 
exponential forms, e.g., 2x, can accurately assess the increases in the frequency of extreme events, using an intui-
tive relationship.

Application. �e National Oceanic and Atmospheric Association (NOAA) archives water-level observations 
along the U.S. coast via the Tides and Currents database (https://tidesandcurrents.noaa.gov/). We obtained the 
data used in the current study from the NOAA CO-OPS Application Programming Interface (API), described 
here: https://tidesandcurrents.noaa.gov/api/. Using the API, we downloaded hourly sea-level records from 1950–
2017 for 876 stations around the U.S. As is common practice in extreme value analysis, we removed any linear 
trend in the hourly water-level observations in order to eliminate the in�uence of sea-level rise on the magnitude 
and frequency of extreme events (see e.g., Tebaldi et al., (2012)17). We restricted our study to only use stations 
whose records contain at least ten years of sea-level observations. �is restriction ensures su�cient data quantity 
for parameter estimation of the extreme value distribution. For the remaining stations, we identi�ed the top 10 
maximum sea-level events with a minimum peak separation of at least three days to ensure that the block maxima 
are independent. Later, we applied only the top three annual maxima (r 3= ) to obtain GEV parameter estimates, 
leaving the remaining 4th -10th largest events to �ll in any data gaps, if present. �e choice of �tting a GEV distri-
bution to the r 3=  annual maxima instead of the =r 1 (largest event per year) is a modi�cation of the r-largest 
order statistic model for block maxima described in Coles et al., (2001)32. Unlike in Coles et al. (2001)32, we do not 
assess the limiting distributions associated with di�erent values of r, and instead simply �t a GEV distribution 
(using maximum likelihood estimates) to the =r 3 annual maxima since estimates of extreme event magnitude 
begin to stabilize around ≥r 3 (see e.g., Vitousek & Fletcher (2008)56). Selecting =r 3, the recurrence interval ri 
in Eq. (12) is given by =r1/ 1/3 years. We chose to select the top three annual maxima in order to decrease the 
in�uence of large, isolated water-level events, such as those resulting from tropical storms. Additionally, we 
removed outliers in the top three annual maxima, identi�ed as events whose magnitude exceeded three median 
absolute deviations (MADs) of the set block maxima57. �e outlier removal procedure typically (i.e., 55% of the 
time) removed three or fewer outliers from the set of the top 3 annual maxima for the entire water-level record. 
We also note that the removal of the outliers only a�ects the characterization of the GEV distribution and the 
estimation of the 1-year and 50-year return water levels. For the growth rate analysis (shown in Figs. 4–8), we use 
the full empirical distribution (i.e., without removing any outliers). Gaps in the block maxima, which were created 
by removing outliers or that occurred from year-long gaps in the observation time series, were �lled with the 
largest remaining events of the sorted data from the set of the remaining 4th -10th largest events from all years. If 
the station lacked su�cient data from the (4th -10th largest) block maxima of recorded years to �ll in prolonged 
gaps in the observations, then the station was eliminated from the current analysis. However, this case repre-
sented only 4% of the stations eliminated here. On the other hand, we removed 66% of the stations because the 
data record was less than 10 years. Of the remaining stations, the average record duration was approximately 37 
years (minimum duration = 10 years; maximum duration = 68 years [i.e., 1950–2017]). Another 5% of stations 
that did not record water-level observations at hourly time scales were eliminated. �e data quality control pro-
cedure thus retained nearly 25% of all of the stations (i.e., 217 of stations out of the initial 876 stations). Yet, we 
further eliminated a small subset of the remaining stations that behaved as outliers in terms of the derived GEV 
parameters. We omit stations whose derived µ and σ parameters exceed 3 MADs of the retained stations. 
However, we do not eliminate any stations based on the k parameter of the GEV distribution, since k is, in general, 
more variable than µ and σ, in part because k can be either positive or negative (whereas both µ and σ are posi-
tive). Furthermore, we retain the stations exhibiting extraordinarily large (absolute) values of k to demonstrate 
that including these stations does not change the conclusions derived herein with respect to imminent transitions 
in �ooding regimes. By eliminating stations with outlying values for µ and σ, only 202 stations remain in the 
present study (Fig. 1A).

We calculate the di�erence in extreme water level, ∆Water Level, according to

WL x T k x T k( 50; , , ) ( 1; , , ), (21)R R50yr 1yr µ σ µ σ∆ = = − =→

which is simply the difference between the 50-yr water level, µ σ=x T k( 50; , , )R , and the 1-yr water level, 

x T k( 1; , , )R µ σ= , of the unaltered GEV water-level distribution (left panel of Fig. 2). Here, the function 

µ σx T k( ; , , )R  is obtained by inverting the GEV exceedance distribution, E x( ), to �nd the value of the random 
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variable, x , corresponding to an exceedance probability of E
r

T

i

R

= . Additionally, we calculate the other 

∆Water Level scenario (right panel of Fig. 2), according to

WL x T k( 50; , , ) MHHW, (22)R50yr MHHW µ σ∆ = = −→

where x T k( 50; , , )R µ σ=  is 50-yr water level and Mean Higher High Water (MHHW), which is calculated as the 
average of the larger semidiurnal high tide events from the detrended time series of the hourly water-level obser-
vations at each station. To obtain the year in the future when the ∆Water Level scenarios (shown in Fig. 2) are 
exceeded by the sea-level rise projections of Kopp et al. (2014)29, we apply a linear interpolation of the time series 
t vs. sea-level rise to �nd the abscissa (i.e., time t) associated with an ordinate equal to ∆Water Level. �e error 
bars on Fig. 3 represent the 95% con�dence levels based on the probabilistic sea-level rise projections of Kopp et 
al. (2014)29. Speci�cally, the lower bounds of the error bars in Fig. 3 represent the upper end of the sea-level rise 
projections (i.e., the 97.5% quantile) and, likewise, the upper bounds of the error bars represent the lower end of 
the sea-level rise projections (i.e., the 2.5% quantile). Hence, 95% of the sea-level rise projections fall between the 
error bars shown in Fig. 3.

Figure 4 shows the odds increase calculated from three di�erent distributions of exceedance probability. �e 
relative odds is calculated from the equation

O O O x O x/ ( )/ ( ), (23)0 0 50 SL 0 50µ= −

where  =
−

O x( )
E x

E x0
( )

1 ( )
 is the odds of exceedance at present-day sea level, µ

SL
 is the projected future sea-level, and 

x50 is the magnitude of the 50-year water-level event. In the case of the GEV model shown in Extended Data 
Fig. 1C, this can be evaluated analytically via a shi� in the mean of the distribution according to Eq. (8). For 
Figure 4, which is based upon the empirical exceedance probability distributions, we obtain the relative odds 
increase via linear interpolation.

In Fig. 6, we again remap the abscissa in Fig. 4 from sea-level rise to time using linear interpolation and the 
sea-level rise projections of Kopp et al. (2014)29, as we did in Fig. 3 (as discussed above). Here, we apply three 
di�erent sea-level rise projections based on greenhouse gas concentration trajectory scenarios (RCP 2.6, RCP 4.5, 
and RCP 8.5), which correspond to a range of possible radiative forcing conditions in the year 2100.
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