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Abstract

Marine monitoring systems have the requirements of a large field of view, low power consumption, real-time

viewing, and economical and automatic functionality. This paper establishes an omnidirectional vision system used

in marine buoys that meets these requirements. We present a framework for image stabilization, which is achieved

by omnidirectional sea-skyline detection in a marine environment. We propose an optimal edge estimation method

to calculate the sea-skyline ellipsis according to the sea-skyline characteristics in panoramic images. We construct a

compact panoramic image stabilization model based on the sea-skyline and propose a reconstruction method for

the invalid regions using the key frame. The experimental results and analysis show that the proposed approach is

capable of acquiring stable video in real-time marine monitoring tasks and that the target detection is sufficiently

effective, efficient, and accurate for a real-time ship target detection application.
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1 Introduction
Marine environment visual surveillance systems play an

important role in managing and monitoring maritime

areas. Perspective vision monitoring sensors have been

designed and installed on buoys in recent years. These

systems can achieve unattended monitoring and marine

vehicle detection tasks in a variety of complex marine

environments [1–4]. However, due to the harsh nature

and complexity of the marine environment, applications

of the visual buoy system continue to present several dif-

ficulties. (1) Marine monitoring systems must perform

their functions for long periods of time, and most buoys

use solar panels [5], which restricts the buoys’ power

consumption. This requires reducing the number of sen-

sors and power devices on the buoy. (2) A 360° field

around the buoy should be monitored; however, single

perspective vision systems present difficulty in meeting

this requirement due to the limitations of the FOV (field

of view) [1, 2]. Some researchers use multiple cameras

to enhance the FOV [4]. However, increasing the num-

ber of cameras results in increased power consumption

and economic costs, which is detrimental to the long-

term monitoring task of the offshore buoy system. (3)

Due to wave movement, the image sequence is disturbed

by irregular vibrations, thereby hindering subsequent ap-

plications. Fefilatyev et al. [3] propose a sea-skyline

detection-based frame selection method for marine

buoys. However, due to the narrow FOV, this method fil-

ters out some of the seriously shaking video frames,

resulting in a loss of information, which is not conducive

to real-time monitoring in a wide-angle open sea

environment.

Catadioptric-omnidirectional vision systems have the

advantage of a 360° rotation indifference FOV [6], which

is increasingly being used in primary vision sensors of

intelligent robots. The use of an omnidirectional vision

system on a marine buoy can solve FOV and power con-

sumption problems. Compared to multi-camera and

multi-sensor systems [3], the panorama system does not

require any follow-up power consumption devices and

uses only one camera to improve economy. However,

when an omnidirectional vision system is implemented

on a marine buoy, the panoramic image sequence suffers

from irregular shaking due to wave motion. Image

stabilization refers to the process of removing irregular

motion phenomena from image sequences. Image* Correspondence: wengxiangyu@hrbeu.edu.cn
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stabilization methods include optical stabilization [7], or-

thogonal transfer CCD stabilization [8], and electronic

stabilization [9]; among these, digital image stabilization

(DIS) does not require other sensors, PTZ, or other

power consumption devices, which presents the advan-

tages of economy, small size, low power consumption,

autonomy, and ease of installation. Moreover, DIS can

achieve superior performance because it can be used

without any restrictions [10, 11].

Many DIS methods have been proposed, such as the

block-based method [10–13], the sub-image phase

correlation-based method [14], the feature-based

method [15, 16], the bit-plane-based method [17, 18],

the gray projection-based method [19], and the sea-

skyline-based method [20]. However, these stabilization

methods are global motion compensation-based

methods for perspective imaging, which cannot be used

to correct the deformations in panoramic images for the

following reasons. (1) The sea area is constantly chan-

ging, leading to a non-uniform distribution in the pano-

ramic image due to the nonlinear projection model of

the omnidirectional vision system [21]; (2) the sky in

view is relatively smooth, causing serious matching er-

rors in the stabilization methods for perspective images;

(3) in addition, existing image stabilization algorithms

are unable to select the initial reference frame in pano-

ramic image stabilization. Another algorithm for catadi-

optric omnidirectional image digital system stabilization

[22] is based on cylindrical expansion [6], followed by

the use of stabilization algorithms for the expanded per-

spective image. The algorithm establishes an accurate

correction model to calculate the amount of movement

for each image point. This represents an inefficient

process that cannot meet the requirements of real-time

performance.

In several application scenarios, the skyline is se-

lected as a significant environmental feature. Skyline

detection primarily aims to estimate aircraft attitude

[23]; this algorithm is based on the color difference

between the sky and land via the use of RGB-

weighted binarization segmentation to obtain the sky-

line without cylindrical expansion. However, under

marine conditions, the color difference between the

sky and the sea is too small for the RGB-weighted-

based method to be valid. Fefilatyev et al. [3] propose

a sea-skyline detection algorithm for ship target de-

tection using perspective vision; however, this cannot

be directly used for omnidirectional vision. Several

feature detectors and descriptors can be combined to

obtain robust illumination enhancement or sea-skyline

detection [24]. Some algorithms use a combination of

Canny edge detection and the Hough transform to

detect the sea-skyline; this approach has strong ro-

bustness [15, 16, 25, 26]. However, these algorithms

are designed for images taken by an infrared camera

or a perspective camera. None of the detection ap-

proaches are directly suited to separate sky and sea

regions in a marine environment with respect to a

catadioptric-omnidirectional vision system.

This paper establishes a catadioptric omnidirectional

vision system to achieve a large FOV, low power con-

sumption, economy, stable observation, on-line, and au-

tonomous marine buoy monitoring system. A rapid DIS

algorithm based on the detection of the sea-skyline

boundary is achieved in this paper. An optimal edge esti-

mation algorithm is proposed based on the characteris-

tics of the sea-skyline in a panoramic image to calculate

the imaging elliptic equation of the sea-skyline bound-

ary. A compact panoramic image stabilization model is

built based on the sea-skyline boundary. In addition, a

reconstruction method for the invalid regions is pre-

sented using the key frame. The experimental results

and analysis show that our method has better perform-

ance than the existing method. The image stabilization

method significantly improves the visual quality and can

be implemented in real-time systems to achieve tasks

such as ship target detection.

2 Outline of image stabilization method
In general terms, our proposed image stabilization

method can be divided into two steps: sea-skyline detec-

tion and image stabilization. An outline of this proced-

ure is shown in Fig. 1. In the first step, an adaptive

Canny operator detects the edges, dividing the pano-

ramic image into blocks of the same size, and the Otsu

algorithm [27] is employed to calculate appropriate

threshold values for each block. Next, the irrelevant

edges are discarded via a filtering algorithm that uses

double-threshold values and pieces of the sea-skyline

boundary are selected by our optimal edge estimation al-

gorithm. Then, a complete contour of the sea-skyline

boundary is obtained via ellipse fitting, and the entire

sea-skyline is estimated. Moreover, regions that are un-

defined during the image warping process are recon-

structed to avoid visual degradation of the frames using

a rapid reconstruction method.

3 Sea-skyline detection
3.1 Sub-region adaptive Canny operator

Theoretically, the sea-skyline is circular in the omnidir-

ectional vision system. However, when the buoy is

shaken, the optical axis of the omnidirectional vision

system is not perpendicular to the sea level, and the sea-

skyline appears to be an ellipse in the panoramic image

[6], as shown in Fig. 2. Due to the imaging mechanism

of omnidirectional vision systems and changing illumin-

ation conditions, the distribution of gray levels is non-

uniform in a panoramic image [6]. Liu et al. [28]
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proposed illumination and contrast balancing for remote

sensing images to solve the non-uniform gray level prob-

lem; however, this process is time-consuming for the en-

tire image and is not applicable to on-line buoys. The

Canny operator is an efficient and effective method for

use on panoramic images [29]. By directly using the

panoramic image, there is a loss of edge information and

the appearance of false edges when applying the original

Canny operator if the threshold values are constant

throughout the entire panoramic image [29]. Here, we

divide the panoramic image into blocks of the same size.

Edge detection is performed through a modified adaptive

Canny operator, where the Otsu algorithm [27] is used

to calculate the appropriate threshold for each block of

the image to meet the edge detection performance re-

quirements under different lighting conditions. The spe-

cific process of the modified Canny edge detection

algorithm is as follows:

1. Remove noise from the image using a two-

dimensional Gaussian low-pass smoothing filter.

2. Calculate the gradient magnitude M[i, j] and the

gradient direction θ[i, j] of each pixel (i, j) using the

finite difference of a 2 × 2 pixel neighborhood first-

order partial derivative.

3. Perform non-maximum suppression of the gradient

amplitude by comparing the gradient magnitude of

the adjacent pixels and keeping the points at which

the maximum local variation of the amplitude

appear.

4. Divide the panoramic image into blocks of 64 × 64

pixels (the block size can also be set according to

the image size). Within each block, use the Otsu

algorithm to determine the higher and lower

thresholds of the Canny operator. Use these

thresholds to detect and connect the edges of each

image block.

5. Perform edge thinning of the edge-detected image

using morphological operators [30] for convenience

in obtaining the edge length statistics.

3.2 Double-threshold gradient direction edge filtering

Due to the disturbance of support devices and waves, ir-

relevant edges are produced along the radial direction

and can be discarded because the gradient direction of

the sea-skyline pixel points toward the center. Consider-

ing the errors introduced by image sampling and

quantization, noise, and camera movement, the gradient

directions may deviate from the radial direction. Using a

single threshold will result in a fracture of the edge of

the sea-skyline boundary. Given the above facts, the ir-

relevant edges are discarded via a filtering algorithm that

uses double-threshold values. Suppose that the higher

threshold is θth1 and the lower threshold is θth2. We cal-

culate the bearing angle θ
′[i, j] between each edge pixel

(i, j) and the center [u0, v0] of the panoramic image

using the following formula:

θ
0 i; j½ � ¼ arctan

j−v0

i−u0

� �

�
180

π
ð1Þ

If θ
′[i, j] < 0, then θ

′[i, j] = θ
′[i, j] + 360° to ensure that

the angle is in the range of 0°–360°. The edge pixel (i, j)

with a bearing angle θ
′[i, j] will be retained if the follow-

ing judging formula is true:

θ i; j½ �−θ0½i; j�j j≤θth2; ð2Þ

Fig. 1 Outline of the digital image stabilization procedure

Fig. 2 Panoramic image
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where θ[i, j] is the bearing angle of (i, j) along the gradi-

ent direction and is acquired during the process of edge

detection. However, the sea-skyline edge is not continu-

ous, and discontinuity is caused by the use of only a sin-

gle threshold θth2. In addition, to maximize the retention

of the edge pixels of the sea-skyline, a recursive bound-

ary tracing method must be used. The pixel within the

8-domain of pixel (i, j) will be denoted as the edge pixel

and will be retained if the following judging formula is

true:

θ i; j½ �−θ0½i; j�j j≤θth1: ð3Þ

Figure 3 (left) shows the edge detection results of Fig. 2

using an optimal Canny operator, for which all of the

edges of the sea-skyline are detected. The edge informa-

tion of the mechanical fixture in the image is useless

and has been masked. However, due to the inclusion of

radial interference, a Canny operator cannot complete

the sea antenna estimation. Figure 3 (right) shows the

results obtained by edge double-threshold filtering (set

θth1 = 5, θth2 = 15), which are obtained experimentally. If

the value of θth1 is less than 5, some useful circumferen-

tial information is lost, and if the value of θth2 is greater

than 15, too much unwanted radial information is intro-

duced. By comparing the result obtained using our edge

double-threshold filtering (Fig. 3 (right)) to that obtained

using an optimal Canny operator (Fig. 3 (left)), we can

conclude that most of the radial edges are removed, and

the edge of the sea is completely preserved. This pro-

vides the conditions for elliptic fitting and sea-skyline

estimation.

3.3 Optimal edge estimation

Based on the above operations, most of the edges along

the radial direction are discarded, and the edges that are

not part of the sea-skyline boundary are divided into

small pieces. Suppose that the number of edges

remaining is m, and the length of the ith edge is ni.

Moving counterclockwise, the distance between the

starting point and the central point is Ri
S , with bearing

angle θ
i
S , and the distance between the ending point and

the central point is Ri
E , with bearing angle θ

i
E. The statis-

tics for all edges Li can be expressed by the following

formula:

Li ¼ Ri
S;R

i
E; θ

i
S; θ

i
E; ni

� �

; i ¼ 1; 2;…;m ð4Þ

The edge Lj with the longest length can first be judged

as the initial part of the sea-skyline boundary. Because

the neighbor endpoints of end-to-end edges are on the

same circle and the distance between them is minimal

along the tangent, an optimal edge estimation algorithm

is designed to identify the remaining pieces of the sea-

skyline boundary. The algorithm is initiated with the in-

put of the longest edge Lj, and the search for the sea-

skyline boundary is performed circularly. Once a new

piece of the sea-skyline boundary is confirmed, the fol-

lowing information (by default edge Lj) will be updated:

R1 ¼ R
j
S; R2 ¼ R

j
E; θ1 ¼ θ

j
S; θ2 ¼ θ

j
E: ð5Þ

where R1, R2 represents the start and end radius and θ1,

θ2 represents the start and end bearing angle of the

newly detected edge. Taking edge Li (i = 1, 2,⋯m, i ≠ j)

as an example, the two-stage phase of optimal edge esti-

mation is as follows.

Moving counterclockwise, the edges that meet the fol-

lowing requirements are taken into account:

0 < θ
i
S−θ2 < θTHsearch ; Ri

S−R2

�

�

�

� < DTHsearch ; ð6Þ

where θTHsearch and DTHsearch are the deviation thresholds

Fig. 3 Edge detection and filtering. The initial edge detection results (left) and the edge filtering results (right) obtained after performing the

edge detection procedure
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of the angle and the radius, respectively. The edge will

be judged as part of the sea-skyline once it achieves the

lowest score denoted in Eq. 7; in addition, Eq. 5 will be

updated.

Score ¼ α� θ
i
S−θ2

� �

þ 1−αð Þ� j Ri
S−R2 j; ð7Þ

where α is a proportionality coefficient. Here, α = 0.3.

The counterclockwise search continues until no edge

meets the requirements in Eq. 6.

Next, the clockwise search, which is similar to the

counterclockwise search, is initiated. The two search

mechanisms differ in that Eqs. 8 and 9 are substituted

for Eqs. 6 and 7, respectively.

0 < θ1−θ
i
E < θTHsearch ; Ri

E−R1

�

�

�

� < DTHsearch : ð8Þ

Score ¼ α� θ1−θ
i
E

� �

þ 1−αð Þ� j Ri
E−R1 j : ð9Þ

To improve the accuracy of ellipse fitting, the initial

and termination angles of the sea-skyline satisfy the

following:

θ2−θ1 > 240; θ2 > θ1

360−θ1 þ θ2 > 240; θ2 < θ1

�

ð10Þ

The two-stage search loop stops before the angular

range of the searched edge is greater than 240° or will

turn to the longest skyline part detection. The restriction

on the amplitude is intended to guarantee precision in

the following process of ellipse fitting [31].

3.4 Ellipse fitting and judgment of fitting success

The process of optimal edge estimation is followed by el-

lipse fitting to obtain a complete contour of the sea-

skyline boundary. The sea-skyline boundary has a

roughly circular contour if there are no undesired mo-

tions; otherwise, it has an elliptic contour. In this paper,

we directly use the ellipse fitting function provided by

OpenCV to perform the elliptic fitting.

Figure 4 (left) shows the edge estimation results of Figs. 2

and 4 (right) which shows the ellipse fitting results, as ob-

tained experimentally; the image resolution is 1024 × 1024

pixels, the angular deviation threshold θTHsearch = 10, and

the radius deviation threshold DTHsearch = 15.

After repeated manual extraction of the sea-skyline

boundary, the experimental results show that the as-

sumption of perfect conditions corresponds to a sea-

skyline imaging circle of radius rc, whereas the lengths

of the ellipse in the imaging of the distorted sea-skyline

boundary are a and b. The relationship between the two

lengths of the ellipse satisfies rc ≈ (a + b)/2. Therefore, if

the following equation is satisfied, then the sea-skyline is

successfully extracted:

rc− aþ bð Þ=2j j < dTH ð11Þ

where dTH is the edge estimation judgment coefficient.

Here, dTH = 3.

4 Image stabilization
The simple model of image warping that compensates

for undesired motions is based on the following assump-

tions: (a) the panoramic image can be represented by a

series of concentric circles when there are no undesired

positional vacillations and the concentric circles will

change into concentric ellipses if the camera suffers

from irregular motion; (b) the pixel points on a given

concentric circle are on the same concentric ellipse des-

pite the image deformation.

When the structure is shaking, the projection angle of

all scene points (except for the structure supporting the

panoramic camera) will change, image deformation will

occur, and assumption (b) is not accurate. In actual

Fig. 4 Sea-skyline extraction
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cases, the sea-skyline points correspond to the infinite

distant scenery in the panoramic image; thus, the scen-

ery points on the sea-skyline satisfy condition (b). The

position of the ship target in the panoramic image is on

the sea-skyline. All of the required information is on the

outermost ellipse where the sea-skyline is located, and

the image region inside the sea-skyline is useless. The

image stabilization algorithm based on the above two as-

sumptions corrects the deformation of the outer ellipse

and does not accurately correct the deformation inside

the sea-skyline. This can greatly simplify the image

stabilization algorithm, thereby improving the computa-

tional speed. Moreover, the scene points near the sea-

skyline boundary can be corrected; these points can be

used for tasks such as ship target recognition.

4.1 Image warping

Based on the two assumptions, through the process of

motion compensation, the concentric ellipses become

concentric circles, as shown in Fig. 5 (left), and the cen-

ter Oc is moved to the ideal center O’c, as shown in Fig. 5

(right).

Figure 5 shows the image stabilization coordinates,

with the image coordinate origin located at the upper

left corner of the image; XeOeYe is the instability image

concentric elliptical coordinate system; XcOcYc is the

corrected concentric coordinate system; X’cO’cY’c is the

steadied image concentric coordinate system; and θ is

the tilt angle of the elliptic equation for the sea-skyline

boundary.

Recall that the ideal sea-skyline imaging circle has a

center at [uc, vc] and a radius of R; a and b represent the

long and short axes of the ellipse, respectively, and [ue,

ve] is the ellipse center. With the assumption that p = [i,

j] for the steadied image coordinates of any point, the

stabilization process involves a calculation of the in-

stability point coordinate p’ = [i’, j’] corresponding to

point p. Recording r, which is the distance between p

and the center of the image [uc, vc], the matrices E and

C represent the ellipse and circle before and after

stabilization, respectively, and a’ and b’ correspond to

the long and short axes of the ellipse, respectively. In

Fig. 5 (left), the coordinates of the ellipse and the circle

quadratic curve equation can be expressed as follows:

m0T Em0 ¼ 0
mTCm ¼ 0

n

ð12Þ

where matrices E and C are

E ¼
1=a02 0 0

0 1=b0
2

0

0 0 −1

2

6

6

4

3

7

7

5

;C ¼

1=r2 0 0

0 1=r2 0

0 0 −1

2

6

4

3

7

5

With the elliptic rotation angle θ, point m in the co-

ordinate system XcOcYc is

m ¼ ½xc; yc; 1�T ¼ Rθ i−uc; j−vc; 1½ �T ð13Þ

where

Rθ ¼
cos θð Þ sin θð Þ

− sin θð Þ cos θð Þ

� 	

ð14Þ

From Eq. 11, the long and short axes of the ellipse (a’

and b’, respectively) have the following relationship with

r:

r ≈ a0 þ b0ð Þ=2 ð15Þ

From the proportional relationship, we obtain

a0 ≈
r

R
a; b0 ≈

r

R
b ð16Þ

Assuming that K is a 3 × 3 matrix,

Fig. 5 Image coordinate system. The left image shows the ellipse becoming a circle, and the right image shows the coordinate translation

Cai et al. EURASIP Journal on Image and Video Processing  (2018) 2018:1 Page 6 of 13



m0 ¼ xc0 ; yc0 ; 1½ �T ¼ Km ð17Þ

Substituting Eq. 17 into Eq. 12,

m0 ¼ xc0 ; yc0 ; 1½ �T ¼ Km ð18Þ

Contrasting the two formulas in Eq. 11, we obtain

m0TKTEKm0 ¼ 0 ð19Þ

Equation 19 has the following solution:

K ¼

a0=r 0 0

0 b0=r 0

0 0 1

2

4

3

5 ð20Þ

After calculating m’, we can use the following equation

to calculate the final point p’:

p0 ¼ i0

j0

" #

¼ RT
θ

xc0

yc0

� 	

þ
ue
ve

� 	

ð21Þ

4.2 Reconstruction of invalid regions

Undefined regions are ignored in the process of com-

pensating transformation; these regions lead to severe

visual quality degradation. For each stabilized frame,

suppose that the center of the ellipse obtained by ellipse

fitting is O and the center of the panoramic image ac-

quired in the ideal case is Oo. If the distance between O

and Oo is not greater than Dcom
TH , then the undefined re-

gions will be filled with the pixel values from the same

regions of the original frame, which have not been com-

pensated, and the reconstructed frame is denoted as the

key frame. During the following reconstruction process,

once the distance between O and Oo is greater than

Dcom
TH , the undefined regions will be filled with the pixel

values from the same regions of the key frame. Here,

Dcom
TH ¼ 10, which is obtained experimentally. Note that

the key frame can be replaced by the new frame.

The structure upon which the camera device is fixed

does not change with camera movement; this area can

be manually extracted and regarded as a fixed back-

ground template, as shown in Fig. 6. The left image

shows the fixed background, and the right image shows

the background template.

5 Results and discussion
Figure 7 shows our experimental equipment. The

catadioptric omnidirectional system shown in Fig. 7

(left) is vertically mounted on a buoy; for a marine

environment, the system is shown in Fig. 7 (right).

The buoy is used to monitor the marine environment

and to identify the target of a ship at sea. The catadi-

optric omnidirectional system consists of a high-

accuracy hyperbolic mirror with 120° of unilateral

vertical angle and a Point Grey 1394b camera; a

8 mm (f = 1.4 C mount) lens is installed on the cam-

era. The resolution of the camera is 4096 × 3072

pixels, the effective pixel used for panoramic vision is

3072 × 3072 pixels, and the frame rate is 10 frames/s;

these specifications were provided by the manufac-

turer. To enhance the accuracy of our method, the

catadioptric omnidirectional system is calibrated using

an open-source calibration toolbox [32]; the calibrated

image center is [2047.93, 1535.98]. The camera base

is equipped with a 3 degrees of freedom adjustment

device. Using a single viewpoint constraint determin-

ation method [33] and by adjusting the device, the

single viewpoint constraint is considered to be satis-

fied during camera-mirror assembly; thus, the unified

sphere imaging model [6] can be used. The experi-

ments were conducted under the configuration of

Fig. 6 Background region. The fixed background (left) and the background template (right)
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Intel Xeon-2690 CPU (2.90 GHz), 12 GB RAM, Win7

64 bit, running MS Visual Studio 2013, and the

OpenCV V2.4.10 library. The power of the compact

computer is less than 100 W. There were other mar-

ine monitoring instruments that shared the computer

with the panoramic vision system such as the GPS,

the Inertial Measurement Unit, and the communica-

tion equipment. The total power consumption of all

devices is about 200 W. The panoramic device power

consumption is only 3 W, which is very energy-

efficient. The buoy was equipped with a large re-

chargeable battery pack and equipped with solar

panels. It was guaranteed that the buoy could run

uninterrupted for at least 6 months without replen-

ishment at offshore sea environment.

5.1 Sea-skyline detection experiment

To verify the effectiveness of the proposed algorithm, we

tested four video sequences captured by the catadioptric

omnidirectional vision system in different conditions. As

shown in Fig. 8, video (a) is captured on a fine day, the

waves are small, and the boundary of the sea-skyline is

obvious. Video (b) is captured in a large wave environ-

ment, and serious image shaking occurs. Video (c) is

captured in a cloudy, sunset environment, and the

boundary of the sea-skyline is blurry. Video (d) is

Fig. 7 Equipment. The catadioptric omnidirectional camera (left) and the buoy-mounted omnidirectional system in a marine environment (right)

Fig. 8 Sea-skyline detection in different conditions. The top row shows the original images, and the bottom row shows the sea-skyline extraction

results. The four columns from left to right correspond to the Fig. 8 (a), (b), (c) and (d) respectively
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captured in a near-shore environment with many occlu-

sions of the sea-skyline, while (a), (b), and (c) are cap-

tured in a distant sea environment.

As can be observed in the top row of Fig. 8, part of

the sea-skyline is covered by strong light of from (a), (b),

and (c), and the sunlight is reflected by the waves. Part

of the boundary between the sky and the sea in (a) and

(b) is not clear, and most of the boundary of the sea and

sky of (c) is not clear. The omnidirectional vision system

has a wide FOV, and even if the sun is very strong, the

affected parts on the panoramic image are small. Based

on the experimental results, each component of the pre-

sented mechanism has a positive effect on the sea-

skyline detection under different light and wave condi-

tions on distant sea (see the bottom row of (a), (b), and

(c)). However, in the near-shore environment (see (d)),

the sea-skyline is disturbed by the houses, boats, and

other objects. In the near-shore environment, the small

amount of antenna edge information is insufficient for

elliptical fitting. The sea-skyline detection fails in the

near-shore situation.

Using experimental statistics based on 20,000 frames

from the same video sequences of Fig. 8a–c (approxi-

mately 13.3 min of video in total), we tested the effect-

iveness of the sea-skyline detection method at different

resolutions. Sea-skyline detection is the most time-

consuming aspect of the entire system. The real-time

performance of the method is most closely related to the

sea-skyline detection procedure. The resolution of the

original images is 4096 × 3072 pixels. The success rate of

sea-skyline detection is affected by the sea-skyline infor-

mation contained in the image. When the image is

shaken strongly, part of the sea-skyline is missing (see

Fig. 8b), and the absence of the sea-skyline reduces the

success rate of detection, which cannot be avoided. By

reducing the resolution of the image, the details of the

sea-skyline will be lost; however, the computation time

will also be reduced. To obtain the optimal application

resolution, we reduced the image resolution to test the

computation time and the detection success rate at dif-

ferent resolutions. The results are shown in Table 1,

from which it can be concluded that when the resolution

increases, the image contains more information on the

sea-skyline and the detection success rate is higher. The

average computation time is also increased accordingly.

Due to the vastness of the sea, the target in the pano-

ramic image moves slowly. A low frame rate (for ex-

ample, 5 frames per second) is sufficient to meet the

application requirements. Although the success rate is

slightly higher when the resolution is 3072 × 3072 pixels,

the computation time is 813.4 ms, which is not suitable

for real-time application. We chose the resolution of

1024 × 1024 pixels because it had the best trade-off be-

tween computation time and success rate. If there are

higher resolution application requirements, the compu-

tation time could be reduced using a more powerful

computer system (the performance of the computer we

used is low, which can guarantee low power consump-

tion and long-term use at sea).

5.2 Image wrapping and undefined region reconstruction

experiment

Although the undesired motions in the original panoramic

image are successfully compensated, there are undefined

regions that cause artifacts. Figure 9 shows the results of

image warping and illustrates the improved visual quality

obtained via reconstruction of the undefined regions.

We uploaded a comparison of the results obtained before

and after image stabilization, namely, “Additional file 1,” to

the journal web. The video shows serious shaking before

the image stabilization procedure, which hinders observa-

tion and follow-up applications; the correction effect is

obvious, and the video is stabilized following image

stabilization. Thus, the image stabilization algorithm sub-

stantially improved the video obtained.

For a panoramic image with a resolution of 1024 ×

1024 pixels, the processes of image warping and un-

defined region reconstruction process take an average of

8.6 ms, which proves the proposed image warping and

undefined region reconstruction is fast.

Together with the process of sea-skyline detection, the

average computational duration of the whole DIS

method was found to be more than 5 frames per second;

thus, the method can meet real-time image processing

requirements for open sea conditions.

Because of the vastness of the ocean, ships move rela-

tively slowly. The targets in adjacent stabled panoramic

frames should be in a straight line, with the ocean edge as

well. To verify the effectiveness of the image stabilization

algorithm, a pixel displacement of the edge and target cen-

ter calculation experiment is achieved using continuous

shooting of 1000 pictures with a single ship target. Because

only the sea-skyline of the panoramic image contains use-

ful information when omnidirectional vision is applied to

the marine buoy, we tested the image stabilization effect of

the sea-skyline boundary and the target appearing in the

sea-skyline. The results are shown in Fig. 10.

Table 1 Effects of the sea-skyline detection algorithm at different

resolutions

Resolution (pixels) Average computational time (ms) Success rate (%)

128 × 128 9.8 88.6

256 × 256 12.1 95.8

512 × 512 57.6 97.3

1024 × 1024 182.3 98.1

3072 × 3072 813.4 99.6
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Fig. 9 Results of image warping. From left to right are the original image, motion compensation, and undefined region reconstruction

Fig. 10 Pixel displacement of the edge and target center before (left column) and after (right column) image stabilization. The same row of the

image is the same frame before and after DIS process
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In Fig. 10, the left column shows the images before

image stabilization, while the right column shows after

the DIS process. Before our DIS process, the target in

adjacent frames is not in a straight line (green line of left

column) and the sea edge is also not in a straight line

(blue line of left column) because of shaking. After our

DIS process, the target is in a straight line (green line of

right column) and the sea edge is also in a straight line

(blue line of right column); the image is stabilized. The

average pixel displacements of the edge and target center

are also calculated, and the results are shown in Table 2.

Table 2 shows that after image stabilization, the pixel

displacements of the edge and target center are sup-

pressed. The image stabilization algorithm is thus effect-

ive. Assumption (b) in Section 4 is proven true with

respect to the sea-skyline boundary.

5.3 Ship target detection experiment

Ship target detection is very important in open sea mon-

itoring tasks. Many target detection methods have been

proposed, among which the most state-of-the-art is the

tracking-learning-detection (TLD) [34]. Based on an im-

proved learning mechanism, TLD [34] constantly up-

dates the feature points of the tracking module and the

target model of the detection module, making detection

and tracking more stable and reliable. However, in an

omnidirectional image, considerable changes will occur

in the target shape, especially the orientation. Addition-

ally, the ship target in an omnidirectional image is on

the sea-skyline, which is too small for feature detection.

Traditional target detection methods, such as TLD, are

not well suited to ship target detection using an omni-

directional vision system. To test our proposed

stabilization algorithm in real-time ship target detection,

a rapid ship target detection method based on determin-

ing a raised edge in the sea-skyline is also performed.

The ship target detection process is as follows.

1. After image stabilization, use a line with a width of 2

pixels covering the extracted sea-skyline boundary to

ensure coverage of all of the sea-skyline pixels

without occlusion of the object and then smooth the

jagged edge of the sea-skyline boundary.

2. Perform edge thinning to obtain single-pixel sea-

skyline edges.

3. To remove the jagged edges caused by the

appearance of the sun in the sea-skyline (which

causes target detection errors), introduce the image

brightness as an auxiliary judgment basis. The sea-

skyline is divided into n regions. The regions are

adjacent and with small overlapped boundary to

eliminate noise generated by over-exposure. The

number of n leads to the length of the regions, the

bigger the n is set, the smaller the region, the richer

the detected edge information is, the less affected by

the exposure but the longer the computation time is.

In order to get the best tradeoff between detection

result and the computation time, n is set to be 120,

which is obtained by experiment. Calculate the mean

brightness within the region. If the average brightness

value of the effective detection area in the panoramic

image for K is the average brightness value of the ith

region for Ki (i = 1, 2,..., n), and if Ki > 1.5 K, then the

luminance is an anomaly and the region is set as

invalid.

4. Search the remaining edges and calculate the

distances from each edge point to the center. If the

distance is greater than the circle radius rc, this edge

is considered a protuberance edge of the sea-skyline

boundary.

The ship target detection experiment is performed

based on our proposed image stabilization procedure

using continuous shooting of 1000 pictures with a single

ship target. Figure 11 shows the detection results. In

Fig. 11 (left), despite being removed due to the ampli-

tude and gradient direction filter, the ship target radial

edge does not affect the detection results. Figure 11

(right) shows one of the test results in which the target

was successfully detected, as marked by the red area.

To quantify the effectiveness and accuracy of our ship

target detection method, the success rate, average center

error, and average computation time of our method and

TLD [34] are compared. Our target detection method is

based on the sea-skyline; thus, to ensure that the initial

conditions of the comparison algorithm are consistent,

the target detection is performed after image

stabilization using the same video. This paper focuses on

applications in ocean monitoring; thus, the success rate

is defined as the percentage of the detected image

frames, and the center error is defined as the difference

between the real target center position and the detected

target center position. The results are shown in Table 3.

Table 3 shows that the success rate of our method is

higher than that of TLD. This is because the ship target

is too small in the panoramic image and the features are

not sufficiently obvious for TLD to detect; however, our

algorithm only needs to detect the edge information of

the sea-skyline. This proves that our algorithm identifies

the target area more effectively. The average center error

of the improved algorithm is slightly higher than that of

Table 2 Average pixel displacements of the edge and target

center

Pixel displacement
of edge

Pixel displacement
of target center

Before stabilization 79.62 78.74

After stabilization 8.31 8.25
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TLD. This is because TLD determines the target features

and center through a continuous learning mechanism

and search algorithm, and the detected center is there-

fore more accurate; our method takes the midpoint of

the detected curve as the center of the target, and be-

cause some edge information is filtered out, the calcu-

lated center error is slightly larger. However, the value is

sufficiently accurate for ship target monitoring tasks.

The average computation time of our method is only

6.5 ms, while that of TLD is 117.7 ms. This is because

TLD determines the target features through a continu-

ous learning mechanism and search algorithm, which is

very time-consuming. Additionally, our algorithm simply

defines the protrusion around the sea-skyline as the

target, which is very efficient. The above analysis

proves that our algorithm is sufficiently effective, effi-

cient, and accurate in detecting ship targets using

omnidirectional vision.

6 Conclusions
In conclusion, a catadioptric-omnidirectional vision sys-

tem for marine buoy monitoring is established. Com-

pared to existing systems, our system has the advantages

of a large FOV, low power consumption, economy,

stable observation, and on-line and autonomous func-

tionality. A novel framework for sea-skyline-based DIS

for an omnidirectional vision system is proposed. Key

techniques, such as sea-skyline detection, motion

compensation, and region reconstruction, are involved

in this approach. In a series of image stabilization exper-

iments, the presented approach demonstrates satisfac-

tory performance and satisfies real-time requirements

for different light and wave conditions. The experimental

results show an important improvement in visual qual-

ity. In an experiment on ship target detection, a rapid

ship target detection method is proposed and validated.

Experimental comparisons with other state-of-the-art

detection methods have shown that our proposed

method is more effective and efficient and that the ac-

curacy is sufficient for marine monitoring tasks. Thus,

our proposed methods meet the requirements of omni-

directional marine monitoring tasks.

7 Additional file

Additional file 1: Comparison of the results obtained before and after

image stabilization. (MP4 7833 kb)
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